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11.2.1 Técnica de geração de colunas . . . . . . . . . . . . . . 224
11.2.2 Método utilizando sub-gradientes . . . . . . . . . . . . 228
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Caṕıtulo 1

Rápido Histórico e Introdução

1.1 Histórico e Introdução

A Programação Linear ou Otimização Linear faz parte das disciplinas que
compõem a Programação Matemática (Otimização) e é um elemento impor-
tant́ıssimo na Pesquisa Operacional. Nos métodos de solução propostos em
Programação Não Linear com restrições há quase sempre a utilização da Pro-
gramação Linear de maneira iterativa. Os problemas clássicos de otimização
em grafos são problemas de Programação Linear espećıficos. A Programação
Linear tem um papel duplo na Programação Matemática, pois os algoritmos
utilizados para a sua solução podem ser de natureza combinatória (discre-
ta) ou cont́ınua. Nos problemas de Otimização Combinatória, modelados
por problemas de Programação Linear Inteira, suas relaxações também serão
problemas de Programação Linear. Três obras gerais sobre a Programação
Matemática (Otimização), para que o leitor ou a leitora possa ter uma melhor
idéia, são [Mino 86, NeRiTo 89, Maf 2000].

As aplicações da Otimização Linear são comuns em quase todos os se-
tores do quotidiano, por exemplo, nas indústrias, nos transportes, na saúde,
na educação, na agricultura, nas finanças, na economia, nas administrações
públicas.

O primeiro algoritmo para a solução dos problemas de Programação Li-
near foi denominado método ou algoritmo do simplex, parece que foi Fourier
[Fou 890] em 1826 que apresentou essa idéia visando à solução de sistemas
de desigualdades lineares, mas foi Dantzig em 1947 que forneceu os resulta-
dos teóricos e computacionais do método do simplex, ver [Dan 51, Dan 63,
Dan 91, Sc 86]. O método do simplex é um dos poucos algoritmos que foi
implantado, comercialmente, em computador há mais de 35 anos, no ińıcio
os fabricantes de computadores forneciam esses códigos, nos dias de hoje, os
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códigos mais conhecidos possuem diferentes versões, dependendo do sistema
operacional utilizado. Em 1939, o matemático Kantorovich [Ka 39] na União
Soviética, já havia modelado e resolvido alguns problemas de otimização li-
gados ao planejamento econômico, graças a esses trabalhos, Leonid V. Kan-
torovich recebeu o prêmio Nobel de Economia em 1975.

Nos caṕıtulos 2 a 8 apresentamos o método do simplex de maneira algébri-
ca, numérica e geométrica, assim como algumas de suas extensões. Apesar de
sua grande aplicação prática, o método do simplex pode ter comportamento
exponencial em seu número de iterações. Em 1978, Khachian [Kha 79], uti-
lizando os métodos elipsoidais, apresentou seu algoritmo, no qual o número
máximo de iterações para resolver um problema de Programação Linear é
limitado por uma função polinomial do tamanho dos dados do problema
numa memória de computador. O método de Khachian [Kha 79] ou dos
elipsóides, que apresentamos no caṕıtulo 9, é um dos algoritmos mais ele-
gantes em otimização, no entanto, sua performance prática deixa muito a
desejar.

Em 1984, Karmarkar [Kar 84] propôs seu algoritmo de pontos interi-
ores com comportamento numérico teórico polinomial e com bons resul-
tados práticos. Após a publicação desse trabalho de Karmarkar [Kar 84],
vários algoritmos de pontos interiores foram apresentados. Citamos alguns
livros que tratam dos métodos de pontos interiores: [Ja 97, Vand 98, Wr 97].
Dedicamos o caṕıtulo 9 a alguns desses algoritmos, assim como fornecemos
alguns programas em MATLAB.

Nos caṕıtulos 10 e 11 introduzimos os problemas de Otimização Inteira ou
Programação Inteira ou Otimização Discreta ou Otimização Combinatória,
isto é, problemas de Otimização Linear onde algumas ou todas variávies são
restritas a valores inteiros. Gomory [Go 58a, Go 58b], no final dos anos 50,
propôs os primeiros algoritmos de planos de corte para solucionar esses pro-
blemas, ver [Ma 78, Ma 83, NeWo 88, Sc 86]. Temos a intenção de escrever
um outro livro sobre a Otimização Inteira.

Procuramos listar na bibliografia deste livro um número razoável de re-
ferências didáticas em Programação Linear publicadas desde os anos 50,
inclusive fizemos um esforço em buscar referências em ĺıngua portuguesa.
A obra mais clássica é o livro de Dantzig [Dan 63], seguem-se várias ou-
tras, aqui em ordem alfabética: [Ar 93, BaJa 77, BrOlBo 81, ChCoHe 53,
Ch 83, DoSaSo 58, Ga 60, Gar 60, Gas 58, GiMuWr 91, GiEl 71, GoYo 73,
Gon 89, Ha 65, He 94, HuCa 87, Ja 97, Las 70, Lu 89, Mac 75, MaPe 80,
Mu 76, Or 68, Pu 75, Sak 83, Sc 86, Si 72, Sim 58, St 72, Vand 98, We 90,
Wr 97, Zi 74].

Outros livros de Otimização Combinatória trazem sempre uma introdução
à Programação Linear, tais como: [GaNe 72, Gr 71, Hu 69, KoFi 69, Ko 80,
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Law 76, Ma 78, Ma 83, NeWo 88, PaSt 82, Sa 75, SyDeKo 83, Ta 75, Var 72,
Wo 98].

Utilizamos, desde o ińıcio, uma notação matricial para apresentar os
resultados teóricos e computacionais. No que se refere à modelagem de
problemas de decisão pela Programação Linear, solicitamos ao leitor ou à
leitora que busque esse enfoque nas referências [BrHaMa 77, JaLa 98, Th 82,
GuPrSe 2000, MaPe 80] e em livros de introdução à Pesquisa Operacional.

O conteúdo deste livro pode ser apresentado, parcial ou totalmente, nas
disciplinas de Programação Matemática, de Otimização (Programação) Lin-
ear, de Pesquisa Operacional, de Otimização Combinatória nos seguintes
cursos de graduação e pós-graduação: Engenharias, Matemática, Ciência
da Computação, F́ısica, Qúımica, Economia, Administração, Estat́ıstica,
Atuária.
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Caṕıtulo 2

Definições e Propriedades dos
Problemas de Programação
Linear

Um problema de programação linear pode ser definido sob a seguinte forma:

maximizar z =
p∑

j=1

cjxj (2.1)

sujeito a:
p∑

j=1

aijxj ≤ bi, i = 1, 2, ..., q (2.2)

xj ≥ 0, j = 1, 2, ..., p, (2.3)

onde cj, aij e bi são dados (números reais) e xj representa para j = 1, 2, ..., p,
as variáveis de decisão. A função linear a ser maximizada em (2.1) é deno-
minada função objetivo, função econômica ou função critério. As restrições
de não negatividade (2.3) são conhecidas como triviais.

Cada restrição i de (2.2) pode ser substitúıda com o acréscimo de uma
variável xp+i ≥ 0, denominada variável de folga, por uma restrição de igual-
dade e uma restrição trivial:

p∑

j=1

aijxj ≤ bi ⇔
{ ∑p

j=1 aijxj + xp+i = bi,
xp+i ≥ 0.

ou
p∑

j=1

aijxj ≥ bi ⇔
{ ∑p

j=1 aijxj − xp+i = bi,
xp+i ≥ 0.

O leitor ou a leitora poderá, facilmente, verificar esta afirmação.
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Uma restrição de igualdade poderá também ser substitúıda por duas de-
sigualdades:

p∑

j=1

aijxj = bi ⇔
{ ∑p

j=1 aijxj ≤ bi,∑p
j=1 aijxj ≥ bi.

Sendo dado um problema de programação linear com restrições de igual-
dades e desigualdades, poderemos acrescentar variáveis de folga às desigual-
dades não triviais, passando dessa maneira a trabalharmos com restrições de
igualdades e desigualdades triviais.

Assim sendo, um problema de programação linear poderá sempre ser
escrito da seguinte maneira:

(PPL) : maximizar z =
n∑

j=1

cjxj

sujeito a:
n∑

j=1

aijxj = bi, i = 1, 2, ..., m

xj ≥ 0, j = 1, 2, ..., n,

que poderá ser ainda apresentado sob a forma abaixo:

(PPL) : maximizar z = cx (2.4)

sujeito a:
Ax = b (2.5)

x ≥ 0, (2.6)

onde c = (c1 c2 ... cn), xT = (x1 x2 ... xn), bT = (b1 b2 ... bm), A =
(a1 a2 ... an) e aT

j = (a1j a2j ... amj), isto é, cT ∈ Rn, x ∈ Rn, b ∈ Rm, A ∈
Rm×n e aj ∈ Rm.

A desigualdade (2.6) indica que cada componente do vetor x é não ne-
gativa. Indicaremos, portanto, que um dado vetor x tem pelo menos uma
componente negativa através da notação x 6≥ 0.

Definição 2.1 Seja X = {x ∈ Rn|Ax = b, x ≥ 0}. O conjunto X é denomi-
nado conjunto ou região viável do (PPL) e se x ∈ X, então x é uma solução
viável do mesmo problema. Dado x∗ ∈ X, x∗ é denominado uma solução
ótima do (PPL) se cx∗ ≥ cx, para todo x ∈ X.
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Suporemos, sem perda de generalidade, que a matriz A tenha posto igual
a m, isto é, existem m colunas de A linearmente independentes.

Como observação podemos dizer que a presença de uma variável xj ir-
restrita em sinal será expressa: xj = x+

j − x−j , x+
j ≥ 0 e x−j ≥ 0, deixando

sempre o problema na forma (PPL).
Particionaremos a matriz A da seguinte maneira: A = (B N), onde B é

uma matriz quadrada m×m e inverśıvel. Analogamente particionaremos os
vetores x e c : xT = (xT

B xT
N), c = (cB cN), xB e cB possuirão m componentes

associadas à matriz B. Dessa maneira o (PPL) poderá ser escrito:

(PPL) : maximizar z = cBxB + cNxN (2.7)

sujeito a:
BxB + NxN = b (2.8)

xB ≥ 0, xN ≥ 0. (2.9)

Explicitaremos xB em função de xN em (2.8):

xB = B−1b−B−1NxN . (2.10)

Façamos xN = 0 e x̄B = B−1b.

Definição 2.2 x̄ é uma solução básica de (2.5) se x̄T = (x̄T
B 0). As variáveis

associadas às componentes de x̄B são denominadas básicas e as demais não
básicas. Quando x̄B possuir ao menos uma componente nula diremos que x̄
é uma solução básica degenerada.

No caso em que x̄B for não negativo, isto é, x̄B ≥ 0, então x̄ satisfará
à restrição (2.6). Por força do hábito, diremos que esta solução x̄ é uma
solução básica primal viável. Primal pois mais adiante introduziremos a
noção de dual.

Sejam IB o conjunto dos ı́ndices das colunas de A pertencendo à matriz
B e IN o conjunto dos demais ı́ndices de A. Lembremos que IB ∩ IN = φ e
IB ∪ IN = {1, 2, ..., n}.

Levando a expressão de xB em (2.10) na função objetivo (2.7) teremos
uma outra forma do (PPL):

(PPL) : maximizar z = cBB−1b− (cBB−1N − cN)xN (2.11)

sujeito a:
xB = B−1b−B−1NxN (2.12)

xB ≥ 0, xN ≥ 0. (2.13)
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Por comodidade, definiremos seguindo alguns autores clássicos dos textos
de programação linear, por exemplo, Dantzig [Dan 63] e Simonnard [Si 72],
novos parâmetros para o último (PPL):

u = cBB−1, uT ∈ Rm,
x̄B = B−1b, x̄B ∈ Rm,
zj = uaj (j ∈ IB ∪ IN), zj ∈ R,
yj = B−1aj (j ∈ IB ∪ IN), yj ∈ Rm,
z̄ = cBB−1b = ub = cBx̄B.

Assim poderemos escrever (cBB−1N − cN)xN =
∑

j∈IN
(zj − cj)xj e o (PPL)

se tornará:
(PPL) : maximizar z = z̄ − ∑

j∈IN

(zj − cj)xj (2.14)

sujeito a:
xB = x̄B −

∑

j∈IN

yjxj (2.15)

xB ≥ 0, xj ≥ 0, j ∈ IN . (2.16)

Definindo yT
j = (y1j y2j ... ymj), xT

B = (xB(1) xB(2) ... xB(m)) e x̄T
B =

(x̄B(1) x̄B(2) ... x̄B(m)) então (2.15) poderá ainda ser escrito como:

xB(i) = x̄B(i) −
∑

j∈IN

yijxj, i = 1, , ...,m. (2.17)

Proposição 2.1 Se x̄B ≥ 0 e zj − cj ≥ 0, ∀j ∈ IN então o vetor x∗ ∈ Rn,
onde x∗B(i) = x̄B(i), i = 1, 2, ..., m e x∗j = 0, j ∈ IN , será uma solução ótima
do (PPL).

Demonstração
Como zj − cj ≥ 0 e xj ≥ 0, ∀j ∈ IN , então de (2.14 temos z ≤ z̄ = cx∗.
O máximo de z não ultrapassará z̄ = cx∗, mas x∗ é uma solução viável do
(PPL), logo x∗ é uma solução ótima do (PPL).

No caso da propriedade 2.1, x∗ é uma solução básica de (2.5).
Suponhamos agora que x̂ ∈ Rn seja uma solução viável de (2.5) e (2.6),

logo o será também de (2.15) e (2.16), isto é,

x̂B(i) = x̄B(i) −
∑

j∈IN

yijx̂j, i = 1, 2, ..., m (2.18)

e x̂ ≥ 0, j ∈ IB ∪ IN , fornecendo um valor ẑ à função objetivo:

ẑ = z̄ − ∑

j∈IN

(zj − cj)x̂j = cx̂.
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Suporemos também que x̂ ∈ Rn não seja uma solução básica de (2.5),
isto quer dizer que haverá ao menos uma componente x̂j > 0, j ∈ IN .

Será posśıvel passar da solução x̂ a uma solução básica viável x∗ do
(PPL) tal que cx∗ ≥ ẑ = cx̂?

Para respondermos esta pergunta começaremos fazendo variar o valor de uma
variável xk, k ∈ IN enquanto que o valor das outras variáveis cujos ı́ndices
pertencem a IN não se modificam, isto é, xj = x̂j para j ∈ IN − {k}. De
(2.18):

xB(i) = x̄B(i) −
∑

j∈IN−{k}
yijx̂j − yikxk, i = 1, 2, ..., m (2.19)

onde xk poderá variar (aumentar ou diminuir).
Sabemos que xk ≥ 0, xB(i) ≥ 0, i = 1, 2, ..., m, e que os outros valores

associados a xj, j ∈ IN−{k}, não serão modificados. Assim sendo: xB(i) ≥ 0
implica que

x̄B(i) −
∑

j∈IN−{k}
yijx̂j − yikxk ≥ 0, i = 1, 2, ..., m. (2.20)

Consideremos L0, L1, L2 uma partição de {1, 2, ...,m}, tal que

L0 = {i | yik = 0}, L1 = {i | yik > 0}, L2 = {i | yik < 0}.
Busquemos os limites de variação para xk pois sabemos que de (2.20):

yikxk ≤ x̄B(i) −
∑

j∈IN−{k}
yijx̂j, i = 1, 2, ..., m. (2.21)

Para i ∈ L0 basta que o valor de xk seja não-negativo.
Para i ∈ L1:

xk ≤ 1

yik


x̄B(i) −

∑

j∈IN−{k}
yijx̂j


 .

Para i ∈ L2:

xk ≥ 1

yik


x̄B(i) −

∑

j∈IN−{k}
yijx̂j


 .

Sejam

αk =
1

ysk


x̄B(s) −

∑

j∈IN−{k}
ysjx̂j


 = min

i∈L1





1

yik


x̄B(i) −

∑

j∈IN−{k}
yijx̂j






 ,

βk =
1

ylk


x̄B(l) −

∑

j∈IN−{k}
yljx̂j


 = max

i∈L2





1

yik


x̄B(i) −

∑

j∈IN−{k}
yijx̂j






 ,
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e γk = max{0, βk}.
Logo γk ≤ xk ≤ αk.
Quando L1 = φ ⇒ αk = ∞ e quando L2 = φ ⇒ βk = −∞.
A matriz B = (aB(1) aB(2) ... aB(m)) extráıda de A foi utilizada para

chegarmos ao sistema (2.15) a partir de (2.5). Os vetores aB(i), i = 1, 2, ...,m,
formam uma base do Rm, logo existem λi ∈ R, i = 1, 2, ..., m, para os
quais ak =

∑m
i=1 λiaB(i). Seja s ∈ {1, 2, ..., m} = M tal que λs 6= 0, então

aB(s) = 1
λs

(
ak −∑

i∈M−{s} λiaB(i)

)
, como aB(s) 6= 0, a coluna ak não pode ser

escrita como uma combinação linear das colunas aB(i), i ∈ M−{s}; isto quer
dizer que aB(1), aB(2), ..., aB(s−1), ak, aB(s+1), ..., aB(m) formam também
uma base do Rm.

Seja vT = (λ1 λ2 ... λm), assim podemos escrever ak = Bv, logo v =
B−1ak, isto é, v = yk.

Basta que ysk 6= 0 para que possamos substituir a base formada pelas
colunas de B por uma outra base em que o vetor aB(s) é substitúıdo por ak.

Já estamos aptos a responder nossa pergunta.

Procedimento 1
Tomemos xk tal que xk = x̂k > 0 e k ∈ IN .
1o caso: zk − ck > 0, decresceremos o valor de xk até alcançar γk;

se γk = 0, faremos xk = 0 e utilizaremos (2.19) para
atualizar os valores de xB(i), i = 1, 2, ..., m;

se γk = βk, faremos xk = βk que ocasionará xB(l) = 0 em (2.19),
como ylk 6= 0 então poderemos fazer

IB := (IB − {B(l)}) ∪ {k},
IN := (IN − {k}) ∪ {B(l)},

isto é, teremos uma nova matriz B inverśıvel, extráıda
de A, onde a coluna aB(l) será substitúıda por ak;

2o caso: zk − ck < 0, aumentaremos o valor de xk até alcançar αk;
se αk = +∞, a solução do (PPL) será ilimitada,

pois xk → +∞ implica z → +∞;
se αk < ∞, faremos xk = αk que ocasionará xB(s) = 0 em (2.19),

como ysk 6= 0 então poderemos fazer
IB := (IB − {B(s)}) ∪ {k},
IN := (IN − {k}) ∪ {B(s)},

isto é, teremos uma nova matriz B inverśıvel, extráıda
de A, onde a coluna aB(s) será substitúıda por ak;

3o caso: zk − ck = 0, aplicaremos o que foi realizado no 1o caso.
Fim do procedimento 1
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Para cada j ∈ IN tal que x̂j > 0, o procedimento 1 feito para o ı́ndice
k será repetido até que os valores atribúıdos às variáveis xj, j ∈ IN , sejam
nulos, ou que a solução máxima (ótima) do (PPL) seja ilimitada (2o caso,
αk = +∞).

O procedimento 1 será aplicado r vezes onde r = |{j ∈ IN | x̂j > 0}|.
Com as explicações anteriores poderemos enunciar mais duas proprieda-

des a seguir.

Proposição 2.2 Se (2.5), (2.6) admitirem uma solução viável, então haverá
ao menos uma solução básica de (2.5) satisfazendo (2.6).

Proposição 2.3 Se o (PPL) possuir ótimo finito ao menos uma solução
ótima será básica viável.

A propriedade 2.2 poderá ser demonstrada utilizando o 1o caso do pro-
cedimento 1 para qualquer zk − ck ∈ R, k ∈ IN , x̂k > 0.

Aplicaremos r vezes, onde r = |{j ∈ IN | x̂j > 0}|, o procedimento 1 para
demonstrarmos a propriedade 3.

Exemplo 2.1 Seja o

(PPL) : maximizar z = 3x1 + 5x2

sujeito a:
x1 ≤ 4

x2 ≤ 6
3x1 + 2x2 ≤ 18

x1 ≥ 0
x2 ≥ 0

Associaremos às restrições não triviais as variáveis de folga x3 ≥ 0, x4 ≥
0, x5 ≥ 0 tais que o (PPL) fique sob a seguinte forma.

(PPL) : maximizar z = 3x1 + 5x2 + 0x3 + 0x4 + 0x5

sujeito a:
x1 + x3 = 4

x2 + x4 = 6
3x1 + 2x2 + x5 = 18

xj ≥ 0, j = 1, 2, 3, 4, 5,

onde

13



A = (a1 a2 a3 a4 a5) =




1 0 1 0 0
0 1 0 1 0
3 2 0 0 1


 ,

b =




4
6

18


 , c = (3 5 0 0 0).

Tomemos

IB = {3, 2, 5}, IN = {1, 4},
B(1) = 3, B(2) = 2, B(3) = 5,

B = (a3 a2 a5) =




1 0 0
0 1 0
0 2 1


 , logo B−1 =




1 0 0
0 1 0
0 −2 1


 ,

cB = (0 5 0), u = cBB−1 = (0 5 0)




1 0 0
0 1 0
0 −2 1


 = (0 5 0),

x̄B = B−1b =




x̄3

x̄2

x̄5


 =




1 0 0
0 1 0
0 −2 1







4
6

18


 =




4
6
6


 ,

z̄ = cBB−1b = ub = (0 5 0)




4
6

18


 = 30,

z1 = ua1 = (0 5 0)




1
0
3


 = 0 ⇒ z1 − c1 = 0− 3 = −3,

z4 = ua4 = (0 5 0)




0
1
0


 = 5 ⇒ z4 − c4 = 5− 0 = 5,

y1 = B−1a1 =




1 0 0
0 1 0
0 −2 1







1
0
3


 =




1
0
3


 ,

y4 = B−1a4 =




1 0 0
0 1 0
0 −2 1







0
1
0


 =




0
1

−2


 .
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Poderemos escrever:
maximizar z

sujeito a:
z = 30 + 3x1 − 5x4

x3 = 4 − x1

x2 = 6 − x4

x5 = 6 − 3x1 + 2x4

xj ≥ 0, j = 1, 2, 3, 4, 5.

Tomemos x̂1 = 1, x̂2 = 4, x̂3 = 3, x̂4 = 2, x̂5 = 7 uma solução viável
deste problema, facilmente verificada, fornecendo ẑ = 30+3×1−5×2 = 23.
A partir da solução x̂ objetivamos encontrar uma solução básica viável que
forneça um valor z∗ para z, tal que z∗ ≥ cx̂.

A seguir usaremos o procedimento 1.
Como z4− c4 = 5 > 0, estamos no 1o caso, portanto faremos x4 decrescer

de valor:

4− x̂1 ≥ 0 qualquer que seja x4,

6− x4 ≥ 0 ⇒ x4 ≤ 6,

6− 3x̂1 + 2x4 ≥ 0 ⇒ 2x4 ≥ 3x̂1 − 6 ⇒ x4 ≥ 3×1−6
2

= −3
2
, β4 = −3

2
,

logo γ4 = max
{
0,−3

2

}
= 0.

Basta fazermos x4 = 0 e teremos a nova solução viável: x̂1 = 1, x̂4 = 0
fornecendo x̂3 = 3, x̂2 = 6, x̂5 = 3 e ẑ = 30 + 3× 1 = 33.

Examinaremos agora x1. Como z1−c1 = −3 estamos no 2o caso, portanto
faremos x1 aumentar de valor:

x3 = 4− x1 ≥ 0 ⇒ x1 ≤ 4,

x2 = 6− x̂4 ≥ 0 qualquer que seja x1,

x5 = 6− 3x1 + 2x̂4 ≥ 0 ⇒ 3x1 ≤ 6 + 2x̂4 ⇒ x1 ≤ 6+2×0
3

= 2,

logo α1 = min{2, 4} = 2, s = 3, B(s) = 5.
A nova base será definida por

IB = {3, 2, 1}, IN = {4, 5},
B(1) = 3, B(2) = 2, B(3) = 1,

B = (a3 a2 a1) =




1 0 1
0 1 0
0 2 3


 , logo B−1 =




1 2
3
−1

3

0 1 0
0 −2

3
1
3


 .
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cB = (0 5 3), u = cBB−1 = (0 5 3)




1 2
3
−1

3

0 1 0
0 −2

3
1
3


 = (0 3 1),

x̄B = B−1b =




x̄3

x̄2

x̄1


 =




1 2
3
−1

3

0 1 0
0 −2

3
1
3







4
6

18


 =




2
6
2


 ,

z̄ = cBB−1b = ub = (0 3 1)




4
6

18


 = 36,

z4 = ua4 = (0 3 1)




0
1
0


 = 3 ⇒ z4 − c4 = 3− 0 = 3,

z5 = ua5 = (0 3 1)




0
0
1


 = 1 ⇒ z5 − c5 = 1− 0 = 1,

y4 = B−1a4 =




1 2
3
−1

3

0 1 0
0 −2

3
1
3







0
1
0


 =




2
3

1
−2

3


 ,

y5 = B−1a5 =




1 2
3
−1

3

0 1 0
0 −2

3
1
3







0
0
1


 =



−1

3

1
1
3


 .

Novamente escreveremos o (PPL) sob a seguinte forma:

maximizar z

sujeito a:
z = 36 − 3x4 − x5

x3 = 2 − 2
3
x4 + 1

3
x5

x2 = 6 − x4 − x5

x1 = 2 + 2
3
x4 − 1

3
x5

xj ≥ 0, j = 1, 2, 3, 4, 5.

A solução obtida será x̂1 = 2, x̂2 = 6, x̂3 = 2, x̂4 = 0, x̂5 = 0, que é uma
solução básica primal viável. Neste caso obtivemos zj − cj ≥ 0, ∀j ∈ IN ,
assim sendo, pela propriedade 2.1, esta última solução é também ótima,
fornecendo z∗ = 36.

Ilustraremos, na figura 2.1, o desenvolvimento deste exemplo no espaço
x1 × x2 do problema original. Os lados do pentágono formado pelos vértices
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Figura 2.1: Busca de uma solução básica

(0, 0), (4, 0), (4, 3), (2, 6) e (0, 6) e seu interior representam a região viável
do problema. Do ponto inicial (1, 4) passamos a (1, 6) e deste à solução básica
(2, 6).

2.1 Observações

Pela propriedade 2.3 podemos pensar em só considerar, para efeito de encon-
trar um ótimo do (PPL), as soluções básicas viáveis deste problema.

O sistema de equações lineares (2.5) pode possuir até Cm
n soluções básicas,

pois Cm
n é o número total de matrizes m×m diferentes extráıdas de A, algumas

podendo não ser inverśıveis e entre as inverśıveis poderemos ter x̄B 6≥ 0.
Supondo mais uma vez que o problema de programação linear tenha solução
finita, poderemos escrever o seguinte problema de otimização:

(P ) : maximizar z = cx
sujeito a: x ∈ V,

onde V = {x1, x2, ..., xt}, e xi ∈ Rn, i = 1, 2, ..., t, são soluções básicas
viáveis do (PPL). Lembremos que |V | = t ≤ Cm

n .

Definição 2.3 (P ) é um problema de otimização combinatória.
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2.2 Exerćıcios

1. Sendo dado o problema de programação linear

(P ) : maximizar z = 3x1 + 5x2

sujeito a:

x1 + x3 = 4
x2 + x4 = 6

3x1 + 2x2 + x5 = 18

xj ≥ 0, j = 1, 2, 3, 4, 5.

Verificar que as colunas associadas às variáveis x1, x2, x3 formam um
base ótima do (P ).

2. Seja
(P1) : maximizar z = 10x1 + 12x2 + 3x3 + 4x4 + 2x5

sujeito a:

x1 + x2 + x3 = 4
2x1 + 3x2 − x4 = 6
x1 + x5 = 3

xj ≥ 0, j = 1, 2, 3, 4, 5.

A partir da solução x1 = 1, x2 = 2, x3 = 1, x4 = 2, x5 = 2, fornecendo
um valor de z = 49. Encontrar uma solução básica de (P1) tal que o
valor de z associado à esta solução básica seja maior ou igual a 49.
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Caṕıtulo 3

Método do Simplex

3.1 Introdução

Dantzig, em 1947, introduziu o método do simplex para resolver um problema
de programação linear (PPL).

A idéia do método é partir de uma solução básica de (2.5) satisfazendo
(2.6), isto é, uma solução básica primal viável, passar para outra solução
básica primal viável sem que o valor da função objetivo diminua (no caso de
maximização). Como o número de soluções básicas é finito, o algoritmo, sob
algumas condições, convergirá.

Dada a matriz B quadrada e inverśıvel, extráıda de A, tal que x̄B ≥ 0,
colocaremos o problema de programação linear (2.4),(2.5) e (2.6) sob a forma
(2.14), (2.15) e (2.16). Utilizando a propriedade 2.1, testaremos se esta
solução é ótima, caso não o seja tentaremos aumentar o valor de uma variável
xk, k ∈ IN , tal que zk−ck < 0, como já explicado no 20 caso do procedimento
1. Se αk = +∞ então não haverá ótimo finito, caso contrário procederemos
exatamente como foi ilustrado no exemplo 2.1.

No caso em que só iremos trabalhar com soluções básicas viáveis, o cálculo
de αk é mais simplificado:

αk =
x̄B(s)

ysk

= min
i∈L1

{
x̄B(i)

yik

}

e caso L1 = φ faremos αk = +∞.

A seguir descreveremos um procedimento que resume o método do sim-
plex.
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3.2 Algoritmo do Simplex

Procedimento 2 (maximização)
Dada uma solução básica primal viável para o (PPL).
Se zj − cj ≥ 0,∀j ∈ IN , a solução dada é uma solução ótima. PARE.
Caso contrário, escolhe-se um k ∈ IN para o qual zk − ck < 0;

se αk = +∞, a solução do (PPL) é ilimitada. PARE.
se αk < +∞, faremos xk = αk, acarretando xB(s) = 0,

a coluna ak ocupará o lugar da coluna aB(s) em B.
MUDANÇA DE BASE.

Fim do procedimento 2.

Para cada nova base o procedimento 2 é repetido até que uma regra de
parada seja verificada. Este procedimento possui duas sáıdas: solução ótima
encontrada ou solução ilimitada. Para que este método iterativo realmente
termine, teremos que considerar as condições de Bland [Bl 77] que serão e-
xaminadas mais tarde.

Exemplo 3.1 Tomemos o (PPL) do exemplo 2.1, já com as variáveis de
folga adicionadas.

1a solução básica:
IB = {3, 4, 5}, IN = {1, 2},

B(1) = 3, B(2) = 4, B(3) = 5,

B = (a3 a4 a5) =




1 0 0
0 1 0
0 0 1


 = I.

A base B está associada a uma solução básica primal viável, isto é, faremos
x1 = x2 = 0 e teremos x3 = 4, x4 = 6 e x5 = 18. Neste caso B−1 = B = I.
E ainda

cB = (0 0 0), u = cBB−1 = (0 0 0)I = (0 0 0),

x̄B = B−1b =




x̄B(1)

x̄B(2)

x̄B(3)


 =




x̄3

x̄4

x̄5


 =




1 0 0
0 1 0
0 0 1







4
6

18


 =




4
6

18


 ,

z̄ = cBB−1b = ub = (0 0 0)(4 6 18)T = 0,

z1 = ua1 = (0 0 0)




1
0
3


 = 0 ⇒ z1 − c1 = 0− 3 = −3 < 0,

20



z2 = ua2 = (0 0 0)




0
1
2


 = 0 ⇒ z2 − c2 = 0− 5 = −5 < 0,

y1 = B−1a1 = Ia1 = a1 =




1
0
3


 ,

y2 = B−1a2 = Ia2 = a2 =




0
1
2


 .

O problema ficará sob a seguinte forma:

maximizar z

sujeito a:
z = 0 + 3x1 + 5x2

x3 = 4 − x1

x4 = 6 − x2

x5 = 18 − 3x1 − 2x2

xj ≥ 0, j = 1, 2, 3, 4, 5.

Fazendo x1 = x2 = 0 teremos x3 = 4, x4 = 6, x5 = 18 fornecendo
z = 0. Faremos uma das variáveis x1 ou x2 crescer de valor, provocando
o aumento de z. Tomemos, por exemplo, x2 para ter seu valor aumentado,
isto é, faremos a coluna a2 entrar na nova base. Como L1 = {2, 3}, pois
y12 = 0, y22 = 1 e y32 = 2, passaremos a calcular α2:

α2 = min

{
x̄B(2)

y22

,
x̄B(3)

y32

}
= min

{
6

1
,

18

2

}
= 6 =

x̄B(2)

y22

,

logo aB(2) deixará a base, sendo substitúıda pela coluna a2.

2a solução básica:
IB = {3, 2, 5}, IN = {1, 4},

B(1) = 3, B(2) = 2, B(3) = 5,

B = (a3 a2 a5) =




1 0 0
0 1 0
0 2 1


 logo B−1 =




1 0 0
0 1 0
0 −2 1


 ,

cB = (0 5 0), u = cBB−1 = (0 5 0)




1 0 0
0 1 0
0 −2 1


 = (0 5 0),
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x̄B = B−1b =




x̄3

x̄2

x̄5


 =




4
6
6


 ,

z1 = ua1 = (0 5 0)




1
0
3


 = 0 ⇒ z1 − c1 = 0− 3 = −3 < 0,

z4 = ua4 = (0 5 0)




0
1
0


 = 5 ⇒ z4 − c4 = 5− 0 = 5 > 0.

Calcularemos o essencial para a passagem à terceira solução básica, isto
é, a1 entrará na nova base; necessitamos obter α1 para saber qual a coluna
de B que será substiúıda por a1.

y1 = B−1a1 =




1 0 0
0 1 0
0 −2 1







1
0
3


 =




1
0
3


 =




y11

y21

y31


 ,

logo L1 = {1, 3} e

α1 = min
i∈L1

{
x̄B(i)

yi1

}
= min

{
4

1
,

6

3

}
=

6

3
= 2 =

x̄B(3)

y31

=
x̄5

y31

.

Assim sendo a5 = aB(3) deixará a base.

3a solução básica:
IB = {3, 2, 1}, IN = {4, 5},

B(1) = 3, B(2) = 2, B(3) = 1,

B = (a3 a2 a1) =




1 0 1
0 1 0
0 2 3


 logo B−1 =




1 2
3
−1

3

0 1 0
0 −2

3
1
3


 ,

cB = (0 5 3), u = cBB−1 = (0 5 3)




1 2
3
−1

3

0 1 0
0 −2

3
1
3


 = (0 3 1),

x̄ = B−1b =




x̄3

x̄2

x̄1


 =




2
6
2


 ,

z̄ = ub = (0 3 1)




4
6

18


 = 36,
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Figura 3.1: Iterações do método primal do simplex

z4 = ua4 = (0 3 1)




0
1
0


 = 3 ⇒ z4 − c4 = 3− 0 = 3 > 0,

z5 = ua5 = (0 3 1)




0
0
1


 = 1 ⇒ z5 − c5 = 1− 0 = 1 > 0.

Como zj − cj ≥ 0, ∀j ∈ IN , esta solução básica (3a solução) é ótima
(propriedade 1).

Então x1 = 2, x2 = 6, x3 = 2, x4 = x5 = 0 é uma solução ótima,
fornecendo z = 36.

Ilustraremos, na figura 3.1, o desenvolvimento deste exemplo no espaço
x1 × x2 do problema original. Os lados do pentágono formado pelos vértices
(0, 0), (4, 0), (4, 3), (2, 6) e (0, 6) e seu interior representam a região viável
do problema. Do ponto inicial (0, 0) passamos a (0, 6) e deste à solução ótima
(2, 6) .
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3.3 Busca de uma Solução Básica Viável

Quando não tivermos uma solução básica viável para o (PPL), poderemos
proceder da seguinte maneira.

Acrescentaremos uma variável artificial gi ≥ 0 à esquerda de cada res-
trição

∑n
j=1 aijxj = bi, i = 1, 2, ...,m. Suporemos bi ≥ 0, i = 1, 2, ...,m.

Teŕıamos o seguinte conjunto de restrições:

n∑

j=1

aijxj + gi = bi, i = 1, 2, ..., m (3.1)

xj ≥ 0, j = 1, 2, ..., n, (3.2)

gi ≥ 0, i = 1, 2, ..., m. (3.3)

Construiremos um outro problema de programação linear

(PA) : minimizar
m∑

i=1

gi

sujeito a
n∑

j=1

aijxj + gi = bi, i = 1, 2, ..., m

xj ≥ 0, j = 1, 2, ..., n,

gi ≥ 0, i = 1, 2, ..., m.

Utilizaremos v(·) para representar o valor ótimo da função objetivo do
problema de programação linear (·).

É fácil verificar que as variáveis xj = 0, j = 1, 2, ..., n e gi = bi ≥ 0
estão associadas a uma solução básica de (3.1) satisfazendo (3.2) e (3.3).
Esta solução básica será tomada como solução inicial para a solução de (PA)
utilizando o método do simplex (procedimento 2) para o caso de minimização,
lembrando que min z = −max(−z).

Se v(PA) > 0 o conjunto de restrições do (PPL) é vazio.
Se v(PA) = 0 a solução ótima obtida para (PA) terá gi = 0, i = 1, 2, ..., m

e xj = x̄j ≥ 0 para j = 1, 2, ..., n satisfazendo a
∑n

j=1 aijx̄j = bi, i =
1, 2, ..., m. Se a base final da solução ótima de (PA) não contiver nenhuma
coluna associada às variáveis artificiais gi, i = 1, 2, ..., m esta será também
uma base primal viável do (PPL) original. Caso a solução básica ótima
encontrada para o (PA) seja degenerada, isto é, há pelo menos uma coluna
associada a gi na base ótima e gi = 0, poderemos iniciar o método do simplex
para o (PPL) com esta base, não permitindo que as variáveis gi associadas à
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base tenham valores diferentes de zero. Mais tarde trataremos com detalhes
este assunto.

A solução do (PA) é conhecida como sendo a primeira fase do método do
simplex.

3.4 Cálculo de B−1

Lembremos que em cada etapa do método do simplex necessitamos determi-
nar:

u = cBB−1, x̄B = B−1b e yk = B−1ak,

onde ak é a coluna escolhida para entrar na base.
Na realidade temos três sistemas de equações lineares simultâneas para

serem resolvidos:
uB = cB, Bx̄B = b e Byk = ak,

que determinam respectivamente os vetores u, x̄B e yk.
Caso só tivéssemos de resolver uma vez esses três sistemas, podeŕıamos

utilizar os métodos numéricos de resolução de sistemas de equações lineares
simultâneas sem a inversão expĺıta de B, no entanto, em cada iteração do
simplex buscamos a solução dos três sistemas para os quais B, cB e ak variam
de iteração em iteração.

Geralmente, como descrito no exemplo 3.1, a primeira base B associada
a uma solução básica viável, no método do simplex, é a matriz unitária I.
Por outro lado, já verificamos que de uma iteração à seguinte a matriz B se
transforma em outra matriz B′ trocando-se somente uma coluna de B.

Seja Br = (a1 a2 ... ar−1 ar ar+1 ... am) uma matriz quadrada inverśıvel,
m×m. Suponhamos conhecida B−1

r .
Dada Bp = (a1 a2 ... ar−1 ap ar+1 ... am) como se poderá determinar B−1

p ,
caso exista, utilizando B−1

r ?
Consideremos

B−1
r Bp = (B−1

r a1 B−1
r a2 ... B−1

r ar−1 B−1
r ap B−1

r ar+1 ... B−1
r am),

sabemos que B−1
r aj = ej, j 6= p, onde ej é um vetor com todas as compo-

nentes nulas exceto a j-ésima componente que é igual a um.
Seja v = B−1

r ap = (v1 v2 ... vr−1 vr vr+1 ... vm)T , então

B−1
r Bp = (e1 e2 ... er−1 v er+1 ... em) = Er, (3.4)
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ou ainda

Er =




1 0 0 0 v1 0 0 0 0
0 1 0 0 v2 0 0 0 0
...

...
. . .

...
...

...
...

...
...

0 0 0 1 vr−1 0 0 0 0
0 0 0 0 vr 0 0 0 0
0 0 0 0 vr+1 1 0 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 vm−1 0 0 1 0
0 0 0 0 vm 0 0 0 1




.

De (3.4) teremos que Bp = BrEr. Verificamos que existirá B−1
p se e

somente se existir E−1
r . Notemos que o determinante de Er é igual a vr,

basta que vr 6= 0 para termos E−1
r , assim sendo:

B−1
p = (BrEr)

−1 = E−1
r B−1

r . (3.5)

Proposição 3.1 Se vr 6= 0, então a inversa de Er será

E−1
r = (e1 e2 ... er−1 v̄ er+1 ... em),

onde

v̄ = (−v1

vr

− v2

vr

... − vr−1

vr

1

vr

− vr+1

vr

... − vm−1

vr

− vm

vr

)T .

Ou ainda

E−1
r =




1 0 0 0 −v1

vr
0 0 0 0

0 1 0 0 −v2

vr
0 0 0 0

...
...

. . .
...

...
...

...
...

...
0 0 0 1 −vr−1

vr
0 0 0 0

0 0 0 0 1
vr

0 0 0 0

0 0 0 0 −vr+1

vr
1 0 0 0

...
...

...
...

...
...

. . .
...

...
0 0 0 0 −vm−1

vr
0 0 1 0

0 0 0 0 −vm

vr
0 0 0 1




.

Demonstração
Basta realizarmos ErE

−1
r e encontraremos I.

Suponhamos agora que B = (a1 a2 ... am) é uma matriz quadrada m×m
e desejamos encontrar sua inversa, caso exista.
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Partiremos da matriz unitária I = (e1 e2 ... em), cuja inversa é a própria
matriz I. Iniciaremos calculando a inversa de B1 = (a1 e2 ... em) a partir de I
tal como foi feito neste caṕıtulo, isto é, E1 = B1, então B−1

1 = E−1
1 . A partir

de B1 da qual já conhecemos a inversa, passaremos a calcular a inversa de
B2 = (a1 a2 e3 ... em). Sabemos que B−1

1 B2 = (e1 B−1
1 a2 e3 ... em) = E2,

a inversa de E2 é obtida pelo método já visto. Assim sendo B2 = B1E2 ⇒
B−1

2 = E−1
2 B−1

1 = E−1
2 E−1

1 . Seja B3 = (a1 a2 a3 e4 ... em) cuja inversa
desejamos obter, logo poderemos escrever B−1

2 B3 = (e1 e2 B−1
2 a3 e4 ... em) =

E3 ⇒ B−1
3 = E−1

3 B−1
2 = E−1

3 E−1
2 E−1

1 . Continuando o racioćınio obteremos
B−1 = E−1

m E−1
m−1...E

−1
3 E−1

2 E−1
1 . Como saberemos que B não tem inversa?

Exemplo 3.2 Seja

E =




1 2 0 0
0 3 0 0
0 0 1 0
0 −1 0 1


 , det(E) = 3, E−1 =




1 −2
3

0 0
0 1

3
0 0

0 0 1 0
0 1

3
0 1


 .

Observação: verificamos que v = yk, onde yk = B−1ak, no caso em que ak

substituirá a r-ésima coluna de B para formar a matriz B′. Logo, se yrk 6= 0,
então B′ será inverśıvel.

3.5 Interpretação Geométrica da Mudança de

Base

Um conjunto C ⊆ Rn é convexo se para quaisquer x1 e x2 ∈ C temos que
x = λx1 + (1− λ)x2 para 0 ≤ λ ≤ 1 pertencerá também a C.

O conjunto X = {x ∈ Rn | Ax = b, x ≥ 0 } é, por definição um conjunto
poliédrico quando X 6= φ.

Proposição 3.2 O conjunto X é convexo.

Demonstração
Sejam x1 e x2 ∈ X então x1 ≥ 0, Ax1 = b e x2 ≥ 0, Ax2 = b. Para 0 ≤ λ ≤ 1
podemos escrever λx1 ≥ 0, λAx1 = λb e (1−λ)x2 ≥ 0, (1−λ)Ax2 = (1−λ)b
ou λx1 + (1 − λ)x2 ≥ 0, λAx1 + (1 − λ)Ax2 = λb + (1 − λ)b, assim temos
x̄ = λx1 + (1− λ)x2 ≥ 0, A[λx1 + (1− λ)x2] = Ax̄ = b, logo x̄ ∈ X.
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Figura 3.3: Combinação convexa

Definição 3.1 x é um vértice (ponto extremo) de um conjunto poliédrico X
se x ∈ X e não existir λ ∈ [0, 1] tal que x = λx1 + (1 − λ)x2, onde x1 e
x2 ∈ X, para x 6= x1 e x 6= x2.

Na figura 3.2 ilustramos dois vértices, xk e xp de um conjunto poliédrico
em R2.

A expressão x = λx1 + (1 − λ)x2, para λ ∈ [0, 1], representa todos os
pontos do segmento de reta unindo x1 e x2. Dizemos que x é uma combinação
convexa de x1 e x2, ver figura 3.3.

Proposição 3.3 Seja X = {x ∈ Rn | Ax = b, x ≥ 0} 6= φ e seja A uma
matriz m×n, de posto igual a m. Uma solução básica de Ax = b, satisfazendo
x ≥ 0 corresponde a um vértice de X.
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Demonstração
Consideremos A = (B N), e B ∈ Rm×m uma matriz quadrada inverśıvel e
N 6= 0, pois se N = 0 haveria um único ponto em X que seria o próprio
vértice.

Tomemos x̄ = (x̄B x̄N)T , onde x̄N = 0, uma solução básica viável, isto é,
x̄B = B−1b ≥ 0.

Sejam x1 e x2 ∈ X diferentes de x̄, vamos supor que exista um λ ∈ [0, 1]
tal que x̄ = λx1 + (1 − λ)x2, sabemos que x1 ≥ 0, Ax1 = Bx1

B + Nx1
N =

b, x2 ≥ 0, Ax2 = Bx2
B + Nx2

N = b, como N 6= 0, x1
N 6= 0 e x2

N 6= 0, caso
contrário, isto é, x1

N = 0 implicaria x1
B = x̄B e x2

N = 0 implicaria x2
B = x̄B;

contrariando a hipótese de que x1 6= x̄ e x2 6= x̄. Temos que

x̄ = λx1 + (1− λ)x2

implica

x̄B = λx1
B + (1− λ)x2

B e 0 = λx1
N + (1− λ)x2

N . (3.6)

Como x1
N ≥ 0 e x1

N 6= 0, x2
N ≥ 0 e x2

N 6= 0, λ ≥ 0, (1−λ) ≥ 0; λ e (1−λ)
não podem ser anulados ao mesmo tempo, então (3.6) nunca será verificada.
Assim sendo demonstramos, por absurdo, que uma solução básica viável
corresponde a um vértice de conjunto poliédrico X.

Ilustremos, a seguir, a propriedade 3.3. Seja

X = {x = (x1 x2 x3)
T ∈ R3 | 2x1 + 3x2 + 6x3 = 6, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}.

As soluções básicas de 2x1 + 3x2 + 6x3 = 6 são:

x1 =
6

2
= 3, x2 = x3 = 0,

x2 =
6

3
= 2, x1 = x3 = 0,

x3 =
6

6
= 1, x1 = x2 = 0.

Todas satisfazem às restrições de não-negatividade. Na figura 3.4 repre-
sentamos o conjunto X pelo triângulo unindo os três vértices.

A seguir daremos uma interpretação geométrica do processo de mudança
de base (pivoteamento) no método do simplex. Para facilitarmos a notação
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Figura 3.4: Conjunto poliédrico convexo, fechado e limitado

faremos B(i) = i, i = 1, 2, ..., m; assim sendo o (PPL) sob a forma (2.14),
(2.17) e (2.16) será escrito a seguir.

(PPL) : maximizar z = z̄ − ∑

j∈IN

(zj − cj)xj (3.7)

sujeito a:

xi = x̄i −
∑

j∈IN

yijxj, i ∈ IB (3.8)

xj = 0 + xj, j ∈ IN (3.9)

xi ≥ 0, i ∈ IB (3.10)

xj ≥ 0, j ∈ IN . (3.11)

As restrições do tipo (3.9) são colocadas para completar o sistema de
equações, de modo que a interpretação geométrica se faça em Rn.

Estudemos o processo de entrada na base de uma coluna ak, k ∈ IN .

xi = x̄i − yikxk, i ∈ IB,

xj = 0 + δjkxk, j ∈ IN ,

onde

δjk = 1 se j = k e δjk = 0 se j 6= k,

ou ainda,
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Figura 3.5: Direção de subida do método do simplex




x1

x2
...

xm−1

xm

xm+1
...

xk−1

xk

xk+1
...

xn




=




x̄1

x̄2
...

x̄m−1

x̄m

0
...
0
0
0
...
0




+




−y1k

−y2k
...

−ym−1 k

−ymk

0
...
0
1
0
...
0




xk,

caso denominemos wT = (−y1k − y2k ... − ymk 0 ... 0 1 0 ... 0), poderemos
ainda escrever:

x = x̄ + xkw, xk ≥ 0. (3.12)

Quando xk aumentar, o vetor x será modificado, na figura 3.5 ilustramos
este procedimento em R2. Aı́ observamos que x estará na semi-reta T , para-
lela ao vetor w.

No caso em que xk ≤ αk < ∞ teremos x̂ = x̄ + αkw. Verificamos que
ao passarmos da solução básica x̄ para a solução também básica x̂ estaremos
caminhando sobre o segmento da semi-reta T entre x̄ e x̂. Este segmento é
uma aresta do conjunto poliédrico formado pelas restrições do (PPL), como
será visto no caṕıtulo 6. Isto quer dizer que w fornece a direção desta aresta.
A determinação de w é imediata pelo método do simplex.
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Definição 3.2 Quando um conjunto poliédrico convexo for limitado será de-
nominado um politopo.

Exemplo 3.3 Tomemos, novamente, o (PPL) do exemplo 2.1, já com as
variáveis de folga consideradas.

Comecemos com

B = (a1 a4 a2) =




1 0 0
0 1 1
3 0 2


 ,

calculemos B−1 da maneira apresentada na seção 3.4.




1 0 0
0 1 1
0 0 2




−1

=




1 0 0
0 1 −1

2

0 0 1
2


 = E−1

3 ;




1 0 0
0 1 −1

2

0 0 1
2







1
0
3


 =




1
−3

2
3
2


 .

Seguindo a notação da seção 3.4 teremos

E1 =




1 0 0
−3

2
1 0

3
2

0 1


 , cuja inversa




1 0 0
−3

2
1 0

3
2

0 1




−1

=




1 0 0
3
2

1 0
−3

2
0 1


 ,

logo B−1 = E−1
1 E−1

3 . Finalmente

B−1 =




1 0 0
0 1 1
3 0 2




−1

=




1 0 0
3
2

1 0
−3

2
0 1







1 0 0
0 1 −1

2

0 0 1
2


 =




1 0 0
3
2

1 −1
2

−3
2

0 1
2


 .

Lembremos que IN = {3, 5} e passamos a calcular x̄B, u e zj−cj, j ∈ IN .

u = cBB−1 = (3 0 5)




1 0 0
3
2

1 −1
2

−3
2

0 1
2


 =

(
−9

2
0

5

2

)
,

x̄B = B−1b =




x̄1

x̄4

x̄2


 =




4
3
3


 ,

z3 = ua3 =
(
−9

2
0

5

2

)



1
0
0


 = −9

2
⇒ z3 − c3 = −9

2
− 0 = −9

2
< 0,
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z5 = ua5 =
(
−9

2
0

5

2

)



0
0
1


 =

5

2
⇒ z5 − c5 =

5

2
− 0 =

5

2
> 0.

Façamos a3 entrar na base B−1a3 =
(
1 3

2
− 3

2

)T
, assim sendo




x1

x4

x2

x3

x5




=




4
3
3
0
0




+




−1
−3

2
3
2

1
0




x3.

É fácil verificar que α3 = 2, logo faremos x3 = 2.
Esquematizaremos no plano x1 × x2, ver figura 3.6, a operação a ser

finalizada. Para isso observamos que

x1 = 4− α, x2 = 3 +
3

2
α,

para 0 ≤ α ≤ α3 = 2, ou ainda

(
x1

x2

)
=

(
4
3

)
+

(
−1

3
2

)
α,

mas, para α = 2, (
x1

x2

)
=

(
2
6

)
.

Notemos que a aresta que vai do ponto (4, 3) ao ponto (2, 6) é paralela

ao vetor w =
(
−1 3

2

)T
.

3.6 Convergência do Método do Simplex

Começaremos esta seção motivando a leitora ou o leitor para a possibilidade
do método do simplex não convergir.
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Figura 3.6: Direção de uma aresta do poliedro. O ponto x pode ser escrito
como x = (4 3)T + (−1 3

2
)T α, α ∈ [0, 2]

3.6.1 Motivação

Consideremos novamente o (PPL) em sua forma padrão:

(PPL) : maximizar z = cx (3.13)

sujeito a:
Ax = b (3.14)

x ≥ 0. (3.15)

Onde c = (c1 c2 ...cn), xT = (x1 x2 ...xn), bT = (b1 b2 ...bm), A = (a1 a2 ...an)
e aT

j = (a1j a2j ...amj), isto é, cT ∈ Rn, x ∈ Rn, b ∈ Rm, A ∈ Rm×n e
aj ∈ Rm.

Suporemos, sem perda de generalidade, que a matriz A tenha posto igual
a m. Como já foi feito anteriormente poderemos escrever ainda

(PPL) : maximizar z = z̄ − ∑

j∈IN

(zj − cj)xj (3.16)

sujeito a:
xB(i) = x̄B(i) −

∑

j∈IN

yijxj, i = 1, , ...,m. (3.17)
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xj ≥ 0, j ∈ IB ∪ IN . (3.18)

O número total de soluções básicas de (3.14) tem por cota superior

Cn,m =
n!

m!(n−m)!
.

O método primal do simplex parte de uma solução básica de (3.14) satis-
fazendo (3.15), isto é, uma solução básica viável do (PPL) e, de maneira ite-
rativa (pivoteamento), passa a outra solução básica viável até que tenhamos
satisfeito às condições de otimalidade (zj − cj ≥ 0, j ∈ IN) ou concluindo
que a solução é ilimitada.

Se de uma iteração para outra a variável xl entrar na base então z terá
um novo valor, z = ẑ, onde ẑ = z̄ − (zl − cl)xl. Lembremos que zl − cl < 0.
Caso xl tome um valor estritamente positivo então ẑ > z̄, caso xl tenha um
valor nulo, teremos ẑ = z̄. Neste último caso z não modifica seu valor de
uma iteração para outra. Quando uma variável básica tomar um valor nulo
diremos que a solução básica é degenerada.

Quando aplicarmos o método do simplex a um (PPL) em que todas
as soluções básicas não são degeneradas z crescerá a cada iteração, dessa
maneira nunca repetiremos uma solução básica. O método do simplex con-
vergirá sempre neste caso.

No entanto, quando tivermos soluções básicas degeneradas poderemos
observar, às vezes, que após algumas iterações, sem que o valor de z se mo-
difique, tenhamos uma solução básica já visitada anteriormente pelo método
do simplex. Diremos, neste caso, que o método do simplex cicla.

3.6.2 Exemplo de Ciclagem

Seja o (PPL), ver [Ch 83]:

(PPL) : maximizar z = 10x1 − 57x2 − 9x3 − 24x4

sujeito a:

0.5x1 − 5.5 − 2.5x3 − 9x4 + x5 = 0
0.5x1 − 1.5x2 − 0.5x3 + x4 + x6 = 0
x1 + x7 = 1

xj ≥ 0, j = 1, 2, ..., 7.

Caso partamos da solução básica tal que IB = {5, 6, 7} e utilizarmos como
critério de entrada o ı́ndice associado ao menor zj − cj, j ∈ IN e, no caso
de empate, como critério de sáıda escolhermos a coluna aB(i) com o menor
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B(i) para sair da base, verificaremos que z não variará de valor durante seis
iterações e na sexta retornaremos a IB = {5, 6, 7}!

Talvez com outro critério possamos contornar o fenômeno de ciclagem
que pode apresentar o método do simplex.

3.6.3 Regra de Bland

Bland [Bl 77] enunciou uma regra com um critério de escolha para a coluna
que vai entrar na base e um outro critério para a coluna que sairá da base
durante o método do simplex que evita a ciclagem do algoritmo. Esta regra
é do menor ı́ndice ou de Bland. Passemos a apresentar esta regra.

Regra de Bland (Método primal de simplex)
Critério de entrada (problema de maximização):

ap entra na base se zp − cp < 0 e p for o menor ı́ndice entre todos
os j ∈ IN tais que zj − cj < 0.

Critério de sáıda:

as sai da base se x̄s

ylp
= minyip>0,i=1,2,...,m

{
x̄B(i)

yip

}
= θ, onde s = B(l)

e s é o menor ı́ndice entre todos aqueles para os quais
x̄B(i)

yip
= θ.

Proposição 3.4 Caso aplicarmos a regra de Bland durante a resolução de
um problema de progamação linear, utilizando o método primal do simplex,
nunca haverá ciclo, isto é, o método do simplex convergirá.

Demonstração
A idéia da demonstração é que aplicando a regra de Bland o método do
simplex cicle, dessa maneira a prova dar-se-á por absurdo.

Como haverá ciclagem, isto é, após um certo número de iterações voltare-
mos a uma solução básica já visitada pelo método do simplex anteriormente.
Para que isso seja posśıvel, o valor de z não se modificará nessas iterações e
as soluções básicas em questão serão todas degeneradas.

Suponhamos que na iteração q tenhamos encontrado a mesma solução
básica da iteração 1 (q > 1), utilizando a regra de Bland.

Denominaremos K o conjunto dos ı́ndices das colunas que participaram
da base e não participaram da base em pelo menos uma dessas q iterações.

Seja t = max{i | i ∈ K}. Consideremos que at saia da base na iteração
q̄ (1 ≤ q̄ ≤ q), isto é, será não básica na iteração q̄ + 1 e que ap entre na
base na iteração q̄, isto é, ap estará na base na iteração q̄ +1, logo p ∈ K por
definição de K.
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Como supusemos que o procedimento cicle, poderemos continuar as ite-
rações q̄ + 1, q̄ + 2, ... até que at volte à base. Seja q̂ a iteração em que at

voltou a base.
Sabemos que o valor de z em todas essas iterações permaneceu invariável.

Na iteração q̄ teremos:

xB̄(i) = x̄B̄(i) −
∑

j∈IN

ȳijxj, i = 1, , ...,m. (3.19)

e
z = z̄ − ∑

j∈IN

ȳ0jxj, (3.20)

onde B̄ é a base na iteração q̄, ȳ0j = z̄j − cj, z̄j = cB̄B̄−1aj e ȳj = B̄−1aj.
Na iteração q̂ explicitaremos z da seguinte maneira:

z = z̄ − ∑

j∈IN

ŷ0jxj, (3.21)

onde B̂ é a base, ŷ0j = ẑj − cj e ẑj = cB̂B̂−1aj, lembremos que ŷ0j = 0 para
j ∈ IB̂.

A expressão (3.21) pode também ser considerada sob a seguinte forma:

z = z̄ −
n∑

j=1

ŷ0jxj, (3.22)

que deve ser verificada para xp = λ, xj = 0, j ∈ IN̄ − {p} e xB̄(i) =
x̄B̄(i) − ȳipλ, i = 1, 2, ...,m fornecendo

z = z̄ − ȳ0pλ. (3.23)

Assim sendo, (3.22) tornar-se-á:

z = z̄ − ŷ0pλ−
m∑

i=1

ŷ0B̄(i)(x̄B̄(i) − ȳipλ). (3.24)

De (3.23) e (3.24) podemos escrever:

z̄ − ȳ0pλ = z̄ − ŷ0pλ−
m∑

i=1

ŷ0B̄(i)(x̄B̄(i) − ȳipλ). (3.25)

A equação (3.25) pode ser também expressa como:

(ŷ0p − ȳ0p −
m∑

i=1

ŷ0B̄(i)ȳip)λ = −
m∑

i=1

ŷ0B̄(i)x̄B̄(i) = constante para qualquer λ.
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Logo esta constante tem que ser nula, assim sendo:

ŷ0p − ȳ0p −
m∑

i=1

ŷ0B̄(i)ȳip = 0. (3.26)

Como ap entra na base na iteração q̄ então ȳ0p < 0 e como ap não está
entrando na base na iteração q̂ então ŷ0p ≥ 0 (pois p < t e estamos utilizando
a regra de Bland).

Para que a expressão (3.26) seja verificada existirá r tal que ŷ0B̄(r)ȳrp >
0, r ∈ {1, 2, ..., m}. Sabemos que aB̄(r) é básica em q̄ e não é básica em q̂,
pois ŷ0 ¯B(r) 6= 0, portanto B̄(r) ∈ K e B̄(r) ≤ t.

Verificaremos que B̄(r) 6= t, pois at deixa a base na iteração q̄ e ap entra
implicando ȳip > 0 para B̄(i) = t. Como at volta à base na iteração q̂, temos
ŷ0t < 0, logo ŷ0tȳip < 0 para B̄(i) = t, i ∈ {1, 2, ..., m}.

Só poderemos então considerar B̄(r) < t e assim sendo não teremos
ŷ0B̄(r) < 0 (e sim ŷ0B̄(r) > 0) implicando ȳrp > 0 para que possamos sa-
tisfazer ŷ0B̄(r)ȳrp > 0.

Todas as iterações de q̄ a q̂ estão associadas a bases degeneradas impli-
cando que o valor de xB̄(r) seja o mesmo na base ou fora, isto é, igual a zero.
Assim sendo, x̄B̄(r) = 0 e como ȳrp > 0 então, pela regra de Bland, aB̄(r) de-
veria deixar a base na iteração q̄, pois B̄(r) < t. Esta contradição completa
a prova.

3.7 Exerćıcios

1. Seja
(P ) : maximizar x0 = 6x1 + 4x2

sujeito a:

3x1 + 2x2 + x3 = 18
x1 + x4 = 4

x2 + x5 = 6

xj ≥ 0, j = 1, 2, 3, 4, 5.

Verificar que a solução não básica viável de (P ), x1 = 3, x2 = 9
2
, x3 =

0, x4 = 1, x5 = 3
2
, fornecendo x0 = 36 é ótima de (P ).

2. Dados os pontos (xi, yi), i = 1, 2, ..., p, onde xi e yi são números reais.
Gostaŕıamos de escrever que y = ax + b tal que os parâmetros a e b
forneçam o mı́nimo de maxi=1,2,...,p{|yi − (axi + b)|}. Determinar um
problema de programação linear que encontre esses parâmetros a e b.
Justificar.
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3. Dados os pontos (xi, yi), i = 1, 2, ..., p, onde xi e yi são números reais.
Gostaŕıamos de escrever que y = ax2 + bx + c tal que os parâmetros
a, b e c forneçam o mı́nimo de

∑
i=1,2,...,p |yi− (ax2

i + bxi + c)|. Fornecer
um problema de programação linear que encontre esses parâmetros a, b
e c. Justificar.

4. Seja
(P ) : maximizar z = 4x1 + 3x2 + 2x3 + 3x4 + x5

sujeito a:

3x1 + 2x2 + x3 + 2x4 + x5 = 13
5x1 + 4x2 + 3x3 + 4x4 + x5 = 25

xj ≥ 0, j = 1, 2, 3, 4, 5.

Verificar que (P ) não é vazio e que todas suas variáveis xj ≥ 0, j =
1, 2, 3, 4, 5 são limitadas superiormente. Demonstrar que toda solução
viável de (P ) é também solução ótima de (P ).
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Caṕıtulo 4

Dualidade em Programação
Linear

Tomemos o problema de programação linear (2.1), (2.2) e (2.3),

(P ) : maximizar z =
p∑

j=1

cjxj (4.1)

sujeito a:
p∑

j=1

aijxj ≤ bi, i = 1, 2, ..., q (4.2)

xj ≥ 0, j = 1, 2, ..., p. (4.3)

Associemos a cada restrição de (4.2) a variável ui ≥ 0, i = 1, 2, ..., q e
definamos o seguinte problema

(D) : minimizar d =
q∑

i=1

biui (4.4)

sujeito a:
q∑

i=1

aijui ≥ cj, j = 1, 2, ..., p (4.5)

ui ≥ 0, i = 1, 2, ..., q. (4.6)

Por definição diremos que (P ) é o problema primal e (D) o seu dual.

Proposição 4.1 O dual de (D) é (P ).
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A demonstração desta propriedade é deixada à leitora ou ao leitor, lembrando
que min d = −max(−d).

Os problemas (P ) e (D) podem ser colocados sob forma matricial:

(P ) : maximizar z = cx (4.7)

sujeito a:
Ax ≤ b (4.8)

x ≥ 0. (4.9)

e
(D) : minimizar d = ub (4.10)

sujeito a:
uA ≥ c (4.11)

u ≥ 0, (4.12)

onde cT e x ∈ Rp, b e uT ∈ Rq e A ∈ Rq×p.

O resultado apresentado a seguir é conhecido como Teorema da Dua-
lidade Fraca

Teorema 4.1 Se x̄ satisfizer (4.8) e (4.9) e ū satisfizer (4.11) e (4.12) então
teremos cx̄ ≤ ūb.

Demonstração
Sabemos que Ax̄ ≤ b e ū ≥ 0 então

ūAx̄ ≤ ūb. (4.13)

Por outro lado temos também que ūA ≥ c e x̄ ≥ 0 então

ūAx̄ ≥ cx̄. (4.14)

De (4.13) e (4.14) teremos:

cx̄ ≤ ūAx̄ ≤ ūb, (4.15)

logo cx̄ ≤ ūb.

Proposição 4.2 Se x̄ for uma solução viável de (P ), ū uma solução viável
de (D) e cx̄ = ūb então x̄ será um ótimo de (P ) e ū será um ótimo de (D).
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Demonstração
Da propriedade 4.1 temos que cx̄ ≤ ub para todo u viável de (D) e como, por
hipótese, cx̄ = ūb, o que implica ūb ≤ ub para todo u viável de (D), logo ū é
uma solução ótima (mı́nimo) de (D). A demonstração que x̄ é uma solução
ótima (máximo) de (P ) é análoga.

Proposição 4.3 Se (P ) tiver uma solução “ ótima ” ilimitada então (D)
será vazio.

Demonstração
Suporemos que (D) não seja vazio e que ū seja uma solução viável de (D),
então pela propriedade 4.1, cx ≤ ūb para todo x viável de (P ), o que é um
absurdo pois máximo {cx} → +∞. Logo (D) será vazio.

Quando incorporarmos as variáveis de folga xp+i ≥ 0, i = 1, 2, ..., q às
restrições (4.2) poderemos redefinir c, x e A de maneira que (P ) possa ser
escrito de outra forma:

(P1) : maximizar z = cx (4.16)

sujeito a:
Ax = b (4.17)

x ≥ 0. (4.18)

É simples verificarmos que o dual de (P1) será

(D1) : minimizar d = ub (4.19)

sujeito a:
uA ≥ c, (4.20)

onde cT e x ∈ Rn, b e uT ∈ Rm e A ∈ Rm×n.
Podemos verificar que em (D1), u é um vetor cujas componentes podem

ser negativas ou nulas ou positivas. São livres quanto ao sinal.
Tal como foi feito no caṕıtulo 2, seja A = (B N), tal que det(B) 6= 0. Se

ū = cBB−1, tal que ūA ≥ c, então, ū é uma solução viável de (D1). Neste
caso diremos que x̄ = (x̄B 0)T , onde x̄B = B−1b, é uma solução básica dual
viável.

Sabemos que ūaj = zj, j ∈ IB ∪ IN , então ūA ≥ c implica em zj ≥ cj ou
ainda zj − cj ≥ 0, j ∈ IB ∪ IN . Estas últimas desigualdades representam as
condições de otimalidade do método do simplex, como visto anteriormente.
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Se x̄ = (x̄B 0)T , onde x̄B = B−1b (primal viável) e ū = cBB−1, tal que
ūA ≥ c, então x̄ é uma solução ótima de (P1).

Poderemos, facilmente, verificar que a propriedade 4.1, deduzida para
(P1) e (D1) forneceria (4.15) sob a seguinte forma:

cx ≤ uAx = ub, (4.21)

para qualquer x de (P1) e qualquer u de (D1).

O resultado apresentado a seguir é conhecido como Teorema da Dua-
lidade Forte.

Teorema 4.2 Se x̂ for uma solução ótima de (P1) e û uma solução ótima
de (D1) então cx̂ = ûb.

Demonstração
Sem perda de generalidade podemos supor que x̂ seja uma solução básica
viável de (P1) associada a uma base B formada por m colunas de A e que
ū = cBB−1.

Como x̂ é uma solução ótima de (P1), isto é, zj − cj ≥ 0, j ∈ IB ∪ IN

então ūA ≥ c, ou ainda ū é viável de (D1).
Por outro lado, cx̂ = cBB−1b = ūb. De (4.21) temos que cx̂ ≤ ub, para

todo u viável de (D1), ou seja ūb ≤ ub para todo u viável de (D1). Assim
sendo, ū é uma solução ótima de (D1), implicando ūb = ûb, completando a
prova.

Consideremos agora o seguinte exemplo:

Exemplo 4.1
maximizar z = 3x1 + 4x2

sujeito a:
x1 − x2 ≤ −1

− x1 + x2 ≤ 0
x1 ≥ 0

x2 ≥ 0,

cujo dual é

minimizar d = −u1

sujeito a:
u1 − u2 ≥ 3

− u1 + u2 ≥ 4
u1 ≥ 0

u2 ≥ 0.
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Verificamos facilmente que ambos os problemas são vazios.

As propriedades 4.2, 4.3 e 4.2 mais o exemplo 4.1 permitem que enun-
ciemos o seguinte teorema clássico em programação linear: Teorema da
Dualidade (existência).

Teorema 4.3 Dado um par de problemas (um primal e seu dual) uma e
somente uma das três afirmações é verdadeira:

1. os dois problemas são vazios;

2. um é vazio e o outro é ilimitado;

3. ambos admitem soluções ótimas finitas (as respectivas funções objetivo
no ótimo assumem o mesmo valor).

Finalmente, apresentamos a seguir um resultado conhecido como Teo-
rema das Folgas Complementares

Teorema 4.4 Se x̂ é ótimo de (P ) e û é ótimo de (D) então (ûA− c)x̂ = 0
e û(Ax̂− b) = 0.

Demonstração
Temos que cx̂ = ûb, assim sendo (4.15) se torna cx̂ = ûAx̂ = ûb, ou ainda,
cx̂ = ûAx̂ e ûAx̂ = ûb, logo (ûA− c)x̂ = 0 e û(Ax̂− b) = 0.

Da propriedade 4.4 podemos ainda escrever:

p∑

j=1

x̂j(
q∑

i=1

aijûi − cj) = 0, como x̂j ≥ 0 e
q∑

i=1

aijûi − cj ≥ 0, j = 1, 2, ..., p

implica

x̂j(
q∑

i=1

aijûi − cj) = 0, j = 1, 2, ..., p (4.22)

e

q∑

i=1

ûi(
p∑

j=1

aijx̂j−bi) = 0, como ûi ≥ 0 e
p∑

j=1

aijx̂j−bi ≥ 0, i = 1, 2, ..., q implica

ûi(
p∑

j=1

aijx̂j − bi) = 0, i = 1, 2, ..., q. (4.23)

As relações (4.22) e (4.23) são denominadas condições de complementaridade.
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A propriedade 4.4 deduzida a partir de (P1) e (D1) nos forneceria apenas
(ûA− c)x̂ = 0, pois Ax̂− b = 0 em (P1).

É interessante notar que quando x̄ for uma solução básica (primal viável
ou não) de (P1) e ū = cBB−1 então x̄j(

∑q
i=1 aijūi − cj) = 0, j ∈ IB ∪ IN .

As relações de complementaridade são sempre verificadas na aplicação do
método do simplex.

4.1 Uma Interpretação das Variáveis Duais

Seja z(b) = maxx{cx | Ax = b, x ≥ 0}, z : Rm →R.
Suponhamos que x̄ = (xB 0)T , xB = B−1b ≥ 0 seja uma solução básica

ótima do primal e ū = cBB−1 uma solução ótima do dual. Podemos escrever
ū = (ū1 ū2 ... ūk ... ūm).

Sejam eT
k = (0 ... 0 1 0 ... 0), onde a componente igual a 1 ocupa a k-ésima

linha do vetor ek, b′ = b + ek e x̄′B = B−1b′ ≥ 0; esta nova solução continua
sendo ótima de z(b′), pois x̄′ = (x̄′B 0)T é primal e dual viável.

Sabemos que z(b) = ūb e z(b′) = ūb′ = ūb + ūk, logo z(b′) = z(b) + ūk, ūk

poderá assim ser interpretada como sendo a variação de z quando aumentar-
mos de uma unidade a k-ésima componente de b, isto é, substituirmos bk por
bk + 1.

Podemos portanto, interpretar ūk como sendo a derivada parcial de z em
relação a bk :

∂z

∂bk

= ūk. (4.24)

4.2 Método Dual do Simplex

Tomemos novamente o problema de programação linear sob a forma (2.7),
(2.8) e (2.9), onde A = (B N), tal que, B−1 exista.

Seja x̄ = (x̄B 0)T , onde x̄B = B−1b, é uma solução básica de (4.17) e
tal que ū = cBB−1 satisfaça ūA ≥ c (ū é uma solução viável de (4.19) e
(4.20)). Neste caso dizemos, por definição, que a base B é dual viável. Se
x̄B = B−1b ≥ 0 dizemos também que B é uma base primal viável. Como
ūA ≥ c implica zj − cj ≥ 0, j ∈ IB ∪ IN , então se B for primal e dual viável
x̄ = (x̄B 0)T será uma solução ótima do primal e ū = cBB−1 uma solução
ótima do dual.

Suponhamos que x̄ não esteja associada a uma base B primal viável, isto
é, x̄B = B−1b 6≥ 0 (existe, pelo menos, uma componente negativa de x̄B).
A idéia do método dual do simplex para resolver (4.16), (4.17) e (4.18) é de
partir de uma base B básica dual viável, passar para uma nova base dual
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viável, pela substituição de uma coluna de B. Este procedimento é repetido
até que atinjamos uma base primal e dual viável.

Com a mesma notação do caṕıtulo 2, consideremos

xB(k) = x̄B(k) −
∑

j∈IN

ykjxj, (4.25)

onde x̄B(k) < 0.
Se ykj ≥ 0 para todo j ∈ IN em (4.25) e como xj ≥ 0 para todo j ∈

IN , xB(k) nunca poderá ser não negativo, implicando que o problema primal
será vazio e o dual ilimitado.

Consideremos o conjunto Lk = {j ∈ IN | ykj < 0} 6= φ.
Como x̄B(k) < 0, escolheremos a coluna aB(k) para deixar a base e tomare-

mos ap associada ao ı́ndice p, tal que ykp < 0 para entrar na nova base. Qual
deve ser p tal que a nova base continue dual viável?

A matriz B′ formada pela substituição em B da coluna aB(k) por ap, tem
sua inversa calculada, como foi exposto na seção 3.4, da seguinte maneira:

(B′)−1 = E−1
k B−1, onde Ek = (e1 e2 ... ek−1 yp ek−1 ... em); lembramos

que yp = B−1ap.
Desejamos calcular y′j = (B′)−1aj, j ∈ IN , ou ainda y′j = E−1

k (B−1aj) =

E−1
k yj, isto é :

y′ij = yij − yip

ykp

ykj, i 6= k, (4.26)

y′kj =
ykj

ykp

.

Observação: ykp será o pivô.
A atualização dos zj − cj será feita de maneira equivalente à mostrada

em (4.26), como será visto ainda neste caṕıtulo.
O problema (2.7), (2.8) e (2.9) poderá ser escrito:

maximizar z

sujeito a:

z − cBxB − cNxN = 0 (4.27)

BxB + NxN = b (4.28)

xB ≥ 0, xN ≥ 0.

Solucionaremos o sistema (4.27) e (4.28) obtendo z e xB em função de xN .
Seja

B̂ =

(
1 −cB

0 B

)
, como det(B) 6= 0 ⇒ existe B̂−1.
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B̂−1 =

(
1 −cB

0 B

)−1

=

(
1 cBB−1

0 B−1

)
=

(
1 u
0 B−1

)
.

Temos que (
zj − cj

yj

)
=

(
1 cBB−1

0 B−1

) (
−cj

aj

)
.

Denominemos y0j = zj − cj. Logo a atualização de zj − cj será feita como em
(4.26), isto é:

y′0j = y0j − y0p

ykp

ykj. (4.29)

Desejamos que a escolha de p, ı́ndice da coluna que substituirá aB(k) na nova
base, seja feita tal que a nova base continue dual viável: y′0j ≥ 0, j ∈ IB∪IN ,
ou ainda y0j − y0p

ykp
ykj ≥ 0; consideremos dois casos a seguir.

1o caso: ykj < 0 então

y0j

ykj

− y0p

ykp

≤ 0 ou
y0p

ykp

≥ y0j

ykj

, j ∈ IN . (4.30)

Lembremos que j ∈ IB implica y0j = 0. De (4.30) temos que

y0p

ykp

= max
j∈Lk

{
y0j

ykj

}
. (4.31)

2o caso: ykj ≥ 0 então

y′0j = y0j − y0p

ykp

ykj ≥ 0, pois y0p ≥ 0 e ykp < 0, logo − y0p

ykp

ykj ≥ 0.

Apenas nos interessará os ykj < 0, para os quais (4.31) nos fornecerá o
ı́ndice p da coluna que entrará na base, ocupando o lugar de aB(k) na próxima
iteração.

Verificamos também que a variação do valor da função objetivo em cada
iteração: z̄ = cBB−1b e z̄′ = z̄ − y0p

x̄B(k)

ykp
, como y0p ≥ 0, x̄B(k) < 0, ykp < 0,

logo z̄′ ≤ z̄, no caso em que y0p > 0 teremos z̄′ < z̄. Estamos minimizando a
função objetivo do programa dual (4.19) e (4.20).

Passaremos à descrição de um procedimento para a solução de um (PPL)
pelo método dual do simplex no caso de maximização.
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Procedimento 3 (maximização, método dual do simplex)
Dada uma base B dual viável para (4.16), (4.17) e (4.18).
Se x̄B ≥ 0, a base B está associada a uma solução

primal e dual viável. PARE.
Caso contrário (x̄B 6≥ 0) escolhe-se um k para o qual x̄B(k) < 0,

se Lk = φ, o (PPL) é vazio. PARE.
se Lk 6= φ, toma-se a coluna ap, p ∈ IN , talque

y0p

ykp
= maxj∈Lk

{
y0j

ykj

}
,

a coluna ap ocupará o lugar da coluna aB(k) em B.
(MUDANÇA DE BASE).

Fim do procedimento 3

O procedimento 3 é aplicado, iterativamente, para cada nova base até que
uma das regras de parada seja verificada.

Exemplo 4.2 Seja o

(PPL) : maximizar z = −4x1 − 5x2

sujeito a:
x1 + 4x2 ≥ 5
3x1 + 2x2 ≥ 7
x1 ≥ 0

x2 ≥ 0

Associaremos às restrições não triviais as variáveis de folga x3 ≥ 0, x4 ≥ 0
tais que o (PPL) fique sob a seguinte forma.

(PPL) : maximizar z = −4x1 − 5x2 + 0x3 + 0x4

sujeito a:
x1 + 4x2 − x3 = 5
3x1 + 2x2 − x4 = 7

xj ≥ 0, j = 1, 2, 3, 4,

onde

A = (a1 a2 a3 a4) =

(
1 4 −1 0
3 2 0 −1

)
, b =

(
5
7

)
, c = (−4 − 5 0 0).

Tomemos
IB = {3, 4}, IN = {1, 2},
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B = (a3 a4) =

(
−1 0
0 −1

)
, logo B−1 =

(
−1 0
0 −1

)
,

u = cBB−1 = (0 0)

(
−1 0
0 −1

)
= (0 0),

x̄B = B−1b =

(
x̄B(1)

x̄B(2)

)
=

(
x̄3

x̄4

)
=

(
−1 0
0 −1

) (
5
7

)
=

(
−5
−7

)
.

Verificamos que x̄ = (x̄B 0)T 6≥ 0 (B não é primal viável). No entanto,

z1 = ua1 = (0 0)

(
1
3

)
= 0 ⇒ z1 − c1 = 0− (−4) = 4 > 0

e

z2 = ua2 = (0 0)

(
4
2

)
= 0 ⇒ z2 − c2 = 0− (−5) = 5 > 0,

logo B é dual viável.
Tomemos B(2) = 4 pois x̄4 < 0, procedendo assim estamos escolhendo a4

para deixar a base.
Calculemos y2j, j ∈ IN , obtendo:

y21 = (0 − 1)

(
1
3

)
= −3 e y22 = (0 − 1)

(
4
2

)
= −2,

onde (0 − 1) é a segunda linha de B−1. Verificamos que L2 = {1, 2}.

max
{

4

−3
,

5

−2

}
=

4

−3
=

z1 − c1

y21

,

logo a coluna a1 substituirá a coluna a4 na próxima base.

Segunda base:
IB = {3, 1}, IN = {4, 2},

B−1 =

(
−1 1
0 3

)−1

=

(
−1 1

3

0 1
3

)
,

u = cBB−1 = (0 − 4)

(
−1 1

3

0 1
3

)
= (0 − 4

3
),

x̄B = B−1b =

(
x̄B(1)

x̄B(2)

)
=

(
x̄3

x̄1

)
=

(
−1 1

3

0 1
3

) (
5
7

)
=

(
−8

3
7
3

)
6≥ 0,

z̄ =
(
0 − 4

3

) (
5
7

)
= −28

3
.
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Como x̄B(1) = x̄3 = −8
3

< 0, a3 sairá da base na próxima iteração.
Calculemos y1j, j ∈ IN :

y14 =
(
−1

1

3

) (
0

−1

)
= −1

3
e y12 =

(
−1

1

3

) (
4
2

)
= −10

3
,

onde (−1 1
3
) é a primeira linha de B−1 e L1 = {4, 2}.

z4 = ua4 =
(
0 − 4

3

) (
0

−1

)
=

4

3
⇒ z4 − c4 =

4

3
− 0 =

4

3
> 0,

z2 = ua2 =
(
0 − 4

3

) (
4
2

)
= −8

3
⇒ z2 − c2 = −8

3
− (−5) =

7

3
> 0,

max

{
4
3

−1
3

,
7
3

−10
3

}
=

7
3

−10
3

= − 7

10
=

z2 − c2

y12

,

assim sendo a2 entrará na base no lugar de a3 na próxima etapa.

Terceira base:
IB = {2, 1}, IN = {4, 3},

B−1 =

(
4 1
2 3

)−1

=

(
3
10

− 1
10

− 2
10

4
10

)
,

u = cBB−1 = (−5 − 4)

(
3
10

− 1
10

− 2
10

4
10

)
=

(
− 7

10
− 11

10

)
,

x̄B = B−1b =

(
x̄B(1)

x̄B(2)

)
=

(
x̄2

x̄1

)
=

(
3
10

− 1
10

− 2
10

4
10

) (
5
7

)
=

(
8
10
18
10

)
≥ 0,

e

z̄ = cBB−1b = cBx̄B = (−5 − 4)

(
8
10
18
10

)
= −112

10
.

Podemos então dizer que x∗1 = 18
10

, x∗2 = 8
10

, x∗3 = x∗4 = 0, implicando z∗ =
−112

10
, é a solução ótima do primal (PPL); u∗1 = − 7

10
, u∗2 = −11

10
é a solução

ótima do dual, a variável dual u1 está associada à restrição x1 + 4x2 ≥ 5 e
u2 à restrição 3x1 + 2x2 ≥ 7.

Na figura 4.1 será ilustrado o método dual do simplex para o exemplo
aqui tratado. No espaço x1 × x2 notamos que o método sai de uma solução
básica dual viável (porém não primal viável) representada pelo ponto (0, 0),
prossegue para outra solução básica dual viável (ainda não primal viável)
associada ao ponto (7

3
, 0) e, finalmente, atinge a solução básical dual e primal

viável (ótima) ilustrada pelo ponto (18
10

, 8
10

).
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-
x1

6

-J
J

J
J

J
J

J
JJ

J
JJ]
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x2

(18
10 , 8

10)

(0,72)

(7
3 ,0) (5,0)(0,0)

Figura 4.1: Iterações do método dual do simplex

Observação: verificamos facilmente que a expressão (4.31) pode ser subs-
titúıda por

y0p

ykp

= min
j∈Lk

{∣∣∣∣∣
y0j

ykj

∣∣∣∣∣

}
, (4.32)

seja para o caso de maximização, seja para o caso de minimização da função
objetivo.

4.3 Análise de Sensibilidade

Nesta seção faremos uma análise sobre o impacto sofrido pela solução ótima
de um problema de programação linear quando a sua estrutura é modificada.

Muitas vezes, devido a imprecisões nos dados de um problema de pro-
gramação linear, é interessante avaliar quão senśıvel a solução ótima do pro-
blema é com relação a pequenas variações nestes dados, ou seja, é interessante
analisar qual o intervalo de oscilação permitido a estes dados sem que a base
ótima do problema seja alterada.

A seguir faremos esta análise, conhecida como análise de sensibilidade,
com relação a oclilações nos custos associados às variáveis e no lado direito
das restrições do problema
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(PPL) : maximizar z = cx

sujeito a:
Ax = b (4.33)

x ≥ 0,

cuja solução ótima supomos conhecida e associada a uma base B, primal e
dual viável.

4.3.1 Alterando o lado direito das restrições

Suponhamos que o lado direito das restrições do (PPL) (4.33) seja alterado
de b para b + δb. Neste caso, a base ótima do (PPL) não deixa de ser dual
viável, mas para que esta base continue sendo ótima, ela deverá manter-se
também primal viável.

Desta forma, para que a base B continue sendo ótima para o problema
modificado, devemos ter

B−1(b + δb) ≥ 0.

Exemplo 4.3 Consideremos o problema de programação linear do exemplo
4.2. Verifiquemos qual o intervalo em que o lado direito da primeira restrição
pode se encontrar sem que a base ótima do problema seja alterada.

Para que a base ótima determinada por IB = {2, 1} não seja alterada,
devemos ter:

B−1

(
b1 + δb1

b2

)
≥ 0 ⇒

(
3
10

− 1
10

− 2
10

4
10

) (
5 + δb1

7

)
≥ 0 ⇒

3
10

(5 + δb1)− 7
10
≥ 0 ⇒ δb1 ≥ −8

3
,

− 2
10

(5 + δb1) + 28
10
≥ 0 ⇒ δb1 ≤ 9.

Portanto devemos ter δb1 ∈ [−8
3
, 9], ou seja, para que a base ótima do pro-

blema não seja alterada, o lado direito da primeira restrição deve satisfazer
a

b1 ∈
[
7

3
, 14

]
.
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4.3.2 Alterando o vetor custo

Suponhamos agora que o vetor custo associado às variáveis do (PPL) (4.33)
seja alterado de c para c + δc. Neste caso, a base ótima do (PPL) não deixa
de ser primal viável, mas para que esta base continue sendo ótima, ela deverá
manter-se também dual viável.

Desta forma, para que a base B continue sendo ótima para o problema
modificado, devemos ter

(cB + δcB)B−1N − (cN + δcN) ≥ 0.

Exemplo 4.4 Consideremos novamente o problema de programação linear
do exemplo 4.2. Verifiquemos qual o intervalo em que o custo associado a
variável x2 pode se encontrar sem que a base ótima do problema seja alterada.

Para que a base ótima determinada por IB = {2, 1} não seja alterada,
devemos ter:

(c2 + δc2 c1)B
−1N − (c4 c3) ≥ 0 ⇒

(−5 + δc2 − 4)

(
3
10

− 1
10

− 2
10

4
10

) (
0 −1

−1 0

)
− (0 0) ≥ 0 ⇒

(−5 + δc2 − 4)

(
1
10

− 3
10

− 4
10

2
10

)
− (0 0) ≥ 0 ⇒

1
10

(−5 + δc2) + 16
10
≥ 0 ⇒ δc2 ≥ −11,

− 3
10

(−5 + δc2)− 8
10
≥ 0 ⇒ δc2 ≤ 7

3
.

Portanto devemos ter δc2 ∈ [−11, 7
3
], ou seja, para que a base ótima do prob-

lema não seja alterada, o custo associado à segunda variável deve satisfazer
a

c2 ∈
[
−16,−8

3

]
.

4.4 Pós-otimização

Consideremos agora, que após a obtenção da solução ótima do (PPL) (4.33),
alguma mudança na sua estrutura foi introduzida, levando a um novo pro-
blema (PPL), para o qual a base ótima do (PPL) possivelmente não é mais
primal ou dual viável.
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O processo de pós-otimização consiste em obter a solução ótima do pro-
blema modificado (PPL), considerando-se que a solução ótima do problema
original (PPL) é conhecida.

O processo de pós-otimização torna-se mais eficiente quando a base B,
associada a uma solução ótima do (PPL) pode ser utilizada para inicializar
o método do simplex ou o método dual do simplex na resolução do problema
modificado. Este procedimento evita o trabalho de obtenção de uma base
inicial primal ou dual viável para o (PPL).

Consideraremos a seguir três alterações que são freqüentemente intro-
duzidas sobre a estrutura de um problema de programação linear. Na última
alteração, introdução de uma nova restrição ao problema, veremos que apesar
da base B deixar de ser primal e dual viável, ela pode utilizada na construção
de uma nova base dual viável para o problema modificado.

4.4.1 Alterando o lado direito das restrições

Suponhamos que o vetor b que define o lado direito das restrições no problema
(PPL) seja alterado para b + δb e consideremos

(PPL) : maximizar z = cx

sujeito a:
Ax = b + δb

x ≥ 0,

Como já visto na seção anterior, a base B associada a uma solução ótima de
(PPL) não deixa de ser dual viável para o problema (PPL). Suponhamos,
no entanto que B−1(b+ δb) 6≥ 0, ou seja, que B deixa de ser uma base primal
viável. Neste caso, para obter a solução ótima do problema modificado,
podemos aplicar o método dual do simplex, tomando B como base inicial.

Exemplo 4.5 Seja o (PPL) do exemplo 4.2. Suponhamos que o lado direito
da primeira restrição seja alterado de 5 para 15.

Como já verificamos no exemplo 4.3, a base ótima do problema original
deixa de ser primal viável com esta alteração, fato este que comprovamos
abaixo.

x̄B =

(
x̄B(1)

x̄B(2)

)
=

(
x̄2

x̄1

)
= B−1b =

(
3
10

− 1
10

− 2
10

4
10

) (
15
7

)
=

(
38
10

− 2
10

)
,

ou seja, x̄B 6≥ 0.
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Por outro lado, sabemos que B não deixa de ser dual viável. Sendo
assim, aplicamos a seguir o método dual do simplex para resolver o problema
modificado, tomando a base B como base inicial.

Base inicial:
IB = {2, 1}, IN = {4, 3},

Como x̄B(2) = x̄1 = − 2
10

< 0, a1 sairá da base na próxima iteração.
Calculemos y2j, j ∈ IN :

y24 =
(
− 2

10

4

10

) (
0

−1

)
= − 4

10
e y23 =

(
− 2

10

4

10

) (
−1

0

)
=

2

10
,

onde
(
− 2

10
4
10

)
é a segunda linha de B−1 e L2 = {4}.

Como L2 só tem um elemento, ele define a coluna que entrará na base,
ou seja, na próxima iteração a4 entrará na base no lugar de a1.

Segunda base:
IB = {2, 4}, IN = {1, 3},

B−1 =

(
4 0
2 −1

)−1

=

(
1
4

0
2
4
−1

)
,

u = cBB−1 = (−5 0)

(
1
4

0
2
4
−1

)
=

(
−5

4
0
)

,

x̄B = B−1b =

(
x̄B(1)

x̄B(2)

)
=

(
x̄2

x̄4

)
=

(
1
4

0
2
4
−1

) (
15
7

)
=

(
15
4
2
4

)
≥ 0,

e

z̄ = cBB−1b = cBx̄B = (−5 0)

(
15
4
2
4

)
= −75

4
.

Como xB ≥ 0, esta é uma solução ótima para o problema. Podemos então
dizer que x∗1 = 0, x∗2 = 15

4
, x∗3 = 0, x∗4 = 2

4
, implicando z∗ = −75

4
, é a solução

ótima do (PPL) modificado.

4.4.2 Alterando o vetor custo

Suponhamos agora que o vetor c, que define o custo associado às variáveis
do problema (PPL), seja alterado para c + δc e consideremos e que a base
B deixa de ser dual viável para o problema modificado:
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(PPL) : maximizar z = (c + δc)x

sujeito a:
Ax = b

x ≥ 0,

ou seja, (cB + δcB)B−1N − (cN + δcN) 6≥ 0.
Neste caso, para obter a solução ótima de (PPL), podemos aplicar o

método do simplex, tomando B como base inicial.

Exemplo 4.6 Consideremos novamente o (PPL) do exemplo 4.2. Supo-
nhamos agora que o custo associado à variável x2 seja alterado de -5 para
-1.

Verificamos no exemplo 4.4 que a base ótima do problema original deixa
de ser dual viável com esta alteração, como comprovamos abaixo.

(c2 c1)B
−1N − (c4 c3) =

(−1 − 4)

(
3
10

− 1
10

− 2
10

4
10

) (
0 −1

−1 0

)
− (0 0) =

(−1 − 4)

(
1
10

− 3
10

− 4
10

2
10

)
− (0 0) =

(
15
10

− 5
10

)
6≥ 0.

Por outro lado, sabemos que B não deixa de ser primal viável. Sendo
assim, aplicamos a seguir o método do simplex para resolver o problema
modificado, tomando a base B como base inicial.

Base inicial:
IB = {2, 1}, IN = {4, 3},

Como visto acima, z4 − c4 = 15
10

> 0 e z3 − c3 = − 5
10

< 0, logo a coluna
a3 entrará na base na próxima iteração do algoritmo.

y3 = B−1a3 =

(
3
10

− 1
10

− 2
10

4
10

) (
−1

0

)
=

(
− 3

10
2
10

)
=

(
y13

y23

)
,

logo L1 = {2}. Como L1 só tem um elemento, este elemento determinará a
coluna que sairá da base, ou seja, aB(2) = a1 sairá da base, sendo substitúıida
pela coluna a3.
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Segunda base:

IB = {2, 3}, IN = {4, 1},

B = (a2 a3) =

(
4 −1
2 0

)
logo B−1 =

(
0 1

2

−1 2

)
,

cB = (−1 0), u = cBB−1 = (−1 0)

(
0 1

2

−1 2

)
=

(
0 − 1

2

)
,

x̄ = B−1b =

(
x̄2

x̄3

)
=

(
0 1

2

−1 2

) (
5
7

)
=

(
7
2

9

)
,

z̄ = ub =
(
0 − 1

2

) (
5
7

)
= −7

2
,

z1 = ua1 =
(
0 − 1

2

) (
1
3

)
= −3

2
⇒ z1 − c1 = −3

2
− (−4) =

5

2
> 0,

z4 = ua4 =
(
0 − 1

2

) (
0

−1

)
=

1

2
⇒ z4 − c4 =

1

2
− 0 =

1

2
> 0.

Como zj − cj ≥ 0, ∀j ∈ IN , esta solução básica é ótima. Logo x1 = 0,
x2 = 7

2
, x3 = 9, x4 = 0 é uma solução ótima, fornecendo z = −7

2
.

4.4.3 Acrescentando mais Restrições

Suponhamos agora que acrescentemos mais uma restrição ao (PPL) (4.33)
da forma sx ≥ bm+1, onde s = (s1 s2 ... sn) é um vetor linha dado e bm+1 um
real também conhecido.

Sem inicializarmos novamente todo o processo de solução do (PPL) com
mais uma restrição poderemos pensar em, a partir da solução ótima obtida
para o (PPL) original, reotimizar o novo problema utilizando os resultados
já obtidos.

Introduziremos a variável de folga xn+1 ≥ 0 a essa nova restrição: sx −
xn+1 = bm+1 e o novo (PPL) será escrito:

(PPL) : z = cx + 0xn+1

sujeito a:
Ax− 0xn+1 = b

sx− xn+1 = bm+1
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x ≥ 0, xn+1 ≥ 0,

em termos matriciais as restrições ficariam da seguinte forma:

(
A 0
s −1

) (
x

xn+1

)
=

(
b

bm+1

)
, lembrando que A ∈ Rm×n.

Consideremos s = (sB sN), onde sB está associado a B. Tomemos a
matriz

B̄ =

(
B 0
sB −1

)
.

Como B−1 existe então B̄−1 também existe, pois det(B̄) = det(B)×(−1).

Proposição 4.4 B̄ está associada a uma solução dual viável de (PPL).

Demonstração
Sabemos que

B̄−1 =

(
B−1 0

sBB−1 −1

)
e ū = c̄BB̄−1, onde c̄B = (cB 0),

logo

c̄BB̄−1 = (cB 0)

(
B−1 0

sBB−1 −1

)
= (cBB−1 0) = (u 0).

Teremos ainda

z̄j = ūāj = (u 0)

(
aj

sj

)
= uaj = zj, j = 1, 2, ..., n

e

z̄n+1 = ūān+1 = (u 0)

(
0

−1

)
= 0.

Assim sendo temos que z̄j−cj = zj−cj ≥ 0, j = 1, 2, ..., n; pois a solução
associada a B é ótima do (PPL). Por outro lado z̄n+1 − cn+1 = 0 − 0 = 0.
Logo B̄ está associada a uma solução ū viável do dual de (PPL).

Exemplo 4.7 Voltemos ao (PPL) do exemplo 4.2, acrescentamos a este a
restrição 4x1 + 5x2 ≥ 20 à qual associaremos a variável de folga x5 ≥ 0 :
4x1 + 5x2 − x5 = 20.
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Teremos que

Ā = (ā1 ā2 ā3 ā4 ā5) =




1 4 −1 0 0
3 2 0 −1 0
4 5 0 0 −1


 , b̄ =




5
7

20


 ,

c̄ = (−4 − 5 0 0 0).
Sabemos que B̄ = (ā2 ā1 ā5) nos fornece uma base dual viável e que

B̄ =




4 1 0
2 3 0
5 4 −1


 =

(
B 0
sB −1

)
, B̄−1 =

(
B−1 0

sBB−1 −1

)
,

e

B−1 =

(
3
10

− 1
10

− 2
10

4
10

)
.

Então

sBB−1 = (5 4)

(
3
10

− 1
10

− 2
10

4
10

)
=

(
7

10

11

10

)
,

logo,

B̄−1 =




3
10

− 1
10

0
− 2

10
4
10

0
7
10

11
10

−1


 ,

verificamos que

x̄B = B̄−1b̄ = B̄−1




5
7

20


 =




8
10
18
10

−88
10


 6≥ 0, ū =

(
− 7

10
− 11

10
0
)

,

e

ūb̄ = (u 0)

(
b

bn+1

)
= ub = −112

10
.

Como x̄B(3) = x̄5 = −88
10

< 0 faremos a5 deixar a base. Para escolhermos
uma coluna não básica para entrar na base devemos calcular os y3j, j ∈
{3, 4} = IN . Para isso tomaremos a terceira linha de B̄−1 e as colunas ā3 e
ā4, tal como segue:

y33 =
(

7

10

11

10
− 1

)


−1

0
0


 = − 7

10
e y34 =

(
7

10

11

10
− 1

)



0
−1

0


 = −11

10
.

Lembremos que z3 − c3 = 7
10

e que z4 − c4 = 11
10

, calculemos agora

min

{∣∣∣∣∣
7
10

− 7
10

,
11
10

−11
10

∣∣∣∣∣

}
,
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há empate. Escolheremos ā4 para entrar na base no lugar de ā5.
Nova base:

B̄ = (ā2 ā1 ā4), B̄−1 =




4
11

0 − 1
11

− 5
11

0 0
− 7

11
−1 10

11




e

x̄B = B̄−1b̄ =




x̄2

x̄1

x̄4


 = B̄−1




5
7

20


 =




0
5
8


 ≥ 0.

A última base B̄ encontrada é primal e dual viável, assim sendo a solução
x1 = 5, x2 = 0, x3 = 0, x4 = 8, x5 = 0, fornecendo z = −20, é ótima para
o (PPL) do exemplo da última seção ao qual foi acrescentado mais uma
restrição.

É interessante observar que esta solução básica ótima é degenerada, pois
a variável associada à coluna ā2 tem valor nulo, isto é, x2 = 0. A leitora ou
o leitor poderia ter uma explicação para este fato?

Por curiosidade calculemos z̄3−c̄3. Para isso observemos que ū = c̄BB̄−1 =
(0 0 − 1) logo z̄3 = ūā3 = 0. Temos também que c̄3 = 0. Logo z̄3 − c̄3 = 0;
caso façamos ā3 entrar na base, usando a método primal do simplex, o valor
de z não será modificado. Por que?

Para saber qual coluna sairá da base para dar entrada a coluna ā3, cal-
cularemos o vetor

y3 = B̄−1a3 =




y13

y23

y33


 =




4
11

0 − 1
11

− 5
11

0 0
− 7

11
−1 10

11






−1

0
0


 =



− 4

11
5
11
7
11


 .

Já temos que x̄B(2) = x̄1 = 5 e que x̄B(3) = x̄4 = 8. Consideraremos

agora min
{

5
5
11

, 8
7
11

}
= 5

5
11

= x̄1

y23
. A coluna ā1 deixará a base. A nova base

será agora

B̄ = (ā2 ā3 ā4), B̄−1 =




0 0 1
5

−1 0 4
5

0 −1 2
5


 ,

x̄B = B̄−1b̄ =




x̄2

x̄3

x̄4


 = B̄−1




5
7

20


 =




4
11
1


 .

Facilmente verificamos que esta última base também é dual viável. Obte-
mos x1 = 0, x2 = 4, x3 = 11, x4 = 1, x5 = 0, fornecendo z = −20.
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Figura 4.2: Pós-otimização

Todas as soluções ótimas do (PPL) podem ser escritas da seguinte ma-
neira:

x∗ = λ




5
0
0
8
0




+ (1− λ)




0
4

11
1
0




, para λ ∈ [0, 1].

Ilustraremos todo o procedimento de pós-otimização e a busca de outra
solução básica ótima na figura 4.2. Partimos do ponto

(
18
10

, 8
10

)
passamos

para o ponto (5, 0) (primal e dual viável) e, finalmente, atingimos o outro
ponto ótimo (0, 4).

4.5 Exerćıcios

1. Seja o problema de programação linear

(P ) : maximizar x0 = 5x1 + 8x2
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sujeito a:

x1 + x2 + x3 = 2
x1 − 2x2 + x4 = 0
−x1 + 4x2 + x5 = 1

xj ≥ 0, j = 1, 2, 3, 4, 5.

Utilizando os métodos do primal e do dual do simplex, tratar dos
seguintes itens.

(a) Verificar que as colunas associadas às variáveis x1, x2 e x3 formam
uma base ótima de (P ). Esta verificação deve ser feita invertendo
a matriz básica fornecida e verificando sua primal e sua dual via-
bilidades.

(b) Seja (P̄ ) o problema de programação linear formado por (P ) e
pela restrição x1 + x2 = 1. Qual será a solução ótima de (P̄ )?
Utilizar o método dual do simplex para reotimizar.

2. Seja o problema de programação linear

(P ) : minimizar z = 3x1 + 2x2

sujeito a:

x1 + 3x2 − x3 = 9
5x1 + 6x2 − x4 = 30
x1 + 2x2 − x5 = 8

xj ≥ 0, j = 1, 2, 3, 4, 5.

Utilizando os métodos do primal e do dual do simplex, tratar dos
seguintes itens.

(a) Verificar que as colunas associadas às variáveis x2, x3 e x5 formam
uma base ótima de (P ). Esta verificação deve ser feita invertendo
a matriz básica fornecida e verificando sua primal e sua dual via-
bilidades.

(b) Seja (P̄ ) o problema de programação linear formado por (P ) e
pela restrição 3x1 + x2 ≥ 6. Qual será a solução ótima de (P̄ )?
Utilizar o método dual do simplex para reotimizar.

(c) Verificar em que intervalo deve estar o custo associado à variável
(i) x1, (ii) x2, para que a base ótima de (P ) não seja alterada.
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(d) Se em (P ) substituirmos na segunda restrição 30 por α, verificar
que para 24 ≤ α < ∞ a base ótima de (P ) será sempre associada
às variáveis x2, x3 e x5.

(e) Seja (P̄ ) o problema de programação linear formado por (P ), ao
se substituir o lado direito da segunda restrição por 20. Qual será
a solução ótima de (P̄ )? Utilizar o método dual do simplex para
reotimizar.

(f) Seja agora (P̄ ) formado por (P ), ao se substituir o custo associado
à variável x2 por 10. Qual será a solução ótima de (P̄ )? Utilizar
o método do simplex para reotimizar.

3. Seja
(P ) : minimizar z = 6x1 + 9x2 + 42x3 + 36x4

sujeito a:
x1 + 3x3 + 5x4 ≥ 2

x2 + 4x3 + 2x4 ≥ 3

xj ≥ 0, j = 1, 2, 3, 4.

Escrever (D) o problema dual de (P ). Resolver graficamente (D). A
partir da solução ótima de (D) encontrar a solução ótima de (P ) uti-
lizando as relações das folgas complementares.

4. Estudar os valores de α, β e λ pertencendo ao conjunto dos números
reais para que o problema maximizar z = αx1+βx2, sujeito a x1−x2 =
λ, x1 ≥ 0, x2 ≥ 0, possua uma solução ótima limitada. Neste caso
fornecer uma solução ótima quando λ ≥ 0 e uma outra quando λ ≤ 0.

5. Supondo que para qualquer sistema de desigualdades lineares, sob for-
ma matricial, My ≤ d exista um método para encontrar um ȳ, tal que
Mȳ ≤ d; como usar este método para resolver o problema: maximizar
z = cx, sujeito a, Ax ≤ b, x ≥ 0? Isto é, como seriam representados
M e d em função de c, A e b?
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Caṕıtulo 5

Obtenção de uma Solução
Viável

Na seção 3.3 fizemos uma apresentação de um método para encontrar uma
solução básica inicial, conhecido também como método das duas fases. Neste
caṕıtulo faremos um estudo mais geral.

Comecemos tratando do problema de encontrar uma solução viável de
um sistema de desigualdades lineares.

Seja X = {x ∈ Rn |Ax ≤ b}, onde A ∈ Rm×n e b ∈ Rm. Desejamos
determinar um vetor x̄ ∈ X ou ainda tal que Ax̄ ≤ b. Quando b ≥ 0, x̄ = 0
é uma solução. Lembremos que X pode ser vazio.

5.1 Método de Eliminação de Fourier

Passaremos a desenvolver o método de eliminação de Fourier [Fou 890] para
determinar soluções de sistemas de desigualdades lineares.

Consideremos
∑n

j=1 aijxj ≤ bi a i-ésima desigualdade de Ax ≤ b, supo-
nhamos que ai1 6= 0, assim podemos escrever: ai1x1 ≤ bi −∑n

j=2 aijxj.
Se ai1 > 0 então

x1 ≤ bi

ai1

−
n∑

j=2

aij

ai1

xj;

e se ai1 < 0 então

x1 ≥ bi

ai1

−
n∑

j=2

aij

ai1

xj.

O conjunto dos ı́ndices das linhas I = {1, 2, 3, ..., m} pode ser parti-
cionado em I0, I1 e I2 da seguinte maneira:

I0 = {i ∈ I | ai1 = 0}, I1 = {i ∈ I | ai1 > 0} e I2 = {i ∈ I | ai1 < 0}.
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Desta maneira Ax ≤ b será escrito sob a seguinte forma:

x1 ≤ bi

ai1
−∑n

j=2
aij

ai1
xj, i ∈ I1,

bi

ai1
−∑n

j=2
aij

ai1
xj ≤ x1, i ∈ I2,

e
n∑

j=2

aijxj ≤ bi, i ∈ I0.

Primeiramente consideremos I1 6= φ e I2 6= φ, então para eliminarmos x1

teremos que considerar o novo sistemas de desiguladades:

bk

ak1

−
n∑

j=2

akj

ak1

xj ≤ bl

al1

−
n∑

j=2

alj

al1

xj, k ∈ I2, l ∈ I1

e
n∑

j=2

aijxj ≤ bi, i ∈ I0.

No sistema de desigualdades acima, onde eliminamos x1, o número de de-
sigualdades é igual a |I1|× |I2|+ |I0|. O conjunto das soluções que satisfazem
este sistema é a projeção de X no espaço x2 × x3 × ... × xn. Podeŕıamos
então repetir o procedimento visando à eliminação de x2 no espaço proje-
tado. Continuando faŕıamos o mesmo para x3 e sucessivamente até obtermos
um sistema de desigualdades lineares com uma única variável xn, que será da
forma α ≤ xn ≤ β, onde α pode ser igual a −∞ e β a +∞. Caso α > β, X
é vazio.

Supondo o caso em que X 6= φ, basta tomarmos um x̄n ∈ [α , β], este
valor será dado a xn no sistema contendo apenas as variáveis xn−1 e xn,
teremos analogamente α(x̄n) ≤ xn−1 ≤ β(x̄n) e tomaremos xn−1 = x̄n−1

tal que x̄n−1 ∈ [α(x̄n) , β(x̄n)]. Passaremos a seguir com os valores x̄n

e x̄n−1 ao sistema de desigualdades lineares contendo somente as variáveis
xn−2, xn−1 e xn e obteremos x̄n−2 ∈ [α(x̄n−1, x̄n) , β(x̄n−1, x̄n)]. O pro-
cedimento é continuado até obtermos um valor de x1 = x̄1 tal que x̄1 ∈
[α(x̄2, x̄3, ..., x̄n−1, x̄n) , β(x̄2, x̄3, ..., x̄n−1, x̄n)].

5.2 Exemplos

Seja

X = {(x1 x2)
T | 3x1 + 2x2 ≥ 18, x1 ≤ 4, x2 ≤ 6, x1 ≥ 0, x2 ≥ 0},
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desejamos encontrar um x̄ ∈ X. Verificamos, facilmente, que (0 0)T 6∈ X.
Lembrando que 3x1 + 2x2 ≥ 18 implica x1 ≥ 6− 2

3
x2, poderemos escrever o

sistema de desigualdades lineares sob uma outra forma:

x1 ≤ 4
0 ≤ x1

6 − 2
3
x2 ≤ x1

x2 ≤ 6
0 ≤ x2.

Eliminando x1 do sistema acima teremos que 0 ≤ 4, 6 − 2
3
x2 ≤ 4, x2 ≤ 6 e

x2 ≥ 0. Observamos que 0 ≤ 4 não traz nenhuma contradição, no entanto,
podeŕımos ter obtido um resultado do tipo 9 ≤ 4, isto é, X = φ.

Como 6− 2
3
x2 ≤ 4 implica x2 ≥ 3, teremos:

3 ≤ x2

0 ≤ x2

x2 ≤ 6,

ou seja 3 ≤ x2 ≤ 6, basta tomarmos um x̄2 ∈ [3 , 6], por exemplo, x̄2 = 9
2
.

Levando este valor no sistema com x1 e x2, obteremos:

x1 ≤ 4
0 ≤ x1

6 − 2
3
× 9

2
≤ x1,

logo 3 ≤ x1 ≤ 4, isto é, α(x̄1) = 3 e β(x̄1) = 4. Tomemos x̄1 = 7
2
. O ponto

(7
2

9
2
)T é uma solução de X. A figura 5.1 ilustra o exemplo.

Consideremos agora um outro exemplo, onde X = {x = (x1 x2)
T | 3x1 +

2x2 ≥ 18, 2x1 + x2 ≥ 10, x1 + 8x2 ≥ 8} e desejamos novamente encontrar
um x̄ ∈ X. A origem (0 0)T não pertence a X. Assim sendo:

3x1 + 2x2 ≥ 18 ⇒ x1 ≥ 6− 2
3
x2,

2x1 + x2 ≥ 10 ⇒ x1 ≥ 5− 1
2
x2,

x1 + 8x2 ≥ 8 ⇒ x1 ≥ 8− 8x2.

logo, neste caso, I1 = φ e I0 = φ, assim x2 poderá tomar qualquer valor real.
Tomemos x̄2 = 2 implicando que

x1 ≥ 6− 2
3
× 2 ⇒ x1 ≥ 14

3
,

x1 ≥ 5− 1
2
× 2 ⇒ x1 ≥ 4,

x1 ≥ 8− 8× 2 ⇒ x1 ≥ −8,
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Figura 5.1: Obtenção de uma solução para X = {(x1 x2)
T | 3x1 + 2x2 ≥

18, x1 ≤ 4, x2 ≤ 6, x1 ≥ 0, x2 ≥ 0} pelo método de eliminação de Fourier
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Figura 5.2: Obtenção de uma solução para X = {x = (x1 x2)
T | 3x1 + 2x2 ≥

18, 2x1 + x2 ≥ 10, x1 + 8x2 ≥ 8} pelo método de eliminação de Fourier
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logo α(x̄2) = 14
3

e β(x̄2) = +∞; basta escolhermos x̄1 ∈
[

14
3

, +∞
)
, tomemos

x̄1 = 6. O ponto (6 2)T ∈ X. A figura 5.2 esclarece o procedimento.
Podemos também utilizar o método de eliminação de Fourier para re-

solvermos um problema de programação linear.
Seja

maximizar z = 3x1 + 5x2

sujeito a
3x1 + 2x2 ≥ 18, x1 ≤ 4, x2 ≤ 6, x1 ≥ 0, x2 ≥ 0.

Este problema é equivalente a

maximizar z
sujeito a
z ≤ 3x1 + 5x2, 3x1 + 2x2 ≥ 18, x1 ≤ 4, x2 ≤ 6, x1 ≥ 0, x2 ≥ 0.

Iniciaremos buscando uma solução viável x̄ = (x̄1 x̄2 z̄)T para as restrições
do problema acima. Para isso começaremos eliminando x1 :

1

3
z − 5

3
x2 ≤ x1, 6− 2

3
x2 ≤ x1, 0 ≤ x1, x1 ≤ 4, x2 ≤ 6, 0 ≤ x2.

Fornecendo

1

5
z − 12

5
≤ x2, 3 ≤ x2, 0 ≤ x2, x2 ≤ 6.

A vaiável x2 será agora eliminada e ficaremos com um sistema só com a
variável z :

1

5
z − 12

5
≤ 6, 3 ≤ 6, 0 ≤ 6, logo z ∈ (−∞ , 42].

Como desejamos o máximo de z, tomaremos z = z̄ = 42. Fazendo z = 42
na projeção do sistema no espaço x2 × z teremos 6 ≤ x̄2, 3 ≤ x̄2, 0 ≤
x̄2, x̄2 ≤ 6, assim sendo 6 ≤ x̄2 ≤ 6, implicando x̄2 = 6.

Levando os valores z = 42 e x2 = 6 nas restrições originais obteremos
4 ≤ x̄1, 2 ≤ x̄1, 0 ≤ x̄1, x̄1 ≤ 4, implicando 4 ≤ x̄1 ≤ 4, então x̄1 = 4.
A solução x̄1 = 4, x̄2 = 6, fornecendo z̄ = 42 é ótima. Neste caso ela é única.
Por que?

O conjunto das restrições é esboçado na figura 5.3.
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Figura 5.3: Aplicação do método de eliminação de Fourier para resolver um
problema de programação linear

5.3 Aplicação do Método de Fourier quando

houver Igualdades

Trataremos de determinar uma solução viável de X = {x ∈ Rn |Ax =
b,Dx ≤ d, x ≥ 0}, onde A ∈ Rm×n, D ∈ Rp×n, d ∈ Rp, suporemos que o
posto de A seja igual a m. Como o posto de A é m, poderemos tomar uma
submatriz quadrada B ∈ Rm×m de A inverśıvel.

Particionaremos A e x da maneira usual: A = (B N) e x = (xB xN)T ,
assim escreveremos BxB + NxN = b ou ainda

xB = B−1b−B−1NxN . (5.1)

A matriz D também será particionada, D = (DB DN), o sistema Dx ≤ d
será escrito:

DBxB + DNxN ≤ d. (5.2)

Levando o valor de xB de (5.1) em (5.2):

DBB−1b−DBB−1NxN + DNxN ≤ d

ou ainda
(DN −DBB−1N)xN ≤ d−DBB−1b. (5.3)
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Figura 5.4: Método heuŕıstico para obtenção de uma solução para X = {x ∈
Rn |Ax ≤ b}

Como x ≥ 0, implicando xB ≥ 0 e xN ≥ 0, temos

B−1b−B−1NxN ≥ 0 (5.4)

e
xN ≥ 0. (5.5)

Utilizaremos o método de eliminação de Fourier para encontrarmos uma
solução viável de (5.3), (5.4) e (5.5). Uma vez encontrada uma solução
xN = x̄N , esta é levada em (5.1) para obtermos x̄B = B−1b−B−1Nx̄N .

5.4 Um Método Heuŕıstico

Consideremos novamente X = {x ∈ Rn |Ax ≤ b} e queremos determinar um
x̄ ∈ X. Suporemos que o interior (relativo) de X não seja vazio. A idéia é
a de testar se um ponto x(λ) = λv, onde v é um vetor dado e λ ∈ R, pode
para um certo λ pertencer a X. Em outras palavras, existe λ̄ ∈ R tal que
x(λ̄) ∈ X? Esta idéia é ilustrada na figura 5.4.

Buscaremos um λ̄ tal que Ax(λ̄) ≤ b, isto é, λ̄Av ≤ b, que vem a ser a
determinação de um λ que satisfaça a α ≤ λ ≤ β. Se α > β então para a
direção v não haverá λ tal que A(λv) ≤ b.
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O método é de tentativas, começaremos com v = e = (1 1 ... 1)T e seja
aij um elemento genérico da matriz A. O sistema λAe ≤ b ficaria

λ
n∑

j=1

aij ≤ bi, i = 1, 2, ..., m.

Denominemos si =
∑n

j=1 aij, i = 1, 2, ..., m e consideraremos as seguintes
possibilidades:

• caso 1: si = 0 e bi < 0, não exitirá λ para a direção e;

• caso 2: si = 0 e bi ≥ 0, qualquer λ satisfará à i-ésima desiguladade;

• caso 3: si > 0, λ ≤ bi

si
e

• caso 4: si < 0, λ ≥ bi

si
.

Se não acontecer o caso 1, tomaremos:

α = max
i tal que si<0

{
bi

si

}
β = min

i tal que si>0

{
bi

si

}
,

logo α ≤ λ ≤ β.
Observação: se α > β não haverá λ para a direção e, caso contrário

poderemos, por exemplo, tomar λ̄ = α+β
2

e x(λ̄) = λ̄e será uma solução. A
seguir apresentaremos dois exemplos utilizando a direção

e = (1 1 ... 1)T .

Primeiro exemplo:
Seja X = {x = (x1 x2)

T | 3x1 + 2x2 ≥ 18, x1 ≥ 0, x2 ≥ 0}, teremos
que 3x1 + 2x2 ≥ 18 ⇒ (3 + 2)λ ≥ 18 ⇒ λ ≥ 18

5
; x1 ≥ 0 ⇒ λ ≥ 0

e x2 ≥ 0 ⇒ λ ≥ 0. Basta tomarmos λ ∈ [18
5

, +∞), por exemplo,
λ̄ = 4, fornecendo um ponto viável x̄1 = x̄2 = 4 para X.

Segundo exemplo:
Seja X = {x = (x1 x2 x3)

T | 6x1 + 8x2 + 2x3 = 24, x1 + x2 ≥ 0, x1 ≥
0, x2 ≥ 0, x3 ≥ 0}, teremos que 6x1 + 8x2 + 2x3 = 24 ⇒ x3 = 12−
3x1−4x2 ≥ 0 ⇒ 3x1+4x2 ≤ 12, assim sendo (3+4)λ ≤ 12 ⇒ λ ≤ 12

7
;

x1 + x2 ≥ 0 ⇒ 2λ ≥ 0 ⇒ λ ≥ 0, as outras duas restrições implicam
também que λ ≥ 0. Tomemos um λ ∈

[
0 , 12

7

]
, por exemplo, λ̄ = 1,

logo x̄1 = x̄2 = 1 e x̄3 = 12− 3− 4 = 5 é um ponto de X.

Este método heuŕıstico ingênuo apresentado nem sempre consegue deter-
minar uma solução viável de X, no entanto, pela sua simplicidade poderá ser
utilizado em uma primeira etapa. Caso não se encontre uma solução viável
de X após testar algumas direções v, passar-se-á para um outro método.
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5.5 Métodos Introduzindo Soluções Artifici-

ais

Como foi dito no ińıcio deste caṕıtulo, a busca de uma solução viável para
um sistema de desigualdades e igualdades lineares introduzindo uma solução
artificial foi descrita rapidamente na seção 3.3. Nesta seção apresentaremos
duas maneiras de encontrar soluções viáveis de sistemas lineares.

Primeiro Método

Seja X = {x ∈ Rn |Ax = b, x ≥ 0}, tomemos um vetor não negativo
x̄ ≥ 0, definimos b̄ = b − Ax̄ e seja λ ∈ R. Consideraremos o seguinte
problema de otimização em λ e x :

minimizar λ (5.6)

sujeito a:
Ax + b̄λ = b, (5.7)

x ≥ 0 e λ ≥ 0. (5.8)

Verificamos facilmente que x = x̄ e λ = 1 é uma solução de (5.7) e (5.8).
Se o mı́nimo de λ em (5.6), (5.7) e (5.8) for igual a zero para x = x∗ então
x∗ ∈ X. Caso contrário, isto é, λ > 0 no ótimo, teremos X = φ.

Como foi explicado no caṕıtulo 2, poder-se-á, a partir de uma solução
inicial viável de (5.7) e (5.8), buscar uma solução básica de (5.7) satisfazendo
(5.8) sem aumentar o valor de λ, visando à utilização do método do simplex.

Este tipo de enfoque que acabamos de apresentar pode ser útil nos méto-
dos de pontos interiores para a solução de problemas de programação linear.

Segundo Método

Podemos também acrescentar uma variável vi ≥ 0 artificial a cada equação do
sistema Ax = b, isto é, consideraremos as seguintes equações

∑n
j=1 aijxj+vi =

bi, i = 1, 2, ...,m. Suporemos, sem perda de generalidade, que b ≥ 0.
O problema de otimização a ser considerado terá a seguinte forma:

minimizar eT v (5.9)

sujeito a:
v + Ax = b, (5.10)

x ≥ 0 e v ≥ 0, (5.11)
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onde eT = (1 1 ... 1) e vT = (v1 v2 ... vm).
A solução v = b e x = 0 é básica de (5.10) satisfazendo (5.11). Se a

solução ótima de (5.9), (5.10) e (5.11) fornecer eT v = 0, que corresponde a
v = 0 e x = x̄. Desejamos que x̄ seja uma solução básica de Ax = b.

Utilizando o algoritmo primal de simplex para solucionar (5.9), (5.10) e
(5.11), dois casos serão considerados no ótimo:

• v = 0 está associado a colunas não básicas de (5.10), então x̄ é uma
solução básica de Ax = b;

• existe vi = 0 associada a uma coluna básica de (5.10), se houver um
yij 6= 0, para j = 1, 2, ..., n, basta colocarmos na base a coluna aj no
lugar da coluna ei associada à variável vi; se yij = 0, j = 1, 2, ..., n,
eliminaremos a linha i.

No caso em que eT v > 0 no ótimo então X = φ.

5.6 Viabilidade de Sistemas com Igualdades

e Desigualdades Lineares

Consideraremos agora X = {x ∈ Rn |A1x ≤ b1, A2x = b2} e desejamos
saber se X 6= φ, onde A1 ∈ Rp×n e A2 ∈ Rq×n.

Sejam 0 ≤ wT
1 ∈ Rp, wT

2 ∈ Rq. Poderemos escrever w1A1x ≤ w1b1 e
w2A2x = w2b2. Consideraremos então:

(w1A1 + w2A2)x ≤ w1b1 + w2b2. (5.12)

É fácil verificar que se existirem w1 ≥ 0 e w2 tais que w1A1 + w2A2 = 0
e w1b1 + w2b2 < 0 então X = φ.

Tomemos um exemplo para ilustrar o resultado acima, onde X = {x =
(x1 x2 x3)

T | 3x1+2x2+4x3 ≤ 5, x1+2x2+x3 ≤ 4, −x1 ≤ 0, −x2 ≤ 0, −x3 ≤
0, x1 +x2 +x3 = 3}, e sejam w1 = (1 3 0 2 1) e w2 = −6. Escreveremos para
estas desigualdades e igualdade a expressão (5.12): (1×3+3×1−6×1)x1 +
(1×2+3×2−2×1−6×1)x2+(1×4+3×1−1×1−6×1)x3 ≤ (1×5+3×4−6×3),
isto é, (0 0 0)(x1 x2 x3)

T ≤ −1 ⇒ 0 ≤ −1 (!), logo X = φ.

Definição 5.1 Segundo H. W. Kuhn [Ku 56], o sistema A1x ≤ b1, A2x = b2

é inconsistente se há w1 ≥ 0 e w2 tais que w1A1+w2A2 = 0 e w1b1+w2b2 < 0.

Kuhn [Ku 56] enunciou o teorema seguinte.
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Teorema 5.1 Um sistema de igualdades e desigualdades lineares será vazio
se e somente se for inconsistente.

Demonstração
(⇒) Já demonstramos acima que um sistema inconsistente é vazio.
(⇐) Consideremos novamente A1x ≤ b1, A2x = b2 e suporemos b2 ≥ 0.
Particionaremos b1 = (bα bβ)T , onde bα ≥ 0 e bβ < 0. Particionaremos

também as linhas de A1 =

(
Aα

Aβ

)
para que possamos construir o seguinte

problema de programação linear visando a encontrar uma solução viável para
o sistema de igualdades e desigualdades lineares em questão:

(PA) : maximizar −(ξT
α vα + ξT

β vβ + ξT
2 v2)

sujeito a:
Aαx + vα ≤ bα,

Aβx− vβ ≤ bβ,

A2x + v2 = b2,

vα ≥ 0, vβ ≥ 0, v2 ≥ 0,

onde ξk = (1 1 ... 1)T , pertencendo ao mesmo espaço que bk, para k = α, β, 2.
Como a função objetivo de (PA) é limitada para o máximo, pois −(ξT

α vα+
ξT
β vβ + ξT

2 v2) ≤ 0 e x = 0, vα = bα, vβ = −bβ e v2 = b2 é uma solução viável
de (PA), então teremos que o ótimo de (PA) será limitado.

Denominaremos w1 = (wα wβ) ≥ 0 e w2 os vetores cujas componentes
são as variáveis do seguinte dual de (PA) :

(DA) : minimizar wαbα + wβbβ + w2b2

sujeito a:
wαAα + wβAβ + w2A2 = 0,

wα ≥ −ξT
α , −wβ ≥ −ξT

β , w2 ≥ −ξT
2 ,

wα ≥ 0, wβ ≥ 0.

Pelas propriedades da dualidade sabemos val(PA) =val(DA), pois (PA)
não é vazio e possui ótimo limitado. Denominamos val(·) o valor da função
objetivo no ótimo de (·).

Sendo o sistema A1x ≤ b1, A2x = b2 vazio por hipótese, sabemos que
val(PA) < 0 e assim val(PA) =val(DA) < 0, implicando que

wαbα + wβbβ + w2b2 = w1b1 + w2b2 < 0, onde w1 = (wα wβ) ≥ 0,
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e
wαAα + wβAβ + w2A2 = w1A1 + w2A2 = 0,

logo o sistema é inconsistente.

5.7 Exerćıcios

1. Teorema de Farkas [Fa 02]. Demonstrar que o conjunto
{(x,w) ∈ Rn ×Rm | Ax ≤ 0, cx > 0, wT A = c, w ≥ 0} é vazio, onde
A ∈ Rm×n e cT ∈ Rn são dados.

2. Resolver pelo método do simplex partindo de uma solução artificial:
maximizar z = 3x1 + 5x2, sujeito a: x1 ≤ 4, x2 ≤ 6, 3x1 + 2x2 ≥
18, x1 ≥ 0, x2 ≥ 0.

3. Solucionar o mesmo problema acima utilizando o teorema das folgas
complementares.
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Caṕıtulo 6

Conjuntos Poliédricos Convexos

A definição de um conjunto convexo foi feita nos caṕıtulos anteriores. A
seguir daremos as definições de hiperplano, de vértice, de raios e direções,
assim como algumas de suas propriedades inerentes. Introduziremos também
o estudo dos conjuntos poliédricos convexos.

6.1 Hiperplano, Vértices, Raios e Direções

Definição 6.1 Hiperplano
Sejam p ∈ Rn, tal que p 6= 0 e α ∈ R dados. O conjunto H = {x ∈
Rn | pT x = α} é denominado um hiperplano.

O vetor p é ortogonal ao hiperplano H, pois consideremos x0 ∈ H, isto é,
pT x0 = α e para todo x ∈ H teremos também pT x = α, logo pT (x− x0) = 0.
A figura 6.1 ilustra esta propriedade.

Proposição 6.1 Um hiperplano é um conjunto convexo.

Demonstração
Sejam x1 e x2 ∈ H, isto é: pT x1 = α e pT x2 = α; tomemos λ ∈ [0, 1 ] e
consideremos λpT x1 = λα e (1 − λ)pT x2 = (1 − λ)α ou ainda pT (λx1) +
pT [(1−λ)x2] = λα+(1−λ)α que implica em pT [λx1+(1−λ)x2] = α. Assim
sendo, qualquer combinação convexa de dois pontos de H também pertence
a H.

Um hiperplano divide Rn em duas regiões, denominadas de semi-espaços.
Um semi-espaço é um conjunto {x ∈ Rn | pT x ≤ α}, quando p 6= 0. Na

realidade podemos considerar um semi espaço fechado {x ∈ Rn | pT x ≤ α}
ou aberto {x ∈ Rn | pT x < α}.
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Figura 6.1: O vetor p é ortogonal a x− x0
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Figura 6.2: O ângulo entre p e x é maior do que 90o

Tomemos x0 ∈ {x ∈ Rn | pT x = α} e x ∈ {x ∈ Rn | pT x ≤ α}, ou seja
pT x0 = α e pT x ≤ α, logo pT x ≤ pT x0 implicando pT (x − x0) ≤ 0 como
ilustramos na figura 6.2.

Definição 6.2 Vértice ou ponto extremo de um conjunto
Seja X ⊆ Rn um conjunto, v ∈ X é um vértice ou um ponto extremo de X
se não existirem x1 e x2 ∈ X, x1 6= x2, tais que v = 1

2
x1 + 1

2
x2.

Na figura 6.3, dois esboços ilustram a definição de vértice.
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Figura 6.3: Vértices: No conjunto a direita, além de v2, todos os pontos no
arco v1v3 são vértices

Definição 6.3 Raios e direções
Um raio é um conjunto da forma {x ∈ Rn | x = x0 + λd, λ ≥ 0}, onde x0 é
um ponto dado e a direção d ∈ Rn também o é.

A figura 6.4 ilustra a definição de raio.

6.2 Conjunto Poliédrico Convexo

Consideremos Hi = {x ∈ Rn | (pi)T x ≤ αi}, pi 6= 0 e αi dados para i =
1, 2, ..., m. X =

⋂m
i=1 Hi é um conjunto poliédrico convexo por definição se

X 6= φ.
Um conjunto poliédrico convexo é a interseção de um número finito de

semi-espaços fechados. Esta interseção deve ser não vazia. Daremos na figura
6.5 alguns exemplos de conjuntos poliédricos convexos em R2 :

As restrições dos problemas de programação linear formam um conjunto
poliédrico convexo. Por que?

Quando um conjunto poliédrico convexo for limitado, diremos que este
conjunto é um hiper-poliedro ou um politopo.

É interessante verificarmos que no caso de um politopo X, caso conheça-
mos todos os seu vértices v1, v2, ..., vq, podemos expressar qualquer x ∈ X
como sendo uma combinação convexa dos vértices de X, isto é, x ∈ X se
e somente se, x =

∑q
j=1 λjv

j,
∑q

j=1 λj = 1 e λj ≥ 0, j = 1, 2, ..., q. Este
resultado será demonstrado ainda neste caṕıtulo.

Na figura 6.6 temos seis vértices e x ∈ X poderá ser expresso como
x =

∑6
j=1 λjv

j,
∑6

j=1 λj = 1 e λj ≥ 0, j = 1, 2, ..., 6.
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Figura 6.5: Conjuntos Poliédricos Convexos
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Figura 6.7: Cones poliédricos convexos

No caso particular de αi = 0, i = 1, 2, ..., m teremos

Hi = {x ∈ Rn | (pi)T x ≤ 0}, pi 6= 0, C =
m⋂

i=1

Hi.

O conjunto poliédrico convexo C é denominado de cone poliédrico convexo.
Na figura 6.7 ilustramos cones poliédricos convexos em R2 e R3.

Os vetores ri ilustrados na figura são denominados raios extremos de
C e serão definidos da seguinte maneira: r é um raio extremo de C se não
existirem d1 e d2 ∈ C, d1 6= βd2 para qualquer β ∈ R+ tais que r = 1

2
d1+ 1

2
d2.

Sendo A ∈ Rm×n então C = {x ∈ Rn |Ax ≤ 0}, é um cone poliédrico con-
vexo. Supondo que r1, r2, ..., rq sejam os raios extremos de C mostraremos
mais à frente que para ∀x ∈ C teremos x =

∑q
i=1 µir

i, µi ≥ 0, i = 1, 2, ..., q.
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Voltemos ao conjunto poliédrico convexo X = {x ∈ Rn |Ax = b, x ≥ 0},
onde A ∈ Rm×n, b ∈ Rm, e o posto de A igual a m.

Se X contiver um raio então X não será limitado. Para verificar isto
tomaremos x0 ∈ X e d 6= 0 um vetor e consideraremos r = x0 + λd, λ ≥ 0
um raio de X. Para que r ∈ X teremos que Ar = b, r ≥ 0, ou ainda que
A(x0 + λd) = b e x0 + λd ≥ 0, para ∀λ ≥ 0.

De A(x0 + λd) = b teremos que Ax0 + λAd = b, como Ax0 = b então
λAd = 0, para ∀λ ≥ 0, isto é, Ad = 0. Como x0 + λd ≥ 0, ∀λ ≥ 0, logo
d ≥ 0.

Definição 6.4 Diremos que d 6= 0, d ≥ 0 é uma direção de X = {x ∈
Rn |Ax = b, x ≥ 0}, se Ad = 0.

Se não existir d 6= 0 tal que Ad = 0 e d ≥ 0 então X será um conjunto
limitado.

Na figura 6.8 apresentamos um conjunto poliédrico X emR2, não limitado
e contendo o raio r = x0 + λd, λ ≥ 0. Apresentamos também um cone
poliédrico C associado às arestas de X não limitadas.

É importante notarmos que se d é uma direção de X então αd para α > 0
também o será. De maneira geral, se d1 e d2 forem direções de X, então
d 6= 0, d = α1d

1 + α2d
2, para α1 ≥ 0 e α2 ≥ 0 também o será.

Denominaremos de direções extremas de X as direções associadas às
arestas não limitadas de X. Caso X seja limitado poderemos dizer que o
conjunto das direções extremas de X é vazio.

81



Como uma direção extrema d de X é paralela a uma aresta não limitada
de X, então não existem d1 e d2 direções de X, d1 6= βd2 para todo β > 0,
tal que d = 1

2
d1 + 1

2
d2. Isto é, o vetor d não poderá ser escrito como uma

combinação estritamente convexa de d1 e d2.
A seguir caracterizaremos as direções extremas de X = {x ∈ Rn |Ax =

b, x ≥ 0}.
Suponhamos A = (B N), onde B ∈ Rm×m é inverśıvel, o que é sempre

posśıvel, pois supusemos que o posto de A fosse igual a m. Consideremos d
uma direção de X, isto é, d 6= 0, Ad = 0 e d ≥ 0; tomemos d da seguinte
forma:

dT = (d1 d2 ... dk 0 0 ... 0︸ ︷︷ ︸
m

0 ... 0 dl 0 ... 0︸ ︷︷ ︸
n−m

),

onde dj > 0, j = 1, 2, ..., k e dl > 0 para l > m.
Os m primeiros ı́ndices estão associados às colunas a1, a2, ..., ak, ..., am

de B.
Verificaremos que se as colunas a1, a2, ..., ak não fossem linearmente

independentes, a direção d poderia ser escrita como uma combinação estri-
tamente convexa de duas outras direções de X.

Para realizarmos essa verificação, suporemos que as colunas a1, a2, ..., ak

são linearmente dependentes. Neste caso, existem escalares nem todos nulos
λj, j = 1, 2, ..., k tais que

∑k
j=1 λjaj = 0. Como dj > 0, j = 1, 2, ..., k, é fácil

notar que existe um α > 0 tal que

dj − αλj > 0 e dj + αλj > 0 para j = 1, 2, ..., k. (6.1)

Construiremos os dois seguintes vetores:

d1 =




d1 − αλ1

d2 − αλ2
...

dk − αλk

0
0
...
0
dl

0
...
0




e d2 =




d1 + αλ1

d2 + αλ2
...

dk + αλk

0
0
...
0
dl

0
...
0




.
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Por construção d1 ≥ 0 e d2 ≥ 0. Verificaremos a seguir que d1 e d2 são
também direções de X :

Ad1 =
∑k

j=1(dj − αλj)aj + dlal = Ad− α
∑k

j=1 λjaj ⇒
Ad1 = Ad = 0, pois

∑k
j=1 λjaj = 0.

De maneira análoga mostra-se que Ad2 = 0.
Como nem todos os λj são nulos então d1 6= d2 e também d1 6= βd2

para β > 0, assim sendo d1 e d2 são direções distintas. Mas, neste caso,
d = 1

2
d1 + 1

2
d2.

Assim sendo para que d possa ser uma direção extrema de X, as colunas
a1, a2, ..., ak terão que ser linearmente independentes.

Podemos ainda escrever:

0 = Ad =
m∑

j=1

djaj + dlal = BdB + dlal, onde dT
B = (d1 d2 ... dk 0 ... 0︸ ︷︷ ︸

m

).

Teremos que BdB = −dlal ou ainda dB = −dlB
−1al logo:

d =




dB

0
...
0
dl

0
...
0




=




−dlB
−1al

0
...
0
dl

0
...
0




= dl




−B−1al

0
...
0
1
0
...
0




,

lembremos que dl > 0. Assim sendo d será uma direção extrema de X e o
vetor




−B−1al

0
...
0
1
0
...
0




também o será.

83



Suporemos agora que uma direção d̄ de X possa ser representada da
seguinte forma:

d̄T = (d1 d2 ... dk 0 0 ... 0︸ ︷︷ ︸
m

0 ... 0 dl 0 ... 0 dp 0 ... 0︸ ︷︷ ︸
n−m

).

Aqui também suporemos que as m primeiras componentes de d̄ estejam
associadas às colunas da matriz inverśıvel B. Poderemos então escrever:

0 = Ad̄ =
m∑

j=1

djaj + dlal + dpap = bdB + dlal + dpap,

implicando

BdB = −dlal − dpap e dB = −dlB
−1al − dpB

−1ap.

Poderemos ainda representar o vetor d̄ como



dB

0
...
0
dl

0
...
0
dp

0
...
0




=




−dlB
−1al − dpB

−1ap

0
...
0
dl

0
...
0
dp

0
...
0




=




−dlB
−1al

0
...
0
dl

0
...
0
0
0
...
0




+




−dpB
−1ap

0
...
0
0
0
...
0
dp

0
...
0




,

assim sendo

d̄ = dl




−B−1al

0
...
0
1
0
...
0
0
0
...
0




+ dp




−B−1ap

0
...
0
0
0
...
0
1
0
...
0




= dld̄
1 + dpd̄

2.
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Calculemos Ad̄1 e Ad̄2, Ad̄1 = B(−B−1al) + al = −al + al = 0 e Ad̄2 =
B(−B−1ap) + ap = −ap + ap = 0, logo d̄1 e d̄2 são também direções de X,
implicando que d̄ seja uma combinação linear não negativa de d̄1 e d̄2.

Analogamente poderemos considerar uma direção da forma de d̄, onde
haja mais de duas componentes positivas entre as n−m última componentes
de d̄.

E quando todas as n−m últimas componentes de d̄ forem nulas, isto é,

d̄T = (d1 d2 ... dk 0 0 ... 0︸ ︷︷ ︸
m

0 ... 0︸ ︷︷ ︸
n−m

).

Verificaremos que 0 = Ad̄ = BdB implicando dB = 0 pois B é inverśıvel.
Logo d̄ = 0 não poderá ser uma direção de X.

Agora estamos aptos a caracterizar as arestas não limitadas dos conjuntos
poliédricos convexos do tipo X = {x ∈ Rn |Ax = b, x ≥ 0}. Basta que
durante a execução do método do simplex estejamos em uma solução básica
B e exista um vetor da forma ys = −B−1as ≥ 0, onde as é uma coluna de A.
A solução básica nos fornece um vértice de X e a partir de ys construiremos
uma direção d, teremos desta maneira um raio que definirá uma aresta não
limitada de X. Para cada base viável de X teremos no máximo n−m direções
extremas.

Na próxima seção caracterizaremos as arestas limitadas de X.

6.3 Caracterização das Arestas de um Con-

junto Poliédrico Convexo

Quando apresentamos o método do simplex no caṕıtulo 3, ilustramos que a
trajetória para irmos de um vértice para o seguinte estava em uma aresta
do conjunto poliédrico convexo do exemplo. Podeŕıamos pensar que uma
trajetória passando pelo interior relativo do conjunto poliédrico convexo fosse
posśıvel também durante a execução do método do simplex. Verificaremos
a seguir que, utilizando o método do simplex, nunca caminharemos pelo
interior relativo do conjunto das restrições.

Consideremos novamente X = {x ∈ Rn |Ax = b, x ≥ 0}, tal que o posto
de A seja igual ao seu número de linhas m. E que a matriz B formada pelas
primeiras m colunas de A seja uma base primal viável de A. Seja x̄ a solução
básica associada a B, isto é, x̄T = (x̄T

B 0), onde x̄B = B−1b. Tomemos uma
coluna ak de A não estando em B que substituirá uma coluna de B para
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criar uma nova base. Escreveremos que

xα = x̄ +




−B−1ak

0
...
0
...
0
1
0
...
0




α.

Esta escolha de ak está condicionada a que −B−1ak 6≥ 0, assim sendo exitirá
ᾱ > 0 (caso não degenerado) associado à próxima solução básica x̂, tal que
0 ≤ α ≤ ᾱ. Esta solução x̂ definirá um novo vértice de X. Ou ainda que

x̂ = x̄ +




−B−1ak

0
...
0
...
0
1
0
...
0




ᾱ.

Ou seja xα = λx̄ + (1− λ)x̂, 0 ≤ λ ≤ 1. Todo vetor da forma xα, 0 ≤ α ≤ 1
estará sobre o segmento de reta entre x̄ e x̂. Para mostrar que este segmento
é uma aresta de X basta verificar que não existem x1 e x2 ∈ X diferentes de
βxα (β > 0), para todo 0 ≤ α ≤ 1, tais que xα = 1

2
x1 + 1

2
x2.

Consideraremos outra vez A = (B N) e suporemos que existam x1 e
x2 ∈ X diferentes de βxα (β > 0), tais que xα = 1

2
x1 + 1

2
x2 e mostraremos a

afirmação acima por absurdo.
Sabemos que Axi = b, i = 1, 2 e que xi ≥ 0, i = 1, 2; pois xi ∈ X, i = 1, 2.

Particionaremos xi = (xi
B xi

N)T , i = 1, 2 para que possamos escrever

Bxi
B + Nxi

N = b, i = 1, 2. (6.2)
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Verificamos facilmente que xi
N 6= 0, i = 1, 2; pois caso não fosse assim

teŕıamos em (6.2) xi
B = B−1b, i = 1, 2 implicando que xi = x̄, i = 1, 2, algo

em contradição, pois x̄ = xα para α = 0.
O vetor xα será também particionado: xα = (xα

B xα
N)T .

Lembremos que xα
N é um vetor com uma só componente diferente de zero,

representando a k-ésima componente de xα que é igual a α.
Passamos a considerar

xα
B =

1

2
x1

B +
1

2
x2

B, (6.3)

xα
N =

1

2
x1

N +
1

2
x2

N . (6.4)

Como xi
N ≥ 0 e xi

N 6= 0, i = 1, 2, teremos em (6.4) que xi
N , i = 1, 2 terá

apenas uma componente diferente de zero, correspondendo à componente de
xα

N diferente de zero. Ou ainda podemos dizer que a k-ésima componente de
xi, i = 1, 2 será positiva e igual a xi

k, i = 1, 2. Logo (6.2) será escrita

Bxi
B + xi

kak = b, i = 1, 2. (6.5)

De (6.5) temos que

xi
B = B−1b + (−B−1ak)x

i
k, i = 1, 2. (6.6)

para que xi
B ≥ 0, i = 1, 2, temos que ter 0 ≤ xi

k ≤ ᾱ. Assim sendo os pontos
x1 e x2 estão no segmento definido por xα, para 0 ≤ α ≤ ᾱ, contrariando a
hipótese de que x1 e x2 sejam diferentes de xα, para 0 ≤ α ≤ ᾱ.

Nesta seção verificamos que, realmente, o método do simplex em cada i-
teração caminha sobre uma aresta do conjunto poliédrico convexo que forma
o conjunto de restrições do problema de programação linear.

Na seção que se segue apresentaremos uma versão do teorema principal da
representação de um conjunto poliédrico convexo em função de seus vértices
e de suas direções extremas.

6.4 Teorema da representação de um Con-

junto Poliédrico Convexo

O teorema que será enunciado e demonstrado a seguir foi proposto por
Minkowiski [Min 11], ver também o caṕıtulo 7 de [Sc 86].

Consideremos mais uma vez X = {x ∈ Rn |Ax = b, x ≥ 0}, A ∈ Rm×n

com posto igual a m. Suporemos que v1, v2, ..., vp sejam os vértices de X e
que r1, r2, ..., rq as direções extremas de X.
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Teorema 6.1 Um ponto x ∈ X se e somente se existirem λj ≥ 0, j =
1, 2, ..., p, tais que

∑p
j=1 λj = 1 e µi ≥ 0, i = 1, 2, ..., q para os quais

x =
p∑

j=1

λjv
j +

q∑

i=1

µir
i.

Demonstração
Sabemos que Avj = b e vj ≥ 0, j = 1, 2, ..., p e que Ari = 0 e ri ≥ 0, i =
1, 2, ..., q.
(⇒)
A(

∑p
j=1 λjv

j+
∑q

i=1 µir
i) =

∑p
j=1 λj(Avj)+

∑q
i=1 µi(Ari) = b(

∑p
j=1 λj)+0 = b.

(⇐)
Tomemos x ∈ X e desejamos verificar a existência de λj e µi tais que:

p∑

j=1

λjv
j +

q∑

i=1

µir
i = x, (6.7)

p∑

j=1

λj = 1, (6.8)

−λj ≤ 0, j = 1, 2, ..., p, (6.9)

−µi ≤ 0, i = 1, 2, ..., q. (6.10)

Se o sistema de desigualdades e igualdades (6.7)-(6.10) for vazio existirão
números us, s = 1, 2, ..., n, n+1, wj ≥ 0, j = 1, 2, ..., p e ti ≥ 0, i = 1, 2, ..., q,
tais que (ver teorema 5.1):

n∑

s=1

usv
j
s + un+1 − wj = 0, j + 1, 2, ..., p, (6.11)

n∑

s=1

usr
i
s − ti = 0, i = 1, 2, ..., q, (6.12)

n∑

s=1

usxs + un+1 < 0. (6.13)

Como wj ≥ 0, j = 1, 2, ..., p e ti ≥ 0, i = 1, 2, ..., q poderemos escrever
também

n∑

s=1

usv
j
s + un+1 ≥ 0, j + 1, 2, ..., p, (6.14)

n∑

s=1

usr
i
s ≥ 0, i = 1, 2, ..., q, (6.15)
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Figura 6.9: X = envoltória convexa dos vértices de X + cone assintótico

n∑

s=1

usxs + un+1 < 0. (6.16)

Seja u = (u1 u2 ... un) logo ux =
∑n

s=1 usxs. Consideremos agora o
seguinte problema de programção linear:

(PPL) : minimizar z = ux, sujeito a x ∈ X.

Este (PPL) não é vazio pois supusemos a existência de x ∈ X. As relações
representadas por (6.15) podem ser escritas também uri ≥ 0, i = 1, 2, ..., q.

Já vimos que as direções extremas de X podem ser obtidas a partir de
uma solução básica primal viável de X e que uma solução ilimitada de um
problema de programção linear é sempre verificada através do método do
simplex na presença de uma direção extrema de X. Seja x̄ uma solução
básica primal viável de X e r uma direção extrema de X obtida a partir
de x̄ pelo método do simplex, sabemos que os pontos da forma x = x̄ + λr,
para λ ≥ 0 pertencem a X, levemos esses pontos à função objetivo do (PPL)
e teremos: z = ux̄ + λ(ur), como ux̄ é um valor fixo então se ur < 0 implica
que z → −∞ quando λ → ∞. Caso tivéssemos que uri ≥ 0, i = 1, 2, ..., q
sabeŕıamos, pelo método do simplex, que z teria um ponto de mı́nimo finito.

Podemos então dizer que o (PPL) em questão além de não ser vazio
possui solução ótima limitada que é um vértice de X, por exemplo, vk, k ∈
{1, 2, ..., p}, logo uvk =

∑n
s=1 usv

k
s ≤

∑n
s=1 usxs para todo x ∈ X. De (6.14)

teremos que
∑n

s=1 usv
k
s ≥ −un+1. Dessas últimas duas expressões obteremos∑n

s=1 usxs ≥ −un+1 que é contraditória com a expressão (6.16).
Logo não existem us, s = 1, 2, ..., n, n + 1; wj, j = 1, 2, ..., p e ti, i =

1, 2, ..., q satisfazendo a (6.11), (6.12) e (6.13) implicando a existência de
λj, j = 1, 2, ..., p e µi, i = 1, 2, ..., q.

O resultado deste teorema pode ser ilustrado na figura 6.9.
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6.5 Exerćıcios

1. Seja o (PPL) : maximizar z = cx sujeito a Ax = b, x ≥ 0. Se o máximo
de z não for limitado, mostrar que existe uma direção d do conjunto
poliédrico convexo que representa os pontos das restrições do (PPL)
tal que cd > 0.

2. Mostrar que existe α ∈ R satisfazendo as condições em (6.1).
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Caṕıtulo 7

Geração de Colunas

7.1 Introdução

Como foi visto, o teorema 6.1 serve para a representação de um conjunto
poliédrico convexo, uma das aplicações desse teorema será apresentada neste
caṕıtulo visando à solução de problemas de programação linear por geração
de colunas. A seguir consideraremos o seguinte problema de programação
linear:

(P ) : minimizar z = cx

sujeito a:
Ax = b

x ≥ 0,

onde cT , x ∈ Rn, A ∈ Rm×n, e b ∈ Rm.
Particionaremos A e b da seguinte maneira

A =

(
A1

A2

)
, b =

(
b1

b2

)
,

onde A1 ∈ Rm1×n, A2 ∈ Rm2×n, b1 ∈ Rm1 e b2 ∈ Rm2 .
Assim (P ) poderá ser colocado sob a seguinte forma:

(P ) : minimizar z = cx

sujeito a:
A1x = b1

A2x = b2

x ≥ 0.
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Denominemos X = {x ∈ Rn | A2x = b2, x ≥ 0} 6= φ. Sejam V (X) =
{v1, v2, . . . , vp} o conjunto dos vértices de X e R(X) = {r1, r2, ..., rq} o
conjunto dos raios extremos de X. Pelo teorema estudado na seção 6.4, qual-
quer x ∈ X poderá ser escrito como uma combinação convexa dos elementos
de V (X) mais uma combinação não negativa dos elementos de R(X), isto é,
existem λj ∈ R e µi ∈ R, tais que

x ∈ X ⇒ x =
p∑

j=1

λjv
j +

q∑

i=1

µir
i,

para
p∑

j=1

λj = 1, λj ≥ 0, j = 1, 2, ..., p, µi ≥ 0, i = 1, 2, ..., q.

Levando esta última expressão de x ∈ X a A1x = b1 teremos (P ) escrito
em função dos λj, j = 1, 2, ..., p e µi i = 1, 2, ..., q como segue.

(P ) : minimizar z = c(
p∑

j=1

λjv
j +

q∑

i=1

µir
i)

sujeito a:

A1(
p∑

j=1

λjv
j +

q∑

i=1

µir
i) = b1

p∑

j=1

λj = 1

λj ≥ 0, j = 1, 2, ..., p, µi ≥ 0, i = 1, 2, ..., q,

ou ainda

(P ) : minimizar z =
p∑

j=1

(cvj)λj +
q∑

i=1

(cri)µi (7.1)

p∑

j=1

(A1v
j)λj +

q∑

i=1

(A1r
i)µi = b1 (7.2)

p∑

j=1

λj = 1 (7.3)

λj ≥ 0, j = 1, 2, ..., p, µi ≥ 0, i = 1, 2, ..., q. (7.4)

A matriz dos coeficientes dos λj e µi poderá ser esquematizada:

M =

(
A1v

1 A1v
2 . . . A1v

p A1r
1 A1r

2 . . . A1r
q

1 1 . . . 1 0 0 . . . 0

)
.
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O problema (P ) sob a forma (7.1)-(7.4) é denominado o problema mestre.
Tomemos uma matriz quadrada B formada por m1 +1 colunas de M, tal

que B seja inverśıvel. A matriz B terá colunas dos seguintes tipos:

(
A1v

j

1

)
e/ou

(
A1r

i

0

)
.

Escreveremos esta matriz ainda como

B =

(
A1v

1 A1v
2 . . . A1v

p1 A1r
1 A1r

2 . . . A1r
q1

1 1 . . . 1 0 0 . . . 0

)
,

onde p1 + q1 = m1 + 1.
Definiremos também cB = (cv1 cv2 . . . cvp1 cr1 cr2 . . . crq1) e u = cBB−1.
Suporemos que

B−1

(
b1

1

)
≥ 0,

isto é, a matriz B está associada a uma solução básica primal viável de (7.1)-
(7.4). Teremos que verificar se esta mesma base B está também associada a
uma solução dual viável de (7.1)-(7.4). Para isso calcularemos:

zj = u

(
A1v

j

1

)
, zj − cvj e zi = u

(
A1r

i

0

)
, zi − cri.

Se zj − cvj ≤ 0, j = 1, 2, ..., p e zi − cri ≤ 0, i = 1, 2, ..., q então B também

definirá uma solução básica ótima de (7.1)-(7.4). É claro que o número de
vértices e de raios extremos de X pode ser muito grande impossibilitando os
cálculos de todos os zj − cvj e zi − cri, assim sendo poderemos proceder da
seguinte maneira:

Seja u = (u1 u0), onde u0 ∈ R, então

zj − cvj = u1A1v
j + u0 − cvj = (u1A1 − c)vj + u0, j = 1, 2, ..., p; (7.5)

e
zi − cri = u1A1r

i − cri = (u1A1 − c)ri, i = 1, 2, ..., q. (7.6)

Poderemos pensar em calcular o máximo dos zj−cvj em (7.5) e o máximo
dos zi − cri em (7.6); se ambos os máximos forem não positivos a matriz B
estará associada a uma solução ótima de (7.1)-(7.4).

Sabemos que

max
j=1,2,...,p

{zj − cvj} = u0 + max
j=1,2,...,p

{(u1A1 − c)vj} = u0 + max
v∈V (X)

(u1A1 − c)v,
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ainda podemos considerar o problema de programação linear

(PA) : maximizar (u1A1 − c)v + u0

sujeito a:
A2v = b2

v ≥ 0,

para o qual só estaremos interessados nas soluções básicas de A2v = b2,
satisfazendo v ≥ 0, pois assim verificaŕıamos os vértices de X que otimizam
(PA). O método do simplex será utilizado na solução de (PA).

Três casos devem ser considerados.

• Na solução de (PA) podemos durante o desenrolar do método do sim-
plex verificar a existência de uma solução ilimitada, isto é, encontramos
uma solucão da forma v + αr, para α ≥ 0 que pertence a X, onde
v ∈ V (X) e r ∈ R(X), tal que (u1A1 − c)r > 0, neste caso faremos a

coluna

(
A1r
0

)
entrar na base, como já foi visto no capíıtulo 3.

• Ao resolvermos (PA) obtivemos um vértice ótimo v̄, tal que (u1A1 −
c)v̄ + u0 > 0, a coluna

(
A1v̄
1

)
entrará na base, como já foi visto no

capíıtulo 3.

• Se o vértice ótimo v∗ obtido para (PA) fornecer (u1A1− c)v∗+u0 ≤ 0,
logo a base B estará associada a um ótimo de (7.1)-(7.4). Com os λj e
µi associados à base B e seus vértices e raios extremos correspondentes
calcularemos o x ótimo de (P ). Denominaremos de IB(λ) os ı́ndices j
dos λj em B e de IB(µ) os ı́ndices i dos µi em B, assim sendo a solução
ótima ficaria x =

∑
j∈IB(λ)

λjv
j +

∑
i∈IB(µ)

µir
i.

Exemplo 7.1

(P ) : minimizar z = x1 + 2x2 + x3 + 2x4 + 6x5

sujeito a:
x1 + x2 − x3 = 5

4x1 + x2 − x5 = 8
x1 − 2x2 + x4 = 2

xj ≥ 0, j = 1, 2, 3, 4, 5.
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Definiremos X = {(x1 x2 x3 x4 x5)
T | x1 − 2x2 + x4 = 2, xj ≥ 0, j =

1, 2, 3, 4, 5 }. Os vetores vj, j = 1, 2, ..., p representarão os vértices de X
e ri, i = 1, 2, ..., q os raios extremos de X. Poderemos ainda escrever que
vj = (vj

1 vj
2 vj

3 vj
4 vj

5)
T e ri = (ri

1 ri
2 ri

3 ri
4 ri

5)
T . Assim sendo para todo

x = (x1 x2 x3 x4 x5)
T escreveremos

xk =
p∑

j=1

vj
kλj +

q∑

i=1

ri
kµi, k = 1, 2, 3, 4, 5,

onde
p∑

j=1

λj = 1, λj ≥ 0, j = 1, 2, ..., p, µi ≥ 0, i = 1, 2, ..., q.

Levando o valor de xk, k = 1, 2, 3, 4, 5, em função de λj e µi na função
objetivo e nas duas primeiras restrições de (P ), teremos o seguinte problema
mestre.

(P ) : minimizar z =

p∑

j=1

(vj
1 + 2vj

2 + vj
3 + 2vj

4 + 6vj
5)λj +

q∑

i=1

(ri
1 + 2ri

2 + ri
3 + 2ri

4 + 6ri
5)µi (7.7)

sujeito a:
p∑

j=1

(vj
1 + vj

2 − vj
3)λj +

q∑

i=1

(ri
1 + ri

2 − ri
3)µi = 5 (7.8)

p∑

j=1

(4vj
1 + vj

2 − vj
5)λj +

q∑

i=1

(4ri
1 + ri

2 − ri
5)µi = 8 (7.9)

p∑

j=1

λj = 1 (7.10)

λj ≥ 0, j = 1, 2, ..., p, µi ≥ 0, i = 1, 2, ..., q. (7.11)

Como não conhecemos uma solução básica viável para o problema mestre
(7.7)-(7.11), utilizaremos o método das duas fases do simplex. Assim sendo
definiremos o seguinte problema artificial.

(ART ) : minimizar ξ = g1 + g2 + g3 (7.12)

sujeito a:

p∑

j=1

(vj
1 + vj

2 − vj
3)λj +

q∑

i=1

(ri
1 + ri

2 − ri
3)µi + g1 = 5 (7.13)
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p∑

j=1

(4vj
1 + vj

2 − vj
5)λj +

q∑

i=1

(4ri
1 + ri

2 − ri
5)µi + g2 = 8 (7.14)

p∑

j=1

λj + g3 = 1 (7.15)

λj ≥ 0, j = 1, 2, ..., p, µi ≥ 0, i = 1, 2, ..., q, gs ≥ 0, s = 1, 2, 3. (7.16)

As colunas associadas às variáveis artificiais g1, g2 e g3 formam uma base
B = I3 primal viável de (ART ). Podemos em função dessa escolha de base
definir:

cB = (1 1 1), u = cBB−1 = (1 1 1)




1 0 0
0 1 0
0 0 1


 = (1 1 1);

zj = uaj = (1 1 1)




vj
1 + vj

2 − vj
3

4vj
1 + vj

2 − vj
5

1




ou

zi = uai = (1 1 1)




ri
1 + ri

2 − ri
3

4ri
1 + ri

2 − ri
5

0


 ,

para os j associados a λj e os i associados a µi temos que cj = ci = 0 em
(ART ).

Consideremos primeiramente os zj − cj = zj visando ao estudo da viabi-
lidade dual de B :

zj = uaj = (1 1 1)




vj
1 + vj

2 − vj
3

4vj
1 + vj

2 − vj
5

1


 = 5vj

1 + 2vj
2 − vj

3 − vj
5 + 1.

Busquemos o máximo de zj − cj, onde j = 1, 2, ..., p, para isto formemos
o problema auxiliar:

(PA) : maximizar t = 5v1 + 2v2 − v3 − v5 + 1 (7.17)

sujeito a:
v1 − 2v2 + v4 = 2 (7.18)

vk ≥ 0, k = 1, 2, 3, 4, 5. (7.19)

Devemos resolver (PA) utilizando o método do simplex. Na definição de
(7.17)-(7.19) o ı́ndice j está impĺıcito.
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De (7.18): v1 = 2 + 2v2 − v4 e t = 5(2 + 2v2 − v4) + 2v2 − v3 − v5 + 1.
Verificamos que para v2 = v3 = v4 = v5 = 0 teremos v1 = 2, logo v1 =
(2 0 0 0 0)T é um vértice de X. Este vértice fornece t = 11 > 0, isto é, se a
coluna 


2 + 0− 0

4× 2 + 0− 0
1


 =




2
8
1




associada à variável λ1 entrasse na base no problema (ART ), o valor da
função objetivo ξ diminuiria. Não precisaŕıamos resolver (PA) até a oti-
malidade, basta encontrarmos um vértice de X que forneça um t > 0. No
exemplo presente resolveremos (PA) visando ao seu ótimo ou determinando
que sua a solução é ilimitada. Colocando v1 em função de v2 e v4 teremos
t = 11+12v2−v3−5v4−v5. Podemos notar que se o valor de v2 crescer a par-
tir de zero, mantendo-se v3 = v4 = v5 = 0, o valor de t aumentará também.
Neste caso v1 = 2 + 2v2 ≥ 0 o que implica v2 ≥ −1, logo a componente v2

nào é limitada superiormente. Assim sendo, se v2 →∞ implica t →∞.
Passaremos a determinar o raio extremo associado:




v1

v2

v3

v4

v5




=




2
0
0
0
0




+




2v2

1v2

0v2

0v2

0v2




,

logo r1 = (2 1 0 0 0)T é um raio extremo de X.
Calculemos então

zi − ci = zi = (1 1 1)




ri
1 + ri

2 − ri
3

4ri
1 + ri

2 − ri
5

0


 = 5ri

1 + 2ri
2 − ri

3 − ri
5,

Neste caso i = 1, r1
1 = 2, r1

2 = 1, r1
3 = r1

4 = r1
5 = 0, zµi

− cµi
= zµi

=
5× 2 + 2× 1− 0− 0 = 12. A coluna




2 + 1− 0
4× 2 + 1− 0

0


 =




3
9
0




associada à variável µ1 entrará na base no problema (ART ). Para sabermos
qual coluna da atual base B sairá faremos os seguintes cálculos:




ḡ1

ḡ2

ḡ3


 = B−1




5
8
1


 =




1 0 0
0 1 0
0 0 1







5
8
1


 =




5
8
1


 ,
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ξ̄ = (1 1 1)




5
8
1


 = 14,

B−1




3
9
0


 =




1 0 0
0 1 0
0 0 1







3
9
0


 =




3
9
0


 .

Poderemos esquematizar a determinação da coluna que sairá da base da
seguinte maneira:

1 µ1

g1 5 3
g2 8 9∗

g3 1 0

pois
8

9
<

5

3
.

Entrará a coluna associada á variável µ1 e sairá a coluna associada à
variável artificial g2. A nova base B será:

B =




1 3 0
0 9 0
0 0 1


 , logo B−1 =




1 −1
3

0
0 1

9
0

0 0 1


 , cB = (1 0 1),

u = cBB−1 = (1 0 1)




1 −1
3

0
0 1

9
0

0 0 1


 =

(
1 − 1

3
1
)

,

ξ̄ =
(
1 − 1

3
1
)




5
8
1


 =

10

3
,

zj − cj = zj =
(
1 − 1

3
1
)




vj
1 + vj

2 − vj
3

4vj
1 + vj

2 − vj
5

1


 = −1

3
vj

1 +
2

3
vj

2 − vj
3 +

1

3
vj

5 + 1.

Consideremos novamente:

(PA) : maximizar t = −1

3
v1 +

2

3
v2 − v3 +

1

3
v5 + 1 (7.20)

sujeito a:
v1 − 2v2 + v4 = 2 (7.21)

vk ≥ 0, k = 1, 2, 3, 4, 5. (7.22)

Escrevendo novamente v1 em função de v2 e v4, isto é, v1 = 2 + 2v2 − v4,
fazendo com que t = −1

3
(2 + 2v2 − v4) + 2

3
v2 − v3 + 1

3
v5 + 1, ou ainda t =

1
3
− v3 + 1

3
v4 + 1

3
v5. Se v4 entrar na base no lugar de v2 obteremos o vértice

98



v2 = (0 0 0 2 0)T associado à variável λ2 e t = 1
3

+ 1
3
× 2 = 1. Se v5 entrar

na base fará também com que t aumente de valor, mas v5 não é limitado
superiormente, logo se v5 →∞ implica t →∞. Determinemos o raio extremo
de X associado à variável µ2.




v1

v2

v3

v4

v5




=




2
0
0
0
0




+




0v5

0v5

0v5

0v5

1v5




,

logo r2 = (0 0 0 0 1)T . Calculemos agora

zµ2 − cµ2 = zµ2 =
(
1 − 1

3
1
)




ri
1 + ri

2 − ri
3

4ri
1 + ri

2 − ri
5

0


 = −1

3
r1 +

2

3
r2 − r3 +

1

3
r5.

Neste caso i = 2 e r2
1 = r2

2 = r2
3 = r2

4 = 0, r2
5 = 1, ⇒ zµ2 − cµ2 = 1

3
. A

coluna 


0 + 0− 0
0 + 0− 1

0


 =




0
−1

0




associada à variável µ2 entrará na base no problema (ART ). Para saber qual
coluna deixará a base repetiremos o processo anterior:




ḡ1

µ̄1

ḡ3


 = B−1




5
8
1


 =




1 −1
3

0
0 1

9
0

0 0 1







5
8
1


 =




7
3
8
9

1


 ,

B−1




0
−1

0


 =




1 −1
3

0
0 1

9
0

0 0 1







0
−1

0


 =




1
3

−1
9

0


 .

Determinaremos a coluna que sairá da base utilizando o seguinte esquema:

1 µ2

g1
7
3

1
3

∗

µ1
8
9
−1

9

g3 1 0

.

Assim sendo a coluna associada à variável artificial g1 sairá da base e
teremos a nova base:

B =




0 3 0
−1 9 0
0 0 1


 .
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Para calcularmos B−1 sabemos que




1 −1
3

0
0 1

9
0

0 0 1







0
−1
0


 =




1
3

−1
9

0


 .

Seja

E =




1
3

0 0
−1

9
1 0

0 0 1


 e E−1 =




3 0 0
1
3

1 0
0 0 1


 ,

logo

B−1 =




0 3 0
−1 9 0

0 0 1




−1

=




3 0 0
1
3

1 0
0 0 1







1 −1
3

0
0 1

9
0

0 0 1


 =




3 −1 0
1
3

0 0
0 0 1


 ;

cB = (0 0 1), u = (0 0 1)




3 −1 0
1
3

0 0
0 0 1


 = (0 0 1);

por outro lado

zj − cj = zj = (0 0 1)




vj
1 + vj

2 − vj
3

4vj
1 + vj

2 − vj
5

1


 = 1, t = 1

em (PA) para qualquer vértice de X.
Tomemos v2 = (0 0 0 2 0)T associado à variável λ2, cuja coluna associada

em (ART ) será: 


0 + 0− 0
0 + 0− 0

1


 =




0
0
1


 .

Esta coluna entrará na base em (ART ). Teremos, mais uma vez, que
saber qual coluna sairá da base.




µ̄2

µ̄1

ḡ3


 = B−1




5
8
1


 =




3 −1 0
1
3

0 0
0 0 1







5
8
1


 =




7
5
3

1


 ,

B−1




0
0
1


 =




3 −1 0
1
3

0 0
0 0 1







0
0
1


 =




0
0
1


 .
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Utilizando o mesmo esquema para saber qual coluna sairá da base:

1 λ2

µ2 7 0
µ1

5
3

0
g3 1 1∗

.

A coluna associada à variável artificial g3 deixará a base. Neste caso
particular a matriz básica é a mesma que a anterior, no entanto, sua terceira
coluna está associada agora à variável λ2. A solução básica que minimiza
(ART ) não possui variáveis artificiais na base, logo é uma solução básica
primal viável para (P ). Isto é,




µ̄2

µ̄1

λ̄2


 = B−1




5
8
1


 =




3 −1 0
1
3

0 0
0 0 1







5
8
1


 =




7
5
3

1


 ,

que é uma solução básica primal viável de (P ).
Passamos então à segunda fase do método do simplex. Temos agora que

cB = (cr2 cr1 cv2), onde c = (1 2 1 2 6) e

cr2 = (1 2 1 2 6)




0
0
0
0
1




= 6, cr1 = (1 2 1 2 6)




2
1
0
0
0




= 4,

cv2 = (1 2 1 2 6)




0
0
0
2
0




= 4.

Assim cB = (6 4 4), logo

u = (6 4 4)




3 −1 0
1
3

0 0
0 0 1


 =

(
58

3
− 6 4

)
,

z̄ =
(

58

3
− 6 4

)



5
8
1


 =

158

3
.
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Verifiquemos a dual viabilidade da base atual com relação ao problema (P ).

zj − cj = uaj − cj =
(

58
3
− 6 4

)



vj
1 + vj

2 − vj
3

4vj
1 + vj

2 − vj
5

1


− cvj

= −17
3
vj

1 + 34
3
vj

2 − 61
3
vj

3 − 2vj
4 + 4.

definiremos novamente o problema auxiliar (PA) :

(PA) : maximizar t = −17

3
v1 +

34

3
v2 − 61

3
v3 − 2v4 + 4 (7.23)

sujeito a:
v1 − 2v2 + v4 = 2 (7.24)

vk ≥ 0, k = 1, 2, 3, 4, 5. (7.25)

Expressando novamente v1 = 2+2v2− v4, teremos t = −22
3
− 61

3
v3 + 11

3
v4.

Faremos v4 entrar na base no lugar de v1. Sabemos que v4 = 2 − v1 + 2v2 e
t = 0− 11

3
v1 + 22

3
v2− 61

3
v3 e como v2 não é limitado superiormente, se v2 →∞

então t →∞. Determinemos o raio extremo associado:



v1

v2

v3

v4

v5




=




0
0
0
2
0




+




0v2

1v2

0v2

2v2

0v2




,

logo r3 = (0 1 0 2 0)T . A coluna (r3
1 + r3

2 − r3
3 4r3

1 + r3
2 − r3

5 0)T associada à
variável µ3 entrará na nova base de (P ). Determinemos esta coluna:




ri
1 + ri

2 − ri
3

4ri
1 + ri

2 − ri
5

0


 =




0 + 1− 0
4× 0 + 1− 0

0


 =




1
1
0


 .

B−1




1
1
0


 =




3 −1 0
1
3

0 0
0 0 1







1
1
0


 =




2
1
3

0


 .

Repetindo a mesma esquematização para saber a coluna que sairá da base
temos:

1 µ3

µ2 7 2∗

µ1
5
3

1
3

λ2 1 0

.
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Sai a coluna associada à variável µ2. Calculemo a inversa da nova base

B =




1 3 0
1 9 0
0 0 1


 , E =




2 0 0
1
3

1 0
0 0 1


 , logo E−1 =




1
2

0 0
−1

6
1 0

0 0 1


 ;

B−1 =




1 3 0
1 9 0
0 0 1




−1

=




1
2

0 0
−1

6
1 0

0 0 1







3 −1 0
1
3

0 0
0 0 1


 =




3
2
−1

2
0

−1
6

1
6

0
0 0 1


 ;




µ̄3

µ̄1

λ̄2


 = B−1




5
8
1


 =




3
2
−1

2
0

−1
6

1
6

0
0 0 1







5
8
1


 =




7
2
1
2

1


 .

Sabemos que cr3 = (1 2 1 2 6)




0
1
0
2
0




= 6, cB = (cr3 cr1 cv2) = (6 4 4).

Determinemos u :

u = (6 4 4)




3
2
−1

2
0

−1
6

1
6

0
0 0 1


 =

(
25

3
− 7

3
4
)

, z̄ =
(

25

3
− 7

3
4
)




5
8
1


 = 27.

Escreveremos novamente

zj − cj =
(

25
3
− 7

3
4
)




vj
1 + vj

2 − vj
3

4vj
1 + vj

2 − vj
5

1


− (vj

1 + 2vj
2 + vj

3 + 2vj
4 + 6vj

5)

= −2vj
1 + 4vj

2 − 28
3
vj

3 − 2vj
4 − 11

3
vj

5 + 4.

O problema auxiliar ficará:

(PA) : maximizar t = −2v1 + 4v2 − 28

3
v3 − 2v4 − 11

3
v5 + 4 (7.26)

sujeito a:
v1 − 2v2 + v4 = 2 (7.27)

vk ≥ 0, k = 1, 2, 3, 4, 5. (7.28)

Fazendo, mais uma vez, v1 = 2 + 2v2 − v4 temos t = 0− 28
3
v3 − 11

3
v5.

Assim sendo, o vértice v1 = (2 0 0 0 0)T é ótimo de (PA), fornecendo
t = 0. Logo a última base B é ótima de (P ). A solução ótima do problema
mestre será:

µ3 =
7

2
, associada a r3 = (0 1 0 2 0)T ,
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Figura 7.1: Solução do problema mestre (7.7)-(7.11) por geração de colunas

µ1 =
1

2
, associada a r1 = (2 1 0 0 0)T ,

λ2 = 1, associada a v2 = (0 0 0 2 0)T ,

fornecendo z = 27. Retornemos ao problema nas variáveis xj, j = 1, 2, 3, 4, 5.




x1

x2

x3

x4

x5




=
7

2




0
1
0
2
0




+
1

2




2
1
0
0
0




+




0
0
0
2
0




=




1
4
0
9
0




,

ou seja x1 = 1, x2 = 4, x3 = 0, x4 = 9, x5 = 0, fornecendo z = 27.
Caso projetemos as restrições do problema original no plano x1×x2 poder-

emos ilustrar a evolução da solução do problema mestre neste plano, como
se pode observar na figura 7.1.
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7.2 Problema Auxiliar Limitado

Se o conjunto X = {x ∈ Rn | A2x = b2, x ≥ 0} 6= φ for limitado R(X) = ∅,
só teremos no problema mestre colunas do tipo

(
A1v

j

1

)
.

Neste caso, o problema auxiliar (PA) terá sempre um vértice por solução
ótima, e conseqüentemente o valor da função objetivo de (PA), no ótimo,
será igual a (u1A1− c)vj + u0, onde vj ∈ V (X). Suponha ainda que (u1A1−
c)vj + u0 > 0, e que λj entrará na nova base B do problema mestre fazendo
com que

z = z̄ − [(u1A1 − c)vj + u0]λ̄j, onde 0 ≤ λ̄j ≤ 1.

Lembremos que z̄ é o valor da função objetivo do problema mestre antes da
entrada de λj na base. Logo

z ≥ z̄ − [(u1A1 − c)vj + u0].

Então z̄− [(u1A1−c)vj−u0] é uma cota inferior para a solução ótima de (P ).
A partir de uma solução básica viável do problema mestre associada à matriz
B, a cada iteração do simplex (a cada nova coluna gerada) encontraremos
uma cota inferior para o mı́nimo de (P ). Não se pode garantir que a cota
inferior calculada na iteração j será menor do que a calculada na ieração
j +1. Isto é, não se pode garantir um comportamento monótono para a cota
inferior em função do número de iterações.

Na figura 7.2 ilustramos um posśıvel comportamento dessas cotas inferi-
ores, onde zj é o valor de z na etapa j e tj o valor da função objetivo de
(PA) na etapa j associada à geração de uma nova coluna para a etapa j +1.
Assumimos que z∗ é o valor ótimo de z em (P ).

7.3 Exerćıcios

1. Resolver o seguinte problema de programação linear por geração de
colunas:

minimizar z = −3x1 − 5x2

sujeito a:
x1 ≤ 4

x2 ≤ 6
3x1 + 2x2 ≤ 18

x1 ≥ 0
x2 ≥ 0,
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Figura 7.2: Um posśıvel comportamento de cotas inferiores para a solução
ótima de (P ), obtidas a partir da solução ótima de (PA)

onde X = {(x1 x2)
T | 0 ≤ x1 ≤ 4 e 0 ≤ x2 ≤ 6 }. Calcular as cotas

inferiores em cada geração de coluna. Esquematizar no plano x1×x2 as
iterações realizadas de geração de colunas para a obtenção da solução
ótima do problema mestre.

2. Resolver pelo método de geração de colunas o problema, maximizar
2x1 + 4x2 + x3, sujeito a: 2x1 + x2 + x3 ≤ 10, x1 + x2 − x3 ≤ 4, 0 ≤
x1 ≤ 4, 0 ≤ x2 ≤ 6, 1 ≤ x3 ≤ 6, onde o problema auxiliar para a
geração de colunas terá como restrições 0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 6, 1 ≤
x3 ≤ 6. Fornecer a cada iteração uma cota superior para o ótimo da
função objetivo, utilizando a solução do problema auxiliar. Tentar
esquematizar o método em um esboço no espaço a três dimensões x1×
x2 × x3.
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Caṕıtulo 8

Tratamento Impĺıcito de
Variáveis Limitadas

Muitas vezes temos restrições num problema de programação linear do tipo
αj ≤ xj ≤ βj, onde j pertence a um subconjunto de {1, 2, ..., n}. Denominare-
mos estas restrições de canalizadas. Neste caṕıtulo trataremos de considerar
as restrições canalizadas de maneira impĺıcita.

8.1 Método Primal do Simplex para

Restrições Canalizadas

Poderemos considerar um problema de programação linear sob a seguinte
forma:

(PPL) : maximizar z = cx (8.1)

sujeito a:
Ax = b (8.2)

αj ≤ xj ≤ βj, j = 1, 2, ..., n; (8.3)

onde c = (c1 c2 ...cn), xT = (x1 x2 ...xn), bT = (b1 b2 ...bm), A = (a1 a2 ...an)
e aT

j = (a1j a2j ...amj), isto é, cT ∈ Rn, x ∈ Rn, b ∈ Rm, A ∈ Rm×n e
aj ∈ Rm, αj < βj, j = 1, 2, ..., n.

Lembremos que x é o vetor cujas componentes são as variáveis de decisão
do (PPL).

Quando xj não for limitada superiormente consideraremos βj = +∞ e da
mesma maneira xj não for limitada inferiormente tomaremos αj = −∞. A
variável xj será dita livre quando βj = +∞ e αj = −∞; neste caso faremos
xj = x+

j − x−j , x+
j ≥ 0 e x−j ≥ 0, ou seja α+

j = α−j = 0 e β+
j = β−j = +∞.
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Ao longo de todo este caṕıtulo suporemos que se αj = −∞ então βj será
finito e se βj = +∞ então αj será finito.

Suporemos que a caracteŕıstica da matriz A seja igual a m. Como já
foi realizado no caṕıtulo 2, particionaremos a matriz A da seguinte maneira:
A = (B N), onde B é uma matriz quadrada m×m e inverśıvel. Analogamente
particionaremos os vetores x e c : xT = (xT

B xT
N), c = (cB cN), xB e cB

possuirão m componentes associadas à matriz B. Suporemos ainda que IB

seja o conjunto dos ı́ndices das colunas de A pertencendo à matriz B e IN

seja o conjunto dos demais ı́ndices de A. Lembremos que IB ∩ IN = φ e
IB ∪ IN = {1, 2, ..., n}.

Outros parâmetros serão utilizados: u = cBB−1, uT ∈ Rm, x̄B =
B−1b, x̄B ∈ Rm, zj = uaj (j ∈ IB ∪ IN), zj ∈ R, yj = B−1aj (j ∈
IB ∪ IN), yj ∈ Rm, z̄ = cBB−1b = ub = cBx̄B.

Desta maneira o (PPL) poderá ser escrito:

(PPL) : maximizar z = z̄ − ∑

j∈IN

(zj − cj)xj (8.4)

sujeito a:
xB(i) = x̄B(i) −

∑

j∈IN

yijxj, i = 1, , ...,m. (8.5)

αB(i) ≤ xB(i) ≤ βB(i), i = 1, 2, ..., m; (8.6)

αj ≤ xj ≤ βj, j ∈ IN . (8.7)

Definiremos uma solução básica de (8.2) ou de (8.5) quando fizermos
xj = αj ou xj = βj, para j ∈ IN ; claro que αj ou βj tem que ser finito pelas
hipóteses feitas acima.

Particionaremos também IN = Iα ∪ Iβ, onde Iα = {j ∈ IN | xj = αj} e
Iβ = {j ∈ IN | xj = βj}. Podemos assim escrever:

x̂B(i) = x̄B(i) −
∑

j∈Iα

yijαj −
∑

j∈Iβ

yijβj, i = 1, 2, ..., m. (8.8)

Quando αB(i) ≤ x̂B(i) ≤ βB(i), i = 1, 2, ..., m, diremos que estamos diante
de uma solução básica primal viável.

É interessante notarmos que a mesma base B pode fornecer mais de uma
solução básica viável dependendo da partição de IN .

A leitora ou o leitor poderá verificar que esta solução básica primal viável
corresponde a um vértice do poliedro formado pelas restrições (8.2) e (8.3).

O valor de z correspondendo a esta solução básica será:

ẑ = z̄ − ∑

j∈Iα

(zj − cj)αj −
∑

j∈Iβ

(zj − cj)βj. (8.9)
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Observando a expressão (8.9) é fácil deduzir as seguintes condições de
otimalidade para o caso de maximização:

zj − cj ≥ 0, ∀j ∈ Iα e zj − cj ≤ 0, ∀j ∈ Iβ. (8.10)

O algoritmo do simplex neste caso partirá de uma solução básica primal
viável. Verificamos se esta solução básica satisfaz às condições de otimalidade
(8.10). Se a resposta for afirmativa esta solução básica será ótima do (PPL).
Caso contrário partiremos à busca de uma nova solução básica primal viável
que possa aumentar o valor de z.

1o caso: k ∈ Iα e zk − ck < 0, o valor de xk = αk poderá passar a xk =
αk + λ (λ ≥ 0), podendo aumentar o valor de z. Como a nova solução básica
deverá ser viável, isto é,

αk + λ ≤ βk (8.11)

e

αB(i) ≤ x̄B(i) −
∑

j∈Iα

yijαj −
∑

j∈Iβ

yijβj − yikλ ≤ βB(i), i = 1, 2, ...,m. (8.12)

Podemos expressar (8.12) da seguinte maneira:

αB(i) ≤ x̂B(i) − yikλ ≤ βB(i), i = 1, 2, ...,m. (8.13)

Consideraremos

L+
k = {i | yik > 0}, L−k = {i | yik < 0} e L0

k = {i | yik = 0}.
Nas retrições de (8.13) para as quais i ∈ L0

k nada será modificado com a
variação do valor de λ, isto é, os valores de xB(i), i ∈ L0

k ficarão inalterados.
Teremos então, a partir de (8.11) e (8.12), que

λ ≤ βk − αk, λ ≤ x̂B(i) − αB(i)

yik

, i ∈ L+
k , λ ≤ x̂B(i) − βB(i)

yik

, i ∈ L−k .

Sejam

λB(p) =
x̂B(p) − αB(p)

ypk

= min
i∈L+

k

{
x̂B(i) − αB(i)

yik

}

e

λB(q) =
x̂B(q) − βB(q)

yqk

= min
i∈L−

k

{
x̂B(i) − βB(i)

yik

}
.

Consideraremos agora:

θ = min{ βk − αk , λB(p) , λB(q) }. (8.14)

Antes de continuarmos faremos as seguintes observações:
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(i) quando para ∀i ∈ L+
k , αi = −∞ ou quando L+

k = φ faremos λB(p) =
+∞;

(ii) quando para ∀i ∈ L−k , βi = ∞ ou L−k = φ faremos λB(q) = +∞.

Se βk = +∞, e tivermos as condições (i) e (ii) acima, então θ = +∞.
Isto é, λ não será limitado superiormente, logo neste caso quando λ → +∞
implica z → +∞, determinando que o (PPL) é ilimitado.

Supomos agora que θ seja finito e consideraremos a possibilidades seguin-
tes:

1. θ = βk − αk, a base B será mesma na próxima iteração, no entanto, os
valores de x̂B(i) poderão ser modificados, pois xk = βk, Iα := Iα − {k}
e Iβ := Iβ ∪ {k}; IB não se modifica;

2. θ = λB(p), a coluna ak entrará na base substituindo aB(p) e xB(p) =
αB(p), teremos ainda que IB := (IB−{B(p)})∪{k}, Iα := (Iα−{k})∪
{B(p)}; Iβ não se modifica;

3. θ = λB(q), a coluna ak entrará na base substituindo aB(q) e xB(q) = βB(q),
teremos ainda que IB := (IB−{B(q)})∪{k}, Iβ := Iβ ∪{B(q)}; Iα :=
Iα − {k}.

2o caso: k ∈ Iβ e zk − ck > 0, logo xk = βk poderá passar ao valor xk = βk −
λ (λ ≥ 0), podendo aumentar o valor de z. Seguiremos o mesmo procedimento
desenvolvido para o 1o caso. Assim sendo, devemos ter:

βk − λ ≥ αk (8.15)

e
αB(i) ≤ x̂B(i) + yikλ ≤ βB(i), i = 1, 2, ..., m. (8.16)

Consideraremos novamente L+
k = {i | yik > 0}, L−k = {i | yik < 0} e

L0
k = {i | yik = 0}. Nas retrições de (8.16) para as quais i ∈ L0

k nada será
modificado com a variação do valor de λ, isto é, os valores de xB(i), i ∈ L0

k

ficarão inalterados.
Sabemos que λ terá que satisfazer

λ ≤ βk − αk, λ ≤ βB(i) − x̂B(i)

yik

, i ∈ L+
k , λ ≤ αB(i) − x̂B(i)

yik

, i ∈ L−k .

Sejam

λB(p) =
βB(p) − x̂B(p)

ypk

= min
i∈L+

k

{
βB(i) − x̂B(i)

yik

}
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e

λB(q) =
αB(q) − x̂B(q)

yqk

= min
i∈L−

k

{
αB(i) − x̂B(i)

yik

}
.

Passaremos a considerar

θ = min{ βk − αk , λB(p) , λB(q) }. (8.17)

Supondo em (8.17) que θ seja finito:

1. θ = βk−αk, teremos Iα := Iα∪{k} e Iβ := Iβ−{k} e IB será o mesmo
na próxina iteração;

2. θ = λB(p), a coluna ak substituirá aB(p), teremos ainda que IB := (IB −
{B(p)}) ∪ {k}, Iβ := (Iβ − {k}) ∪ {B(p)}; Iα não se modifica;

3. θ = λB(q), a coluna ak entrará na base substituindo aB(q) e IB :=
(IB − {B(q)}) ∪ {k}, Iα := Iα ∪ {B(q)}; Iβ := Iβ − {k}.

Adaptando o mesmo racioćınio feito para o 10 caso, teremos no 20 caso,
quando λ não for limitado superiormente, isto é, em (8.17) θ = +∞, que o
(PPL) será ilimitado.

8.2 Busca de uma Solução Básica Viável

Trataremos de encontrar uma solução básica de (8.2) satisfazendo (8.3). Para
isso acrescentaremos uma variável artificial vi, i = 1, 2, ..., m às linhas de
(8.2), isto é,

n∑

j=1

aijxj + vi = bi, i = 1, 2, ..., m. (8.18)

Suporemos que IN = {1, 2, ..., n} seja o conjunto das variáveis não básicas,
isto é , todas as variáveis xj, j = 1, 2, ..., n serão consideradas não básicas
inicialmente. Tomemos Iα e Iβ, como fizemos anteriormente, uma partição de
IN , faremos com que toda as variável xj tome valor αj (finito) ou βj (finito).

Determinemos

si = bi −
∑

j∈Iα

aijαj −
∑

j∈Iβ

aijβj, i = 1, 2, ..., m.

Se si ≥ 0 faremos vi ≥ 0 e terá seu coeficiente na função objetivo artificial
igual a +1. No caso em que si < 0 faremos vi ≤ 0 e seu coeficiente na função
objetivo artificial será −1.
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Sejam I1 = { i |vi ≥ 0 } e I2 = { i |vi ≤ 0 }, assim sendo nosso problema
auxiliar que constituirá a primeira fase do método do simples será

(PA) : minimizar ξ =
∑

i∈I1

vi −
∑

i∈I2

vi

sujeito a

vi +
n∑

j=1

aijxj = bi, i = 1, 2, ..., m,

αj ≤ xj ≤ βj, j = 1, 2, ..., n,

0 ≤ vi, i ∈ I1,

vi ≤ 0, i ∈ I2.

Verificamos facilmente que vi = si, i = 1, 2, ..., m; xj = αj, j ∈ Iα e xj =
βj, j ∈ Iβ é uma solução primal viável de (PA).

Caso o mı́nimo de ξ em (PA) seja estritamente positivo o (PPL) será
vazio.

Quando no ótimo de (PA) tivermos ξ = 0 e todas as variáveis vi, i =
1, 2, ..., m forem não básicas, então a solução obtida eliminando todas as
variáveis vi será uma solução básica primal viável de (PPL). Se houver vi = 0
na base, procederemos como foi apresentado no caṕıtulo 5.

Exemplo 8.1
(PPL) : maximizar z = 3x1 + 5x2

sujeito a:
3x1 + 2x2 ≥ 18
2x1 + x2 ≤ 12

0 ≤ x1 ≤ 4
0 ≤ x2 ≤ 6,

(8.19)

Introduzindo as variáveis de folga x3 ≥ 0 e x4 ≥ 0, o sistema de restrições
passa a ser equivalente a:

3x1 + 2x2 − x3 = 18
2x1 + x2 + x4 = 12

0 ≤ x1 ≤ 4
0 ≤ x2 ≤ 6

0 ≤ x3

0 ≤ x4,

daremos, por exemplo, os seguintes valores às variáveis xj, j = 1, 2, 3, 4 :
x1 = 4, x2 = x3 = x4 = 0, ou seja Iα = {2, 3, 4} e Iβ = {1}.
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Calculemos

s1 = 18−3×4−2×0+1×0 = 6 ≥ 0, s2 = 12−2×4−1×0−1×0 = 4 ≥ 0,

ambos são não negativos.
O problema auxiliar (primeira fase) será escrito como se segue

(PA) : minimizar ξ = v1 + v2

sujeito a

v1 + 3x1 + 2x2 − x3 = 18
v2 + 2x1 + x2 + x4 = 12

0 ≤ v1

0 ≤ v2

0 ≤ x1 ≤ 4
0 ≤ x2 ≤ 6

0 ≤ x3

0 ≤ x4.

A base B =

(
1 0
0 1

)
= B−1. Iα e Iβ já foram definidos anteriormente.

Determinemos u = cBB−1 = (1 1)

(
1 0
0 1

)
= (1 1).

Calculemos:

z1 − c1 = (1 1)

(
3
2

)
− 0 = 3 + 2 = 5 e x1 = β1 = 4,

satisfazendo a condição de otimalidade (minimização);

z2 − c2 = (1 1)

(
2
1

)
− 0 = 2 + 1 = 3 e x2 = α2 = 0,

não satisfazendo a condição de otimalidade (minimização).
Se x2 tomar um valor estritamente positivo o valor de ξ diminuirá na

proóxima iteração.
Sabemos que

(
v̄1

v̄2

)
= B−1b =

(
1 0
0 1

) (
18
12

)
=

(
18
12

)

e que, como

B−1 =

(
1 0
0 1

)
, yj = aj, j = 1, 2, 3, 4.
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Temos que:

v1 = v̄1 − 3× 4− 2× 0 + 1× 0− 2λ = 18− 12− 2λ ≥ 0 ⇒ λ ≤ 3,
v2 = v̄2 − 2− 1× 0− 1× 0− λ = 12− 8− λ ≥ 0 ⇒ λ ≤ 4,
e β2 − α2 = 6− 0 = 6.

Logo θ = min{6, 4, 3} = 3, assim sendo a coluna

(
2
1

)
, associada à

variável x2, entrará na base substituindo

(
1
0

)
, associada à variável artificial

v1. Neste caso podemos eliminar v1 e Iα = {3, 4}. Consideremos agora a nova
iteração:

B =

(
2 0
1 1

)
⇒ B−1 =

(
1
2

0
−1

2
1

)
,

cB = (0 1), u = (0 1)

(
1
2

0
−1

2
1

)
= (−1

2
1)

e

z1 − c1 = (−1

2
1)

(
3
2

)
− 0 = −3

2
+ 2− 0 =

1

2
> 0, x1 = β1 = 4,

satisfazendo a condição de otimalidade;

z3 − c3 = (−1

2
1)

(
−1

0

)
− 0 =

1

2
+ 0− 0 =

1

2
> 0, x3 = α3 = 0,

não satisfazendo a condição de otimalidade.
Se a variável x3 assumir um valor estritamente positivo o valor de ξ de-

crescerá. Passaremos a calcular
(

x̄2

v̄2

)
= B−1b =

(
1
2

0
−1

2
1

) (
18
12

)
=

(
9
3

)
,

y1 = B−1a1 =

(
1
2

0
−1

2
1

) (
3
2

)
=

(
3
2
1
2

)
,

x̂2 = 9− 3

2
× 4 = 9− 6 = 3, v̂2 = 3− 1

2
× 4 = 3− 2 = 1,

y3 = B−1a3 =

(
1
2

0
−1

2
1

) (
−1

0

)
=

(
−1

2
1
2

)
,
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assim podemos escrever

0 ≤ x2 = 3 + 1
2
λ ≤ 6 ⇒ λ ≤ 6,

0 ≤ v2 = 1− 1
2
λ ⇒ λ ≤ 2.

A coluna

(
−1

0

)
associada à variável x3 substuirá a coluna

(
0
1

)
asso-

ciada á variável artificial v2 em B. Agora não há mais variável artificial na
base e poderemos começar a segunda fase do simplex.

Verificamos que IB = {2, 3}, Iα = {4} e Iβ = {1} assim sendo,

B =

(
2 −1
1 0

)
⇒ B−1 =

(
1 −1

2

0 1
2

)−1 (
1
2

0
−1

2
1

)

=

(
1 1
0 2

) (
1
2

0
−1

2
1

)

=

(
0 1

−1 2

)
.

Sabemos que

cB = (5 0), u = cBB−1 = (5 0)

(
0 1

−1 2

)
= (0 5),

logo

z1 − c1 = ua1 − c1 = (0 5)

(
3
2

)
− 3 = 10− 3 = 7 > 0,

não satisfazendo a condição de otimalidade (maximização).
Se x1 tomar um valor estritamente menor do que β4 = 4, o valor de z

aumentará. Assim sendo, passaremos a calcular

(
x̄2

x̄3

)
= B−1b =

(
0 1

−1 2

) (
18
12

)
=

(
12
6

)
,

y1 = B−1a1 =

(
0 1

−1 2

) (
3
2

)
=

(
2
1

)
,

y4 = B−1a4 =

(
0 1

−1 2

) (
0
1

)
=

(
1
2

)
,

x̂2 = 12− 2× 4− 1× 0 = 4, x̂3 = 6− 1× 4− 2× 0 = 2

assim teremos que
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0 ≤ x2 = 4 + 2λ ≤ 6 ⇒ λ ≤ 1,
0 ≤ x3 = 2 + 1λ ⇒ λ ≥ −2 (mas λ ≥ 0),
0 ≤ x1 = 4− λ ≤ 4 ⇒ λ ≤ 4.

Dessa maneira a1 entrará na base no lugar de a2. teremos então IB =
{1, 3}, Iα = {4} e Iβ = {2}.

Consideremos

B =

(
3 −1
2 0

)
⇒

B−1 =

(
2 0
1 1

)−1 (
0 1

−1 2

)
=

(
1
2

0
−1

2
1

) (
0 1

−1 2

)
=

(
0 1

2

−1 3
2

)
.

Como cB = (3 0), teremos que u = (3 0)

(
0 1

2

−1 3
2

)
= (0 3

2
).

Calculemos agora

z4 − c4 =
(
0

3

2

) (
0
1

)
− 0 =

3

2
> 0,

como 4 ∈ Iα, satisfazendo a condição de otimalidade.

z2 − c2 =
(
0

3

2

) (
2
1

)
− 5 = −7

2
< 0,

como 2 ∈ Iβ, satisfazendo a condição de otimalidade.
Finalmente teremos que x1 = 3, x3 = 3, x2 = 6 e x4 = 0 é uma solução

básica ótima do (PPL), fornecendo z =
(
0 3

2

) (
18
12

)
−

(
−7

2

)
×6 = 18+21 =

39.
Na figura 8.1 ilustraremos os passos do método do simplex executados no

exemplo.

8.3 Método Dual do Simplex para Restrições

Canalizadas

Nesta seção apresentaremos o método dual do simplex adaptado para tratar
implicitamente as restrições canalizadas.

Apresentaremos novamente o problema de programação linear (8.1), (8.2)
e (8.3) sob a seguinte forma:
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-
x1

6x2

(0, 0) (4, 0)

(2, 6) (3, 6)

(4, 4)

(4, 3)

r

r

r

r

6

6
A
A
A
A
A
AKJ

J
J
J
J
J
J
JJ

Figura 8.1: Passos do método do simplex executados no exemplo 8.19

(PPL) : maximizar z = cx (8.20)

sujeito a:
n∑

j=1

ajxj = b (8.21)

xj ≤ βj, j = 1, 2, ..., n; (8.22)

−xj ≤ −αj, j = 1, 2, ..., n. (8.23)

Suporemos, sem perda de generalidade, que αj e βj, j = 1, 2, ..., n sejam
finitos. Associamos o vetor u = (u1 u2 ... um) às restrições de (8.21), as
variáveis wj ≥ 0, j = 1, 2, ..., n às restrições de (8.22) e, finalmente, tj ≥
0, j = 1, 2, ..., n às restrições de (8.23).

O dual do (PPL) será escrito:

(DPL) : minimizar d = ub +
n∑

j=1

βjwj −
n∑

j=1

αjtj (8.24)

sujeito a:
uaj + wj − tj = cj, j = 1, 2, ..., n, (8.25)

wj ≥ 0, tj ≥ 0, j = 1, 2, ..., n. (8.26)
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Lembrando que uaj = zj. Assim sendo as restrições (8.25) poderão ser
representadas por

zj − cj = tj − wj, j = 1, 2, ..., n, (8.27)

Como foi comentado no caṕıtulo 4, as relações de complementaridade são
sempre verificadas durante a aplicação do método do simplex, seja primal ou
seja dual. Vamos supor que B esteja associada à seguinte solução básica de
(8.21),isto é,

x̂B(i) = x̄B(i) −
∑

j∈Iα

yijαj −
∑

j∈Iβ

yijβj, i = 1, 2, ..., m,

sem que as restrições αB(i) ≤ x̂B(i) ≤ βB(i), i = 1, 2, ..., m, sejam todas
verificadas.

Supondo que αj < βj, j = 1, 2, ..., n e lembrando que u(Ax − b) = 0,
pois a solução x que estamos considerando é básica, logo satisfaz Ax = b.
Verificaremos a seguir os valores de wj e tj. Para que as relações de comple-
mentaridade wj(xj − βj) = 0 e tj(xj − αj) = 0, j = 1, 2, ..., n possam ser
verificadas:

j ∈ Iα, xj = αj ⇒ xj < βj ⇒ wj = 0 ⇒ zj − cj = tj ≥ 0; (8.28)

j ∈ Iβ, xj = βj ⇒ xj > αj ⇒ tj = 0 ⇒ zj − cj = −wj ≤ 0. (8.29)

Quando j 6∈ Iα ∪ Iβ, isto é, j ∈ IB, teremos zj − cj = 0 que implica
por (8.27), tj = wj; mas por hipótese αj < βj que fornece ou tj = 0 ou
wj = 0, para que tenhamos as relações de complementaridade, neste caso,
tj = wj = 0.

Dado o exposto dizemos que uma solução básica de (8.21) associada à
matriz quadrada inverśıvel B, é dual viável de (PPL) se zj− cj ≥ 0, ∀j ∈ Iα

e zj − cj ≤ 0, ∀j ∈ Iβ.
A idéia é de partir de uma solução básica dual viável do (PPL), passar a

outra, também dual viável, até encontrar uma solução primal e dual viável.
Para iniciar a exposição do método dual do simplex no contexto deste

caṕıtulo suporemos conhecida uma solução básica do (PPL) dual viável e
que exista k ∈ {1, 2, ..., m} tal que x̂B(k) < αB(k). Isto é a solução considerada
não é primal viável.

O valor de xB(k) deve ser aumentado para que atinja, pelo menos, αB(k),
assim temos que ao menos um ykj < 0, j ∈ Iα ou ykj > 0, j ∈ Iβ.
Suponhamos que a coluna ap, onde p ∈ Iα ∪ Iβ, seja escolhida para en-
trar na base substituindo aB(k). O pivô será ykp e como já foi visto em (4.29),
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y′0j = y0j− y0p

ykp
ykj. Para que a nova solução básica continue dual viável teremos

que ter:
y′0j ≥ 0, j ∈ Iα e y′0j ≤ 0, j ∈ Iβ. (8.30)

Consideremos Lα = {j ∈ Iα | ykj < 0} e Lβ = {j ∈ Iβ | ykj > 0}.
Deveremos verificar que

• y0p

ykp
≥ y0j

ykj
, j ∈ Lα, pois y′0j ≥ 0, j ∈ Iα, e

• y0p

ykp
≥ y0j

ykj
, j ∈ Lβ, pois y′0j ≤ 0, j ∈ Iβ.

A coluna ap a entrar na base estará associada ao p da expressão abaixo:

y0p

ykp

= max
j∈Lα∪Lβ

{
y0j

ykj

}
.

Após o pivoteamento teremos que xB(k) = αB(k) ou seja B(k) ∈ Iα.
Observemos que se Lα = Lβ = φ o (PPL) não possuirá solução primal

viável.
A t́ıtulo de ilustração tomemos o exemplo 8.1, cuja solução básica ótima

é definida por IB = {1, 3}, Iα = {4} e Iβ = {2}. Consideremos 7
2
≤ x1 ≤ 4

no lugar de 0 ≤ x1 ≤ 4. A solução ótima obtida no exemplo 8.1 não será mais
primal viável, pois agora temos que x1 ≥ 7

2
, mas continuará dual viável.

A coluna a1 deixará a base, para sabermos qual coluna entrará na base,
teremos que calcular y1j, j ∈ Iα ∪ Iβ = {4, 2}.

Lembremos que

B = (a1 a3) =

(
3 −1
2 0

)
, B−1 =

(
0 1

2

−1 3
2

)
,

a2 =

(
2
1

)
, a4 =

(
0
1

)
.

Logo

y12 =
(
0

1

2

) (
2
1

)
=

1

2
≥ 0, y14 =

(
0

1

2

) (
0
1

)
=

1

2
≥ 0.

Verificamos que Lα = φ e Lβ = {2}. Caso em que só há um elemento a ser
considerado, assim sendo a2 entrará na base substituindo a1.

Agora teremos que

B = (a2 a3) =

(
2 −1
1 0

)
, B−1 =

(
0 1

−1 2

)
.
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Poderemos escrever
(

x2

x3

)
=

(
0 1

−1 2

) (
18
12

)
−

(
0 1

−1 2

) (
3
2

)
x1 −

(
0 1

−1 2

) (
0
1

)
x4,

ou ainda
x2 = 12− 2x1 − x4,
x3 = 6− x1 − 2x4.

Sabemos que x1 = 7
2

e x4 = 0, fornecendo x2 = 5, x3 = 5
2
, solução primal

e dual viável, logo ótima. Solicitamos à leitora ou ao leitor que ilustre o
procedimento deste ultimo exemplo sobre a figura 25.

De maneira análoga, vamos supor agora a existência de uma solução
básica do (PPL) dual viável e que exista k ∈ {1, 2, ..., m} tal que x̂B(k) >
βB(k). Isto é a solução considerada não é primal viável.

O valor de xB(k) deve ser diminúıdo para que atinja, pelo menos, βB(k),
assim temos que ao menos um ykj > 0, j ∈ Iα ou ykj < 0, j ∈ Iβ.

Suponhamos que a coluna ap, onde p ∈ Iα∪ Iβ, seja escolhida para entrar
na base substituindo aB(k). O pivô será ykp e como já foi visto em (4.29),
y′0j = y0j− y0p

ykp
ykj. Para que a nova solução básica continue dual viável teremos

que ter:
y′0j ≥ 0, j ∈ Iα e y′0j ≤ 0, j ∈ Iβ. (8.31)

Consideremos Lα = {j ∈ Iα | ykj > 0} e Lβ = {j ∈ Iβ | ykj < 0}.
Deveremos verificar que

• y0p

ykp
≤ y0j

ykj
, j ∈ Lα, pois y′0j ≥ 0, j ∈ Iα, e

• y0p

ykp
≤ y0j

ykj
, j ∈ Lβ, pois y′0j ≤ 0, j ∈ Iβ.

A coluna ap a entrar na base estará associada ao p da expressão abaixo:

y0p

ykp

= min
j∈Lα∪Lβ

{
y0j

ykj

}
.

Após o pivoteamento teremos que xB(k) = βB(k) ou seja B(k) ∈ Iβ.
Observemos que se Lα = Lβ = φ o (PPL) não possuirá solução primal

viável.

8.4 Exerćıcios

1. Utilizando o método dual apresentado neste caṕıtulo, como seriam de-
terminadas as variáveis duais ótimas associadas às restrições canal-
izadas?
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2. Sendo dado o seguinte problema de programação linear com variáveis
canalizadas:

maximizar x0 =
∑n

j=1 cjxj, sujeito a:
∑n

j=1 ajxj ≤ b, 0 ≤ xj ≤ dj, onde
cj ≥ 0, aj > 0, dj > 0, j = 1, 2, ..., n, b > 0.

Demonstrar que se cj

aj
≥ cj+1

aj+1
, j = 1, 2, ..., n−1 e k tal que

∑k−1
j=1 ajdj ≤

b <
∑k

j=1 ajdj então uma solução ótima do problema será:

xj = dj, j = 1, 2, ..., k − 1;
xj = 0, j = k + 1, k + 2, ..., n;

xk =
b−

∑k−1

j=1
ajdj

ak
.
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Caṕıtulo 9

Métodos de Pontos Interiores

9.1 Introdução

O método do Simplex visto nos caṕıtulos anteriores tem se mostrado bastante
eficaz na resolução de problemas de programação linear aplicados. Em 1972,
no entanto, Klee e Minty [KlMi 72] apresentaram um problema teórico com
n restrições e 2n variáveis para o qual o método executa 2n− 1 iterações até
encontrar a solução ótima.

Ficou então aberta a questão quanto a existência de um método eficiente
para resolver o problema de programação linear. Um método é dito eficiente
se ele tem complexidade polinomial, ou seja, se o número de instruções por
ele requerido para solucionar um problema é limitado por um polinômio no
tamanho do problema.

Em 1979, Khachian [Kha 79] respondeu a esta questão com a publicação
do primeiro algoritmo polinomial para resolver o problema de programação
linear, o método de elipsóides. Apesar de sua grande importância teórica, no
entanto, o método de elipsóides se mostrou ineficaz na prática.

Em 1984, Karmarkar [Kar 84] revolucionou a área da programação linear
com a publicação de um algoritmo com complexidade polinomial e bom de-
sempenho quando aplicado a problemas práticos. Esta publicação deu origem
a um novo campo de pesquisa chamado de métodos de pontos interiores. Ao
contrário do método do Simplex, que utilizando a estrutura combinatória do
problema, caminha pelos vértices de sua região viável, os métodos de pontos
interiores caminham pelo interior da região viável.

Comparando-se os métodos de pontos interiores com o método do Sim-
plex, os primeiros claramente serão os melhores, se critérios teóricos forem
considerados, como por exemplo a complexidade de pior caso. No entanto,
na prática os métodos competem até hoje. Uma análise comparativa entre os
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melhores métodos de pontos interiores, sob o ponto de vista computacional,
e o método do Simplex foi realizada por Illés e Terlaky em [IlTe 2002], onde
concluem que, de uma forma geral, não há método vencedor. Na prática, a
chave para o sucesso dos métodos é a utilização da estrutura dos problemas,
da esparsidade e da arquitetura dos computadores.

Os métodos de pontos interiores serão tema deste caṕıtulo. Devido a sua
grande importância histórica, iniciaremos o caṕıtulo descrevendo o método
de elipsoides. Em seguida apresentaremos o algoritmo afim-escala. Este algo-
ritmo foi descrito pela primeira vez por Dikin em 1967 [Di 67], mas apenas re-
centemente foi reconhecido, após reaparecer como uma simplificação do algo-
ritmo de Karmarkar. Resultados quanto a convergência global deste método
já foram demonstrados por diversos pesquisadores, incluindo o próprio Dikin
[Di 74], que publicou em 1974 a primeira análise de convergência. No en-
tanto, até hoje não se conseguiu demonstrar a polinomialidade do método.
Conjectura-se inclusive que ele não é polinomial por ter um comportamento
bastante parecido com o método do Simplex quando aplicado a alguns pro-
blemas. Entretanto, a direção percorrida pelo algoritmo afim-escala em cada
iteração, é uma importante ferramenta que será utilizada em praticamente
todos os algoritmos de pontos interiores. O seu entendimento portanto, aju-
dará bastante no aprendizado destes algoritmos.

Em seguida apresentaremos a trajetória central e os algoritmos de pon-
tos interiores primais-duais de trajetória central, de redução potencial e os
algoritmos inviáveis.

Consideraremos neste caṕıtulo o seguinte problema de programação line-
ar:

(P ) : maximizar cT x
sujeito a: Ax = b

x ≥ 0,

onde c e x ∈ IRn, b ∈ IRm e A ∈ IRm×n é uma matriz com posto completo.
O conjunto de soluções viáveis de (P ) e o conjunto de pontos interiores

associado são dados por:

X = {x ∈ IRn|Ax = b, x ≥ 0}
e

X 0 = {x ∈ X |x > 0}.
O problema dual de (P) é

(D) : minimizar bT u
sujeito a: AT u− s = c

s ≥ 0,
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onde s ∈ IRn e u ∈ IRm.
O conjunto de soluções viáveis de (D) e o conjunto de pontos interiores

associado são dados por:

S = {s ∈ IRn|AT u− s = c para algum u ∈ IRm, s ≥ 0}

e
S0 = {s ∈ S|s > 0}.

Notação

Durante todo o caṕıtulo, quando dado um vetor x = (x1, x2, . . . , xN)T ∈
IRN , denotaremos por X a matriz diagonal em IRN×N , cujos elementos da
diagonal são as componentes do vetor x, ou seja,

X =




x1

. . .

xN


 .

Denotaremos por e, o vetor cujos elementos são todos iguais a um e cuja
dimensão é indicada pelo contexto, ou seja,

e =




1
...
1


 ,

e denotaremos por ‖ · ‖ a norma Euclideana.

9.2 O Método de Elipsóides

A questão quanto a existência de um método eficiente para resolver o pro-
blema de programação linear ficou respondida com a publicação do método
de elipsóides pelo soviético Khachian em 1979. O método de elipsóides não
fornece um algoritmo prático para resolver o PPL, já que sua convergência
é lenta quando aplicado a grande parte das instâncias do problema e com-
parado ao método do Simplex. No entanto, sua contribuição para a área
da programação matemática é grande, uma vez que ele mostra que o pro-
blema de programação linear pode ser resolvido de forma eficiente sob uma
abordagem teórica. Este resultado motiva a busca de outros algoritmos para
resolver o problema que sejam tanto teoricamente eficientes, como também
eficazes na prática. De fato, depois da publicação do método de elipsóides,
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uma nova classe de algorimos para o PPL surgiu. Esta classe recebeu o nome
de métodos de pontos interiores e será o tema das seções seguintes.

Nesta seção daremos uma noção geométrica de como o método de elipsói-
des funciona. Uma apresentação mais formal do algoritmo e as demonstrações
dos resultados de convergência, podem ser encontrados em [BeTs 97].

O método será inicialmente apresentado para resolver o problema de de-
cidir se o poliedro definido por

P = {x ∈ IRn|Ax ≥ b}
é vazio ou não. Em seguida descreveremos como ele pode ser utilizado para
resolver o PPL.

Primeiramente definimos um elipsóide com centro y ∈ IRn como o seguinte
conjunto E de vetores de IRn:

E = E(y, D) = {x ∈ IRn|(x− y)T D−1(x− y) ≤ 1},
onde D é uma matriz n× n simétrica e semidefinida positiva.

A cada iteração k do método de elipsóides é gerado um elipsóide Ek com
centro em um dado ponto xk, que contém o poliedro P , como exemplificado
na figura 9.1.

xkr

��
@@

@@
��

P

Ek

Figura 9.1: Método de Elipsóides: Construção do elipsóide Ek, com centro
xk, que contém o poliedro P .

Se xk ∈ P então P não é vazio e o algoritmo pára. Se xk /∈ P , então
existe i tal que (ai)T xk < bi, onde ai é a i-ésima linha da matriz A e bi é o
i-ésimo componente do vetor b.

Notemos que se x ∈ P então (ai)T x ≥ bi, consequentemente o poliedro
P pertence ao semi-espaço {x ∈ IRn|(ai)T x ≥ (ai)T xk}. Sendo assim, se
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xk /∈ P , sabemos que P pertence a interseção do elipsóide Ek com um semi-
espaço que passa pelo centro do elipsóide. Esta região está representada na
figura 9.2.
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Figura 9.2: Método de Elipsóides: A área pontilhada corresponde à in-
terseção do elipsóide Ek com o semi-espaço {x ∈ IRn|(ai)T x ≥ (ai)T xk}.

Utilizando então o resultado do teorema 9.1, enunciado a seguir, con-
strúımos um elipsóide Ek+1 que contém esta interseção e tem volume menor
que o volume de Ek. Este processo é então repetido até que se obtenha um
ponto, centro de um elipsóide, que pertença à P , ou até que se conclua que
P é vazio, quando o volume do elipsóide gerado é menor do que um dado
número v. A figura 9.3 mostra a última iteração do algoritmo.

O seguinte teorema comprova que é posśıvel construir analiticamente o
elipsóide Ek+1 com volume menor do que o volume de Ek. Sua demonstração
pode ser encontrada em [BeTs 97].

Teorema 9.1 Seja E = E(y, D) um elipsóide em IRn, a ∈ IRn um vetor não
nulo e H = {x ∈ IRn|aT x ≥ aT y} um semi-espaço em IRn. Seja:

ȳ = y + 1
n+1

Da√
aT Da

e

D̄ = n2

n2−1

(
D − 2

n+1
DaaT D
aT Da

)
.
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Figura 9.3: Método de Elipsóides: O ponto xk+1, centro do elipsóide Ek+1,
pertence ao poliedro P .

Os seguintes resultados são verdadeiros:

1. A matriz D̄ é simétrica e positiva definida. Consequentemente, Ē =
E(ȳ, D̄) é um elipsóide.

2. E ∩H ⊂ Ē.

3. Vol(Ē)< e−1/(2(n+1)) Vol(E),
onde Vol(S) denota o volume do do conjunto S ∈ IRn.

Da maneira como foi apresentado o método de elipsóides, para que ele
seja aplicado com sucesso, é preciso que o poliedro P seja limitado e tenha
volume positivo quando não for vazio. Assume-se que é conhecido a priori
um elipsóide de volume V que contém P e um número v tal que, se P não for
vazio, então Vol(P )> v. Estas hipóteses, no entanto, podem ser relaxadas
uma vez que é sempre posśıvel construir um outro poliedro P ′ que satisfaz a
estas hipóteses e será vazio se e somente se P também o for (ver [BeTs 97]).

Finalmente, observamos que o método de elipsóides para decidir se um
dado poliedro é vazio, pode ser aplicado para resolver o problema de pro-
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gramação linear. Basta considerarmos o problema (P ) e seu dual (D):

(P ) : maximizar cT x (D) : minimizar bT u
sujeito a: Ax = b sujeito a: AT u− s = c

x ≥ 0, s ≥ 0,

e lembrarmos que, pela teoria de dualidade (P ) tem solução ótima se e só
se (D) também tem. Os vetores x e (u, s) são soluções ótimas de (P ) e (D)
respectivamente, se o seguinte sistema de inequações lineares é satisfeito:

cT x = bT u
Ax = b

x ≥ 0
AT u− s = c

s ≥ 0

Aplicando o método de elipsóides para decidir se este sistema de inequações
tem solução, estaremos portanto, resolvendo o problema de programação
linear.

9.3 O Método Afim-Escala

Nesta seção apresentaremos o algoritmo afim-escala, descrito primeiramente
pelo matemático soviético I. I. Dikin em 1967 [Di 67]. Este algoritmo não é
mais utilizado em implementações práticas. A sua importância está no fato
de que a direção de busca nele utilizada é também utilizada na maioria dos
algoritmos de pontos interiores, como veremos mais tarde.

A Direção Afim-Escala

No algoritmo afim-escala nos é dado um ponto x0 ∈ X 0, e o nosso objetivo
final é caminhar do ponto x0 para a solução ótima do problema. A curto
prazo, no entanto, nosso objetivo é caminhar numa direção ∆x que melhore
ao máximo o valor da função objetivo. A direção de máximo aclive de uma
dada função, descoberta por Cauchy na primeira metade do século passado,
é dada pelo gradiente da função. Por definição, a direção de máximo aclive
de uma dada função linear cT h, onde c 6= 0, é a solução do problema de
maximização da função, em uma bola de raio unitário, ou seja é a solução de

maximizar cT h
sujeito a ‖h‖ ≤ 1.

(9.1)
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A solução de (9.1) pode ser obtida da desigualdade de Cauchy-Schwarz,

|cT h| ≤ ‖c‖‖h‖,
onde a igualdade é verificada quando c e h são colineares e tem o mesmo
sentido. Concluimos assim, que a solução de (9.1) é dada por

h =
c

‖c‖ . (9.2)

Comprovamos portanto, que a direção de máximo aclive é realmente dada
pelo gradiente da função linear cT h.

A direção (9.2) é certamente uma direção de acréscimo para a função
objetivo de (P ). No entanto, não necessariamente, ela é uma direção viável
para o problema. Ao caminharmos em (9.2), o novo ponto obtido provavel-
mente não satisfaz a restrição Ax = b. Para garantirmos a viabilidade da
nova solução, devemos caminhar numa direção d que satisfaça

Ad = 0, (9.3)

e conseqüentemente teremos A(x0 + d) = b.
Antes de apresentarmos esta direção, no entanto, devemos recordar alguns

conceitos de álgebra linear. Lembramos que dada uma transformação linear
A ∈ IRm×n, associa-se a A dois espaços:

o espaço nulo de A,

N (A) = {x ∈ IRn|Ax = 0},

e o espaço imagem de A,

I(A) = {y ∈ IRm|y = Ax, x ∈ IRn}.

Existe uma relação interessante entreN (A) e o espaço imagem de AT , I(AT ).
Esses dois espaços são sub-espaços ortogonais de IRn e geram todo o espaço.
De fato, é sabido que IRn é a soma direta desses dois sub-espaços, ou seja,
dado qualquer vetor v ∈ IRn, ele pode ser escrito como

v = vN + vI , (9.4)

onde vN ∈ N (A) e vI ∈ I(AT ). O vetor vN é a projeção de v sobre N (A) e
vI é o complemento ortogonal de v em relação a N (A).

Voltemos agora a análise da direção em que devemos caminhar a partir
do ponto x0, de forma a aumentar o valor da função objetivo de (P ), sem
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sair da região viável do problema. Notemos que a imposição (9.3) implica na
pertinência de d ao espaço nulo de A. A direção que passaremos a considerar
agora então, é a projeção da direção de máximo aclive (9.2) em N (A).

Para calcularmos esta projeção, consideraremos inicialmente c escrito
como em (9.4), ou seja

c = cN + cI . (9.5)

onde cN ∈ N (A) e cI ∈ I(AT ).
Sabemos que

cI = AT λ, (9.6)

para algum λ ∈ IRm.
Substituindo-se (9.6) em (9.5) e multiplicando-se a expressão resultante,

a esquerda, por A, temos

Ac = AcN + AAT λ.

Como AcN = 0 e AAT é não singular,

λ = (AAT )−1Ac. (9.7)

Utilizando agora a expressão para λ acima, podemos reescrever (9.5), como

cN = c− cI = c− AT (AAT )−1Ac = (I − AT (AAT )−1A)c = PAc,

onde PA = [I −AT (AAT )−1A] é a matriz de projeção sobre o espaço nulo de
A.

Verificamos facilmente que a direção cN é uma direção de acréscimo da
função objetivo já que o produto escalar do gradiente da função objetivo
por cN é um número positivo sempre que cN é um vetor não nulo. Abaixo
demonstramos esta afirmação.

cT cN = (c + cN − cN )T cN = (cN + cI)T cN = ‖cN‖2.

De fato, considerando-se as condições de otimalidade que apresentaremos
na próxima seção, é posśıvel mostrar que cN é solução do problema obtido
ao incorporar-se a restrição (9.3) ao problema (9.1). Ou seja, cN é solução
de

maximizar cT h (9.8)

sujeito a Ah = 0

‖h‖ ≤ 1.

Na figura 9.4 está representada a direção cN para o problema de maxi-
mizar −x1−x2 sujeito apenas as restrições de não negatividade das variáveis
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x1 e x2. Neste caso, PA = I e a direção cN é dada pelo próprio vetor custo
c = (−1,−1)T . Partindo do ponto (5, 0.5), observamos que pouco podemos
caminhar ao longo da direção cN , antes de atingirmos a fronteira da região
viável do problema. O progresso obtido com este passo, é portanto pequeno.
Uma vez que esta situação é gerada pela proximidade do ponto (5, 0.5) a
fronteira da região viável, uma forma de evitá-la seria a de aplicar uma mu-
dança de escala sobre as variáveis do problema, que mapeasse o ponto (5, 0.5)
num outro ponto mais distante da fronteira. Devemos portanto, manter este
propósito inicial em mente.

-
x1

6x2

(5, 0.5)r
¡

¡ª
cN

Figura 9.4: Direção de Cauchy

No cálculo da direção de Cauchy (9.8), utilizamos uma região de confiança
circular, ou seja, maximizamos a função objetivo do problema numa bola de
raio unitário. Através de uma mudança de escala nas variáveis, podemos
trabalhar com uma região de confiança elipsoidal.

A idéia do algoritmo afim-escala é de calcular a direção de máximo aclive
da função objetivo de (P ), a partir de um dado ponto xk ∈ F0, utilizando
como região de confiança um elipsóide, e não mais um ćırculo. O ideal seria
utilizar o maior elipsóide contido dentro da região viável do problema. No
entanto, para simplificar o cálculo da direção, os eixos do elipsóide escolhido
são paralelos aos eixos coordenados. Neste caso, trabalhamos com o maior
elipsóide com centro em xk e contido no primeiro ortante, sem considerarmos
as restrições Ax = b. Este elipsóide é chamado de elipsóide de Dikin com
centro em xk e é definido por

E = {x ∈ IRn|Ax = 0, xT (Xk)−2x ≤ 1}.
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A direção de busca do algoritmo afim-escala para o problema (P ) é então
definida como a solução de

maximizar cT h
sujeito a Ah = 0

hT (Xk)−2h ≤ 1.
(9.9)

Representamos a direção d do algoritmo afim-escala na figura 9.5. Na
figura também está representado o elipsóide de Dikin e as curvas de ńıvel
da função objetivo do problema. O problema considerado é o mesmo da
figura 9.4 e podemos observar com clareza a melhoria obtida ao se substituir
a direção de Cauchy pela direção do algoritmo afim-escala.
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x1

6x2

(5, 0.5)r¾ d
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¡

¡
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Figura 9.5: Elipsóide de Dikin e Direção Afim-Escala

Finalmente, devemos observar que a direção do afim-escala dada pela
solução do problema (9.9) é equivalente a direção de Cauchy projetada no
nulo de A, dada por cN , após uma mudança de escala definida por

x = Xkx̄.

Esta mudança de escala mapeia o ponto xk no ponto e = (1, 1, . . . , 1)T ,
uma vez que xk = Xke; e transforma o elipsóide de Dikin numa bola de raio
unitário centrada em e.

Após a mudança de escala, o problema (P ) passa a ser representado por

(P̄ ) : maximizar c̄T x̄
sujeito a: Āx̄ = b

x̄ ≥ 0,

onde c̄ = Xkc e Ā = AXk.
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De fato, considerando-se a mudança de escala h = Xkh̄, o problema (9.9)
passa a ser representado por

maximizar c̄T h̄
sujeito a Āh̄ = 0

h̄T h̄ ≤ 1,
(9.10)

no qual calculamos a direção viável de máximo aclive da função objetivo
de (P̄ ), utilizando novamente como região de confiança, uma bola de raio
unitário.

Considerando a equivalência dos problemas (9.8) e (9.10), podemos agora
apresentar a solução do último deles, dada por:

d̄ = PĀc̄,

onde PĀ = [I − ĀT (ĀĀT )−1Ā] é a matriz de projeção no espaço nulo de Ā.
Retornando a escala original, temos então a direção de busca do algoritmo

afim-escala, dada por:
d = Xkd̄. (9.11)

Finalmente observamos que ao utilizarmos o elipsóide de Dikin como
região de confiança no cálculo da direção de máximo aclive, estamos de forma
equivalente buscando o nosso propósito inicial: mapear o dado ponto xk, que
pode estar próximo de uma fronteira da região viável, no ponto e, que dista
de pelo menos uma unidade de cada fronteira.

Uma vez apresentada a direção de busca do algoritmo afim-escala, es-
tamos agora preparados para a apresentação do algoritmo completo para
resolver (P ).

Algoritmo 9.1 (Afim-Escala) Dados: x0 ∈ X 0 e α ∈ (0, 1);

k := 0;

Repita

Mudança de escala:

Ā = AXk, c̄ = Xkc.

Projeção:
PĀ = I − ĀT (ĀĀT )−1Ā

Direção de busca:
d̄ = PĀc̄
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Retorno a escala original:

d = Xkd̄

Passo:
xk+1 = xk + αλd (9.12)

Fim (Repita)

No passo (9.12), λ é dado pelo teste da razão, ou seja,

λ = min
j=1,...,n

{−xk
j /dj|dj < 0};

e α, que em geral é aproximadamente 0.995, garante que o novo ponto seja
estritamente positivo.

Observamos que nenhum critério de parada foi especificado no algoritmo.
Para implementá-lo, é preciso que algum critério seja escolhido. Normal-
mente o critério de parada de algoritmos depende do problema considerado.
No exemplo abaixo, no entanto, utilizamos um critério bem geral para algo-
ritmos iterativos. Nele, o método é interrompido quando não há mudança
significativa entre as soluções de duas iterações consecutivas.

Exemplo 9.1 Resolver o problema de programação linear abaixo utilizando
o algoritmo afim-escala.

maximizar 3x1 + 5x2

sujeito a: x1 ≤ 4
x2 ≤ 6

3x1 + 2x2 ≤ 18
x1 , x2 ≥ 0

(9.13)

É dada uma solução inicial interior viável para o problema: x1 = 1,
x2 = 1. Em seguida, reescrevemos o problema na forma padrão, com a
adição de variáveis de folga:

maximizar 3x1 + 5x2

sujeito a: x1 + x3 = 4
x2 + x4 = 6

3x1 + 2x2 + x5 = 18
x1 , x2 , x3 , x4 , x5 ≥ 0

A solução inicial interior viável correspondente é
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x0 = (1 1 3 5 13)T ,

e o valor da função objetivo em x0 é 8.
Na primeira iteração a mudança de escala é definida pela matriz diagonal

X0 =




1
1

3
5

13




.

A matriz Ā e o custo c̄ obtidos após a mudança de escala são dados por:

Ā = AX0 =




1 1
1 1

3 2 1







1
1

3
5

13




,

logo

Ā = AX0 =




1 3
1 5

3 2 13


 ,

c̄ = X0c =




1
1

3
5

13







3
5
0
0
0




=




3
5
0
0
0




.

Em seguida calculamos a matriz de projeção no nulo da Ā:

PĀ = I − ĀT (ĀĀT )−1Ā

=




1
1

1
1

1




−




1 3
1 2

3
5

13










1 3
1 5

3 2 13







1 3
1 2

3
5

13







−1
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×



1 3
1 5

3 2 13




=




0.8597 −0.0287 −0.2866 0.0057 −0.1940
−0.0287 0.9411 0.0096 −0.1882 −0.1382
−0.2866 0.0096 0.0955 −0.0019 0.0647

0.0057 −0.1882 −0.0019 0.0376 0.0276
−0.1940 −0.1382 0.0647 0.0276 0.0660




.

A direção de busca será então dada por:

d̄ = PĀc̄

logo

d̄ =




0.8597 −0.0287 −0.2866 0.0057 −0.1940
−0.0287 0.9411 0.0096 −0.1882 −0.1382
−0.2866 0.0096 0.0955 −0.0019 0.0647

0.0057 −0.1882 −0.0019 0.0376 0.0276
−0.1940 −0.1382 0.0647 0.0276 0.0660







3
5
0
0
0




=




2.4357
4.6194

−0.8119
−0.9239
−1.2728




.

Retornando a escala original, temos:

d = X0d̄

=




1
1

3
5

13







2.4357
4.6194

−0.8119
−0.9239
−1.2728




=




2.4357
4.6194

−2.4357
−4.6194
−16.5458




Determinamos em seguida,

λ = min
j=1,...,n

{−x0
j/dj|dj < 0} = 0.7857.

Finalmente, o novo ponto é dado por:
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x1 = x0 + αλd

=




1
1
3
5
13




+ 0.995 ∗ 0.7857 ∗




2.4357
4.6194

−2.4357
−4.6194
−16.5458




=




2.9041
4.6113
1.0959
1.3887
0.06501




.

O valor da função objetivo em x1 é 31.7688. A primeira iteração do algoritmo
está completa. Como houve uma mudança significativa entre as soluções x0

e x1, seguimos com uma nova iteração. Deixamos a próxima iteração do
algoritmo como exerćıcio para o leitor.

Apresentamos abaixo o programa em MATLAB que implementa o algo-
ritmo afim-escala para resolver o exemplo. Consideramos a precisão ε = 10−4

e o parâmetro α = 0.995.

%Algoritmo Afim-Escala

n=5;

k=0;

epsilon=10^(-4);

alfa = 0.995;

A=[1 0 1 0 0;0 1 0 1 0;3 2 0 0 1];

c=[3 5 0 0 0]’;

x=[1 1 3 5 13]’;

custo=c’*x;

dif = 10;

while (dif>= epsilon)

Abar = A*diag(x);

cbar = x.*c;

aux=(Abar*Abar’)\(Abar*cbar);

dbar = cbar - Abar’*aux;

d = x.*dbar;

aux2=[];

for i=1:n

if(d(i)<0)

aux2 = [aux2; -x(i)/d(i)];

end

end

lambda = min(aux2);

x=x+alfa*lambda*d;

custoant=custo;
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k 0 1 2 3 4 5 6
x1 1.0000 2.9041 1.9840 2.0030 1.9999 2.0000 2.0000
x2 1.0000 4.6113 5.9931 5.9954 6.0000 6.0000 6.0000

Tabela 9.1: Iterações geradas pelo Algoritmo Afim-Escala

-
x1

6x2

J
J

J
J

J
J

J
JJ

ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

Figura 9.6: Algoritmo Afim-Escala

custo=c’*x;

dif=abs(custo-custoant);

k=k+1

end

Os valores de x1 e x2 obtidos pelo algoritmo a cada iteração k estão
representados na tabela 9.1.

A trajetória definida pelos pontos gerados a cada iteração do algoritmo,
na região viável do problema, está representada na figura 9.6.
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9.4 A Trajetória Central

Na seção anterior verificamos que a cada iteração do algoritmo afim-escala,
o valor da função objetivo aumenta. Mesmo com a mudança de escala, este
fato faz com que, a seqüência de iterações gerada pelo método, se aproxime
aos poucos da fronteira da região viável de (P ). Com a proximidade da
fronteira então, a elipse na qual a função objetivo é minimizada se torna
cada vez menor, levando também a passos cada vez menores realizados pelo
algoritmo em direção ao ótimo. Para evitar tal dificuldade, os algoritmos de
pontos interiores visam, a cada iteração, aumentar o valor da função objetivo
de (P ), mantendo-se no entanto, distantes da fronteira, ou seja, no interior
da região viável. Pela motivação destes dois objetivos conflitantes, a seguinte
função barreira logaritmica, definida para todo x > 0, foi empregada:

f(x, µ) := cT x + µ
n∑

j=1

log xj,

onde µ é um parâmetro maior que zero.
A função barreira foi utilizada pela primeira vez em otimização por Frisch

[Fr 55]. O algoritmo de programação não linear resultante, conhecido como
método de barreiras, foi estudado no livro de Fiacco e McConmick [FiMc 55]
e é um caso particular de uma famı́lia de algoritmos conhecidos como métodos
de penalidade.

Definamos agora a seguinte famı́lia de problemas barreira associados a
(P ) e parametrizados por µ:

maximizar f(x, µ)

sujeito a: Ax = b. (9.14)

Verificamos claramente que o primeiro termo de f(x, µ) mede o valor
da função objetivo de (P ) enquanto o segundo termo funciona como uma
penalização aos pontos que se aproximam da fronteira da região viável do
problema.

Os problemas (9.14) aproximam (P ) tanto melhor, quanto menor for o
valor de µ. Mostramos na figura 9.7, as soluções ótimas do problema bar-
reira associado ao problema (9.13) para diferentes valores de µ. O ponto x∗

corresponde à solução ótima de (9.13). Observamos que para cada valor de
µ, a solução de (9.14), a qual é chamada de ponto central, está no interior
da região viável de (9.13). Este fato pode ser melhor compreendido se no-
tarmos que em cada uma das faces do poliedro, o valor de uma das variáveis
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Figura 9.7: Pontos Centrais

do problema se anula. Conseqüentemente, conforme nos aproximamos das
faces, o valor da função barreira tende a menos infinito.

O conjunto de pontos centrais de um problema descreve uma curva suave
chamada de trajetória central do problema. Pode-se mostrar que, se (P ) e
(D) têm solução viável com x e s estritamente positivos, então o problema
barreira admite solução única para cada valor positivo de µ, já que, neste
caso, a função barreira é estritamente côncava [GuRoTeVi 95]. Este fato
torna a trajetória central uma curva bem definida. A figura 9.8 ilustra a
trajetória central para o problema (9.13). A trajetória central desempenha
um importante papel na apresentação dos algoritmos de pontos interiores.
de fato, na próxima seção estudaremos uma classe destes algoritmos que se
propõem a seguir esta curva em cada iteração. Sendo assim, reservamos
o restante desta seção para estudarmos algumas propriedades da trajetória
central.

Como já mencionado, cada ponto pertencente a trajetória central de um
problema soluciona o problema barreira associado, para um determinado
valor de µ. Apresentaremos a seguir as condições de otimalidade que devem
ser satisfeitas pela solução de um problema geral de otimização restrita, as
quais são conhecidas como condições de Karush-Kunh-Tucker (ou KKT).
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Figura 9.8: Trajetória Central

9.4.1 Condições de Karush-Kunh-Tucker (ou KKT)

Consideremos o seguinte problema de programação não linear restrito

(NLP ) maximizar f(x)
sujeito a g1(x) = 0

g2(x) = 0
...

gm(x) = 0,

onde x ∈ IRn e f, gi : IRn → IR, i = 1, . . . , m são funções diferenciáveis.
As condições de KKT para este problema são descritas a seguir:

Se x̄ é uma solução ótima de NLP , então existem multiplicadores yi ∈
IR, i = 1, . . . , m, tais que

gi(x̄) = 0, i = 1, . . . , m
∇f(x̄) =

∑m
i=1 yi∇gi(x̄).
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Particularizando estas condições para o problema barreira (9.14), definido
para um determinado µ, verificamos que a sua solução ótima deve satisfazer
ao seguinte sistema de equações não lineares:

cj + µ 1
xj
−∑q

i=1 uiaij = 0, j = 1, 2, . . . , n

bi −∑p
j=1 aijxj = 0, i = 1, 2, . . . , m.

onde os multiplicadores ui ∈ IR, i = 1, . . . , m.
Utilizando a notação matricial, podemos reescrever este sistema de equa-

ções como:
AT u− µX−1e = c

Ax = b.

onde u ∈ IRm.
Definindo agora s = µX−1e, s ∈ IRn, reescrevemos o sistema como

AT u− s = c

Ax = b

s = µX−1e.

Finalmente, multiplicando a terceira equação por X, chegamos às condi-
ções de otimalidade para o problema da barreira na forma primal-dual:

AT u− s = c

Ax = b (9.15)

XSe = µe

Denominaremos a solução deste sistema para um dado µ de (xµ, uµ, sµ).
Verificamos que, se µ = 0, as equações acima juntamente com as restrições

x, s ≥ 0, são exatamente as condições de otimalidade dos problemas (P ) e
(D). Neste caso, as duas primeiras equações garantem a viabilidade primal e
dual, enquanto a terceira corresponde às condições de complementaridade. Se
µ > 0, a terceira condição é denominada condição de µ-complementaridade.
Ela impõe que o produto das variáveis primais e de folga duais xisi tenham
o mesmo valor para todo i = 1, . . . , n.

O sistema (9.15) é um sistema não linear que envolve 2n + m restrições e
2n+m variáveis. A utilização do método de Newton para resolver o sistema,
dá origem a famı́lia de métodos de pontos interiores primais-duais. A cada
iteração destes métodos, parte-se de um ponto (x, u, s) tal que x é primal
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viável, (u, s) é dual viável e x, s > 0. Se definimos a região viável primal-
dual F e seu interior F0, como:

F := {(x, u, s)|Ax = b, AT u− s = c, (x, s) ≥ 0}
e

F0 := {(x, u, s)|Ax = b, AT u− s = c, (x, s) > 0},
podemos dizer que a cada iteração, os métodos primais-duais partem de um
ponto (x, u, s) ∈ F0. A direção na qual se caminha a partir deste ponto é
baseada na aplicação do método de Newton ao sistema de equações (9.15).

O Método de Newton

No método de Newton, dada uma função F : IRN → IRN , a busca de um
zero da função, isto é, a busca de um ponto λ̄ ∈ IRN tal que F (λ̄) = 0, é
realizada através de um processo iterativo, no qual a cada iteração parte-se
de um dado ponto λ ∈ IRN e caminha-se numa aproximação da direção ∆λ
tal que F (λ+∆λ) = 0. Esta aproximação é calculada a partir de um modelo
linear para a função F , dado pelo truncamento da sua expansão em Série de
Taylor em torno de λ,

F (λ + ∆λ) ≈ F (λ) + J(λ)∆λ,

onde J é o Jacobiano de F . Sendo assim, o cálculo da direção ∆λ a ser
tomada a cada iteração é realizado através da solução do sistema linear
J(λ)∆λ = −F (λ).

Podemos agora reescrever o sistema (9.15) como F (λ) = 0, onde λ :=
(x, u, s) e

F (λ) = F (x, u, s) :=




AT u− s− c
Ax− b

XSe− µe


 .

Neste caso o Jacobiano de F é dado por

J(λ) = J(x, u, s) =




0 AT −I
A 0 0
S 0 X


 ,

e a direção de Newton ∆λ := (∆x, ∆u, ∆s), quando calculada a partir de
um ponto (x, u, s) ∈ F0, é dada pela solução do sistema linear




0 AT −I
A 0 0
S 0 X







∆x
∆u
∆s


 =




0
0

µe−XSe


 (9.16)
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Quando µ = 0, a solução do sistema de equações (9.16) é denominada
direção afim-escala. A justificativa deste nome está na expressão de ∆x que
soluciona o sistema. Para chegarmos a esta expressão, vamos inicialmente
obter da terceira equação de (9.16), a seguinte expressão para ∆s.

∆s = X−1(µe−XSe− S∆x). (9.17)

Substituindo (9.17) na primeira equação de (9.16), temos

AT ∆u + X−1S∆x = µX−1e− s. (9.18)

Podemos agora resolver (9.18) para ∆x, obtendo

∆x = XS−1(c− AT u + µX−1e− AT ∆u), (9.19)

onde consideramos s = AT u− c.
Substituindo (9.19) na segunda equação de (9.16), temos

−AXS−1AT ∆u = −AXS−1(c− AT u + µX−1e). (9.20)

Resolvendo (9.20) para ∆u e substituindo em (9.18), temos

AT
(
(AXS−1AT )−1AXS−1(c− AT u + µX−1e)

)
+ X−1S∆x = µX−1e− s,

ou ainda,

X−1S∆x = µX−1e− s (9.21)

− AT
(
(AXS−1AT )−1AXS−1(c− AT u + µX−1e)

)
.

Definindo D2 = XS−1 e considerando novamente s = AT u− c, podemos
reescrever (9.21) como

∆x =
(
D2 −D2AT (AD2AT )−1AD2

)
(c− AT u + µX−1e)

=
(
D2 −D2AT (AD2AT )−1AD2

)
c (9.22)

+ µ
(
D2 −D2AT (AD2AT )−1AD2

)
X−1e

Finalmente, podemos entender a escolha do nome afim-escala dado a
direção (9.16), quando µ = 0. Basta observarmos que, neste caso, (9.22) se
reduz a

∆x =
(
D2 −D2AT (AD2AT )−1AD2

)
c,

que difere da direção do algoritmo afim-escala (9.11), apenas na escolha da
matriz que define a mudança de escala.
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Como já mencionado, se µ = 0, o sistema de equações (9.15) em conjunto
com as restrições de não negatividade para x e s representam as condições
de otimalidade para os problemas (P ) e (D). A direção de Newton (9.16)
calculada para µ = 0 deve portanto, apontar aproximadamente para o ótimo
destes problemas. Como foi verificado, em geral, pouco se pode caminhar
ao longo desta direção sem que uma das componentes de x ou s se torne
negativa e conseqüentemente, o progresso obtido ao longo deste caminho é
pequeno.

Por outro lado, a solução de (9.15) para um dado µ > 0, é um ponto
pertencente a trajetória central. Neste caso, a direção de Newton (9.16)
deve apontar aproximadamente para trajetória central, ou seja, para o inte-
rior do ortante não negativo. Espera-se assim que um caminho maior possa
ser percorrido ao longo desta direção antes que a fronteira do ortante seja
encontrada. Pode-se considerar então, que a direção (9.16), calculada para
algum µ > 0, é obtida ao se desviar para o interior do ortante não negativo,
a direção que aponta para o ótimo do problema. O objetivo do desvio é
manter-se afastado da fronteira do ortante, de forma a permitir um maior
passo ao longo da direção calculada, sem sair da região viável do problema.

Os algoritmos de pontos interiores primais-duais consideram em geral
duas direções a caminhar a partir de um dado ponto (x, u, s), ambas obtidas
a partir de (9.16). A primeira é a já mencionada direção afim-escala que é
obtida quando µ = 0, e a segunda, denominada direção de centralização, é
obtida quando µ assume o valor dado por

µ =
1

n

n∑

i=1

xisi =
xT s

n
. (9.23)

Devemos observar que o gap de dualidade associado às soluções x e (u, s) dos
problemas (P ) e (D), é dado por

bT u− cT x = xT AT u− cT x = (uA− c)T x = xT s. (9.24)

Verificamos então, de (9.23), que o gap associado a x e (u, s) pode ser escrito
como nµ, quando µ assume o valor que lhe é atribuido no cálculo da direção
de centralização a partir do ponto (x, u, s).

Notemos agora que a direção de centralização aponta aproximadamente
para o ponto da trajetória central (xµ, uµ, sµ) que satisfaz a relação xisi = µ
para todo i = 1, . . . , n. O gap de dualidade associado a este ponto central,
dado por xT

µsµ, é, portanto, igual a nµ e igual ao gap associado ao ponto de
partida (x, u, s).

Conclúımos então que a direção de centralização aponta bem para o inte-
rior do ortante não negativo. Mais especificamente, ela aponta aproximada-
mente para o ponto central que tem o mesmo gap de dualidade que o ponto

145



de onde partimos. Esperamos assim que possamos caminhar razoavelmente
na direção de centralização antes de encontrar a fronteira do ortante não ne-
gativo. Por outro lado, esperamos também que pouca ou nenhuma redução
seja obtida no gap de dualidade ao longo desta direção.

Finalmente, considerando ao mesmo tempo os objetivos de diminuir o
gap de dualidade e manter-se longe da fronteira do ortante não negativo, os
algoritmos primais-duais partem a cada iteração de um dado ponto (x, u, s)
e caminham numa direção obtida pela combinação das duas direções acima
descritas. Esta combinação é dada pela solução do sistema abaixo,




0 AT −I
A 0 0
S 0 X







∆x
∆u
∆s


 =




0
0

τµe−XSe


 (9.25)

onde µ = xT s/n e τ ∈ [0, 1].
Quando τ assume um valor entre 0 e 1, a direção (9.25) se torna uma

direção intermediária entre as direções afim-escala e de centralização. Dife-
rentes escolhas de τ caracterizam diferentes algoritmos pertencentes à famı́lia
dos algoritmos de pontos interiores primais-duais. Nas próximas seções, es-
tudaremos alguns destes algoritmos.

9.5 Algoritmos de Trajetória Central

Na seção anterior definimos uma curva chamada trajetória central em função
de um parâmetro µ. Comentamos que, se F0 6= ∅, cada ponto desta curva
corresponde à solução única, (xµ, uµ, sµ), do problema barreira (9.14) para

um dado µ. É posśıvel mostrar também que neste caso limµ→0(xµ, uµ, sµ)
existe, e que limµ→0 xµ é uma solução ótima de (P ) e limµ→0(uµ, sµ) é uma
solução ótima de (D) [Mc 80].

Nesta seção estudaremos os algoritmos de trajetória central que se carac-
terizam por seguir esta trajetória na direção em que µ decresce. Os algorit-
mos seguem a trajetória, no sentido em que a cada uma de suas iterações são
gerados pontos (xk, uk, sk) que não necessariamente pertencem à trajetória,
mas que se localizam próximos a ela. Estes pontos são estritamente positivos
e satisfazem apenas as duas primeiras equações de (9.15), enquanto a ter-
ceira equação, ou a condição de µ-complementariedade, não necessariamente
é exatamente satisfeita. Sendo assim, para medir a proximidade entre tais
pontos e a trajetória central, consideramos justamente o quanto esta terceira
equação é violada.

Definição: Dados (x, u, s) ∈ F0 e µ > 0, a proximidade entre os pontos
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(x, u, s) e (xµ, uµ, sµ) é medida por:

δ(x, s, µ) :=
1

µ
‖XSe− µe‖. (9.26)

Os métodos de trajetória central geram uma seqüência de pontos que se
situam numa vizinhança da trajetória caracterizada por δ. Dado α ∈ (0, 1),
definimos esta vizinhança como:

N (α) :=
⋃

µ∈(0,∞)

{(x, u, s) ∈ F0|δ(x, s, µ) ≤ α} (9.27)

Notemos que dado o ponto (x, u, s) na trajetória central, a relação XSe =
µe é satisfeita para algum µ > 0, e, conseqüentemente, xT s = nµ. Esta
igualdade indica a relação entre pontos da trajetória e o gap de dualidade a
eles associado. Uma relação análoga também pode ser obtida para pontos
pertencentes à vizinhança N (α). Para estes pontos, o gap de dualidade dado
por xT s relaciona-se com δ pela expressão:

xT s ≤
(
n + δ(x, s, µ)

√
n

)
µ (9.28)

Para verificar esta expressão basta multiplicar por eT , a relação XSe
µ

= e +

β, onde ‖β‖ = δ(x, s, µ), e aplicar a desigualdade de Cauchy-Schwartz. A
importância desta relação está no fato de que ela nos dá um bom critério de
parada para os algoritmos.

O Algoritmo de Trajetória Central de Passos Curtos

Estamos agora preparados para apresentar algoritmos que geram pontos
sempre na vizinhança N (α). Estes algoritmos, chamados de algoritmos de
trajetória central de passos curtos, adotam valores próximos de 1 para τ .
Desta forma, ao tomarmos o passo (∆x, ∆u, ∆s) a partir de um ponto em
N (α), o novo ponto alcançado também pertencerá à vizinhança.

Para entendermos o comportamento do algoritmo de trajetória central de
passos curtos, devemos observar que, se a cada iteração, o ponto de partida
está em N (α), então o ponto (x, u, s) está próximo do ponto da trajetória
central (xµ, uµ, sµ). Ao tomarmos o valor de τ próximo de 1, teremos τµ ≈ µ
e, portanto, (x, u, s) também estará próximo de (xτµ, uτµ, sτµ). Essa proxi-
midade garante que a direção de Newton (9.25) seja uma boa aproximação
para a direção que aponta para a trajetória central e, conseqüentemente, que
o novo ponto obtido pertença também à proximidade da trajetória definida
por N (α).
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Uma vez garantida que todas as iterações do algoritmo pertencem aN (α),
conclúımos que a cada iteração, gera-se soluções viáveis para os problemas
(P ) e (D), cujo gap de dualidade pode ser estimado por (9.28).

Apresentaremos agora o algoritmo primal-dual de trajetória central de
passos curtos que foi introduzido por Kojima, Mizuno e Yoshise [KoMiYo 89]
e Monteiro e Adler [MoAd 89] independentemente. A análise de complex-
idade apresentada a seguir é devida ao segundo grupo de autores. Nela
verificamos que a complexidade do algoritmo é de

√
n log 1/ε, onde ε mede a

precisão da solução obtida.

Algoritmo 9.2 (Trajetória Central de Passos Curtos) Dados: ε > 0,
α = 0.4, τ = 1− 1√

n
, (x0, u0, s0) ∈ N (α);

k := 0;

Repita

Faça τk = τ , µk = xkT
sk/n;

Calcule a direção de Newton (9.25), ou seja, resolva o sistema




0 AT −I
A 0 0
Sk 0 Xk







∆xk

∆uk

∆sk


 =




0
0

τkµke−XkSke


 ;

Faça

(xk+1, uk+1, sk+1) := (xk, uk, sk) + (∆xk, ∆uk, ∆sk);
k := k + 1;

Até que µk < ε.

No lema 9.2, verificaremos que a medida do gap de dualidade, µ, é re-
duzida de forma linear a cada iteração do algoritmo de trajetória central
de passos curtos . Este resultado é fundamental para que comprovemos a
complexidade polinomial do algoritmo. O resultado do próximo lema será
utilizado na sua demonstração.

Lema 9.1 A direção (∆x, ∆u, ∆s) definida por (9.25) satisfaz a

∆xT ∆s = 0.
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Demonstração
Das duas primeiras equações de (9.25), temos:

AT ∆u = ∆s,
A∆x = 0.

Portanto,
∆xT ∆s = ∆xT AT ∆u = (A∆x)T ∆u = 0.

Lema 9.2 Seja (x, u, s) ∈ N (α), (∆x, ∆u, ∆s), o passo de Newton dado por
(9.25), (x̃, ũ, s̃) := (x, u, s) + σ(∆x, ∆u, ∆s), para σ ∈ [0, 1] e µ̃ := x̃T s̃/n.
Então

µ̃ = (1− σ(1− τ))µ

Demonstração

nµ̃ = x̃T s̃

= (x + σ∆x)T (s + σ∆s)

= xT s + σ∆xT s + σxT ∆s + σ2∆xT ∆s

= xT s + σ(∆xT s + xT ∆s), (9.29)

onde a última igualdade utiliza o resultado do lema anterior.
Da última equação de (9.25), temos:

S∆x + X∆s = τµe−XSe.

Multiplicando esta expressão por eT e observando que µeT e = µn, temos:

sT ∆x + xT ∆s = τnµ− xT s = (τ − 1)nµ. (9.30)

Das relações (9.29) e (9.30), temos então

nµ̃ = (1− σ(1− τ))nµ.

Finalmente, dividindo-se esta última relação por n, obtem-se o resultado do
lema.

Com o resultado obtido no lema anterior, comprovamos a redução linear
no parâmetro µ, sempre que um passo é dado na direção de Newton. Esta
redução é proporcional ao tamanho do passo, o qual é medido pelo parâmetro
σ ∈ [0, 1]. No caso particular do algoritmo de trajetória central de passos
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curtos, um passo unitário é dado na direção de Newton a cada iteração. Neste
caso então, ao substituirmos o valor σ = 1 no resultado do lema, verificamos
facilmente que a redução do parâmetro µ, a cada iteração do algoritmo, é
dada por

µ̃ = τµ. (9.31)

Teorema 9.2 Suponha que (x0, s0, µ0) ∈ N (α) e

µ0 ≤ 1

εβ
, (9.32)

para alguma constante positiva β.
Então, o algoritmo de trajetória central de passos curtos pára em

O(
√

n log 1
ε
) iterações.

Demonstração
Utilizando-se a expressão (9.31) e o valor atribúıdo a τ no algoritmo, temos:

µk =

(
1− 1√

n

)
µk−1

=

(
1− 1√

n

)k

µ0.

Sendo assim, o algoritmo pára quando k é tal que

(
1− 1√

n

)k

µ0 < ε.

Aplicando-se a função logaritmica a esta relação, temos

k log

(
1− 1√

n

)
+ log µ0 < log ε.

Considerando (9.32), observamos que a relação acima será satisfeita se

k log

(
1− 1√

n

)
+ β log

1

ε
< log ε.

Como log (1 + γ) < γ, para todo γ > −1, a relação acima continuará sendo
verificada se

−k
1√
n
≤ log ε− β log

1

ε
,
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ou, equivalentemente,

−k
1√
n
≤ −(1 + β) log

1

ε
,

O critério de convergência do algoritmo, µk < ε, é satisfeito então se

k ≥ √
n(1 + β) log

1

ε
.

Uma vez demonstrada a complexidade polinomial do algoritmo, resta-nos
apenas verificar que ao tomar-se um passo na direção de Newton (9.25), a par-
tir de um dado ponto (x, u, s) ∈ N (α), a nova iteração (x, u, s)+(∆x, ∆u, ∆s)
será também um ponto pertencente a N (α).

No restante da análise do algoritmo, estaremos, portanto, interessados em
fornecer um limite superior para a norma ‖∆X∆Se‖. Este limite constitui
um ingrediente importante na análise. Para entendermos tal importância,
devemos lembrar que a cada iteração do algoritmo, partimos de um ponto
(x, u, s) e calculamos uma aproximação para o passo que nos levaria ao ponto
(xµ, uµ, sµ) da trajetória central. Esta aproximação é estabelecida pela lin-
earização da terceira equação de (9.16), a qual dá origem ao passo de New-
ton (9.25). Nesta linearização, o termo ∆X∆Se é justamente o termo de-
sprezado. Conseqüentemente, a eficiência do passo de Newton estará asso-
ciada ao tamanho de sua norma. Mantendo-a dentro de um certo limite,
garantimos que a aproximação dada pelo passo de Newton, apesar de não
nos levar exatamente para um ponto na trajetória central, nos leva para um
ponto próximo a ela, onde esta proximidade é medida pela vizinhança N (α).
O lema a seguir formaliza o objeto deste parágrafo.

Lema 9.3 Seja (x, u, s) ∈ N (α); (x̃, ũ, s̃) := (x, u, s) + σ(∆x, ∆u, ∆s) para
σ ∈ [0, 1], onde (∆x, ∆u, ∆s) é o passo de Newton dado por (9.25); e µ̃ :=
x̃T s̃
n

. Então

‖X̃S̃e− µ̃e‖ ≤ (1− σ)αµ + σ2‖∆X∆Se‖

Demonstração

‖X̃S̃e− µ̃e‖ = ‖XSe + σS∆Xe + σX∆Se + σ2∆X∆Se− µ̃e‖
= ‖XSe + σ(τµe−XSe) + σ2∆X∆Se− µ̃e‖ (9.33)

= ‖XSe + σ(τµe−XSe) + σ2∆X∆Se
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− (1− σ(1− τ))µe‖ (9.34)

= ‖(1− σ)(XSe− µe) + σ2∆X∆Se‖
≤ (1− σ)‖XSe− µe‖+ σ2‖∆X∆Se‖
≤ (1− σ)αµ + σ2‖∆X∆Se‖ (9.35)

onde (9.33) utiliza a terceira equação de (9.25), (9.34) utiliza o resultado
do lema 9.2 e (9.35) decorre de (x, u, s) ∈ N (α).

Uma vez apresentado o lema anterior, resta-nos agora verificar que a
medida ‖∆X∆Se‖ é pequena o suficiente para garantir que o ponto (x̃, ũ, s̃)
pertença à N (α). Este resultado será demonstrado no teorema 9.3. Os
lemas apresentados a seguir constituem ferramentas a serem utilizadas na
sua demonstração.

Lema 9.4 Se u, v ∈ IRp são tais que uT v = 0, então

‖UV e‖ ≤ 1√
8
‖u + v‖2.

Demonstração
Considerando a igualdade

uivi =
1

4

(
(ui + vi)

2 − (ui − vi)
2
)
,

para todo i = 1, . . . , p, temos:

‖UV e‖2 =
p∑

i=1

(uivi)
2

=
1

16

p∑

i=1

(
(ui + vi)

2 − (ui − vi)
2
)2

≤ 1

16

p∑

i=1

(
(ui + vi)

4 + (ui − vi)
4
)

(9.36)

≤ 1

16




( p∑

i=1

(ui + vi)
2

)2

+

( p∑

i=1

(ui − vi)
2

)2

 (9.37)

=
1

16

(
‖u + v‖4 + ‖u− v‖4

)

=
1

16

(
2‖u + v‖4

)
(9.38)

=
1

8

(
‖u + v‖4

)
(9.39)

onde:

152



(9.36) se verifica porque se temos a, b ≥ 0, então (a− b)2 ≤ a2 + b2;

(9.37) utiliza a relação

p∑

i=1

a2
i ≤ (

n∑

i=1

ai)
2,

para ai ≥ 0, i = 1, . . . , p, a qual é um caso particular da desigualdade
de Holder.

(9.38) se verifica porque u e v são ortogonais (uT v = 0), e conseqüen-
temente ‖u + v‖ = ‖u− v‖.

Lema 9.5 Seja (x, u, s) ∈ N (α) e (∆x, ∆u, ∆s), o passo de Newton dado
por (9.25). Então

‖∆X∆Se‖ ≤ α2 + n(1− τ)2

√
8(1− α)

µ

Demonstração
Iniciamos a demonstração aplicando uma mudança de escala sobre a terceira
equação de (9.25), com o intuito de escrevê-la de forma mais conveniente.
A mudança de escala é definida ao multiplicar-se a equação pela matriz
(XS)−1/2. Considerando D, a matriz diagonal cujos elementos da diago-

nal são dados por
√

xi/si para todo i = 1, . . . , n, ou seja, D = S−1/2X1/2, o
resultado deste produto pode ser escrito como

D−1∆x + D∆s = (XS)−1/2(−XSe + τµe). (9.40)

Observando que ∆X∆S = (D∆X)(D−1∆S) e utilizando (9.40) e os resulta-
dos dos lemas 9.1 e 9.4, temos:

‖∆X∆Se‖ = ‖(D∆X)(D−1∆S)e‖
≤ 1√

8
‖D∆x + D−1∆s‖2

=
1√
8
‖(XS)−1/2(−XSe + τµe)‖2

=
1√
8

n∑

i=1

(−xisi + τµ)2

xisi

≤
∑n

i=1(−xisi + τµ)2

√
8(1− α)µ

=
‖XSe− τµe‖2

√
8(1− α)µ

, (9.41)
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onde a última desigualdade se verifica porque (x, u, s) ∈ N (α). Conseqüen-
temente, |xisi − µ| ≤ αµ, e xisi ≥ (1− α)µ, para todo i = 1, . . . , n.

Temos ainda que

‖XSe− τµe‖2 = ‖(XSe− µe) + (1− τ)µe‖2

= ‖XSe− µe‖2 + 2(1− τ)µeT (XSe− µe)

+ (1− τ)2µ2eT e

= ‖XSe− µe‖2 + 2(1− τ)µ(xT s− µn)

+ (1− τ)2µ2n

= ‖XSe− µe‖2 + (1− τ)2µ2n

≤ α2µ2 + (1− τ)2µ2n, (9.42)

onde a última igualdade se verifica porque µ = xT s/n e a última desigual-
dade se verifica porque (x, u, s) ∈ N (α).

Substituindo (9.42) em (9.41) temos o resultado do lema.

Lema 9.6 Seja (x, u, s) ∈ N (α); (x̃, ũ, s̃) := (x, u, s) + σ(∆x, ∆u, ∆s) para
σ ∈ [0, 1], onde (∆x, ∆u, ∆s) é o passo de Newton dado por (9.25); e µ̃ :=
x̃T s̃
n

. Então, considerando-se que α e τ assumem os valores adotados no
algoritmo 9.2, temos:

‖X̃S̃e− µ̃e‖ ≤ αµ̃,

Demonstração

‖X̃S̃e− µ̃e‖ ≤ (1− σ)αµ + σ2‖∆X∆Se‖ (9.43)

≤ (1− σ)αµ + σ2α2 + n(1− τ)2

√
8(1− α)

µ (9.44)

≤ (1− σ)αµ + σ2ταµ (9.45)

≤ (1− σ + στ)αµ (9.46)

= αµ̃, (9.47)

onde:

(9.43) utiliza o resultado do lema 9.3,

(9.44) utiliza o resultado do lema 9.5,

(9.45) pode ser facilmente verificada quando α e τ assumem os valores
adotados no algoritmo 9.2,
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(9.46) se verifica porque σ ∈ [0, 1], e

(9.47) utiliza o resultado do lema 9.2.

Teorema 9.3 Seja (x, u, s) ∈ N (α) e (∆x, ∆u, ∆s), o passo de Newton dado
por (9.25). Então

(x̃, ũ, s̃) := (x, u, s) + σ(∆x, ∆u, ∆s) ∈ N (α)

para todo σ ∈ [0, 1].

Demonstração
O resultado do lema 9.6 indica que δ(x̃, s̃, µ̃) ≤ α. Resta-nos apenas mostrar
que (x̃, ũ, s̃) ∈ F0. As restrições Ax̃ = b e AT ũ − s̃ = c são facilmente
verificadas já que, de (9.25), temos que A∆x = 0 e AT ∆u − ∆s = 0. E,
finalmente, a não negatividade de x̃ e s̃ é garantida ao considerar-se que
se δ(x̃, s̃, µ̃) ≤ α, então |x̃is̃i − µ̃| ≤ αµ̃, ou seja, x̃is̃i ≥ (1 − α)µ̃ = (1 −
α)(1− σ(1− τ))µ > 0, já que α, σ, τ ∈ [0, 1]. Portanto, (x̃, s̃) > 0 para todo
σ ∈ [0, 1].

Exemplo 9.2 Resolver o problema de programação linear (9.13) utilizando
o algoritmo de trajetória central de passos curtos.

É dada uma solução inicial interior viável para o problema em N (0.4):
x1 = 1.6559, x2 = 4.2932,u1 = 2.2632, u2 = 3.3758, u3 = 1.3144. Em
seguida, reescrevemos os problemas primal e dual na forma padrão, com a
adição de variáveis de folga xi, i = 3, . . . , 5 e sj, j = 1, . . . , 5. A solução
inicial interior viável correspondente é

x0 = (1.6559 4.2932 2.3441 1.7068 4.4458)T ,
u0 = (2.2632 3.3758 1.3144)T ,
s0 = (3.2065 1.005 2.26320 3.3758 1.3144)T .

O valor da função objetivo em x0 é 26.4337 e o gap de dualidade inicial é
dado por

µ0 = (x0T
s0)/5 = 5.3067.

Para definir a direção de busca, resolvemos o sistema linear



0 AT −I
A 0 0
S0 0 X0







∆x0

∆u0

∆s0


 =




0
0

τµ0e−X0S0e


 ;
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onde

A =




1 1
1 1

3 2 1


 ,

X0 =




1.6559
4.2932

2.3441
1.7068

4.4458




,

S0 =




3.2065
1.005

2.26320
3.3758

1.3144




,

τ = 1− 1√
5

= 0.5528 e

τµ0e−X0S0e = (−2.3762 − 1.3798 − 2.3716 − 2.8283 − 2.9103)T .

A solução do sistema linear é dada por

∆x0 = (0.0342 0.7613 − 0.0342 − 0.7613 − 1.6251)T ,
∆u0 = (−0.9788 − 0.1513 − 0.1741)T ,
∆s0 = (−1.5012 − 0.4996 − 0.9788 − 0.1513 − 0.1741)T .

O novo ponto é dado por

x1 = x0 + ∆x0 = (1.6901 5.0545 2.3099 0.9455 2.8207)T ,
u1 = u0 + ∆u0 = (1.2844 3.2245 1.1403)T ,
s1 = s0 + ∆s0 = (1.7054 0.5051 1.2844 3.2245 1.1403)T .

O valor da função objetivo em x1 é 30.3428 e o gap de dualidade é dado por

µ1 = (x1T
s1)/5 = 2.9335.

A primeira iteração do algoritmo está completa. Como o gap de dualidade
ainda é bastante grande, seguimos com uma nova iteração. Deixamos a
próxima iteração do algoritmo como exerćıcio para o leitor.

Apresentamos abaixo o programa em MATLAB que implementa o algo-
ritmo de trajetória central de passos curtos, no qual consideramos a precisão
ε = 10−4.
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% Algoritmo de Trajetoria Central de Passos Curtos

n=5;

m=3;

k=0;

epsilon=10^(-4);

alfa = 0.4;

tal = 1 - (1/sqrt(n));

A=[1 0 1 0 0;0 1 0 1 0;3 2 0 0 1];

%ler solucao inicial sol=[x,u,s]:

sol=input(’Entre com a solucao inicial sol=[x,u,s]:’);

x=sol(1:5);

s=sol(9:13);

mi=(x’*s)/n;

while (mi>= epsilon)

M=[zeros(n,n) A’ -eye(n,n); A zeros(m,m) zeros(m,n); ..

diag(s) zeros(n,m) diag(x)];

ld=[zeros(n,1); zeros(m,1) ; (tal*mi*ones(n,1))-(diag(x)*s)];

dir=M\ld;

sol=sol+dir;

x=sol(1:5);

s=sol(9:13);

mi=(x’*s)/n;

k=k+1;

end

Os valores de x1 e x2 obtidos pelo algoritmo, estão representados na tabela
9.2. A figura 9.9 mostra a trajetória definida pelos pontos gerados a cada
iteração do algoritmo, na região viável do problema.

Comparando as figuras 9.9 e 9.8, observamos o quanto as iterações real-
izadas pelo algoritmo de trajetória central de passos curtos se aproximam da
trajetória central definida para o problema (9.13). Verificamos que tanto a
trajetória central quanto a curva definida pelas iterações do algoritmo con-
vergem para o vértice (x1 = 2, x2 = 6), do poliedro que representa a região
viável do problema. Este ponto é de fato a única solução ótima do problema
considerado.

Vamos ilustrar com o exemplo a seguir o comportamento do algoritmo de
trajetória central de passos curtos e da própria trajetória central no caso em
que o problema de programação linear tem infinitas soluções ótimas.
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k 0 1 2 3 4 5 6
x1 1.6559 1.6901 1.7815 1.8866 1.9430 1.9693 1.9831
x2 4.2932 5.0545 5.4902 5.7109 5.8367 5.9092 5.9497
k 7 8 9 10 11 12 13
x1 1.9907 1.9949 1.9972 1.9984 1.9991 1.9995 1.9997
x2 5.9721 5.9846 5.9915 5.9953 5.9974 5.9986 5.9992
k 14 15 16 17 18 19
x1 1.9999 1.9999 2.0000 2.0000 2.0000 2.0000
x2 5.9996 5.9998 5.9999 5.9999 6.0000 6.0000

Tabela 9.2: Iterações geradas pelo Algoritmo de Trajetória Central de Passos
Curtos
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Figura 9.9: Algoritmo de Trajetória Central de Passos Curtos
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Exemplo 9.3 Resolver o problema de programação linear abaixo utilizando
o algoritmo de trajetória central de passos curtos.

(P ) maximizar 2x1 − 2x2

sujeito a: x1 + x2 ≤ 2
x1 − x2 ≤ 1
x1 , x2 ≥ 0

(9.48)

O dual de (P ) é dado por

(D) minimizar 2u1 + u2

sujeito a: u1 + u2 ≥ 2
u1 − u2 ≥ −2
u1 , u2 ≥ 0

(9.49)

É dada uma solução inicial interior viável para o problema em N (0.4): x1 =
0.5725, x2 = 0.7818,u1 = 5.4027, u2 = 2.7760. Em seguida, reescrevemos os
problemas primal e dual na forma padrão, com a adição de variáveis de folga
xi, i = 3, 4 e sj, j = 1, . . . , 4, obtendo

(P ) maximizar 2x1 − 2x2

sujeito a: x1 + x2 + x3 = 2
x1 − x2 + x4 = 1
x1 , x2 , x3 , x4 ≥ 0

e

(D) minimizar 2u1 + u2

sujeito a: u1 + u2 − s1 = 2
u1 − u2 − s2 = −2
u1 − s3 = 0

u2 − s4 = 0
s1 , s2 , s3 , s4 ≥ 0

A solução inicial interior viável correspondente é

x0 = (0.5725 0.7818 0.6458 1.2093)T ,
u0 = (5.4027 2.7760)T ,
s0 = (6.1787 4.6267 5.4027 2.7760)T .

O valor da função objetivo em x0 é −0.4186 e o gap de dualidade inicial é
dado por

µ0 = (x0T
s0)/4 ≈ 3.50.
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k 0 1 2 3 4 5 6 7
x1 0.5725 0.6766 1.1407 1.2046 1.2405 1.2574 1.2658 1.2701
x2 0.7818 0.6524 0.3592 0.3172 0.2951 0.2847 0.2795 0.2769
k 8 9 10 11 12 13 14 15
x1 1.2722 1.2732 1.2738 1.2740 1.2742 1.2742 1.2743 1.2743
x2 0.2756 0.2749 0.2746 0.2745 0.2744 0.2743 0.2743 0.2743

Tabela 9.3: Exemplo 9.3 - Iterações geradas pelo Algoritmo de Trajetória
Central de Passos Curtos - Variáveis Primais

k 0 1 2 3 4 5 6 7
u1 5.4027 1.1444 0.9435 0.4788 0.2426 0.1211 0.0606 0.0303
u2 2.7760 1.2596 1.4259 1.6923 1.8431 1.9218 1.9609 1.9804
k 8 9 10 11 12 13 14 15
u1 0.0151 0.0076 0.0038 0.0019 0.0009 0.0005 0.0002 0.0001
u2 1.9902 1.9951 1.9976 1.9988 1.9994 1.9997 1.9998 1.9999

Tabela 9.4: Exemplo 9.3 - Iterações geradas pelo Algoritmo de Trajetória
Central de Passos Curtos - Variáveis Duais

Utilizamos para resolver o problema, o mesmo programa em MATLAB
apresentado no exemplo anterior, substituindo apenas os dados de entrada.
Os valores de x1 e x2 obtidos pelo algoritmo estão representados na tabela
9.3. A figura 9.10 mostra a trajetória definida pelos pontos gerados a cada
iteração do algoritmo, na região viável do problema.

Observamos na figura, que a curva definida pelas iterações do algoritmo
não converge para nenhum dos vértices do politopo que representa a região
viável do problema, isto é, ela não converge para nenhuma solução básica
viável do problema. Na verdade esta curva está convergindo para o centro
anaĺıtico da aresta do politopo, que corresponde ao segmento de reta que une
os vértices (x1 = 1, x2 = 0) e (x1 = 1.5, x2 = 0.5). Todos os pontos neste
segmento de reta são soluções ótimas do problema. Este exemplo tem uma
segunda caracteŕıstica interessante. O problema dual definido em (9.49),
também tem apenas duas variáveis, u1 e u2 e portanto pudemos plotar na
figura 9.11 as iterações realizadas pelo algoritmo no espaço das variáveis
duais. Observamos que o problema dual tem apenas uma solução ótima, u1 =
0, u2 = 2. A curva representada na figura 9.11 está portanto convergindo
para a única solução ótima do problema dual. O valor das variáveis nestas
iterações está representado na tabela 9.4.
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Figura 9.10: Exemplo 9.3 - Algoritmo de Trajetória Central de Passos Curtos
- Variáveis Primais
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Figura 9.11: Exemplo 9.3 - Algoritmo de Trajetória Central de Passos Curtos
- Variáveis Duais
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O Algoritmo Preditor-Corretor

Em (9.25) definimos a direção de Newton para τ ∈ [0, 1]. Observamos
que quando τ assume os valores extremos 0 e 1, a direção de Newton é co-
nhecida respectivamente como direção afim-escala e direção de centralização.
A primeira aponta aproximadamente para o ótimo dos problemas P e D, no
entanto, ao caminharmos nela, podemos nos aproximar muito rapidamente
da fronteira do ortante não negativo. Na verdade, se tomarmos um passo
unitário na direção afim-escala a partir de um ponto em N (α), o novo ponto
pode até mesmo não satisfazer as restrições de não negatividade das variáveis
x e s. Por outro lado, ao tomarmos um passo unitário na direção de cen-
tralização a partir de um ponto em N (α), temos a garantia de que o novo
ponto também pertencerá a N (α), ou seja, ele será viável e estará longe
da fronteira do ortante. No entanto, este passo mantém aproximadamente
constante o gap de dualidade. No algoritmo de trajetória central de passos
curtos atribúımos para τ um valor menor do que 1, sem no entanto, perder
a garantia fornecida pela direção de centralização. Ou seja, continuamos
exigindo que ao tomarmos um passo unitário na direção de Newton a partir
de um ponto em N (α), o novo ponto também pertencerá à vizinhança. Esta
exigência faz com que o valor de τ continue muito próximo de 1 e, conseqüen-
temente, a convergência do algoritmo em direção ao ótimo do problema é,
em geral, lenta, como pode ser visto nos exemplos da seção anterior.

Resultados melhores foram obtidos na prática com a aplicação do cha-
mado algoritmo preditor-corretor. Neste algoritmo, trabalhamos com duas
vizinhanças da trajetória central definidas por (9.27) para dois diferentes
valores de α. Tipicamente utiliza-se α1 = 0.25 e α2 = 0.5, de forma que a
primeira vizinhança é um subconjunto da segunda. Dois tipos diferentes de
iteração se intercalam então, da seguinte forma:

Iterações Ímpares: Constituem o chamado passo corretor no qual par-
timos de um ponto em N (α2) e tomamos um passo unitário na direção
de centralização. É posśıvel mostrar que o novo ponto obtido pertence
a N (α1). Este passo tem então como objetivo, centralizar.

Iterações Pares: Constituem o chamado passo preditor no qual parti-
mos de um ponto em N (α1) e caminhamos na direção afim-escala o
máximo posśıvel sem, no entanto, sair da vizinhança N (α2). Mais es-
pecificamente, partimos do ponto (x, u, s) ∈ N (α1) e tomamos o novo
ponto (x̃, ũ, s̃) := (x, u, s)+σ(∆x, ∆u, ∆s), onde (∆x, ∆u, ∆s) é o passo
de Newton (9.25) calculado para τ = 0 e σ ∈ [0, 1] assume o maior valor
para o qual (x̃, ũ, s̃) ∈ N (α2). Este passo tem como objetivo, diminuir
o gap de dualidade.
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O algoritmo preditor-corretor mantém a complexidade de O(
√

n log 1
ε
) do

algoritmo de trajetória central de passos curtos. Ele foi apresentado pela
primeira vez na forma mencionada por Mizuno, Todd e Ye em [MiToYe 93].

Exemplo 9.4 Resolver o problema de programação linear (9.13) utilizando
o algoritmo preditor-corretor.

É dada uma solução inicial interior viável para o problema em N (0.5):
x1 = 1.6569, x2 = 3.6706,u1 = 3.8104, u2 = 4.1066, u3 = 1.7468. Em
seguida, reescrevemos os problemas primal e dual na forma padrão, com a
adição de variáveis de folga xi, i = 3, . . . , 5 e sj, j = 1, . . . , 5. A solução
inicial interior viável correspondente é

x0 = (1.6569 3.6706 2.3431 2.3294 5.6879)T ,
u0 = (3.8104 4.1066 1.7468)T ,
s0 = (6.0508 2.6003 3.8104 4.1066 1.7468)T .

O valor da função objetivo em x0 é 23.3237 e o gap de dualidade inicial é
dado por

µ0 = (x0T
s0)/5 = 9.6000.

Iniciamos o algoritmo com o passo corretor. Para definir a direção de busca
deste passo, resolvemos o sistema linear




0 AT −I
A 0 0
S0 0 X0







∆x0

∆u0

∆s0


 =




0
0

µ0e−X0S0e


 ;

onde

A =




1 1
1 1

3 2 1


 ,

X0 =




1.6569
3.6706

2.3431
2.3294

5.6879




,

S0 =




6.0508
2.6003

3.8104
4.1066

1.7468




,

µ0e−X0S0e = (−0.4258 0.0555 0.6721 0.0340 − 0.3357)T .
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A solução do sistema linear é dada por

∆x0 = (−0.0598 0.0618 0.0598 − 0.0618 0.0557)T ,
∆u0 = (0.1896 0.1236 − 0.0761)T ,
∆s0 = (−0.0387 − 0.0287 0.1896 0.1236 − 0.0761)T .

O novo ponto, que pertence a N (0.25) é dado por

x1 = x0 + ∆x0 = (1.5972 3.7324 2.4028 2.2676 5.7436)T ,
u1 = u0 + ∆u0 = (4.0000 4.2302 1.6707)T ,
s1 = s0 + ∆s0 = (6.0121 2.5716 4.0000 4.2302 1.6707)T .

O valor da função objetivo em x1 é 23.4536 e o gap de dualidade é dado por

µ1 = (x1T
s1)/5 = 9.6000.

Como já era esperado pela análise teórica, não houve diminuição no gap de
dualidade no passo corretor.

Partimos agora para o passo preditor. Para definir a direção de busca
deste passo, resolvemos o sistema linear




0 AT −I
A 0 0
S1 0 X1







∆x1

∆u1

∆s1


 =




0
0

−X1S1e


 ;

onde

X1 =




1.5972
3.7324

2.4028
2.2676

5.7436




e

S1 =




6.0121
2.5716

4.0000
4.2302

1.6707




.

A solução do sistema linear é dada por

∆x1 = (0.0903 1.3024 − 0.0903 − 1.3024 − 2.8758)T ,
∆u1 = (−3.8496 − 1.8006 − 0.8342)T ,
∆s1 = (−6.3521 − 3.4689 − 3.8496 − 1.8006 − 0.8342)T .
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Uma vez calculada a direção a seguir, devemos agora calcular o tamanho do
passo que pode ser dado nesta direção sem que se saia da vizinhança N (0.5).
Iniciamos este cálculo pelo teste da razão, uma vez que o novo ponto deve
também ser interior viável, ou seja, as componentes de x e s devem se manter
positivas.

λ1 = minj=1,...,n{−x1
j/∆x1

j |∆x1
j < 0} = 1.7411,

λ2 = minj=1,...,n{−s1
j/∆s1

j |∆s1
j < 0} = 0.7413,

λ = 0.995 ∗min{λ1, λ2} = 0.7376.

Como (x1 + λ∆x1, u1 + λ∆u1, s1 + λ∆s1) /∈ N (0.5), calculamos o menor q
inteiro e positivo, tal que

(x1 + (0.95)qλ∆x1, u1 + (0.95)qλ∆u1, s1 + (0.95)qλ∆s1) ∈ N (0.5).

Encontramos q = 5 e consequentemente o novo ponto é

x2 = x1 + (0.95)5λ∆x1 = (1.6487 4.4758 2.3513 1.5242 4.1022)T ,
u2 = u1 + (0.95)5λ∆u1 = (1.8028 3.2025 1.1946)T ,
s2 = s1 + (0.95)5λ∆s1 = (2.3866 0.5917 1.8028 3.2025 1.1946)T .

O valor da função objetivo em x2 é 27.3251 e o gap de dualidade é dado
por

µ1 = (x2T
s2)/5 = 4.1208.

Observamos que houve uma diminuição no gap de dualidade no passo predi-
tor.

A primeira iteração do algoritmo está completa. Como o gap de dualidade
ainda é bastante grande, seguimos com uma nova iteração. Deixamos a
próxima iteração do algoritmo como exerćıcio para o leitor.

Apresentamos abaixo o programa em MATLAB que implementa o algo-
ritmo preditor-corretor, no qual consideramos a precisão ε = 10−4.

%Algoritmo Preditor-Corretor

n=5;

m=3;

k=0;

epsilon=10^(-4);

alfa1=0.25;

alfa2=0.5;
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A=[1 0 1 0 0;0 1 0 1 0;3 2 0 0 1];

%ler solucao inicial sol=[x,u,s]:

sol=input(’Entre com a solucao inicial sol=[x,u,s]:’);

x=sol(1:5);

s=sol(9:13);

mi=(x’*s)/n;

while (mi>= epsilon)

M=[zeros(n,n) A’ -eye(n,n); A zeros(m,m) zeros(m,n); ..

diag(s) zeros(n,m) diag(x)];

ld=[zeros(n,1); zeros(m,1) ; (mi*ones(n,1))-(diag(x)*s)];

dir=M\ld;

sol=sol+dir;

x=sol(1:5);

s=sol(9:13);

mi=(x’*s)/n;

M=[zeros(n,n) A’ -eye(n,n); A zeros(m,m) zeros(m,n); ..

diag(s) zeros(n,m) diag(x)];

ld=[zeros(n,1); zeros(m,1) ; -(diag(x)*s)];

dir=M\ld;

aux=[10];

for i=1:5

if(dir(i)<0)

aux = [aux; -sol(i)/dir(i)];

end

end

for i=9:13

if(dir(i)<0)

aux = [aux; -sol(i)/dir(i)];

end

end

perc = min(1,0.995*min(aux));

sol1=sol+perc*dir;

x1=sol1(1:5);

s1=sol1(9:13);

mi1=(x1’*s1)/n;

166



k 1 2 3 4 5 6
passo x1 1.5972 1.6772 1.8484 1.9682 1.9978 2.0000

corretor x2 3.7324 4.8167 5.5683 5.9070 5.9934 6.0000
passo x1 1.6487 1.7621 1.9557 1.9983 2.0000 2.0000

preditor x2 4.4758 5.5089 5.8969 5.9923 6.0000 6.0000

Tabela 9.5: Iterações geradas pelo Algoritmo Preditor-Corrtetor

while (norm(x1.*s1-mi1*ones(n,1))> alfa2*mi1)

perc=0.95*perc;

sol1=sol+perc*dir;

x1=sol1(1:5);

s1=sol1(9:13);

mi1=(x1’*s1)/n;

end

sol = sol1;

x=x1;

s=s1;

mi=mi1;

k=k+1;

end

Os valores de x1 e x2 obtidos pelo algoritmo a cada iteração k estão
representados na tabela 9.5. A trajetória definida pelos pontos gerados a
cada iteração do algoritmo, na região viável do problema, está representada
na figura 9.12.

O Algoritmo de Trajetória Central de Passos Longos

A utilização da norma Euclideana na definição de δ em (9.26) restringe
bastante o conjunto de pontos que pertencem à vizinhança N (α). Mesmo
para valores de α próximos de 1, o conjunto de pontos em F0 é bem maior
que o conjunto de pontos em N (α). Como resultado, os algoritmos que per-
manecem sempre nesta vizinhança, podem caminhar pouco a cada iteração
em direção ao ótimo.

Algoritmos práticos utilizam outras normas para definir vizinhanças da
trajetória central mais abrangentes. As duas vizinhanças mais interessantes
são:
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Figura 9.12: Algoritmo Preditor-Corretor

N∞(α) :=
⋃

µ∈(0,∞)

{(x, u, s) ∈ F0|δ∞(x, s, µ) ≤ α},

onde

δ∞(x, s, µ) :=
1

µ
‖XSe− µe‖∞,

e
N−∞(α) :=

⋃

µ∈(0,∞)

{(x, u, s) ∈ F0|δ−∞(x, s, µ) ≤ α},

onde

δ−∞(x, s, µ) :=
1

µ
‖XSe− µe‖−∞, (9.50)

e dado v ∈ IRN , temos por definição que ‖v‖−∞ ≤ β se e somente se vi ≥ −β
para todo i = 1, . . . , N .

Podemos verificar facilmente que para um dado α estas duas vizinhanças
contêm um número de pontos viáveis dos problemas (P ) e (D) consideravel-
mente maior que N (α). A vizinhança N−∞(α), em partilcular, torna-se bem
próxima de F0 à medida que α tende para 1.

Algoritmos de trajetória central de passos longos utilizam estas vizinhan-
ças mais abrangentes. Neles, o parâmetro τ recebe um valor menor do que
o recebido no algoritmo de trajetória central de passos curtos e, portanto, a
tentativa de decrescer o gap de dualidade é mais agressiva a cada iteração.
Como eles têm mais espaço para trabalhar, o progresso em direção ao ótimo

168



é mais rápido. Ao tomarmos um valor pequeno para τ , no entanto, não
garantimos mais que o ponto resultante de um passo unitário na direção
de Newton (9.25) continue pertencendo à vizinhança da trajetória. Neste
caso, utilizamos um procedimento análogo ao descrito no passo preditor do
algoritmo preditor-corretor, no qual realizamos uma busca linear que estabe-
lece o maior passo permitido na direção de Newton, para que o novo ponto
alcançado permaneça na vizinhança. Os algoritmos de trajetória central de
passos longos têm uma melhor performance na prática do que os algoritmos
de passos curtos. Sua complexidade, no entanto, aumenta para O(n log 1

ε
)

iterações.

Exemplo 9.5 Resolver o problema de programação linear (9.13) utilizando
o algoritmo de trajetória central de passos longos.

É dada uma solução inicial interior viável para o problema em N−∞(0.8):
x1 = 1.1307, x2 = 3.3837, u1 = 2.5332, u2 = 3.9880, u3 = 1.9028. Em
seguida, reescrevemos os problemas primal e dual na forma padrão, com a
adição de variáveis de folga xi, i = 3, . . . , 5 e sj, j = 1, . . . , 5. A solução
inicial interior viável correspondente é

x0 = (1.1307 3.3837 2.8693 2.6163 7.8404)T ,
u0 = (2.5332 3.9880 1.9028)T ,
s0 = (5.2415 2.7936 2.5332 3.9880 1.9028)T .

O valor da função objetivo em x0 é 20.3108 e o gap de dualidade inicial é
dado por

µ0 = (x0T
s0)/5 = 9.6000.

Para definir a direção de busca resolvemos o sistema linear




0 AT −I
A 0 0
S0 0 X0







∆x0

∆u0

∆s0


 =




0
0

τµ0e−X0S0e


 ;

onde

A =




1 1
1 1

3 2 1


 ,

169



X0 =




1.1307
3.3837

2.8693
2.6163

7.8404




,

S0 =




5.2415
2.7936

2.5332
3.9880

1.9028




,

τ = (1− (1
√

5))/10 = 0.0553,
τµ0e−X0S0e = (−5.3961 − 8.9219 − 6.7377 − 9.9031 − 14.3878 )T .

A solução do sistema linear é dada por

∆x0 = (0.1371 1.3910 − 0.1371 − 1.3910 − 3.1932)T ,
∆u0 = (−2.2272 − 1.6649 − 1.0601)T ,
∆s0 = (−5.4076 − 3.7851 − 2.2272 − 1.6649 − 1.0601)T .

Uma vez calculada a direção a seguir, devemos agora calcular o tamanho
do passo que pode ser dado nesta direção sem que se saia da vizinhança
N−∞(0.8). Como verificamos que (x0 + ∆x0, u0 + ∆u0, s0 + ∆s0) /∈ N∞(0.8),
calculamos o menor q inteiro e positivo, tal que (x0 + (0.95)q∆x0, u0 +
(0.95)qλ∆u0, s0 + (0.95)q∆s0) ∈ N∞(0.4). Encontramos q = 7 e conseqüen-
temente o novo ponto é

x1 = x0 + (0.95)7∆x0 = (1.2265 4.3551 2.7735 1.6449 5.6104)T ,
u1 = u0 + (0.95)7∆u0 = (0.9778 2.8254 1.1625)T ,
s1 = s0 + (0.95)7∆s0 = (1.4652 0.1503 0.9778 2.8254 1.1625)T .

O valor da função objetivo em x1 é 25.4549 e o gap de dualidade é dado
por

µ1 = (x1T
s1)/5 = 3.2666.

A primeira iteração do algoritmo está completa. Como o gap de dualidade
ainda é bastante grande, seguimos com uma nova iteração. Deixamos a
próxima iteração do algoritmo como exerćıcio para o leitor.

Apresentamos abaixo o programa em MATLAB que implementa o algo-
ritmo de trajetória central de passos longos, no qual consideramos a precisão
ε = 10−4.
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% Algoritmo de Trajetoria Central de Passos Longos

n=5;

m=3;

k=0;

epsilon=10^(-4);

alfa = 0.8;

tal = (1 - (1/sqrt(n)))/10;

A=[1 0 1 0 0;0 1 0 1 0;3 2 0 0 1];

%ler solucao inicial sol=[x,u,s]:

sol=input(’Entre com a solucao inicial sol=[x,u,s]:’);

x=sol(1:5)

s=sol(9:13);

mi=(x’*s)/n;

while (mi>= epsilon)

M=[zeros(n,n) A’ -eye(n,n); A zeros(m,m) zeros(m,n); ..

diag(s) zeros(n,m) diag(x)];

ld=[zeros(n,1); zeros(m,1) ; (tal*mi*ones(n,1))-(diag(x)*s)];

dir=M\ld;

perc=1;

sol1=sol+perc*dir;

x1=sol1(1:5);

s1=sol1(9:13);

mi1=(x1’*s1)/n;

while (min(x1.*s1-mi1*ones(n,1))< -alfa*mi1)

perc=0.95*perc;

sol1=sol+perc*dir;

x1=sol1(1:5);

s1=sol1(9:13);

mi1=(x1’*s1)/n;

end

sol = sol1;

x=x1;

s=s1;

mi=mi1;

k=k+1;

end

Os valores de x1 e x2 obtidos pelo algoritmo a cada iteração k estão
representados na tabela 9.6. A trajetória definida pelos pontos gerados a
cada iteração do algoritmo, na região viável do problema, está representada
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k 0 1 2 3 4 5 6 7
x1 1.1307 1.2265 1.3320 1.6593 2.0050 2.0001 2.0000 2.0000
x2 3.3837 4.3551 5.1780 5.8038 5.9742 5.9986 5.9999 6.0000

Tabela 9.6: Iterações geradas pelo Algoritmo de Trajetória Central de Passos
Longos
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Figura 9.13: Algoritmo de Trajetória Central de Passos Longos

na figura 9.13.

Algoritmos de Trajetória Central Inviáveis

Os algoritmos de trajetória central apresentados até agora requerem uma
solução inicial (x0, u0, s0), tal que Ax0 = b, x0 > 0 e AT u0−s0 = c, s0 > 0. Ou
seja, para inicializarmos os algoritmos, precisamos de uma solução viável e
estritamente positiva tanto para o problema primal, quanto para o problema
dual. É posśıvel, no entanto, utilizar o método de Newton para desenvolver
algoritmos que partem a cada iteração de pontos não viáveis. A única im-
posição feita sobre o ponto de partida destes algoritmos é a positividade de
x e s.
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Consideremos os reśıduos primal e dual associados a um ponto (x, u, s),
definidos respectivamente por:

ρb := b− Ax e ρc := c− AT u + s.

A direção de Newton, que aproxima a direção que nos leva ao ponto da
trajetória central (xµ, uµ, sµ), a partir de um ponto (x, u, s), é dada pela
solução do seguinte sistema linear:




0 AT −I
A 0 0
S 0 X







∆x
∆u
∆s


 =




ρc

ρb

µe−XSe


 (9.51)

onde as duas primeiras componentes do lado direito da equação (9.16)
deixam de ser nulas para assumirem o valor dos reśıduos associados ao ponto
de partida.

Consideremos então algoritmos que partem, a cada iteração, de um ponto
(x, u, s) e caminham na direção de Newton, dada pela solução de (9.51).
Devemos observar que ao caminharmos nesta direção, estamos ao mesmo
tempo interessados na centralização e na diminuição dos reśıduos primal e
dual. Facilmente verificamos que, se um passo unitário é dado na direção
de Newton, o novo ponto encontrado será primal e dual viável, já que, pela
equação (9.51) e pelas definições de ρc e ρb, temos:

AT (u + ∆u)− (s + ∆s) = AT u− s + AT ∆u−∆s = AT u− s + ρc = c,

e,
A(x + ∆x) = Ax + A∆x = Ax + ρb = b.

A partir de um ponto primal e dual viável, passos sucessivos na direção de
Newton, nos levarão sempre a pontos também viáveis, já que, neste caso
teremos ρc = ρb = 0 em (9.51).

Algoritmos de trajetória central inviáveis partem a cada iteração de um
ponto (x, u, s) tal que x > 0 e s > 0, e caminham na direção (9.51) se
mantendo sempre numa vizinhança da trajetória central. Esta vizinhança é
uma estenção da vizinhança N−∞(α), definida para o algoritmo de trajetória
central de passos longos, que contem pontos que violam as restrições Ax = b
e AT y − s = c. Na vizinhança estendida, as normas dos reśıduos primal e
dual são limitadas por uma constante vezes µ. Desta forma, conforme µ → 0,
os reśıduos ficam cada vez menores e nos aproximamos portanto, da região
viável dos problemas (P ) e (D). A definição da vizinhança estendida é dada
por:
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N−∞(α, β) :=
⋃

µ∈(0,∞)

{
δ−∞(x, s, µ) ≤ α,

‖(ρb, ρc)‖
‖(ρ0

b , ρ
0
c)‖

≤ µ

µ0
β, (x, s) > 0

}

onde α ∈ (0, 1), β ≥ 1, δ−∞(x, s, µ) está definida em (9.50) e ρ0
b e ρ0

c são os
reśıduos relativos ao ponto de partida do algoritmo, (x0, u0, s0).

Os algoritmos de trajetória central inviáveis geram uma solução para os
problemas (P ) e (D), (xk, uk, sk), para a qual µk ≤ ε, em não mais que
O(n2 log 1

ε
) iterações.

Exemplo 9.6 Resolver o problema de programação linear (9.13) utilizando
o algoritmo de trajetória central inviável.

Reescrevemos os problemas primal e dual na forma padrão, com a adição
de variáveis de folga xi, i = 3, . . . , 5 e sj, j = 1, . . . , 5. É dada uma solução
inicial não viável para o problema em N−∞(0.8, 1.4):

x0 = (1 1 1 1 1)T ,
u0 = (2 2 2)T ,
s0 = (2 2 2 2 2)T .

Neste ponto, temos µ0 = (x0T
s0)/5 = 2 e os reśıduos primal e dual são dados

por:

ρb := b− Ax0 =




4
6
18


−




1 1
1 1

3 2 1







1
1
1
1
1




=




2
4
12


 ,

ρc := c− AT u0 + s0 =




3
5
0
0
0



−




1 3
1 2

1
1

1







2
2
2


 +




2
2
2
2
2




=




−3
1
0
0
0




.

Para definir a direção de busca resolvemos o sistema linear




0 AT −I
A 0 0
S0 0 X0







∆x0

∆u0

∆s0


 =




ρc

ρb

τµ0e−X0S0e


 ;
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onde

X0 =




1
1

1
1

1




,

S0 =




2
2

2
2

2




,

τ = 0.1,
τµ0e−X0S0e = (−1.8 − 1.8 − 1.8 − 1.8 − 1.8)T .

A solução do sistema linear é dada por

∆x0 = (1.7800 3.2700 0.2200 0.7300 0.1200)T ,
∆u0 = (−2.2400 − 3.2600 − 2.0400)T ,
∆s0 = (−5.3600 − 8.3400 − 2.2400 − 3.2600 − 2.0400)T .

Uma vez calculada a direção a seguir, devemos agora calcular o tamanho
do passo que pode ser dado nesta direção sem que se saia da vizinhança
N−∞(0.8, 1.4). Iniciamos este cálculo pelo teste da razão, uma vez que no
novo ponto as componentes de x e s devem se manter positivas. Como
todas as componentes de ∆x0 são positivas, só realizamos o teste da razão
considerando o passo dado em s.

λ = 0.995 ∗ min
j=1,...,n

{−s0
j/∆s0

j |∆s0
j < 0} = 0.2386.

Como (x0 + λ∆x0, u0 + λ∆u0, s0 + λ∆s0) /∈ N−∞(0.8, 1.4), calculamos o
menor q inteiro e positivo, tal que (x0 + (0.95)qλ∆x0, u0 + (0.95)qλ∆u0, s0 +
(0.95)qλ∆s0) ∈ N−∞(0.4, 1.4). Encontramos q = 2 e consequentemente o
novo ponto é

x1 = x0 + (0.95)2λ∆x0 = (1.3833 1.7042 1.0474 1.1572 1.0258)T ,
u1 = u0 + (0.95)2λ∆u0 = (1.5176 1.2980 1.5607)T ,
s1 = s0 + (0.95)2λ∆s0 = (0.8458 0.2040 1.5176 1.2980 1.5607)T .

Neste ponto temos

µ1 = (x1T
s1)/5 = 1.2420.

A primeira iteração do algoritmo está completa. Como µ ainda é bastante
grande, seguimos com uma nova iteração. Deixamos a próxima iteração do
algoritmo como exerćıcio para o leitor.
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Apresentamos abaixo o programa em MATLAB que implementa o algo-
ritmo de trajetória central inviável, no qual consideramos a precisão ε = 10−4.

%Algoritmo de Trajetoria Central Inviavel

n=5;

m=3;

k=0;

epsilon=10^(-4);

alfa = 0.8;

beta = 1.4;

tal = 0.4;

A=[1 0 1 0 0;0 1 0 1 0;3 2 0 0 1];

b=[4 6 18]’;

c=[3 5 0 0 0]’;

%ler solucao inicial sol=[x,u,s]:

sol=input(’Entre com a solucao inicial sol=[x,u,s]:’);

x=sol(1:5)

u=sol(6:8);

s=sol(9:13);

mi=(x’*s)/n;

mi0=mi;

rob=b-A*x;

roc=c-(A’*u)+s;

rob0=rob;

roc0=roc;

normrr0=norm([rob0;roc0],inf)/mi0;

while (mi>= epsilon)

M=[zeros(n,n) A’ -eye(n,n); A zeros(m,m) zeros(m,n); ..

diag(s) zeros(n,m) diag(x)];

ld=[roc; rob; (tal*mi*ones(n,1))-(diag(x)*s)];

dir=M\ld;

%teste da razao

aux=[10];

for i=1:5

if(dir(i)<0)

aux = [aux; -sol(i)/dir(i)];

end

end

for i=9:13
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if(dir(i)<0)

aux = [aux; -sol(i)/dir(i)];

end

end

perc = min(1,0.995*min(aux));

sol1=sol+perc*dir;

x1=sol1(1:5);

u1=sol1(6:8);

s1=sol1(9:13);

mi1=(x1’*s1)/n;

rob1=b-A*x1;

roc1=c-(A’*u1)+s1;

while((min(x1.*s1)<(1-alfa)*mi1)|(min([rob1;roc1]) ..

<-beta*normrr0*mi1)|(mi1>(1-0.01*perc)*mi))

perc=0.95*perc;

sol1=sol+perc*dir;

x1=sol1(1:5);

u1=sol1(6:8);

s1=sol1(9:13);

mi1=(x1’*s1)/n;

rob1=b-A*x1;

roc1=c-(A’*u1)+s1;

end

sol = sol1;

x=x1

u=u1;

s=s1;

mi=mi1;

rob=rob1;

roc=roc1;

k=k+1;

end

Os valores de x1 e x2 obtidos pelo algoritmo estão representados na tabela
9.7. A figura 9.14 mostra a trajetória definida pelos pontos gerados a cada
iteração do algoritmo, na região viável do problema.

Observamos que apesar do ponto (x1, x2) pertencer à região viável primal,
desde a primeira iteração do algoritmo, como pode ser visto na figura 9.7;
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k 0 1 2 3 4
x1 1.0000 1.3833 1.4617 1.4795 1.5599
x2 1.0000 1.7042 2.5206 3.3535 4.9700
k 5 6 7 8
x1 1.8569 1.9954 1.9999 2.0000
x2 5.7649 5.9976 5.9997 6.0000

Tabela 9.7: Iterações geradas pelo Algoritmo de Trajetória Central Inviável

o ponto inicial utilizado, (x0, u0, s0) = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2), não é
primal nem dual viável.

9.6 Algoritmos de Redução Potencial

Na seção anterior apresentamos os algoritmos de trajetória central. Verifi-
camos que estes algoritmos geram pontos sempre numa vizinhança da tra-
jetória central, como forma de evitar a fronteira do ortante não negativo.
Nesta seção estudaremos os algoritmos de redução potencial. Estes algo-
ritmos também objetivam aumentar o valor da função objetivo de (P ) a
cada iteração, sem se aproximar da fronteira da região viável do problema.
Seguindo este intuito, o progresso do algoritmo em direção ao ótimo é medido
pela seguinte função potencial:

f(x, s) := ρ log xT s−
n∑

i=1

log xisi (9.52)

onde ρ é uma constante maior que n.
Lembrando de (9.24), que sT x = bT u − cT x, verificamos que o primeiro

termo da função potencial mede o gap de dualidade. E considerando a equi-
valência

n∑

i=1

log xisi =
n∑

i=1

log xi +
n∑

i=1

log si,

verificamos que o segundo termo da função penaliza a proximidade à fronteira
da região viável tanto do problema primal quanto do dual.

As funções potenciais sempre foram consideradas nos métodos de pontos
interiores. O algoritmo de Karmarkar já empregava a redução de uma função
potencial que constitui uma pequena variação de (9.52). Como sugerido pelo
nome, os algoritmos de redução potencial visam a cada iteração, reduzir o
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Figura 9.14: Algoritmo de Trajetória Central Inviável

valor da função potencial de um determinado valor constante. A motivação
para tal procedimento está no próximo teorema, que nos fornece um resultado
global quanto a complexidade desses algoritmos.

Teorema 9.4 Considere um ponto inicial primal viável x0 ∈ X 0, um ponto
inicial dual viável (u0, s0) ∈ S0 e uma tolerância ε > 0. Suponha que um
algoritmo gera uma seqüência de pontos xk ∈ X 0 e (uk, sk) ∈ S0 e reduz a
cada iteração o valor da função potencial (9.52) de uma grandeza maior ou
igual a δ > 0. Então este algoritmo gera uma solucão com gap de dualidade

xkT
sk ≤ ε

para todo k ≥ K, onde

K =
1

δ

(
(ρ− n) log

1

ε
+ f(x0, s0)

)
(9.53)

Demonstração
Da definição da função potencial (9.52), temos

f(x, s) = ρ log xT s−∑n
i=1 log xisi

= (ρ− n) log xT s−∑n
i=1 log xisi

xT s

≥ (ρ− n) log xT s.
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Logo,

(ρ− n) log xkT
sk ≤ f(xk, sk) ≤ f(x0, s0)− kδ,

ou,

log xkT
sk ≤ f(x0, s0)− kδ

ρ− n
.

Para que o critério xkT
sk ≤ ε seja alcançado, basta então que k satisfaça a

relação
f(x0, s0)− kδ

ρ− n
≤ log ε,

isto é,
−kδ ≤ (ρ− n) log ε− f(x0, s0)

ou,

k ≥ 1

δ

(
(ρ− n) log

1

ε
+ f(x0, s0)

)
.

O algoritmo de redução potencial primal-dual de Kojima, Mizuno e Yo-
shise [KoMiYo 91], apresentado e analisado a seguir, utiliza a direção de
Newton (9.16) como direção de busca. A sua análise de complexidade consiste
basicamente em verificar que determinada escolha do parâmetro τ garante a
redução da função potencial a cada iteração, de um valor constante.

Dada uma solução inicial (x0, u0, s0) ∈ F0 e ε > 0, este algoritmo requer
O(
√

n log 1
ε
) iterações para reduzir o gap de dualidade xT s a um valor menor

que ε.

Algoritmo 9.3 (Redução Potencial) Dados: ρ > n, τ = n
ρ
, (x0, u0, s0) ∈

F0;

k := 0;

Repita enquanto xkT
sk > ε

Faça τk = τ , µk = xkT
sk/n;

Calcule a direção de Newton (9.25), ou seja, resolva o sistema




0 AT −I
A 0 0
Sk 0 Xk







∆xk

∆uk

∆sk


 =




0
0

τkµke−XkSke


 ;
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Faça

(xk+1, uk+1, sk+1) := (xk, uk, sk) + αk(∆xk, ∆uk, ∆sk);
k := k + 1;

(9.54)

Fim (Repita)

No passo (9.54), αk é obtido por uma busca linear, ou seja,

αk = argminα∈[0,1]{f(xk +α∆xk, sk +α∆sk)|xk +α∆xk > 0, sk +α∆sk > 0}.
No teorema 9.5, verificaremos a redução da função potencial f(x, s), a

cada iteração do algoritmo (9.3). Os resultados dos lemas colocados a seguir
serão utilizados na demonstração do teorema.

Lema 9.7 Seja u ∈ IRn, tal que ‖u‖∞ < 1. Então

n∑

i=1

log(1 + ui) ≥ eT u− ‖u‖2

2(1− ‖u‖∞)
.

Demonstração
Desenvolvendo-se a função log(1 + ui) em série de Taylor, obtem-se

log(1 + ui) =
∑∞

j=1
(−1)j+1uj

i

j

≥ ui − 1
2

∑∞
j=2 |ui|j

= ui − u2
i

2(1−|ui|) .

Considerando agora que |ui| ≤ ‖u‖∞ para todo i, temos

n∑

i=1

log(1 + ui) ≥
n∑

i=1

ui − 1

2(1− ‖u‖∞)

n∑

i=1

u2
i .

Lema 9.8 Seja
x̃ = x + α∆x e s̃ = s + α∆s.

Defina
V = X

1
2 S

1
2 e D = X

1
2 S−

1
2 ,

e considere a constante β, tal que

β ≥ α max
(
‖X−1∆x‖∞, ‖S−1∆s‖∞

)
. (9.55)

Então,
f(x̃, s̃)− f(x, s) ≤ −α ρ

nµ
‖D−1∆x + D∆s‖2

+ α2

2(1−β)
1

v2
min
‖D−1∆x + D∆s‖2.
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Demonstração
Utilizando a definição da função potencial (9.52), temos

f(x̃, s̃)− f(x, s) = ρ(log x̃T s̃− log xT s)
− ∑n

i=1 log x̃i +
∑n

i=1 log xi

− ∑n
i=1 log s̃i +

∑n
i=1 log si.

Logo,

f(x̃, s̃)− f(x, s) = ρ log
x̃T s̃

xT s
−

n∑

i=1

log
x̃i

xi

−
n∑

i=1

log
s̃i

si

.

Consideremos agora as seguintes relações:

x̃T s̃
xT s

= (x+α∆x)T (s+α∆s)
xT s

= 1
xT s

(
xT s + α

(
xT ∆s + sT ∆x

)
+ α2∆xT ∆s

)

= 1 + α
(xT ∆s+sT ∆x)

xT s
,

onde a última igualdade utiliza o resultado do lema 9.1,

x̃i

xi

=
xi + α∆xi

xi

= 1 + α
∆xi

xi

,

e
s̃i

si

=
si + α∆si

si

= 1 + α
∆si

si

.

Temos então

f(x̃, s̃)− f(x, s) = ρ log
(
1 + αxT ∆s+sT ∆x

xT s

)

− ∑n
i=1 log

(
1 + α∆xi

xi

)

− ∑n
i=1 log

(
1 + α∆si

si

)
.

Considerando que x, x̃, s e s̃ são vetores estritamente positivos, temos que

x̃T s̃

xT s
> 0 ⇒ 1 + α

xT ∆s + sT ∆x

xT s
> 0 ⇒ −α

xT ∆s + sT ∆x

xT s
< 1

Aplicando então a conhecida relação log(1− t) ≤ −t, para t < 1, temos

log

(
1 + α

xT ∆s + sT ∆x

xT s

)
≤ α

xT ∆s + sT ∆x

xT s
.

Utilizando agora o resultado do lema 9.7, temos que, se α é pequeno o sufi-
ciente para satisfazer as relações

α‖X−1∆x‖∞ ≤ 1 e α‖S−1∆s‖∞ ≤ 1, (9.56)
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as seguintes desigualdades são verificadas:

−
n∑

i=1

log
(
1 + α

∆xi

xi

)
≤ −αeT X−1∆x +

α2‖X−1∆x‖2

2 (1− α‖X−1∆x‖∞)
,

e

−
n∑

i=1

log
(
1 + α

∆si

si

)
≤ −αeT S−1∆s +

α2‖S−1∆s‖2

2 (1− α‖S−1∆s‖∞)
.

Conseqüentemente,

f(x̃, s̃)− f(x, s) ≤ ραxT ∆s+sT ∆x
xT s

− αeT X−1∆x + α2‖X−1∆x‖2
2(1−α‖X−1∆x‖∞)

− αeT S−1∆s + α2‖S−1∆s‖2
2(1−α‖S−1∆s‖∞)

.

Seja a constante β, tal que

β ≥ α max
(
‖X−1∆x‖∞, ‖S−1∆s‖∞

)
,

temos então

f(x̃, s̃)− f(x, s) ≤ ραxT ∆s+sT ∆x
xT s

− αeT (X−1∆x + S−1∆s)

+ α2

2(1−β)
(‖X−1∆x‖2 + ‖S−1∆s‖2) .

(9.57)

Utilizando as definições de V e D, temos

ρxT ∆s+sT ∆x
xT s

− eT (X−1∆x + S−1∆s)
= ρ

xT s
eT (X∆s + S∆x)− eT (X−1∆x + S−1∆s)

= ρ
xT s

eT (V D∆s + V D−1∆x)− eT (V −1D−1∆x + V −1D∆s)

= − ρ
nµ

[
eT

(
nµ
ρ

(V −1D−1∆x + V −1D∆s)− V D−1∆x− V D∆s
)]

= − ρ
nµ

[
eT

(
nµ
ρ

V −1 (D−1∆x + D∆s)− V (D−1∆x + D∆s)
)]

= − ρ
nµ

[
eT

(
nµ
ρ

V −1 − V
)

(D−1∆x + D∆s)
]

= − ρ
nµ

[(
nµ
ρ

V −1e− V e
)T

(D−1∆x + D∆s)
]

= − ρ
nµ

[(
V −1

(
nµ
ρ

e− V 2e
))T

(D−1∆x + D∆s)
]

= − ρ
nµ

[(
V −1

(
nµ
ρ

e−XSe
))T

(D−1∆x + D∆s)
]

= − ρ
nµ

[
(V −1 (S∆x + X∆s))

T
(D−1∆x + D∆s)

]

= − ρ
nµ

[
(D−1∆x + D∆s)

T
(D−1∆x + D∆s)

]

= − ρ
nµ
‖D−1∆x + D∆s‖2,

(9.58)
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onde a nona igualdade é conseqüência da terceira equação do sistema de
Newton (9.25). Temos também

‖X−1∆x‖2 + ‖S−1∆s‖2 = ‖V −1D−1∆x‖2 + ‖V −1D∆s‖2

≤ ‖V −1‖2 (‖D−1∆x‖2 + ‖D∆s‖2)
≤ 1

v2
min

(‖D−1∆x‖2 + ‖D∆s‖2) .
(9.59)

onde a última desigualdade decorre da relação ‖A‖ ≤
√
‖A‖1‖A‖∞, válida

para toda matriz A, e demostrada em ([GoVo 96, corolário 2.3.2, pp.58]).
Finalmente, utilizando novamente o resultado do lema 9.1, temos que

‖D−1∆x + D∆s‖2 = (D−1∆x + D∆s)T (D−1∆x + D∆s)
= ‖D−1∆x‖2 + 2∆xT ∆s + ‖D∆s‖2

= ‖D−1∆x‖2 + ‖D∆s‖2.
(9.60)

Portanto, utilizando as relações (9.57), (9.58), (9.59), (9.60), temos

f(x̃, s̃)− f(x, s) ≤ −α ρ
nµ
‖D−1∆x + D∆s‖2

+ α2

2(1−β)
1

v2
min
‖D−1∆x + D∆s‖2

Lema 9.9 Seja x, s > 0 e ρ ≥ n +
√

n. Então

‖D−1∆x + D∆s‖ ≥ nµ

ρ

1

vmin

√
3

2
.

Demonstração

ρ2

n2µ2‖D−1∆x + D∆s‖2 = ‖V −1e− ρ
nµ

v‖2

= ‖V −1e‖2 − 2 ρ
nµ

eT V −1v + ρ2

n2µ2‖v‖2.

Considerando que

V = (XS)
1
2 ⇒ ‖v‖2 =

n∑

i=1

xisi = xT s = nµ

e
eT V −1v = eT e = n,

temos
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ρ2

n2µ2‖D−1∆x + D∆s‖2 = ‖V −1e‖2 − 2 ρ
µ

+ ρ2

nµ

= ‖V −1e‖2 + ρ2−2nρ
nµ

= ‖V −1e‖2 + (ρ−n)2−n2

nµ

≥ ‖V −1e‖2 + (n+
√

n−n)2−n2

nµ

= ‖V −1e‖2 + n−n2

nµ

= ‖V −1e‖2 − n2

nµ
+ 1

µ

= ‖V −1e‖2 − 2n2

nµ
+ n2

nµ
+ 1

µ

= ‖V −1e‖2 − 2n2

nµ
+ nµ

µ2 + 1
µ

= ‖V −1e‖2 − 2n
µ

+ 1
µ2‖v‖2 + 1

µ

= ‖V −1e‖2 − 2
µ
eT V −1v + 1

µ2‖v‖2 + 1
µ

= ‖V −1e− 1
µ
v‖2 + 1

µ

≥
(

1
vmin

− 1
µ
vmin

)2
+ 1

µ

= 1
µ2

{(
µ

vmin
− vmin

)2
+ µ

}

= 1
µ2

{(
µ

2vmin
− vmin

)2
+ 3

4
µ2

v2
min

}

≥ 3
4

1
v2
min

onde a segunda desigualdade mais uma vez decorre da relação

‖A‖ ≤
√
‖A‖1‖A‖∞.

Teorema 9.5 Seja ρ ≥ n +
√

n. Então existe α̃, tal que

f(x + α̃∆x, s + α̃∆s)− f(x, s) ≤ −0.18.

Demonstração
Seja

α̃ =
vmin

2‖D−1∆x + D∆s‖ e β̃ =
1

2
.

Utilizando (9.59) e (9.60), temos

‖X−1∆x‖2 + ‖S−1∆s‖2 ≤ 1

v2
min

‖D−1∆x + D∆s‖2.

Portanto,

α̃‖X−1∆x‖∞ ≤ α̃‖X−1∆x‖ ≤ α̃ 1
vmin

‖D−1∆x + D∆s‖
= vmin

2‖D−1∆x+D∆s‖
1

vmin
‖D−1∆x + D∆s‖

= 1
2

= β̃
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e

α̃‖S−1∆s‖∞ ≤ α̃‖S−1∆s‖ ≤ α̃ 1
vmin

‖D−1∆x + D∆s‖
= vmin

2‖D−1∆x+D∆s‖
1

vmin
‖D−1∆x + D∆s‖

= 1
2

= β̃.

Conseqüentemente, α̃ e β̃ satisfazem as especificações (9.56) e (9.55) respec-
tivamente, e podemos então, utilizar os resultados dos lemas e teoremas
anteriores.

Do lema 9.8, temos

f(x + α̃∆x, s + α̃∆s) − f(x, s)
≤ −α̃ ρ

nµ
‖D−1∆x + D∆s‖2

+ α̃2

2(1−β̃)
1

v2
min
‖D−1∆x + D∆s‖2

= − vmin

2‖D−1∆x+D∆s‖
ρ

nµ
‖D−1∆x + D∆s‖2

+
v2
min

4‖D−1∆x+D∆s‖2
1

2(1−β̃)
1

v2
min
‖D−1∆x + D∆s‖2

= −vmin

2
ρ

nµ
‖D−1∆x + D∆s‖+ 1

8(1−β̃)
.

Utilizando agora o resultado do lema 9.9, temos

f(x + α̃∆x, s + α̃∆s)− f(x, s) ≤ −vmin

2
ρ

nµ

√
3

2vmin

nµ
ρ

+ 1
8(1−β̃)

= −
√

3
4

+ 1
8(1−β̃)

.

Finalmente, considerando β̃ = 1
2
, temos

f(x + α̃∆x, s + α̃∆s)− f(x, s) ≤ −0.18.

Considerando agora ρ = n +
√

n e δ = 0.18 em (9.53), chegamos a ordem
do número de iterações realizadas pelo algorimo 9.3, O(

√
n log 1

ε
).

Exemplo 9.7 Resolver o problema de programação linear (9.13) utilizando
o algoritmo de redução potencial.

É dada uma solução inicial interior viável para o problema: x1 = 1, x2 =
1, u1 = 2, u2 = 2, u3 = 2. Em seguida, reescrevemos os problemas primal e
dual na forma padrão, com a adição de variáveis de folga xi, i = 3, . . . , 5 e
sj, j = 1, . . . , 5. A solução inicial interior viável correspondente é
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x0 = (1 1 3 5 13)T ,
u0 = (2 2 2)T ,
s0 = (5 1 2 2)T .

O gap de dualidade em (x0, s0) é x0T
s0 = 48 e

µ0 = x0T
s0/n = 9.6.

O valor da função potencial neste ponto inicial é dado por:

f(x0, s0) = ρ log x0T
s0 −

n∑

i=1

log x0
i s

0
i = 281.3782,

onde ρ = 2n = 75. Para definir a direção de busca resolvemos o sistema
linear




0 AT −I
A 0 0
S0 0 X0







∆x0

∆u0

∆s0


 =




0
0

τµ0e−X0S0e


 ;

onde

A =




1 1
1 1

3 2 1


 ,

X0 =




1
1

3
5

13




,

S0 =




5
1

2
2

2




,

τ = n/ρ = 0.0667,
τµ0e−X0S0e = (−4.3600 − 0.3600 − 5.3600 − 9.3600 − 25.3600)T .

A solução do sistema linear é dada por
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∆x0 = (0.1206 2.6309 − 0.1206 − 2.6309 − 5.6236)T ,
∆u0 = (−1.7063 − 0.8197 − 1.0856)T ,
∆s0 = (−4.9631 − 2.9909 − 1.7063 − 0.8197 − 1.0856)T .

Uma vez calculada a direção a seguir, devemos agora calcular o tamanho do
passo que pode ser dado nesta direção. Iniciamos este cálculo pelo teste da
razão, já que as componentes de x e s devem se manter não negativas:

λ1 = minj=1,...,n{−x0
j/∆x0

j |∆x0
j < 0} = 1.9005,

λ2 = minj=1,...,n{−s0
j/∆s0

j |∆s0
j < 0} = 0.3344,

λ = min{1, 0.995 ∗min{λ1, λ2}} = 0.3327

Calculamos o valor da função potencial no ponto (x0 + λ∆x0, s0 + λ∆s0):

f(x0 + λ∆x0, s0 + λ∆s0) = ρ log (x0 + λ∆x0)
T
(s0 + λ∆s0)

− ∑n
i=1 log(x0

i + λ∆x0
i) ∗ (s0

i + λ∆s0
i)

= 259.5658.

Como
f(x0 + λ∆x0, s0 + λ∆s0) < f(x0, s0), (9.61)

tomamos o novo ponto como:

x1 = x0 + λ∆x0 = (1.0401 1.8752 2.9599 4.1248 11.1292)T ,
u1 = u0 + λ∆u0 = (1.4324 1.7273 1.6388)T ,
s1 = s0 + λ∆s0 = (3.3489 0.0050 1.4324 1.7273 1.6388)T .

O gap de dualidade em no novo ponto é x1T
s1 = 33.0959 e

µ1 = x1T
s1/n = 6.6192.

A primeira iteração do algoritmo está completa. Como o gap de dualidade
ainda é bastante grande, seguimos com uma nova iteração. Deixamos a
próxima iteração do algoritmo como exerćıcio para o leitor.

Lembramos que, caso a relação (9.61) não fosse satisfeita, deveŕıamos
calcular o menor q inteiro e positivo, tal que

f(x0 + (0.95)qλ∆x0, s0 + (0.95)qλ∆s0) < f(x0, s0).

O novo ponto, neste caso, seria

(x1, u1, s1) := (x0 + (0.95)qλ∆x0, u0 + (0.95)qλ∆u0, s0 + (0.95)qλ∆s0).

Apresentamos abaixo o programa em MATLAB que implementa o algoritmo
de redução potencial, no qual consideramos a precisão ε = 10−4.
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% Algoritmo de Reducao Potencial

n=5;

m=3;

k=0;

epsilon=10^(-8);

ro=2*n;

tal=n/ro;

A=[1 0 1 0 0;0 1 0 1 0;3 2 0 0 1];

%ler solucao inicial sol=[x,u,s]:

sol=input(’Entre com a solucao inicial sol=[x,u,s]:’);

x=sol(1:5)

s=sol(9:13);

gap=x’*s;

f = ro*log(gap) - sum(log(x.*s));

while (gap>= epsilon)

M=[zeros(n,n) A’ -eye(n,n); A zeros(m,m) zeros(m,n); ..

diag(s) zeros(n,m) diag(x)];

ld=[zeros(n,1); zeros(m,1) ; (tal*(gap/n)*ones(n,1)) ..

-(diag(x)*s)];

dir=M\ld;

%teste da razao

aux=[10];

for i=1:5

if(dir(i)<0)

aux = [aux; -sol(i)/dir(i)];

end

end

for i=9:13

if(dir(i)<0)

aux = [aux; -sol(i)/dir(i)];

end

end

perc = min(1,0.995*min(aux));

sol1=sol+perc*dir;

x1=sol1(1:5);

s1=sol1(9:13);

gap1=x1’*s1;

f1 = ro*log(gap1) - sum(log(x1.*s1));
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k 0 1 2 3 4 5 6 7
x1 1.0000 1.0401 0.8092 1.1349 2.0069 1.9997 2.0000 2.0000
x2 1.0000 1.8752 5.6794 5.9668 5.9830 5.9983 5.9999 6.0000

Tabela 9.8: Iterações geradas pelo Algoritmo de Redução Potencial

while (f1>f)

perc=0.95*perc;

sol1=sol+perc*dir;

x1=sol1(1:5);

s1=sol1(9:13);

gap1=x1’*s1;

f1 = ro*log(gap1) - sum(log(x1.*s1));

end

sol = sol1;

x=x1;

s=s1;

gap=gap1;

f=f1;

k=k+1;

end

Os valores de x1 e x2 obtidos pelo algoritmo a cada iteração k estão repre-
sentados na tabela 9.8. A trajetória definida pelos pontos gerados a cada
iteração do algoritmo, na região viável do problema, está representada na
figura 9.15.

9.7 Exerćıcios

1. Considere a transformação linear A ∈ IRm×n. Demonstre que um vetor
v ∈ IRn é ortogonal a I(AT ) se e só se v ∈ N (A).

2. Fazer programas em MATLAB para desenvolver os passos da segunda
iteração de cada um dos algoritmos abaixo na resolução do problema
(9.13).

(a) algoritmo Afim-Escala,

(b) algoritmo de trajetória central de passos curtos,

(c) algoritmo preditor-corretor,
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Figura 9.15: Algoritmo de Redução Potencial

(d) algoritmo de trajetória central de passos longos,

(e) algoritmo de trajetória central inviável,

(f) algoritmo de redução potencial.
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Caṕıtulo 10

Introdução à Programação
Inteira

Quando nos problemas de programação linear obrigarmos algumas ou todas
as variáveis de decisão a só admitirem valores inteiros, estaremos diante de
um problema de programação linear inteira. Como exemplo, seja

(P ) : maximizar z = x1 − 3x2 − 4x3

sujeito a:
2x1 + x2 − x3 ≤ 4
4x1 − 3x2 ≤ 2
3x1 + 2x2 + x3 ≤ 3

x1 ≥ 0
x2 ≥ 0

x3 ≥ 0

x2 e x3 inteiros.

O problema (P ) restringe x2 e x3 a valores inteiros não negativos, en-
quanto que x1 é um real qualquer não negativo. (P ) pode também ser de-
nominado de um problema de programação linear mista, pois nem todas as
variáveis são restritas a valores inteiros.

Podeŕıamos imaginar a solução de (P ) ignorando as restrições de integra-
lidade, para isto o problema seria considerado como sendo de programação
linear, visto nos caṕıtulos anteriores. Caso a solução obtida fornecesse va-
lores inteiros para todas as variáveis de decisão, teŕıamos também resolvido
o problema original (P ). No entanto, se algumas variáveis tomam valores
fracionários na solução do problema linear, quando deveriam ser inteiras, a
primeira idéia é tentar arredondar esses valores aos inteiros mais próximos
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de maneira que as soluções inteiras obtidas sejam viáveis. Infelizmente este
procedimento poderá fornecer soluções inteiras distantes do ótimo. A t́ıtulo
de ilustração consideraremos o seguinte exemplo.

(P ) : maximizar z = x1 + 19x2

sujeito a:
x1 + 20x2 ≤ 50
x1 + x2 ≤ 20

x1 ≥ 0
x2 ≥ 0

x1 e x2 inteiros.

Deixando de lado as restrições de integralidade o problema (P ) se tornará:

(P̄ ) : maximizar z = x1 + 19x2

sujeito a:
x1 + 20x2 ≤ 50
x1 + x2 ≤ 20

x1 ≥ 0
x2 ≥ 0.

(P̄ ) é um problema de programação linear que pode ser solucionado uti-
lizando o método do simplex. Para isto devemos acrescentar as variáveis de
folga x3 ≥ 0 e x4 ≥ 0 da seguinte maneira.

(P̄ ) : maximizar z = x1 + 19x2

sujeito a:
x1 + 20x2 + x3 = 50
x1 + x2 + x4 = 20

xj ≥ 0, j = 1, 2, 3, 4.

Resolveremos (P̄ ) na próxima seção e, ao mesmo tempo, apresentaremos o
método do simplex por operações entre colunas.
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10.1 Esquematizando o Método do Simplex

por Operações entre Colunas

Para resolver o problema (P̄ ) da seção anterior apresentaremos, para facilitar
a visão das iterações do método do simplex, uma disposição dos dados em
quadros proposta por Gomory [Go 58a]. Sem perda de generalidade (P̄ )
poderá ser escrito sob a seguinte forma.

(P̄ ) : maximizar z

sujeito a:
z = 0 −1(−x1) −19(−x2)

x1 = 0 −1(−x1) +0(−x2)
x2 = 0 +0(−x1) −1(−x2)
x3 = 50 +1(−x1) +20(−x2)
x4 = 20 +1(−x1) +1(−x2)

xj ≥ 0, j = 1, 2, 3, 4.

As equações acima poderão ser representadas esquematicamente pelo seguin-
te quadro:

Q1 1 −x1 −x2

z 0 −1 −19
x1 0 −1 0
x2 0 0 −1
x3 50 1 20
x4 20 1 1

O quadro acima denominado Q1, possui na primeira linha da esquerda
para direita sua denominação Q1 associada à coluna das variáveis, 1 asso-
ciado à coluna dos termos independentes (segundo membro), −x1 associado
à coluna da forma −(1 0 − B−1a1), e −x2 associado à coluna da forma
−(0 1 − B−1a2). As variáveis x1 e x2 são não básicas. Para x1 = x2 = 0
teremos x3 = 50 e x4 = 20. Assim sendo a matriz (a3 a4) = (e1 e2) é básica
primal viável de (P̄ ). Sobre o quadro Q1 poderemos aplicar os testes de oti-
malidade do método do simplex, assim como a escolha do pivô visando a
melhorar o valor da função objetivo z.

Retomemos o quadro inicial Q1.
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Q1 1 −x1 −x2

z 0 −1 −19
x1 0 −1 0
x2 0 0 −1
x3 50 1 20∗

x4 20 1 1

onde * representa o elemento pivô, isto é, a coluna associada à variável x2

entrará na base substituindo a coluna associada à variável x3.
Por operações de pivoteamento (método de eliminação de Gauss-Jordan),

já descritas sob forma matricial no caṕıtulo 3, obteremos os quadros seguin-
tes.

Q2 1 −x1 −x3

z 95
2

−1
20

19
20

x1 0 −1 0
x2

5
2

1
20

1
20

x3 0 0 −1

x4
35
20

19
20

∗ − 1
20

Q3 1 −x4 −x3

z 48 8
19

1
19

18
19

x1 18 8
19

20
19

− 1
19

x2 111
19

− 1
19

1
19

x3 0 0 −1
x4 0 −1 0

O quadro Q3 é ótimo (maximização), pois

z4 − c4 =
1

19
≥ 0 e z3 − c3 =

18

19
≥ 0.

Esse quadro nos fornece a seguinte solução ótima para (P̄ ),

x1 = 18
8

19
, x2 = 1

11

19
, x3 = x4 = 0,

fornecendo z = 48 8
19

.
Denominemos val(·) o valor da função objetivo no ótimo de (·) e bαc o

maior inteiro ≤ α. Então sabemos que, para o exemplo que estamos tratando,
bval(P̄ )c ≥ val(P ), pois (P̄ ) é uma relaxação de (P ), o conjunto de soluções
posśıveis de (P ) está contido no de (P̄ ) e todos os coeficientes da função
objetivo de (P ) são inteiros. Sabemos que b48 8

19
c = 48, logo se houver uma

solução viável de (P ) fornecendo para z um valor igual a 48, esta será ótima
de (P ).

Tentaremos arredondar a solução ótima de (P̄ ) visando à busca de uma
solução ótima de (P ).

• x1 = 19, x2 = 2, solução inviável para (P ).

• x1 = 18, x2 = 1, z = 37.
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• x1 = 18, x2 = 2, solução inviável para (P ).

• x1 = 19, x2 = 1, z = 38.

Outras soluções não provenientes de arredondamento da solução ótima
de (P̄ ).

• x1 = 0, x2 = 2, z = 38.

• x1 = 10, x2 = 2, z = 48 (solução ótima de (P ).

Pudemos observar nesse exemplo que o puro arredondamento da solução
ótima de (P̄ ) não fornece o ótimo de (P ), nem mesmo uma boa aproximação!

A seguir apresentaremos os métodos de planos de corte ou, simplesmente,
métodos de cortes.

10.2 Métodos de Planos de Corte

Consideremos novamente o seguinte problema:

(P ) : maximizar x0 =
n∑

j=1

cjxj

sujeito a:
n∑

j=1

aijxj = bi; i = 1, 2, ..., m;

xj ≥ 0, j = 1, 2, ..., n;

xj inteiro, j ∈ S ⊆ {1, 2, ..., n}.
Onde cj, aij e bi são números reais dados e xj variável de decisão.

Definamos F (·) como o conjunto de soluções viáveis de (·). Quando não
considerarmos as restrições xj inteiro, j ∈ S ⊆ {1, 2, ..., n} em (P ), teremos
a relaxação linear de (P ), denominada (P̄ ).

Os métodos de planos de corte são motivados visando à determinação da
envoltória convexa das soluções viáveis do problema de programação inteira
(P ). Uma vez essa envoltória convexa obtida, aplicamos o método do sim-
plex para otimizar a função objetivo de (P ) sujeito às restrições que definem
a envoltória convexa das soluções viáveis do problema de programação in-
teira (P ). Sabemos da grande dificuldade em obter a envoltória convexa dos
pontos inteiros que satisfaçam desigualdades lineares. O poliedro que define
essa envoltória convexa pode possuir um número enorme de desigualdades
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lineares, às vezes, este número é de ordem exponencial em função do número
de variáveis, por exemplo, 2n, onde n é o número de variáveis de (P ).

Define-se uma desigualdade linear válida para (P ) como uma desigual-
dade linear {x ∈ Rn | dT x ≤ α}, para d ∈ Rn, e α ∈ R, tal que para todo
x̄ ∈ F (P ), tem-se dT x̄ ≤ α.

Os métodos de planos de corte introduzem a cada iteração uma ou mais
desigualdades válidas à relaxação linear de (P ), já designada acima por (P̄ ),
isto é, introduzem desigualdades válidas ao problema obtido quando elimina-
mos as restrições de integralidade de (P ). Essas desigualdades válidas elimi-
nam uma solução fracionária de (P̄ ), sem eliminar as soluções inteiras viáveis
de (P ).

Uma desigualdade válida interessante para F (P ) é aquela para qual

{x ∈ Rn | dT x = α} ∩ F (P̄ ) 6= φ.

Um método clássico de corte foi proposto em 1958 por Gomory [Go 58a].
Passamos a apresentá-lo para (P ), quando S = {1, 2, ..., n}, isto é, todas as
variáveis têm que ser inteiras. O método começa resolvendo (P̄ ) pelo algo-
ritmo do simplex, se a solução obtida for inteira, teremos também resolvido
(P ). Caso contrário introduziremos uma desigualdade válida para (P ), que
eliminará a solução (P̄ )−ótima e um novo problema linear será obtido, o
processo se repete até a obtenção de uma solução inteira ou a inexistência
dessa solução.

Utilizando as notações dos caṕıtulos anteriores e que bαc representa o
maior inteiro menor ou igual a α ∈ R, supomos que tivéssemos resolvido (P̄ )
com o algoritmo do simplex e que B base ótima de (P̄ ): x̄B = B−1b ≥ 0, e
zj − cj ≥ 0, j ∈ IN . Existe um k ∈ {1, 2, ..., m} para o qual x̄B(k) 6∈ Z, desta
maneira a solução ótima de (P̄ ) não resolve (P ).

Consideremos
xB(k) = x̄B(k) −

∑

j∈IN

ykjxj. (10.1)

Podemos ainda escrever

xB(k) +
∑

j∈IN

ykjxj = x̄B(k),

onde xB(k) ≥ 0, x̄B(k) ≥ 0, xj ≥ 0, j ∈ IN , então

xB(k) +
∑

j∈IN

bykjcxj ≤ x̄B(k).

Ainda mais temos que xB(k) e xj, j ∈ IN têm que ser inteiros em (P ).
Assim

xB(k) +
∑

j∈IN

bykjcxj ≤ bx̄B(k)c. (10.2)
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É fácil observar que todas as soluções de F (P ) são também viáveis de
(10.2). Para transformar (10.2) numa igualdade, introduzimos uma variável
de folga s ≥ 0 e obtemos:

xB(k) +
∑

j∈IN

bykjcxj + s = bx̄B(k)c. (10.3)

Levando em consideração as equações (10.1) e (10.3) teremos

x̄B(k) −
∑

j∈IN

ykjxj +
∑

j∈IN

bykjcxj + s = bx̄B(k)c

ou
s = bx̄B(k)c − x̄B(k) +

∑

j∈IN

(ykj − bykjc)xj.

Definamos fkj = ykj−bykjc, j ∈ IN e fk0 = x̄B(k)−bx̄B(k)c, é fácil verificar
que 0 ≤ fkj < 1, e 0 < fk0 < 1. Assim

s = −fk0 +
∑

j∈IN

fkjxj,

e s ≥ 0 fornecendo ∑

j∈IN

fkjxj ≥ fk0. (10.4)

A desigualdade (10.4) é uma desigualdade linear válida para (P ). Esta
desigualdade é conhecida como sendo o corte de Gomory, ver [Go 58a].

Para ilustrar o método consideremos o seguinte exemplo.

Exemplo 10.1

(P ) : maximizar z = 2x1 + x2 + 0x3 + 0x4 + 0x5

sujeito a:
x1 + x2 + x3 = 5

−x1 x2 + x4 = 0
6x1 + 2x2 + x5 = 21

xj ≥ 0, j = 1, 2, 3, 4, 5

xj inteiro j = 1, 2, 3, 4, 5. (10.5)

Para resolver (P̄ ) utilizaremos o algoritmo do simplex, onde

A = (a1 a2 a3 a4 a5) =




1 1 1 0 0
−1 1 0 1 0

6 2 0 0 1


 , b =




5
0

21


 ,
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cT = (2 1 0 0 0).
Consideraremos

B = (a1 a2 a4) =




1 1 0
−1 1 1

6 2 0


 , logo B−1 =



−1

2
0 1

4
3
2

0 −1
4

−2 1 1
2


 ,

x̄B = B−1b =



−1

2
0 1

4
3
2

0 −1
4

−2 1 1
2







5
0

21


 =




11
4
9
4
1
2


 =




x̄B(1)

x̄B(2)

x̄B(3)


 .

Temos x̄B(1) = x̄1, x̄B(2) = x̄2, e x̄B(3) = x̄4. É fácil de observar que esta
base B está associada com uma solução ótima de (P̄ ), isto é, x̄1 = 11

4
, x̄2 =

9
4
, x̄4 = 1

2
, and x̄3 = x̄5 = 0. Esta não é uma solução inteira. Tomemos a

linha associada a x̄B(3) para gerar um corte de Gomory. Assim

xB(3) = x4 =
1

2
+ 2x3 − 1

2
x5.

Desta restrição obtemos

f30 =
1

2
, f33 = 0 e f35 =

1

2
,

o corte gerado de Gomory será

−1

2
x5 + s1 = −1

2
, e s1 ≥ 0.

Acrescentaremos uma nova linha e uma nova coluna a matriz A. A nova
base formada pelas colunas associadas a x1, x2, x4, e s1 é dual viável, as-
sim começaremos o problema de otimização utilizando o algoritmo dual do
simplex. A regra para a obtenção do pivô para este novo problema diz que
a coluna associada à variável s1 deixa a base e a coluna associada à variável
x5 entra na base.

Seja B1 a nova base,

B1 = (a1 a2 a4 a5) =




1 1 0 0
−1 1 1 0

6 2 0 1
0 0 0 −1

2


 ,

logo

B−1
1 =




−1
2

0 1
4

1
2

3
2

0 −1
4
−1

2

−2 1 1
2

1
0 0 0 −2


 ,
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x̄B1 = B−1
1 b =




−1
2

0 1
4

1
2

3
2

0 −1
4
−1

2

−2 1 1
2

1
0 0 0 −2







5
0

21
−1

2


 =




5
2
5
2

0
1


 =




x̄1

x̄2

x̄4

x̄5


 .

B1 está associada a uma solução ótima, mas esta solução ainda não é in-
teira. Tomemos a linha associada a x̄1 para gerar o novo corte de Gomory,
obteremos

s2 = −1

2
+

1

2
x3 +

1

2
s1, s2 ≥ 0.

A regra do simplex nos indica que a coluna associada à variável s2 deixará
a base e a coluna associada à variável x3 entrará. Seja B2 a nova base,

B2 = (a1 a2 a3 a4 a5) =




1 1 1 0 0
−1 1 0 1 0

6 2 0 0 1
0 0 0 0 −1

2

0 0 −1
2

0 0




,

logo

B−1
2 =




−1
2

0 1
4

1
2
−1

3
2

0 −1
4
−1

2
3

0 0 0 0 −2
−2 1 1

2
1 −4

0 0 0 −2 0




,

x̄B2 = B−1
2 b =




−1
2

0 1
4

1
2
−1

3
2

0 −1
4
−1

2
3

0 0 0 0 −2
−2 1 1

2
1 −4

0 0 0 −2 0







5
0

21
−1

2

−1
2




=




3
1
1
2
1




=




x̄1

x̄2

x̄3

x̄4

x̄5




.

Esta última solução é uma solução ótima inteira, resolvendo (P ). Para
esse pequeno exemplo tivemos que gerar apenas dois cortes de Gomory para
resolvê-lo. O método de Gomory possuirá convergência finita quando todos
os dados de (P ) forem inteiros, mas para isso tem-se que seguir uma ordem
especial na geração dos cortes apresentada por Gomory em [Go 58a], ver
[Sa 75, Ma 78].

A seguir apresentaremos um método de solução para (P ) quando todas
as variáveis forem restritas a tomarem valores zero ou um.
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10.3 Método de Balas para Otimização Line-

ar 0-1

Balas apresentou em [Ba 63] e [Ba 65] um método de enumeração impĺıcita
para a solução do problema de programação linear inteira 0 − 1 ou pro-
gramação linear bivalente, no qual somente as operações de soma, de sub-
tração e de comparação são utilizadas.

Consideremos o seguinte problema

(P ) : minimizar x0 =
n∑

j=1

cjxj

sujeito a:
n∑

j=1

aijxj ≤ bi, i = 1, 2, ..., m

xj ∈ {0, 1}, j = 1, 2, ..., n,

onde cj, aij e bi são números reais dados e xj variável bivalente de decisão.
O problema (P ) definido acima é de programação linear bivalente (0, 1).
Poderemos sempre supor, sem perda de generalidade, que cj ≥ 0, j =

1, 2, ..., n, pois caso exista um k para o qual ck < 0, faremos uma mudança
de variável: xk = 1 − tk, tk ∈ {0, 1}. Seja I = {1, 2, ..., n}, assim teremos
x0 =

∑
j∈I−{k} cjxj − cktk + ck.

E passaremos a minimizar

x0 − ck =
∑

j∈I−{k}
cjxj − cktk.

Durante toda esta seção suporemos que cj ≥ 0, j = 1, 2, ..., n.
Definiremos também c = (c1 c2 ... cn), bT = (b1 b2 ... bm) e A = (aij)m×n,

uma matriz com m linhas e n colunas; xT = (x1 x2 ... xn).
O problema (P ) poderá ser também escrito sob a seguinte forma:

(P ) : minimizar x0 = cx (10.6)

sujeito a:
Ax ≤ b (10.7)

x ∈ {0, 1}n. (10.8)

Uma solução de (10.8) será representada pelo vetor xp = (xp
1 xp

2 ... xp
n),

ou também pelo conjunto Jp = {j | xj = 1 }, por exemplo

x7 = (0 1 1 1 0 0 1 1)T ∈ {0, 1}8, ou J7 = {2, 3, 4, 7, 8}.
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Uma solução xq de (10.8) é dita descendente de xp se Jp ⊂ Jq, por exemplo

xq = (1 1 1 0 1 1)T é descendente de xp = (0 0 1 0 1 1)T .

Em alguns problemas certas variáveis são fixadas a priori, vejamos nos
exemplos a seguir:

3x1 + 7x2 + 2x3 + x4 ≤ 5 implica que x2 = 0.

2x1 + 8x2 + x3 + x4 ≥ 9 implica que x2 = 1.

No caso em que ambas restrições acima façam parte de (10.7), o problema
(P ) será vazio.

Proposição 10.1 Se xp ∈ {0, 1}n, então
∑

j∈Jp
cjxj ≤ ∑

j∈Jk
cjxj para todas

as soluções xk descendentes de xp.

Demonstração:
Basta lembrarmos que cj ≥ 0, j = 1, 2, ..., n e que Jp ⊂ Jk.

Proposição 10.2 Se x0 = (0 0 ... 0)T satisfizer (10.7) então x0 será também
uma solução ótima de (P ).

Demonstração:
x0 =

∑n
j=1 cjxj ≥ 0, mas cx0 = 0, assim sendo x0 é uma solução ótima de

(P ).

Observação: o esquema de enumeração que será apresentado a seguir supõe
que a solução inicial x0 seja tal que J0 = φ, isto é, x0 = (0 0 ... 0)T ; pois
caso x0 satisfaça também 10.7, neste caso bi ≥ 0, i = 1, 2, ..., m, então x0

será uma solução ótima de (P ).

10.3.1 Esquema de Enumeração

Suponhamos que estejamos em uma solução xp de (10.8) e que x̄0 seja o
melhor valor da função objetivo de (P ) associada a uma solução viável de
(P ), isto é, existe xk, tal que x̄0 =

∑
j∈Jk

cj e que xk satisfaça (10.7) e
(10.8). Caso não tenhamos ainda encontrado uma solução viável, colocamos
x̄0 = +∞.

A partir da solução xp desejamos obter xq descendente de xp, tal que
|Jq| = |Jp|+ 1 ou melhor Jq = Jp ∪ {l}.

Consideremos as seguintes hipóteses.
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1. xp é viável de (P ), neste caso não nos interessa buscar uma solução xq

descendente de xp, pois
∑

j∈Jp
cj ≤ ∑

j∈Jq
cj, ver propriedade 1.

2. Se ∑

j∈Jp

cj + cl ≥ x̄0, ∀l 6∈ Jp,

isto quer dizer que todas as soluções descendentes de xp fornecerão
valores à função objetivo (10.6) sempre superiores ou iguais a x̄0, neste
caso não nos interessará também enumerar as soluções descendentes de
xp.

3. Se existir um i tal que

bi −
∑

j∈Jp

aij −
∑

j 6∈Jp

min{ 0, aij } < 0,

nunca haverá uma uma solução descendente de xp viável de (P ), desta
maneira não teremos interesse em enumerar as descendentes de xp.

As três condições discutidas acima serão definidas como condições de
parada em xp.

Quando tivermos parado em xp por uma das três condições, teremos enu-
merado implicitamente todas as soluções descendentes de xp.

Caso em xp não satisfaçamos nenhuma condição de parada, temos que
procurar uma solução descendente de xp, por exemplo, xq, tal que Jq =
Jp ∪ {l}, onde, evidentemente, l 6∈ Jp.

Consideremos si = bi − ∑n
j=1 aijxj e si ≥ 0, i = 1, 2, ..., m, si será a

variável de folga associada à restrição i.
Seja sp

i = bi−∑
j∈Jp

aij, isto é, sp
i representa o valor de si quando x = xp.

Em xp podemos definir os seguintes conjuntos:

Ap =



k | ∑

j∈Jp

cj + ck ≥ x̄0, k 6∈ Jp



 ,

Dp = {k | se para todo i com sp
i < 0, aik ≥ 0, k 6∈ Jp},

e
Cp = {1, 2, ..., n} − (Jp ∪ Ap ∪Dp).

O conjunto Cp fornecerá os ı́ndices das variáveis candidatas a tomarem
valor igual a um, isto é, um ı́ndice l ∈ Cp para formar Jq = Jp ∪ {l}.

Seja dp
j =

∑m
i=1 min{ 0, sp

i − aij }, j ∈ Cp e

dp
l = max

j∈Cp

{dp
j}.
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Dizemos que dp
l é a “menor”soma das inviabilidades.

Caso dp
l = 0, então a solução descendente associada ao conjunto Jq =

Jp ∪ {l} será viável de (P ).
No caso em que haja mais de um ı́ndice para o qual dp

j = 0, isto é, o
conjunto

Lp = {j ∈ Cp | dp
j = 0}

possui cardinalidade maior ou igual a dois. O ı́ndice l ∈ Lp escolhido para
formar a solução descendente de xp será o l associado a

cl = min
j∈Lp

{cj}.

É fácil verificar que no caso de que nenhuma solução de parada seja
verificada teremos Cp 6= φ.

Supomos agora que em xq descendente de xp, o conjunto Cq seja vazio, ou
ainda, uma das três condições de parada seja verificada. Teremos que voltar
de xq para xp e para isso atualizaremos Cp de duas maneiras:

1. Cp := Cp − {l}, onde l é tal que Jq = Jp ∪ {l},
2. Ap poderá ser modificado caso x̄0 também o seja, acarretando outra

modificação em Cp.

O retorno de xq para xp é denominado de backtracking.
A enumeração termina completamente quando C0 = φ. Lembremos que

x̄0 é sempre atualizado durante a enumeração. Caso (P ) seja vazio então
x̄0 = +∞ no final da enumeração.

Exemplo 10.2 Este exemplo foi tomado de [Ba 65].

(P ) : minimizar x0 = 5x1 + 7x2 + 10x3 + 3x4 + x5

sujeito a:

−x1 + 3x2 − 5x3 − x4 + 4x5 ≤ −2
2x1 − 6x2 + 3x3 + 2x4 − 2x5 ≤ 0

x2 − 2x3 + x4 + x5 ≤ −1

xj ∈ { 0, 1 }, j = 1, 2, 3, 4, 5.
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Definiremos as variáveis de folga si :

s1 = −2 + x1 − 3x2 + 5x3 + x4 − 4x5 ≥ 0
s2 = 0 − 2x1 + 6x2 − 3x3 − 2x4 + 2x5 ≥ 0
s3 = −1 − x2 + 2x3 − x4 − x5 ≥ 0

Etapa inicial

x0 = (0 0 0 0 0)T , J0 = φ, s0
1 = −2, s0

2 = 0, s0
3 = −1.

Como sp
i < 0, i = 1, 3, então x0 é inviável. Suporemos x̄0 = +∞, isto é, não

conhecemos nenhuma solução viável para (P ). As duas primeiras condições
de parada não são verificadas, vejamos a terceira:

−2 + 1 + 0 + 5 + 1 + 0 = 5 ≥ 0,

0 + 0 + 6 + 0 + 0 + 2 = 8 ≥ 0,

−1 + 0 + 0 + 2 + 0 + 0 = 1 ≥ 0,

também não é verificada.
Necessitamos encontrar uma solução descendente de x0. Para isso definire-

mos os seguintes conjuntos: A0 = φ, pois x̄0 = +∞, D0 = {2, 5}, logo

C0 = {1, 2, 3, 4, 5} − (A0 ∪D0 ∪ J0) = {1, 3, 4},

isto é, as variáveis x1, x3 e x4 são as candidatas a tomarem o valor um
(apenas uma entre elas o tomará). Calculemos d0

j , j ∈ C0 :

d0
1 = −1− 2− 1 = −4; d0

3 = 0− 3 + 0 = −3; d0
4 = −1− 2− 2 = −5

e
d0

3 = max{d0
1, d

0
3, d

0
4} = −3;

ir à etapa 1.

Etapa 1
J1 = J0∪{3} = {3}, pois J0 = φ. Teremos então s1

1 = 3, s1
2 = −3, s1

3 = 1.
Assim sendo x1 = (0 0 1 0 0)T não é viável, x̄0 continua igual a +∞. As duas
primeiras condições de parada não são satisfeitas e a terceira

3 + 1 + 0 + 1 + 0 = 5 ≥ 0,

−3 + 0 + 6 + 0 + 2 = 5 ≥ 0,
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1 + 0 + 0 + 0 + 0 = 1 ≥ 0,

também não é verificada. Passaremos então a buscar uma solução descen-
dente de x1.

A1 = φ, pois x̄0 = +∞. Lembremos que D1 = {1, 4}, logo

C1 = {1, 2, 3, 4, 5} − ({1, 4} ∪ {3}) = {2, 5}.

Sabemos também que d1
2 = 0 + 0 + 0 = 0, d1

5 = −1 − 1 + 0 = −2, logo
d1

2 = max{d1
2, d1

5} = 0 (a próxima solução descendente será viável), ir à
etapa 2.

Etapa 2
J2 = J1 ∪ {2} = {2, 3}, x2 = (0 1 1 0 0)T , s2

1 = 0, s2
2 = 3, s2

3 = 0, x2

é viável, cx2 = c2 + c3 = 7 + 10 = 17, logo x̄0 será atualizado, x̄0 = 17. A
primeira regra de parada é satisfeita. Ir à etapa 3.

Etapa 3 (backtracking)
Na realidade voltamos á etapa 1, onde J1 = {3} e x1 não é viável, mas

agora x̄0 = 17. Impediremos que a variável x2 seja candidata a tomar valor
igual a um, ela ficará zerada, para que não encontremos novamente a solução
associada à etapa 2. Neste caso a terceira condição de parada é verificada:

3 + 1 + 1 + 0 = 5 ≥ 0,

−3 + 0 + 0 + 2 = −1 < 0,

1 + 0 + 0 + 0 = 1 ≥ 0.

Ir para a etapa 4.

Etapa 4 (backtracking)
Voltamos à etapa inicial, onde J0 = φ e a variável x3 será fixada a zero.

Lembremos que x2 é uma variável candidata novamente a tomar o valor um.
Sabemos que x̄0 = 17. A terceira condição de parada é verificada:

−2 + 1 + 0 + 1 + 0 = 0 ≥ 0

0 + 0 + 6 + 0 + 2 = 8 ≥ 0

−1 + 0 + 0 + 0 + 0 = −1 < 0.

Como estamos na etapa inicial e não temos mais possibilidades de buscar
soluções descendentes viáveis com x3 = 0, assim sendo temos a parada final.
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A melhor solução encontrada é x2 = (0 1 1 0 0)T , fornecendo x̄0 = 17. Logo
x2 é a solução ótima.

Observemos no exemplo que na etapa 2 temos J2 = {3, 2} e quando
voltamos à etapa 1 (etapa 4 ), J1 = {3} fixando x2 = 0, por convenção
podemos designar esta etapa pelo conjunto {3,−2}, isto significa que x3 = 1
e x2 = 0 para toda busca dos descendentes.

10.3.2 Convergência do Método de Balas

A seguir forneceremos uma enumeração impĺıcita finita baseada nos trabalhos
de Glover [Gl 65] e Geoffrion [Ge 67]. Nunca enumeraremos explicitamente
a mesma solução mais de uma vez, assim sendo a enumeração termina.

Enunciaremos o algoritmo de Balas, utilizando uma estrutura de pilha.
Essa pilha representa o conjunto dos ı́ndices associados às variáveis fixadas.

Seja a pilha π, para a qual p(j) será sua j-ésima componente, tal que:

p(j) > 0 se xp(j) = 1 e

p(j) < 0 se xp(j) = 0.

Por exemplo,
π = [−3, 2,−7,−4],

isto é,
x3 = 0, x2 = 1, x7 = 0, x4 = 0

são os valores fixos, todas as soluções descendentes xk da solução associada
a π não terão os ı́ndices 3, 7 e 4 pertencendo a Jk.

Procedimento de Balas

Fase 0 (inicialização)

π = φ; x̄0 = +∞;

Fase 1 Se uma das condições de parada for verificada (no caso de ser a primeira,
isto é, π está associada a uma solução viável de (P ), xp, neste caso se
cxp < x̄0 far-se-á x̄0 = cxp e a melhor solução até o momento é xp), ir
para a fase 2;

Caso contrário, ir para a fase 3;
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Fase 2 Enquanto o último elemento da pilha for negativo, removê-lo da pilha;

Se a pilha for vazia, ir para a fase 4;

Caso o último elemento da pilha for positivo, trocar seu sinal e ir para
a fase 1;

Fase 3 Escolher uma variável xk pelo critério aconselhado e colocar na pilha o
elemento k, ir para a fase 1;

Fase 4 Pare, solução associada a x̄0 será ótima se x̄0 6= +∞; o problema será
vazio se x̄0 = +∞;

No exemplo tratado anteriormente teŕıamos:

π = φ (inicio);
π = [3];
π = [3, 2];
π = [3,−2];
π = [−3];
π = φ (fim).

10.3.3 Otimização Não Linear 0-1

Nos problemas de Otimização Não Linear em variáveis 0-1, quando os termos
não lineares são produtos de variáveis 0-1, podemos linearizá-los da seguinte
maneira.

Seja o produtório de p variáveis xj ∈ {0, 1}, j = 1, 2, ..., p, isto é,
∏p

j=1 xj.
Utilizando uma transformação de Fortet [Fo 60], teremos:

y =
p∏

j=1

xj,

y ≥ 0,

y ≤ xj, j = 1, 2, ..., p,

p∑

j=1

xj − p + 1 ≤ y.

Verificamos facilmente se xj = 0 teremos y = 0, e se xj = 1, para j =
1, 2, ..., p, teremos y = 1. Assim sendo y ∈ {0, 1}.
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Exemplo 10.3

minimizar x0 = 3x1 + 4x5
2 − 5x1x2x3 + 3x1x3,

sujeito a :
xj ∈ {0, 1}, j = 1, 2, 3.

Como x2 ∈ {0, 1}, logo x5
2 = x2.

Façamos y = x1x2x3 e t = x1x3.
O problema poderá ser escrito da seguinte forma:

minimizar x0 = 3x1 + 4x2 − 5y + 3t,
sujeito a:

y ≤ x1, y ≤ x2, y ≤ x3, x1 + x2 + x3 − 2 ≤ y,
t ≤ x1, t ≤ x3, x1 + x3 − 1 ≤ t,

y ≥ 0, t ≥ 0 e xj ∈ {0, 1}, j = 1, 2, 3.

Ou ainda:

minimizar x0 = 3x1 + 4x2 − 5y + 3t,
sujeito a:

y ≤ x1, y ≤ x2, y ≤ x3, x1 + x2 + x3 − 2 ≤ y,
t ≤ x1, t ≤ x3, x1 + x3 − 1 ≤ t,

y ∈ {0, 1}, t ∈ {0, 1} e xj ∈ {0, 1}, j = 1, 2, 3.

Poderemos resolver esta última formulação do problema pelo método de
Balas.

10.4 Métodos de “Branch-and-Bound”

Os métodos de “branch-and-bound” foram desenvolvidos a partir do tra-
balho pioneiro de Land e Doig [LaDo 60]. O termo “branch-and-bound” foi
empregado pela primeira vez em [LiMuSwKa 63].

Apresentaremos a seguir a versão proposta por Dakin [Da 65] para os
métodos de enumeração impĺıcita do tipo “branch-and-bound”.

10.4.1 Ilustração dos Métodos de “Branch-and-Bound”

Seja
(P ) : maximizar x0 = c1x + c2y
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sujeito a:
A1x + A2y ≤ b

x ≥ 0

y ≥ 0

x inteiro,

onde cT
1 ∈ Rp, cT

2 ∈ Rq, x ∈ Rp, y ∈ Rq, b ∈ Rm, A2 ∈ Rm×p e A1 ∈ Rm×q.
Sabemos que (P ) pode também ser escrito como se segue:

(P ) : maximizar x0 (10.9)

c1x + c2y − x0 ≥ 0 (10.10)

A1x + A2y ≤ b (10.11)

x ≥ 0 (10.12)

y ≥ 0 (10.13)

x inteiro. (10.14)

O conjunto formado pelas restrições (10.10) até (10.13), caso não seja
vazio, é um conjunto poliédrico convexo emRp+q+1. Projetemos este conjunto
poliédrico sobre o plano xl×x0, onde xl é uma componente de x. Esta projeção
está ilustrada à figura 10.1.

Podemos observar que x̄0 = val(P̄ ), onde (P̄ ) é a relaxação linear de (P ),
isto é, a restrição de integralidade (10.14) não é considerada. Suponhamos
que x̄l 6∈ Z seja o valor de xl na solução ótima de (P̄ ). Verificamos, na
figura 10.1, que x1

0 é o maior valor que x0 poderá assumir quando somente a
variável xl deva ser inteira. Dependendo da ilustração x2

0 poderia ser maior
do que x1

0. Logo poderemos concluir que o maior valor de x0 supondo apenas
a variável xl restrita a valores inteiros será observado para xl = bx̄lc ou para
xl = bx̄lc+ 1.

Denominemos F (·) o conjunto dos pontos que satisfazem as restrições do
problema (·).

O método proposto por Dakin [Da 65] começa verificando se a solução de
(P̄ ) satisfaz às restrições de integralidade (10.14). Caso afirmativo teremos
também resolvido (P ). Caso contrário tomaremos uma variável xl para a qual
o seu valor x0

l não seja inteiro no ótimo de (P̄ ), construiremos dois problemas
descendentes diretos:

• (P1), para o qual F (P1) = F (P̄ ) ∩ {x ∈ Rp | xl ≤ bx0
l c};

• (P2), para o qual F (P2) = F (P̄ ) ∩ {x ∈ Rp | xl ≥ bx0
l c+ 1}.
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Figura 10.1: Projeção sobre xl × x0

Introduziremos a noção de nós abertos e fechados associados aos proble-
mas (Pi). Cada problema (Pi) será associado a um nó (que será também
designado de (Pi)) de uma árvore binária desenvolvida para enumerar (im-
plicitamente) as soluções de (P ). Um problema (Pi) ou seu nó associado é
dito fechado se:

• F (Pi) = φ;

• (Pi) possui uma solução ótima onde todas as componentes de x são
inteiras;

• val(Pi) ≤ x̂0 (no caso de maximização de x0), onde x̂0 é o melhor valor
obtido para x0, tal que (x, y) ∈ F (P ), até o desenvolvimento atual da
árvore de enumeração. Dizemos que x̂0 é a melhor cota inferior para
val(P ) até o momento considerado da enumeração.

Outras condições poderão ser introduzidas visando a fechar um nó.
Um nó será aberto se tivermos que construir e resolver seus dois nós

descendentes diretos.
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Podemos iniciar com um x̂0 associado a uma solução heuŕıstica para (P ),
isto é, (x, y) ∈ F (P ), ou começar com x̂0 = −∞, para o caso de maximização.
Há métodos heuŕısticos interessantes para várias classes de problemas com-
binatórios, ver [CaMa 94].

Teremos uma lista de nós abertos e uma outra de nós fechados. Quando a
lista de nós abertos se tornar vazia, o método de branch-and-bound terminará.
Algo que será melhor entendido através de um exemplo mais abaixo.

Sejam (Pq) e (Pq+1) os descendentes diretos de (Pi) :

• (Pq), para o qual F (Pq) = F (Pi) ∩ {x ∈ Rp | xl ≤ bxi
lc};

• (Pq+1), para o qual F (Pq+1) = F (Pi) ∩ {x ∈ Rp | xl ≥ bxi
lc+ 1}.

Onde xi
l é o valor não inteiro da variável xl na solução de (Pi).

Como F (Pq) ⊆ F (Pi) e F (Pq+1) ⊆ F (Pi) então teremos que val(Pq) ≤
val(Pi) e val(Pq+1) ≤ val(Pi).

É fácil verificar que se F (Pq) 6= φ, teremos que xq
l = bxi

lc e que se
F (Pq+1) 6= φ, teremos que xq+1

l = bxi
lc + 1, onde xq

l é o valor de xl no
ótimo de (Pq) e xq+1

l é o valor de xl no ótimo de (Pq+1).

Exemplo 10.4 Seja

(P ) : maximizar x0 = −4x1 − 5x2

sujeito a:
x1 + 4x2 − x3 = 5

3x1 + 2x2 − x4 = 7

x1 ≥ 0
x2 ≥ 0

x3 ≥ 0
x4 ≥ 0

x1 e x2 inteiros.

Inicialmente teremos que resolver (P̄ ), isto é, consideraremos a solução
da relaxação linear de (P ), as restrições de integralidade não serão levadas
em consideração. Para isso utilizaremos o método do simplex. Para facilitar
o desenvolvimento deste exemplo definiremos os seguintes vetores:

a1 = (1 3)T , a2 = (4 2)T , a3 = (−1 0)T , a4 = (0 − 1)T ,

b = (5 7)T , c = (−4 − 5 0 0) = (c1 c2 c3 c4).
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Verificamos que a matriz B = (a3 a4) = −I é inverśıvel e B−1 = −I.
Utilizando as notações anteriores temos que

x̄B = B−1

(
5
7

)
=

(
−5
−7

)
=

(
x̄3

x̄4

)
6≥ 0,

u = (c3 c4)B
−1 = (0 0)B−1 = (0 0),

z1 − c1 = (0 0)

(
1
3

)
− (−4) = 4 ≥ 0,

z2 − c2 = (0 0)

(
4
2

)
− (−5) = 5 ≥ 0.

A base B é dual viável de (P̄ ). Assim sendo, utilizaremos o método dual
do simplex para a solução de (P̄ ).

Faremos a coluna a4 sair da base, pois a4 está associada à variável x4, que
está com valor negativo, x4 = −7. Qual será a coluna que entrará na base no
lugar de a4? Calcularemos y21 e y22.

(
y11

y21

)
= y1 = B−1a1,

(
y12

y22

)
= y2 = B−1a2,

ou ainda,

(
−1 0

0 −1

) (
1
3

)
=

(
∗∗
−3

)
=

(
∗∗
y21

)
⇒ y21 = −3

e (
−1 0

0 −1

) (
4
2

)
=

(
∗∗
−2

)
=

(
∗∗
y22

)
⇒ y22 = −2.

Façamos o teste da razão:

min

{∣∣∣∣∣
z1 − c1

y21

∣∣∣∣∣ ,

∣∣∣∣∣
z2 − c2

y22

∣∣∣∣∣

}
= min

{∣∣∣∣
4

−3

∣∣∣∣ ,

∣∣∣∣
5

−2

∣∣∣∣
}

=
∣∣∣∣

4

−3

∣∣∣∣ =

∣∣∣∣∣
z1 − c1

y21

∣∣∣∣∣ ,

logo a1 entrará na base no lugar de a4.
A nova

B =

(
−1 1

0 3

)
,

cuja inversa

B−1 =

(
−1 1

3

0 1
3

)
.
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Teremos que

x̄B =

(
x̄3

x̄1

)
=

(
−1 1

3

0 1
3

) (
5
7

)
=

(
−8

3
7
3

)
6≥ 0,

a3 sairá da base. Façamos novamente as operações de atualização com a nova
base.

u = (c3 c1)B
−1 = (0 − 4)

(
−1 1

3

0 1
3

)
= (0 − 4

3
),

z2 − c2 = ua2 − c2 =
(
0 − 4

3

) (
4
2

)
− (−5) = −8

3
+ 5 =

7

3
,

z4 − c4 = ua4 − c4 =
(
0 − 4

3

) (
0

−1

)
− 0 =

4

3
.

Temos que calcular os novos valores de y12 e y14 :

(
y12

y22

)
= y2 = B−1a2,

(
y14

y24

)
= y4 = B−1a4,

ou ainda,

(
−1 1

3

0 1
3

) (
4
2

)
=

(
−10

3

∗∗
)

=

(
y12

∗∗
)
⇒ y12 = −10

3

e (
−1 1

3

0 1
3

) (
0

−1

)
=

(
−1

3

∗∗
)

=

(
y14

∗∗
)
⇒ y14 = −1

3
.

Façamos o teste da razão:

min
{∣∣∣ z2−c2

y12

∣∣∣ ,
∣∣∣ z4−c4

y14

∣∣∣
}

=

min
{∣∣∣ 7/3
−10/3

∣∣∣ ,
∣∣∣ 4/3
−1/3

∣∣∣
}

=
∣∣∣ 7/3
−10/3

∣∣∣ = 7
10

=
∣∣∣ z2−c2

y12

∣∣∣ ,

logo a2 entrará na base no lugar de a3.
Obtivemos a nova

B =

(
4 1
2 3

)
,

cuja inversa

B−1 =

(
3
10

− 1
10

− 2
10

4
10

)
.
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Teremos que

x̄B =

(
x̄2

x̄1

)
=

(
3
10

− 1
10

− 2
10

4
10

) (
5
7

)
=

(
8
10
18
10

)
≥ 0,

Esta última solução é ótima de (P̄ ), ela é primal e dual viável de (P̄ ).
No entanto, x̄1 6∈ Z e x̄2 6∈ Z, isto é, essas duas variáveis restritas a serem
inteiras não o são, assim sendo a solução de (P̄ ) não resolve (P ).

Para iniciar o método de enumeração escolheremos a variável x1 para
realizarmos as duas ramificações a partir de (P̄ ). Lembremos que na solução
de (P̄ ) obtivemos x1 = x̄1 = 18

10
= 1, 8 6∈ Z. Formaremos os dois problemas

(P1) e (P2) da seguinte maneira:

• F (P1) = F (P̄ ) ∩ {x ∈ R4 | x1 ≤ 1} e

• F (P2) = F (P̄ ) ∩ {x ∈ R4 | x1 ≥ 2}.

O próximo passo será a solução de (P1) e (P2). Para isso será utilizado o
método dual do simplex especializado para tratar restrições canalizadas. É
importante notar que a solução básica ótima de (P̄ ) é também uma solução
básica dual viável de (P1) e (P2).

Inicia-se o procedimento de enumeração fixando x̂0 = −∞ (melhor valor
da função objetivo obtida até este momento). No caso de não se ter uma
solução viável para (P ), faz-se x̂0 = −∞.

Na resolução dos (Pi), i = 1, 2, ... serão utilizadas as notações do caṕıtulo
8. No caso de (P1) tem-se que Iα = {3, 4}, Iβ = φ, α(1) = α(2) = α(3) =
α(4) = 0, β(1) = 1, β(2) = β(3) = β(4) = +∞. Observa-se que a variável
x1 está associada à segunda linha da matriz B−1N, cujos elementos são cal-
culados a seguir.

(
y13

y23

)
= y3 = B−1a3,

(
y14

y24

)
= y4 = B−1a4,

ou ainda,

(
3
10

− 1
10

− 2
10

4
10

) (
−1

0

)
=

(
− 3

10
2
10

)
=

(
y13

y23

)
⇒ y12 =

2

10

e

(
3
10

− 1
10

− 2
10

4
10

) (
0

−1

)
=

(
1
10

− 4
10

)
=

(
y14

y24

)
⇒ y24 = − 4

10
.
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Lα = {j ∈ Iα | y2j > 0} = {3} e Lβ = φ.

Como 3 é o único elemento de Lα e Lβ é vazio, a3 entrará na base sub-
stituindo a1.

Assim sendo Iα = {4}, Iβ = {1}, Lembrar que α(1) = α(2) = α(3) =
α(4) = 0, β(1) = 1, β(2) = β(3) = β(4) = +∞.

A nova base será

B =

(
4 −1
2 0

)
,

cuja inversa

B−1 =

(
0 1

2

−1 2

)
.

Sabemos que

xB =

(
x2

x3

)
= B−1b− y1x1 − y4x4.

Neste caso x1 = β(1) = 1 e x4 = α(4) = 0, logo

x̂B =

(
x̂2

x̂3

)
= B−1b− y1 =

(
0 1

2

−1 2

) (
5
7

)
−

(
0 1

2

−1 2

) (
1
3

)
;

x̂B =

(
x̂2

x̂3

)
=

(
7
2

9

)
−

(
3
2

5

)
=

(
2
4

)
.

A solução ótima obtida para (P1) é x1 = 1, x2 = 2, x3 = 4, x4 = 0,
fornecendo val(P1) = −14. O ótimo de (P1) é uma solução viável de (P ),
logo o problema (P1) não terá descendentes, isto é, o nó associado a este
problema será fechado. Por outro lado o valor atual da função objetivo de
(P ) é x̂0 = −∞, mas val(P1) > −∞, atualiza-se x̂0 = val(P1) = −14.

A resolução de (P2) será também feita a partir da solução ótima de (P̄ )),
como já visto acima. Sabe-se que Iα = {3, 4}, Iβ = φ, Lα = {j ∈ Iα | y2j <
0} = {4} e Lβ = φ. Só existindo um elemento em Lα = {4}, então a1 sairá
da base e a4 entrará. Para representar a nova solução básica tem-se: Iα =
{1, 3}, α(1) = 2, α(2) = α(3) = α(4) = 0, β(1) = β(2) = β(3) = β(4) = +∞
e Iβ = φ.

A nova base será

B = (a2 a4) =

(
4 −0
2 −1

)
,
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cuja inversa

B−1 =

(
1
4

0
2
4
−1

)
.

Sabemos que

xB =

(
x2

x4

)
= B−1b− y1x1 − y3x3.

Neste caso x1 = α(1) = 2 e x3 = α(3) = 0, logo

x̂B =

(
x̂2

x̂4

)
= B−1b− 2y1 =

(
1
4

0
2
4
−1

) (
5
7

)
− 2

(
1
4

0
2
4
−1

) (
1
3

)
;

x̂B =

(
x̂2

x̂4

)
=

(
5
4

−18
4

)
− 2

(
1
4

−10
4

)
=

(
3
4
2
4

)
≥ 0.

A solução ótima obtida para (P2) é x1 = 2, x2 = 3
4

= 0, 75, x3 =
0, x4 = 1

2
= 0, 5, fornecendo val(P2) = −47

4
= −11, 75. Como val(P2) =

−11, 75 > x̂0 = −14, o nó associado ao problema (P2) não poderá ser fechado.
Consideraremos seus descendentes (P3) e (P4) que podem ser:

• F (P3) = F (P2) ∩ {x ∈ R4 | x2 ≤ 0} e

• F (P4) = F (P2) ∩ {x ∈ R4 | x2 ≥ 1}.

Para solucionar (P3) utilizaremos o método dual do simplex com variáveis
canalizadas, algo já feito acima. A solução ótima de (P2) é dual viável de
(P3). A coluna a2 sairá da base. Sabe-se que Iα = {1, 3}, Iβ = φ, α(1) =

2, α(2) = α(3) = α(4) = 0, β(2) = 0, β(1) = β(3) = β(4) = +∞. É preciso
lembrar que a base associada á solução ótima de (P2) é

B = (a2 a4) =

(
4 −0
2 −1

)
,

cuja inversa

B−1 =

(
1
4

0
−2

4
−1

)
.

Determina-se:

y1 =

(
y11

y21

)
= B−1a1 =

(
1
4

−10
4

)
, y3 =

(
y13

y23

)
= B−1a3 =

(
−1

4

−2
4

)
.
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Ter-se-á Lα = {j ∈ Iα | y1j > 0} = {1} e Lβ = φ. Assim sendo a1 entrará
na base no lugar de a2.

A nova base será

B = (a1 a4) =

(
1 0
3 −1

)
,

cuja inversa

B−1 =

(
1 0
3 −1

)
.

Sabemos que

xB =

(
x1

x4

)
= B−1b− y2x2 − y3x3.

Neste caso x2 = β(2) = 0 e x3 = α(3) = 0, logo

x̂B =

(
x̂1

x̂4

)
= B−1b =

(
1 0
3 −1

) (
5
7

)
;

x̂B =

(
x̂1

x̂4

)
=

(
5
8

)
.

Para (P3) obteve-se a solução x1 = 5, x2 = 0, x3 = 0, x4 = 8, fornecendo
val(P3) = −20. Essa é uma solução viável de (P ), mas pior que a solução
viável já obtida no nó associado a (P1), tal que val(P1) = −14. Assim sendo
o nó associado a (P3) será fechado.

Como foi feito para (P3), a solução de (P4) será encontrada a partir de
(P2). Verifica-se que Lα = {j ∈ Iα | y1j < 0} = {3} e Lβ = φ. Logo a3 entrará
na base no lugar de a2. Sabe-se que α(1) = 2, α(2) = 1, α(3) = α(4) =
0, β(1) = β(2) = β(3) = β(4) = +∞. A nova base será

B =

(
−1 0

0 −1

)
= B−1.

Sabemos que

xB =

(
x3

x4

)
= B−1b− y1x1 − y2x2.

Neste caso x1 = α(1) = 2 e x2 = α(2) = 1, logo
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x̂B =

(
x̂3

x̂4

)

= B−1b− 2y1 − y4

=

(
−1 0

0 −1

) (
5
7

)
− 2

(
−1 0

0 −1

) (
1
3

)

−
(
−1 0

0 −1

) (
4
2

)
;

x̂B =

(
x̂3

x̂4

)
=

(
−5
−7

)
− 2

(
−1
−3

)
−

(
−4
−2

)
=

(
1
1

)
.

Obtém-se assim uma solução ótima de (P4), x1 = 2, x2 = 1, x3 = x4 = 0,
fornecendo val(P4) = −13. Esta solução é também viável de (P ), logo o nó
associado a (P4) será fechado, mas val(P4) = −13 > x̂0 = −14, assim sendo
far-se-á x̂0 = val(P4) = −13. Como não há mais nós abertos a solução de
(P4) fornece o ótimo de (P ).

10.5 Exerćıcios

1. Suponhamos que estejamos em uma etapa do método de enumeração de
Balas associada à solução xp de (10.8). Temos que para uma restrição
i de (10.7): ∑

j∈Jp

aij +
∑

j 6∈Jp

aijxj ≤ bi

ou ainda ∑

j 6∈Jp

aijxj ≤ bi −
∑

j∈Jp

aij = sp
i . (10.15)

Demonstrar que ∀xj ∈ {0, 1}, j 6∈ Jp, solução de (10.15), para as quais

∑

k 6∈Jp

min{0, aik}+ |aij| > sp
i ,

então xj = 0 se aij > 0 e xj = 1 se aij < 0. Dar um exemplo. Referência
[Ge 69].

2. Demonstrar que o algoritmo de Balas aqui apresentado, utilizando a
estrutura de pilha converge. Referências: artigos [Gl 65], [Ge 67] e o
livro [Ta 75], às páginas 85-138.
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3. Resolver pelo algoritmo de Balas o seguinte problema.

(P ) : minimizar x0 = 4x1 + 6x2 + 2x3 + 6x4 + 7x5 − 7x6

sujeito a:

6x1 − 4x2 − 6x4 + 2x6 ≥ 0
3x1 + x2 + 7x3 + 7x4 + 8x5 − 8x6 ≥ 17

−9x1 + 4x2 + 5x3 + 2x4 + 8x5 − 8x6 ≥ 15

xj ∈ { 0, 1 }, j = 1, 2, 3, 4, 5, 6.

4. Escrever e executar um programa para computador do método de
Balas.

5. Introduzindo variáveis bivalentes (0−1), fornecer uma formulação para
resolver o seguinte problema de programação matemática:

(P ) : minimizar
3∑

j=1

fj(xj)

sujeito a:
3x1 + 2x2 + 2x3 ≤ 18
x1 − x2 + x3 ≤ 8
x1 + x2 + x3 ≥ 0, 5

xj ≥ 0, j = 1, 2, 3,

onde

fj(xj)j=1,2,3 =





xj se 0 ≤ xj ≤ 1
0, 5xj + 0, 5 se 1 ≤ xj ≤ 2

1, 5 se xj ≥ 2.

(Obs.: deseja-se o mı́nimo de uma função côncava restrita a um con-
junto convexo)

6. O custo de fabricação de xi unidades de um determinado produto em
uma localidade i é di + cixi(di > 0 e ci > 0) se xi > 0 e zero se xi = 0.
O custo para transportar uma unidade deste produto da localidade i
para a localidade j é aij > 0. A demanda do produto em j é bj ≥ 0 e a
produção máxima em i é de gi unidades. Supondo i ∈ I e j ∈ J(I e J
conjuntos finitos conhecidos), formular um problema de programação
linear mista (com variáveis cont́ınuas e inteiras) que determine a dis-
tribuição do produto, satisfazendo as demandas e minimizando o custo
total de fabricação e de transporte (supor que

∑
i∈I gi >

∑
j∈J bj e que

haja sempre uma ligação de i ∈ I para j ∈ J).

220



7. Resolver pelo método de Balas:
minimizar x0 = 3x1 − 2x2 + x3 + 2x4,
sujeito a, x1 + x2 + 2x3 + 2x4 ≥ 5, xj ∈ {0, 1}, j = 1, 2, 3, 4.

8. Transformar o problema abaixo de tal maneira que as variáveis x1 e
x2 sejam substitúıdas por variáveis 0 − 1. A transformação é única?
Justifique. Fornecer aquela com o menor número de variáveis e menor
número de restrições.
Maximizar x0 = 4x1 + 5x2 + 9x3 + 5x4, sujeito a:
x1 + 3x2 + 9x3 + 6x4 ≤ 16, 6x1 + 6x2 + 2x3 + 7x4 ≤ 19,
xj ≥ 0, j = 1, 2, 3, 4, x1 e x2 inteiros.

9. Transformar o problema de programação não-linear 0− 1 em um pro-
blema de programação linear mista:
Minimizar x0 = 3x1 + 2x2 + x3 + 5x1x2 − x2x3 + 7x1x2x3, sujeito a:
xj ∈ {0, 1}, j = 1, 2, 3.
Aplicar um método de branch-and-bound para resolver este problema
de programação linear mista.

10. Resolver utilizando o método de cortes de Gomory o seguinte problema:
minimizar x0 = 4x1 + 5x2, sujeito a:
3x1 + x2 ≥ 2, x1 + 4x2 ≥ 5, 3x1 + 2x2 ≥ 7,
x1 ≥ 0, x2 ≥ 0, x1 inteiro e x2 inteiro.
Ilustrar no plano x1 × x2 os cortes gerados em cada iteração.

11. Utilizar um método de branch-and-bound para resolver também o pro-
blema da 7a questão. Esquematizar a arborescência gerada para esta
resolução.

12. Se 3x1 + 6x2 + 18x3 ≥ 7 representar um corte de Gomory para um
problema de programação linear em que x1, x2 e x3 só podem tomar
valores inteiros, poderemos melhorá-lo? Justificar.

13. Sem resolver o problema
maximizar x0 = 4x1 + 5x2 − 3x3, sujeito a:
3x1 − x2 + 7x3 ≤ 10, 3x1 + 5x2 + 5x3 = 15, 4x1 + 6x2 + 10x3 = 11,
xj ≥ 0 e inteiro, para j = 1, 2, 3;
dizer se há uma solução viável. Justificar.

14. Procurar algumas formulações matemáticas para o problema do caixeiro
viajante simétrico (sobre um grafo não orientado) e assimétrico (sobre
um grafo orientado).
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Caṕıtulo 11

Dualidade em Programação
Inteira

Acreditamos que o trabalho de Lorie e Savage [LoSa 55] seja a primeira pu-
blicação da noção de dualidade em programação inteira, onde os métodos
de relaxação lagrangeana são utilizados visando à solução dos problemas
de otimização combinatória. Um outro trabalho pioneiro foi publicado por
Everett [Eve 63]. No entanto, os trabalhos de Held e Karp ([HeKa 70],
[HeKa 71]) que, realmente, desenvolveram essa área do conhecimento cien-
t́ıfico. Geoffrion [Ge 74] cunhou o termo ”relaxação lagrangeana”. Outros
trabalhos importantes dos anos 70 não podem ser esquecidos: [Fi73], [Fi 81],
[FiSh 74], [FiNoSh 75], [Sh 71], [Sh 79].

11.1 Relaxação Lagrangeana

Nossa exposição será desenvolvida para os problemas de programação linear
com todas as variáveis 0-1, mas podemos estender, sem muitas dificuldades,os
resultados apresentados para os problemas de programação linear inteira mais
gerais. Ver, por exemplo, [Pl 2000].

Seja o problema de programação inteira:

(P ) : minimizar x0 = cx (11.1)

sujeito a:
Ax ≤ b (11.2)

Dx ≤ d (11.3)

x ∈ {0, 1}n, (11.4)
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onde cT ∈ Rn, x ∈ Rn, A uma matriz m × n, b ∈ Rm, D uma matriz
p× n, d ∈ Rp.

Associemos às restrições (11.2) o vetor linha u = (u1 u2 ... um), tal que
u ≥ 0, conhecido como vetor dos multiplicadores de Lagrange associados às
restrições em questão. Então para u ≥ 0 escrevemos o seguinte problema:

L(u) = min{ cx + u(Ax− b) } (11.5)

sujeito a:
Dx ≤ d (11.6)

x ∈ {0, 1}n. (11.7)

O problema (11.5)-(11.7) será denominado uma relaxação lagrangeana de
(P ).

Suporemos que as restrições (11.2), (11.3) e (11.4) formam um conjunto
não vazio.

Proposição 11.1 L(u) ≤ val(P ).

Demonstração
Suponhamos que x∗ seja uma solução ótima de (P ), isto é, val(P ) = cx∗.
Sabemos também que L(u) ≤ cx∗ + u(Ax∗ − b), como u ≥ 0 e Ax∗ − b ≤ 0,
então poderemos escrever

L(u) ≤ cx∗ + u(Ax∗ − b) ≤ cx∗ = val(P ).

Esta propriedade nos diz que L(u) é uma cota inferior de val(P ). Visando
à busca da maior cota posśıvel, consideramos o seguinte problema.

(D) : maximizar L(u)
sujeito a : u ≥ 0.

(D) é considerado um problema dual de (P ). Se u∗ for uma solução ótima
de (D), teremos val(D) = L(u∗).

Geralmente val(D) < val(P ) para os problemas de programação inteira,
dizemos que existe um salto primal-dual. Em lugar de considerarmos o ve-
tor dos multiplicadores de Lagrange u, poderemos utilizar um espaço de
funções de Lagrange generalizadas como apresentado em [TiWo 78], [Wo 81]
e [NeWo 88]; esse enfoque elimina o salto primal-dual, no entanto, a solução
do novo problema dual não é prática em termos computacionais.
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11.2 Solução do Problema Dual

Construiremos a seguir dois métodos para resolver (D): uma técnica de
geração de colunas do tipo Dantzig e Wolfe [DanWo 60] e um método uti-
lizando sub-gradientes sugerido por Held, Wolfe e Crowder [HeWoCr 74].

11.2.1 Técnica de geração de colunas

O problema (D) pode ser escrito sob a forma de um problema de programação
linear:

(D) : maximizar L(u) = w

sujeito a:
w ≤ cxk + u(Axk − b), k = 1, 2, ..., K,

u ≥ 0,

onde {x1, x2, ..., xK} = {x ∈ {0, 1}n | Dx ≤ d}. Devemos notar que w e u
são as incógnitas de (D); os vetores xk de componentes 0-1, soluções viáveis de
(11.3) e (11.4), são considerados, inicialmente, conhecidos. Podeŕıamos pen-
sar em resolver o problema (D) acima por técnicas de geração de linhas,ver
[Las 70], mas optamos por trabalhar com seu problema dual de programação
linear. O problema (D) pode ser escrito sob a forma de um problema de
programação linear:

(D) : maximizar L(u) = w

sujeito a:
w − u(Axk − b) ≤ cxk, k = 1, 2, ..., K,

u ≥ 0.

Tomando o problema dual de (D) teremos:

(DD) : minimizar
K∑

k=1

(cxk)λk

sujeito a:
K∑

k=1

λk = 1

−
K∑

k=1

(Axk − b)λk ≥ 0

λk ≥ 0, k = 1, 2, ..., K,
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onde λk, k = 1, 2, ..., K representam as variáveis duais. Podemos ainda
escrever

(DD) : minimizar
K∑

k=1

(cxk)λk (11.8)

sujeito a:
K∑

k=1

λk = 1 (11.9)

K∑

k=1

(Axk)λk ≤ b (11.10)

λk ≥ 0, k = 1, 2, ..., K. (11.11)

Para resolvermos (11.8)-(11.11), introduziremos um vetor

s = (s1 s2 ... sm) ≥ 0,

cujas componentes são as variáveis de folga das restrições (11.10), assim
sendo:

(DD) : minimizar
K∑

k=1

(cxk)λk (11.12)

sujeito a:
K∑

k=1

λk = 1 (11.13)

K∑

k=1

(Axk)λk + s = b (11.14)

λk ≥ 0, k = 1, 2, ..., K (11.15)

s ≥ 0. (11.16)

A matriz que define as restrições de igualdades (11.13) e (11.14) será
esquematizada abaixo:

Â =

(
1 1 . . . 1 0 0 . . . 0

Ax1 Ax2 . . . AxK e1 e2 . . . em

)

Os vetores ei, i = 1, 2, ..., m representam os vetores unitários, isto é, a
única componente diferente de zero é a i−ésima, sendo esta igual a um.

Seja B uma matriz (m+1)× (m+1) formada por m+1 colunas de Â, tal
que B seja inverśıvel. Suponhamos também que a solução básica associada a
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B seja primal viável de (11.12)-(11.16). A otimalidade desta solução básica
será verificada, como já foi estudado anteriormente, através de sua viabilidade
dual.

Os coeficientes associados às variáveis λk na função objetivo são iguais
a cxk, ao passo que os associados às variáveis de folga si são iguais a zero.
Denominaremos de qB o vetor linha, cujas componentes são os coeficientes
das variáveis básicas na função objetivo. O vetor linha v representando os
multiplicadores do simplex será então escrito como v = qBB−1. Podemos
particionar v da seguinte forma: v = (v0 v1), onde v0 ∈ R e (v1)T ∈ Rm, isto
é, v0 está associado à restrição (11.13) e as componentes de v1 às restrições
(11.14).

Caso uma das componentes de v1, por exemplo, v1
i seja positiva então a

coluna

(
0
ei

)
deve entrar na base, pois v

(
0
ei

)
= v1

i . Como supusemos que

v1
i > 0, logo se a variável si entrar na base o valor da função objetivo (11.12)

diminuirá se si tomar um valor positivo na nova solução básica.
Suporemos agora que v1 ≤ 0, e passaremos a determinar:

max
k=1,2,...,K

{ (v0 v1)

(
0

Axk

)
− cxk }.

A expressão acima pode ainda ser escrita:

t(xl) = max
k=1,2,...,K

{ (v1A− c)xk + v0 }, (11.17)

xl é uma solução deste problema. Caso t(xl) > 0 a coluna

(
0

Axl

)
entrará

na base. Caso contrário, isto é, t(xl) ≤ 0 a base corrente B é uma solução
ótima de (DD).

Como não conhecemos todos os pontos xk, k = 1, 2, ..., K, teremos que
resolver o problema de programação matemática:

(PA) : maximizar (v1A− c)x + v0 (11.18)

sujeito a:
Dx ≤ d (11.19)

x ∈ {0, 1}n. (11.20)

Seja val(PA) = (v1A − c)xl + v0. Como já foi mencionado acima, se
val(PA) > 0 a variável λl entrará na nova base. Caso contrário a atual base
B é uma solução ótima.
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As regras de pivotemanento para o algoritmo primal do simplex já foram
vistas nos primeiros caṕıtulos. Mais adiante apresentaremos um exemplo
completo para a solução de (DD). Lembremos que val(D) = val(DD). Além
disso não devemos esquecer que v1 associado ao ótimo de (DD) é uma solução
ótima de (D), isto é, u∗ = v1. verificar que v0 associado ao ótimo de (DD) é
igual a val(D).

Se acrescentarmos ao problema (11.8)-(11.11) as restrições de integrali-
dade para as variáveis λk, k = 1, 2, ..., K, isto é, λk ∈ Z, k = 1, 2, ..., K,
teremos um problema equivalente a (P ). Por que?

Seja a relaxação linear de (PA) :

(PA) : maximizar (v1A− c)x + v0 (11.21)

sujeito a:
Dx ≤ d (11.22)

x ∈ [0, 1]n. (11.23)

Por outro lado sabemos também que a relaxação linear de (P ) será

(P̄ ) : minimizar x0 = cx (11.24)

sujeito a:
Ax ≤ b (11.25)

Dx ≤ d (11.26)

x ∈ [0, 1]n. (11.27)

Proposição 11.2 val(P̄ ) ≤ val(D) ≤ val(P ).

Demonstração
Da propriedade 11.1 temos que val(D) ≤ val(P ). Para verificar que val(P̄ ) ≤
val(D) basta notar que

{x ∈ Rn | Dx ≤ d, x ∈ {0, 1}n } ⊆ {x ∈ Rn | Dx ≤ d, x ∈ [0, 1]n }.

Observação: Se todos os vértices do politopo formado pelas restrições de
(PA) pertencerem a {0, 1}n, então val(PA) = val(PA). Neste caso sabere-
mos, a priori, que val(P̄ ) = val(D). Esta particularidade é conhecida como
a propriedade de integralidade de Geoffrion [Ge 74].

Quando a relaxação lagrangeana não possui a propriedade de integrali-
dade, a solução computacional de (PA) pode ser muito dif́ıcil, pois temos
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que resolver um problema de programação inteira 0-1, com menos restrições
que o problema incial (P ).

É interessante a utilização da relaxação lagrangena com a propriedade
de integralidade, apesar de a cota inferior obtida valer val(P̄ ). Na realidade,
durante a solução de (DD) geramos pontos xk que podem ser também viáveis
de (P ). Dessa maneira temos também uma cota superior para val(P ). Isto
é, val(P ) ≤ cxk.

11.2.2 Método utilizando sub-gradientes

Definiremos sub-gradiente e forneceremos um método espećıfico para maxi-
mizar L(u), sujeito a u ≥ 0.

Proposição 11.3 L(u) é uma função côncava e afim por partes.

Demonstração
Ver [GoMi 79], página 497.

Antes de continuarmos, apresentaremos um exemplo. Seja

(P ) : minimizar x0 = −6x1 − 8x2 + 5x3

sujeito a:
−4x1 − 4x2 − x3 ≤ −2

2x2 − 2x3 ≤ 1

−2x2 + 2x3 ≤ 1

2x1 + 2x2 + 2x3 ≤ 5

xj ∈ {0, 1}, j = 1, 2, 3.

Associamos a variável u ≥ 0 à restrição −4x1 − 4x2 − x3 ≤ −2 e obteremos
a seguinte expressão:

l(xk, u) = −6xk
1 − 8xk

2 + 5xk
3 + (−4xk

1 − 4xk
2 − xk

3 + 2)u,

onde xk = (xk
1 xk

2 xk
3), k = 1, 2, ..., K são as soluções viáveis de

2x2 − 2x3 ≤ 1

−2x2 + 2x3 ≤ 1

2x1 + 2x2 + 2x3 ≤ 5

xj ∈ {0, 1}, j = 1, 2, 3.
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Figura 11.1: A função dual

Neste caso muito simples verificamos que apenas três pontos, x1 = (0 0 0),
x2 = (1 0 0) e x3 = (0 1 1), satisfazem

2x2 − 2x3 ≤ 1

−2x2 + 2x3 ≤ 1

2x1 + 2x2 + 2x3 ≤ 5

xj ∈ {0, 1}, j = 1, 2, 3.

A função objetivo do problema dual dessa relaxação lagrangeana poderá
ser escrita:

L(u) = min
k=1,2,3

{ l(xk, u)},

onde l(x1, u) = 2u, l(x2, u) = −6− 2u e l(x3, u) = −3− 3u.
Na figura 11.1 representamos L(u), para u ∈ R+.
Sabemos que o dual associado à relaxação em questão será

(D) : maximizar L(u)

sujeito a:
u ≥ 0.
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Podendo ser escrito sob a forma de programação linear:

(D) : maximizar L(u) = w

sujeito a:
w ≤ 2u
w ≤ −6− 2u
w ≤ −3− 3u
w ≥ 0.

Resolvendo (D) acima pelo método do simplex obteremos u = 0 e w =
−6, isto é, val(D) = −6. Algo que pode ser verificado na figura 13.1. Como
o ponto x2 = (1 0 0) é viável de (P ) e fornece a x0 um valor −6, conclúımos
pela propriedade 13.1 que x2 = (1 0 0) é um ótimo de (P ).

É interessante verificar que val(P̄ ) = −11, 5, cota bem pior do que val(D)
para este exemplo. A propriedade da integralidade não é válida.

Definição 11.1 Um vetor γ ∈ Rn é um sub-gradiente de uma função côn-
cava f : Rn → R, no ponto x0 se f(x) ≤ f(x0) + γT (x − x0) para todo
x ∈ Rn.

Se a função f for diferenciável em x0 então teremos apenas um sub-
gradiente que será igual ao gradiente de f em x0.

Na figura 11.2, consideramos o gráfico de uma função f côncava não
diferenciável em x1, mas diferenciável em x2. Os hiperplanos hj(x

i) = f(xi)+
γT

j (x− xi), para j = 1, 2, 3, são também ilustrados na figura 11.2

Definição 11.2 O subdiferencial ∂f(x0) de f em x0 é o conjunto de todos
os sub-gradientes de f em x0.

Se f é diferenciável em x0 então ∂f(x0) = {5f(x0)}, onde 5f(x0) repre-
senta o gradiente de f em x0.

Podemos notar também que ∂L(u) 6= φ.

Proposição 11.4 ∂f(x0) 6= φ é convexo e fechado.

Demonstração
Para demonstrar a convexidade de ∂f(x0), tomaremos γ1 e γ2 ∈ ∂f(x0),
então

f(x) ≤ f(x0) + γT
1 (x− x0) (11.28)

e
f(x) ≤ f(x0) + γT

2 (x− x0). (11.29)
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Figura 11.2: Idéia de sub-gradientes

Consideremos 0 ≤ α ≤ 1, multiplicamos (11.28) por α e (11.29) por 1−α,
após essas operações somemos membro a membro as duas desigualdades:

αf(x) + (1− α)f(x) ≤ αf(x0) + (1− α)f(x0) + [αγT
1 + (1− α)γT

2 ](x− x0)

ou ainda
f(x) ≤ f(x0) + [αγT

1 + (1− α)γT
2 ](x− x0),

logo γ = αγ1 + (1 − α)γ2, 0 ≤ α ≤ 1, é também um sub-gradiente de f em
x0.

Para mostrar que ∂f(x0) é um conjunto fechado, consideraremos uma
sequência {γj} de elementos de ∂f(x0) convergindo para γ̄ 6∈ ∂f(x0).

Logo existe x̄ ∈ Rn, tal que: f(x̄) > f(x0) + γ̄T (x̄− x0), ou ainda

f(x̄)− f(x0)− γ̄T (x̄− x0) ≥ ε > 0. (11.30)

Por outro lado sabemos também que

−f(x̄) + f(x0) + γT
j (x̄− x0) ≥ 0, ∀γj ∈ ∂f(x0). (11.31)

Somando membro a membro (11.30) e (11.31) temos que

(γj − γ̄)T (x̄− x0) ≥ ε.
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Utilizando a desigualdade de Schwarz teremos

ε ≤ (γj − γ̄)T (x̄− x0) ≤ ||γj − γ̄|| ||x̄− x0||,
||γj − γ̄|| ≥ ε

||x̄− x0|| ,∀γj ∈ ∂f(x0);

uma contradição com a convergência da sequência {γj} de elementos de
∂f(x0) para γ̄ 6∈ ∂f(x0).

Proposição 11.5 Se f : Rn →R é uma função côncava, então x0 maximiza
f se e somente se 0 ∈ ∂f(x0).

A demonstração é deixada para o(a) leitor(a).

Retornemos à função L definida em (11.5), (11.6) e (11.7), suporemos que
x̄ seja uma solução viável de (11.6) e (11.7), tal que L(u0) = cx̄+u0(Ax̄− b).
Assim sendo consideraremos a seguinte propriedade.

Proposição 11.6 Ax̄− b é um sub-gradiente de L em u0.

Demonstração
Podemos escrever

L(u0) + (u− u0)(Ax̄− b) = cx̄ + u0(Ax̄− b) + (u− u0)(Ax̄− b)
= cx̄ + u(Ax̄− b) ≥ L(u), u ≥ 0.

A propriedade 11.6 nos fornece um maneira de obter um sub-gradiente
de L em um dado ponto u0.

Um método utilizando sub-gradientes descrito em [HeWoCr 74] para re-
solver o problema dual

(D) : maximizar L(u) (11.32)

sujeito a:
u ≥ 0, (11.33)

será apresentado a seguir.
Partiremos de um ponto u0 ≥ 0 arbitrário, definiremos uma sequência de

pontos:

uk+1 = uk + θk(γ
k)T , onde γk ∈ ∂L(uk).
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É importante notar que γk pode não ser uma direção de subida para L
em uk, ver [Mino 86].

Uma escolha do passo θk, para γk 6= 0 foi estudada em [HeWoCr 74].

θk = ρk
L − L
||γk||2 , para 0 < ρk ≤ 2, (11.34)

onde L é uma cota superior de val(D) e L uma cota inferior de val(D). Essas
cotas serão atualizadas durante as iterações do método, visando a diminuir
o salto L − L. A escolha de ρk, segundo Beasley [Bea 92], deve ser igual a 2
no ińıcio do método iterativo e caso nas últimas p iterações o valor de L não
aumentar, dividiremos ρk por 2. Beasley [Bea 92] diz que em suas extensas
experiências computacionais um bom valor para p é 30.

Sabemos que uk+1 pode ser negativo quando fazemos uk+1 = uk+θk(γ
k)T .

Assim sendo, o algoritmo será escrito com segue:

uk+1
i = max{ 0, uk

i + θkγ
k
i },

isto é, quando uma componente uk
i +θkγ

k
i for negativa, faremos uk+1

i = 0.

Exemplo 11.1 Resolução de (D) por geração de colunas.
Seja

(P ) : minimizar x0 = −5x1 − 6x2 − 3x3

sujeito a
3x1 + 4x2 + 2x3 ≤ 4 (11.35)

x1 + x2 + x3 ≤ 2 (11.36)

x1 + x3 ≤ 1 (11.37)

xj ∈ {0, 1}, j = 1, 2, 3. (11.38)

Denominemos de X o conjunto formado pelas restrições (11.36), (11.37) e
(11.38). É fácil verificar que

X = { x1 = (0 0 0)T , x2 = (1 0 0)T , x3 = (0 1 0)T ,
x4 = (0 0 1)T , x5 = (1 1 0)T , x6 = (0 1 1)T }.

Dualizaremos a restrição (11.35) à qual associaremos a variável dual u.
Podemos então considerar

l(x, u) = −5x1 − 6x2 − 3x3 + (3x1 + 4x2 + 2x3 − 4)u.

Lembremos que
(D) : maximizar L(u)
sujeito a: u ≥ 0.
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Figura 11.3: Função dual para o exemplo

Sabemos que :

l(x1, u) = −4u, l(x2, u) = −5− u, l(x3, u) = −6,
l(x4, u) = −3− 2u, l(x5, u) = −11 + 3u, l(x6, u) = −9 + 2u.

L(u) = min{ l(x, u) | x ∈ X}, cujo gráfico pode ser visto na figura 11.3.
Verificamos, graficamente, na figura 11.3 que u∗,tal que L(u∗) = val(D)

é determinado pela interseção de l(x2, u) com l(x5, u), istoé,
−5− u∗ = −11 + 3u∗, logo u∗ = 6

4
= 1, 5.

Nosso intuito aqui é o de resolver (D) por geração de colunas, assim sendo
escreveremos (D) sob uma outra forma:

(D) : maximizar L(u) = t

sujeito a:
t ≤ l(xi, u), i = 1, 2, 3, 4, 5, 6

u ≥ 0.

Ou ainda:
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(D) : maximizar L(u) = t

sujeito a:

t ≤ −5xi
1 − 6xi

2 − 3xi
3 + (3xi

1 + 4xi
2 + 2xi

3 − 4)u, i = 1, 2, 3, 4, 5, 6

u ≥ 0.

Escreveremos ainda:

(D) : maximizar L(u) = t

sujeito a:

t + (−3xi
1 − 4xi

2 − 2xi
3 + 4)u ≤ −5xi

1 − 6xi
2 − 3xi

3, i = 1, 2, 3, 4, 5, 6

u ≥ 0.

Cujo dual:

(DD) : minimizar
6∑

i=1

(−5xi
1 − 6xi

2 − 3xi
3)λi

sujeito a:
6∑

i=1

λi = 1

6∑

i=1

(−3xi
1 − 4xi

2 − 2xi
3 + 4)λi ≥ 0

λi ≥ 0, i = 1, 2, 3, 4, 5, 6.

Após algumas operações teremos:

(DD) : minimizar
6∑

i=1

(−5xi
1 − 6xi

2 − 3xi
3)λi

sujeito a:
6∑

i=1

λi = 1

6∑

i=1

(3xi
1 + 4xi

2 + 2xi
3)λi ≤ 4

λi ≥ 0, i = 1, 2, 3, 4, 5, 6.
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Como observação importante definiremos o seguinte problema:

(DDI) : minimizar
6∑

i=1

(−5xi
1 − 6xi

2 − 3xi
3)λi

sujeito a:
6∑

i=1

λi = 1

6∑

i=1

(3xi
1 + 4xi

2 + 2xi
3)λi ≤ 4

λi ≥ 0, i = 1, 2, 3, 4, 5, 6.

λi ∈ Z, i = 1, 2, 3, 4, 5, 6.

É fácil verificar que (DDI) e (P ) são equivalentes. Por outro lado

val(DD) ≥ val(P̄ ).

Por que?
Voltemos para a solução de (DD). Introduziremos a variável de folga

s ≥ 0 :

(DD) : minimizar
6∑

i=1

(−5xi
1 − 6xi

2 − 3xi
3)λi

sujeito a:
6∑

i=1

λi = 1

6∑

i=1

(3xi
1 + 4xi

2 + 2xi
3)λi + s = 4

λi ≥ 0, i = 1, 2, 3, 4, 5, 6; s ≥ 0.

Uma solução básica inicial associada à solução x1 = (0 0 0) ∈ X e à variável
de folga s (sendo λ1 a variável associada a x1) é viável. Isto é, a base B
inicial seria

B =

(
1 0

3x1
1 + 4x1

2 + 2x1
3 1

)
=

(
1 0
0 1

)
.

No entanto, a t́ıtulo de ilustração utilizaremos o método das duas fases
para encontrar uma solução inicial básica viável de (DD).

Seja o problema auxiliar da primeira fase:
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(FASE1) : minimizar w = λa

sujeito a:
6∑

i=1

λi + λa = 1

6∑

i=1

(3xi
1 + 4xi

2 + 2xi
3)λi + s = 4

λi ≥ 0, i = 1, 2, 3, 4, 5, 6; s ≥ 0 e λa ≥ 0.

λa = 1 e s = 4 estão associadas a uma base primal viávelB =

(
1 0
0 1

)

de (FASE1). O vetor custo associado a esta base é (1 0) e o vetor dos

multiplicadores do simplex v = (1 0)

(
1 0
0 1

)−1

.

Logo v = (1 0), os zi associados às variáveis λi, serão escritos:

zi = v

(
1

3x1
1 + 4x1

2 + 2x1
3

)
= (1 0)

(
1

3x1
1 + 4x1

2 + 2x1
3

)
= 1.

Como o custo associado à variável λi é nulo, teremos, utilizando a notação
deste livro, que zi − ci = 1 − 0 = 1. Utilizando as técnicas de geração de
colunas apresentadas no caṕıtulo 7 para a solução de (FASE1), teremos que
resolver:

(PA) : maximizari=1,2,3,4,5,6 1

sujeito a:
x1 + x2 + x3 ≤ 2

x1 + x3 ≤ 1

xj ∈ {0, 1}, j = 1, 2, 3.

Qualquer xi, i = 1, 2, 3, 4, 5, 6, será uma solução ótima deste (PA).
Tomemos x1 = (x1

1 x1
2 x1

3) = (0 0 0). Sabemos que val(PA) = 1 > 0, logo

faremos

(
1

3x1
1 + 4x1

2 + 2x1
3

)
=

(
1

3× 0 + 4× 0 + 2× 0

)
=

(
1
0

)
entrar

na nova base. Para saber qual coluna sairá temos que pré-multiplicar esta
coluna pela inversa da base atual. Ou seja:

(
1 0
0 1

) (
1
0

)
=

(
1
0

)
.
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Para esquematizar as operações de troca de base, por pivoteamento (eli-
minação de Gauss-Jordan) utilizaremos o seguinte quadro Q:

Q 1 λj

w 1 cBB−1 w̄ zj − cj

λB 0 B−1 λ̄B yj

Para o nosso caso, teremos o quadro inicial Q1 :

Q1 1 λ1

w 1 1 0 1 1
λa 0 1 0 1 1∗

s 0 0 1 4 0

⇒
Q2 1 λ1

w 1 0 0 0 0
λ1 0 1 0 1 1
s 0 0 1 4 0

onde ∗ indica o pivô. O quadro Q2 fornece uma base primal viável para o
problema (DD), pois val(FASE1) = w̄ = 0.

Teremos que formar um novo quadro associado ao problema (DD), para
darmos ińıcio à segunda fase do método do simplex. A base agora está
associada à coluna de λ1 e à coluna de s. Os custos associados às variáveis
básicas são as componentes do vetor

(−5x1
1 − 6x1

2 − 3x1
3 0) = (−5× 0− 6× 0− 3× 0 0) = (0 0).

Sabemos ainda que

v = (v0 v1) = (0 0)

(
1 0
0 1

)−1

= (0 0).

Denominando de f.o. o valor da função objetivo de (DD) a cada iteração,
formaremos o quadro inicial para a segunda fase.

Q3 1 λj

f.o. 1 0 0 0
λ1 0 1 0 1
s 0 0 1 4

Para preenchermos a última coluna do quadro Q3 teremos que resolver:

(PA) : maximizar t = (v0 v1)

(
1

3x1 + 4x2 + 2x3

)
− (−5x1 − 6x2 − 3x3)

sujeito a:
x1 + x2 + x3 ≤ 2
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x1 + x3 ≤ 1

xj ∈ {0, 1}, j = 1, 2, 3.

Ou ainda:

(PA) : maximizar t = (0 0)

(
1

3x1 + 4x2 + 2x3

)
− (−5x1 − 6x2 − 3x3)

sujeito a:
x1 + x2 + x3 ≤ 2

x1 + x3 ≤ 1

xj ∈ {0, 1}, j = 1, 2, 3.

Finalmente

(PA) : maximizar t = 5x1 + 6x2 + 3x3

sujeito a:
x1 + x2 + x3 ≤ 2

x1 + x3 ≤ 1

xj ∈ {0, 1}, j = 1, 2, 3.

Cuja solução é x1 = 1, x2 = 1, x3 = 0, fornecendo t = 5×1+6×1+3×0 =
11 > 0. Esta solução é o ponto x5. A coluna gerada é

(
1

3× 1 + 4× 1 + 2× 0

)
=

(
1
7

)
.

Pré multiplicando esta coluna pela inversa da base:

(
1 0
0 1

)−1 (
1
7

)
=

(
1 0
0 1

) (
1
7

)
=

(
1
7

)
.

O quadro Q3 ficará então

Q3 1 λ5

f.o. 1 0 0 0 11
λ1 0 1 0 1 1
s 0 0 1 4 7∗

⇒
Q4 1 λ5

f.o. 1 0 −11/7 −44/7 0
λ1 0 1 −1/7 3/7 0
λ5 0 0 1/7 4/7 1

onde (*) indica o pivô.
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Novo problema gerador de coluna:

(PA) : maximizar t = (0 − 11/7)

(
1

3x1 + 4x2 + 2x3

)
− (−5x1− 6x2− 3x3)

sujeito a:
x1 + x2 + x3 ≤ 2

x1 + x3 ≤ 1

xj ∈ {0, 1}, j = 1, 2, 3.

Ou ainda:

(PA) : maximizar t =
2

7
x1 − 2

7
x2 − 1

7
x3

sujeito a:
x1 + x2 + x3 ≤ 2

x1 + x3 ≤ 1

xj ∈ {0, 1}, j = 1, 2, 3.

Cuja solução é x1 = 1, x2 = x3 = 0, fornecendo t = 2
7

> 0, representando
o ponto x2. A coluna que entrará na nova base será

(
1

3× 1 + 4× 0 + 2× 0

)
=

(
1
3

)
.

Pré-multiplicando esta coluna pela inversa da base atual:
(

1 −1/7
0 1/7

) (
1
3

)
=

(
4/7
3/7

)
.

Assim sendo

Q4 1 λ2

f.o. 1 0 −11/7 −44/7 2/7
λ1 0 1 −1/7 3/7 (4/7)∗

λ5 0 0 1/7 4/7 3/7

↓
Q5 1 λ2

f.o. 1 −1/2 −3/2 −13/2 0
λ2 0 7/4 −1/4 3/4 1
λ5 0 −3/4 1/4 1/4 0
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Novamente geraremos uma coluna:

(PA) : maximizar t =

(−1/2 − 3/2)

(
1

3x1 + 4x2 + 2x3

)
− (−5x1 − 6x2 − 3x3)

sujeito a:
x1 + x2 + x3 ≤ 2

x1 + x3 ≤ 1

xj ∈ {0, 1}, j = 1, 2, 3.

Isto é,

(PA) : maximizar t = −1/2 +
1

2
x1 + 0x2 + 0x3

sujeito a:
x1 + x2 + x3 ≤ 2

x1 + x3 ≤ 1

xj ∈ {0, 1}, j = 1, 2, 3.

Podemos verificar que as soluções x1 = 1, x2 = x3 = 0, e x1, x2 =
1, x3 = 0 são soluções ótimas, fornecendo t = −1/2 + 1/2 = 0, logo Q5 é
um quadro ótimo. Deste quadro se tem que λ2 = 3/4, λ5 = 1/4 fornecendo
val(DD) = −13/2 = −6, 5 = val(D). Logo val(P ) ≥ −6, 5, mas como os
coeficientes da função objetivo de (P ) são inteiros, podemos escrever que
val(P ) ≥ −6. verificamos que para x3 = (0 1 0), x0 = −6, assim sendo x3 é
uma solução ótima de (P ).

Exemplo 11.2 Resolução de (D) por um método utilizando sub-gradientes.
Retomaremos o mesmo problema (P ) do exemplo acima. Seja

(P ) : minimizar x0 = −5x1 − 6x2 − 3x3

sujeito a
3x1 + 4x2 + 2x3 ≤ 4 (11.39)

x1 + x2 + x3 ≤ 2 (11.40)

x1 + x3 ≤ 1 (11.41)

xj ∈ {0, 1}, j = 1, 2, 3. (11.42)
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Associaremos à restrição (11.39) a variável u1 ≥ 0 e à restrição (11.40)
a variável u2 ≥ 0. Denominemos de X o conjunto formado pelas restrições
(11.41) e (11.42).

Seja

l(x, u) = −5x1 − 6x2 − 3x3 + (3x1 + 4x2 + 3x3 − 4)u1 + (x1 + x2 + x3 − 2)u2.

Assim sendo, a função dual será: L(u) = min {l(x, u) | x ∈ X}.
O problema dual será mais uma vez escrito como

(D) : maximizar L(u)

sujeito a:
u ≥ 0.

Para resolvermos (D) acima, iniciaremos o método de otimização com a
solução u0 = (u0

1 u0
2) = (0 0) e utilizaremos uk+1

i = max{0, uk
i + θkγ

k
i }, i =

1, 2. Lembremos que γk ∈ ∂L(uk) e θk = ρk
L−L
||γk||2 , para 0 < ρk ≤ 2, como

definido em (11.34).
Se L(uk) = −5xk

1−6xk
2−3xk

3+(3xk
1+4xk

2+3xk
3−4)uk

1+(xk
1+xk

2+xk
3−2)uk

2,
então

γk =

(
γk

1

γk
2

)
=

(
3xk

1 + 4xk
2 + 3xk

3 − 4
xk

1 + xk
2 + xk

3 − 2

)
∈ ∂L(uk).

L ≥ val(P ) ≥ L, para obtermos um valor inicial para L, basta conseguirmos
uma solução viável de (P ); por exemplo, x1 = 1, x2 = x3 = 0, fornecendo
x0 = −5. Logo tomaremos L = −5. O valor inicial de L poderá ser

L = L(u0) = min{−5x1 − 6x2 − 3x3 | x1 + x3 ≤ 1, xj ∈ {0, 1}, j = 1, 2, 3}.

É fácil observar que L(u0) = −5 × 1 − 6 × 1 − 3 × 0 = −11, isto é,
x0

1 = x0
2 = 1, x0

3 = 0; faremos então L = −11. Tomaremos

γ0 =

(
γ0

1

γ0
2

)
=

(
3x0

1 + 4x0
2 + 3x0

3 − 4
x0

1 + x0
2 + x0

3 − 2

)

=

(
3× 1 + 4× 1 + 3× 0− 4
1× 1 + 1× 1 + 1× 0− 2

)
=

(
3
0

)
.

Tomaremos ρ = 2, ||γ0||2 = 32 + 02 = 9. Logo θ0 = 2−5−(−11)
9

= 4
3
.

calculemos então

u1
1 = max{0, 4

3
× 3} =

4

3
× 3 = 4, u1

2 = max{0, 4

3
× 0} = 0.
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L(u1) será dado por

min {−5x1−6x2−3x3+(3x1+4x2+3x3−4)u1
1+(x1+x2+x3−2)u1

2 | x ∈ X},

ou ainda

L(u1) = min {−5x1 − 6x2 − 3x3 + (3x1 + 4x2 + 3x3 − 4)4 | x ∈ X},

L(u1) = min{7x1 + 10x2 + 5x3 − 16 | x1 + x3 ≤ 1, xj ∈ {0, 1} }.
O valor de L(u1) será obtido quando x1 = x2 = x3 = 0, L(u1) = −16.
Como −16 < −11 não modificaremos o valor de L, isto é, L continuará

valendo −11. Verificamos também que x1 = x2 = x3 = 0 é uma solução
viável de (P ), fornecendo x0 = 0. Continuaremos com L = −5.

Tomaremos

γ1 =

(
γ1

1

γ1
2

)
=

(
3x1

1 + 4x1
2 + 3x1

3 − 4
x1

1 + x1
2 + x1

3 − 2

)

=

(
3× 0 + 4× 0 + 3× 0− 4
1× 0 + 1× 0 + 1× 0− 2

)
=

(
−4
−2

)
.

||γ1||2 = (−4)2 + (−2)2 = 16 + 4 = 20 e θ1 = 2
−5− (−11)

20
=

3

5
.

u2
1 = max{0, 4 +

3

5
× (−4)} =

8

5
, u2

2 = max{0, 0 +
3

5
× (−2)} = 0.

L(u2) será dado por

min {−5x1−6x2−3x3+(3x1+4x2+3x3−4)u2
1+(x1+x2+x3−2)u2

2 | x ∈ X},

ou ainda

L(u2) = min {−5x1 − 6x2 − 3x3 + (3x1 + 4x2 + 3x3 − 4)
8

5
| x ∈ X},

L(u2) = min{−1

5
x1 +

2

5
x2 +

1

5
x3 − 32

5
| x1 + x3 ≤ 1, xj ∈ {0, 1} }.

L(u2) é encontrado para x2
1 = 1, x2

2 = x2
3 = 0, fornecendo L(u2) = −33

5
=

−6, 6. Para a próxima iteração faŕıamos L = −6, 6. Como a função objetivo
de (P ) possui todos os coeficientes inteiros,então −6 ≤ val(P ) ≤ −5. Logo a
solução viável de (P ), x1 = 0, x2 = 1, x3 = 0, fornecendo x0 = −6 é ótima
de (P ).

É interessante notar que a função objetivo de (D) começou com o valor
−11 decresceu para −16 e, finalmente, cresceu até −6, 6.
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11.3 Exerćıcios

1. Seja
(P ) : maximizar x0 = 2x1 + 3x2 + 4x3 (11.43)

sujeito a:
12x1 + 19x2 + 30x3 ≤ 46 (11.44)

49x1 + 40x2 + 31x3 ≤ 76 (11.45)

xj ∈ {0, 1}. (11.46)

Determinar o valor ótimo do dual de (P ) quando relaxarmos (11.44).
Determinar o valor ótimo do dual de (P ) quando relaxarmos (11.45).
Calcular val(P̄ ), onde (P̄ ) é formado de (P ) trocando-se (11.46) por
0 ≤ xj ≤ 1, j = 1, 2, 3. Encontrar um ótimo de (P ). Seja (Q) o
problema dual-lagrangeano de (P ) quando relaxamos ao mesmo tempo
(11.44) e (11.45), mostrar que val(Q) = val(P̄ ), sem resolver (Q).
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de Trajetória Central Inviável,

172
do Simplex, 20, 107
Dual do Simplex, 45, 47, 116
Preditor-Corretor, 162

Análise de Sensibilidade, 51

Ciclagem, 35
Complexidade Polinomial, 122
Condições

de Complementaridade, 142
de Karush-Kunh-Tucker, 141

Cone Poliédrico, 80
Conjunto Convexo, 27, 76
Conjunto Poliédrico, 27, 78, 87
Convergência, 33, 207

Desigualdade Válida, 197
Dikin, 123
Direção, 81
Direção de Cauchy, 131
Dualidade, 40
Dualidade em Programação Inteira,

222

Enumeração, 202

Gap de Dualidade, 145, 148, 178
Geração de Colunas, 91, 224
Gomory, 197

Hiperplano, 76

Interpretação
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Vértice, 77
Vizinhança da Trajetória Central,

147, 167

261


