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Capitulo 1

Rapido Historico e Introducao

1.1 Histoérico e Introducao

A Programagao Linear ou Otimizacao Linear faz parte das disciplinas que
compoem a Programagao Matematica (Otimizac¢ao) e é um elemento impor-
tantissimo na Pesquisa Operacional. Nos métodos de solugao propostos em
Programacao Nao Linear com restri¢oes ha quase sempre a utilizagao da Pro-
gramacao Linear de maneira iterativa. Os problemas cléssicos de otimizagao
em grafos sao problemas de Programacao Linear especificos. A Programacao
Linear tem um papel duplo na Programacao Matematica, pois os algoritmos
utilizados para a sua solugao podem ser de natureza combinatéria (discre-
ta) ou continua. Nos problemas de Otimizacao Combinatéria, modelados
por problemas de Programacao Linear Inteira, suas relaxagoes também serao
problemas de Programacao Linear. Trés obras gerais sobre a Programacao
Matemética (Otimizagao), para que o leitor ou a leitora possa ter uma melhor
idéia, sao [Mino 86, NeRiTo 89, Maf 2000].

As aplicacoes da Otimizacao Linear sao comuns em quase todos os se-
tores do quotidiano, por exemplo, nas industrias, nos transportes, na saide,
na educacao, na agricultura, nas financas, na economia, nas administracgoes
publicas.

O primeiro algoritmo para a solucao dos problemas de Programacao Li-
near foi denominado método ou algoritmo do simplex, parece que foi Fourier
[Fou 890] em 1826 que apresentou essa idéia visando a solugao de sistemas
de desigualdades lineares, mas foi Dantzig em 1947 que forneceu os resulta-
dos tedricos e computacionais do método do simplex, ver [Dan 51, Dan 63,
Dan 91, Sc 86]. O método do simplex é um dos poucos algoritmos que foi
implantado, comercialmente, em computador ha mais de 35 anos, no inicio
os fabricantes de computadores forneciam esses cédigos, nos dias de hoje, os



c6digos mais conhecidos possuem diferentes versoes, dependendo do sistema
operacional utilizado. Em 1939, o matematico Kantorovich [Ka 39] na Unido
Soviética, ja havia modelado e resolvido alguns problemas de otimizacgao li-
gados ao planejamento economico, gragas a esses trabalhos, Leonid V. Kan-
torovich recebeu o préemio Nobel de Economia em 1975.

Nos capitulos 2 a 8 apresentamos o método do simplex de maneira algébri-
ca, numérica e geométrica, assim como algumas de suas extensoes. Apesar de
sua grande aplicacao pratica, o método do simplex pode ter comportamento
exponencial em seu nimero de iteragoes. Em 1978, Khachian [Kha 79], uti-
lizando os métodos elipsoidais, apresentou seu algoritmo, no qual o ntimero
maximo de iteragoes para resolver um problema de Programacao Linear é
limitado por uma funcao polinomial do tamanho dos dados do problema
numa memodria de computador. O método de Khachian [Kha 79] ou dos
elipsdides, que apresentamos no capitulo 9, é um dos algoritmos mais ele-
gantes em otimizagao, no entanto, sua performance pratica deixa muito a
desejar.

Em 1984, Karmarkar [Kar 84] propds seu algoritmo de pontos interi-
ores com comportamento numérico tedrico polinomial e com bons resul-
tados praticos. Apds a publicacao desse trabalho de Karmarkar [Kar 84],
varios algoritmos de pontos interiores foram apresentados. Citamos alguns
livros que tratam dos métodos de pontos interiores: [Ja 97, Vand 98, Wr 97].
Dedicamos o capitulo 9 a alguns desses algoritmos, assim como fornecemos
alguns programas em MATLAB.

Nos capitulos 10 e 11 introduzimos os problemas de Otimizagao Inteira ou
Programacao Inteira ou Otimizacao Discreta ou Otimizacao Combinatoéria,
isto é, problemas de Otimizacao Linear onde algumas ou todas variavies sao
restritas a valores inteiros. Gomory [Go 58a, Go 58b], no final dos anos 50,
propos os primeiros algoritmos de planos de corte para solucionar esses pro-
blemas, ver [Ma 78, Ma 83, NeWo 88, Sc 86]. Temos a intengao de escrever
um outro livro sobre a Otimizacao Inteira.

Procuramos listar na bibliografia deste livco um ntimero razoéavel de re-
feréncias didaticas em Programacao Linear publicadas desde os anos 50,
inclusive fizemos um esfor¢co em buscar referéncias em lingua portuguesa.
A obra mais cldssica é o livro de Dantzig [Dan 63], seguem-se vérias ou-
tras, aqui em ordem alfabética: [Ar 93, BaJa 77, BrOlBo 81, ChCoHe 53,
Ch 83, DoSaSo 58, Ga 60, Gar 60, Gas 58, GiMuWr 91, GiEl 71, GoYo 73,
Gon 89, Ha 65, He 94, HuCa 87, Ja 97, Las 70, Lu 89, Mac 75, MaPe 80,
Mu 76, Or 68, Pu 75, Sak 83, Sc 86, Si 72, Sim 58, St 72, Vand 98, We 90,
Wr 97, Zi 74].

Outros livros de Otimizagao Combinatéria trazem sempre uma introdugao
a Programacao Linear, tais como: [GaNe 72, Gr 71, Hu 69, KoFi 69, Ko 80,
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Law 76, Ma 78, Ma 83, NeWo 88, PaSt 82, Sa 75, SyDeKo 83, Ta 75, Var 72,
Wo 98].

Utilizamos, desde o inicio, uma notacao matricial para apresentar os
resultados tedricos e computacionais. No que se refere a modelagem de
problemas de decisao pela Programacao Linear, solicitamos ao leitor ou a
leitora que busque esse enfoque nas referéncias [BrHaMa 77, JaLa 98, Th 82,
GuPrSe 2000, MaPe 80] e em livros de introdugao a Pesquisa Operacional.

O conteudo deste livro pode ser apresentado, parcial ou totalmente, nas
disciplinas de Programagao Matematica, de Otimizagao (Programagao) Lin-
ear, de Pesquisa Operacional, de Otimizagao Combinatéria nos seguintes
cursos de graduagao e pos-graduagao: Engenharias, Matematica, Ciéncia
da Computacao, Fisica, Quimica, Economia, Administracao, Estatistica,
Atuéria.



Capitulo 2

Definicoes e Propriedades dos
Problemas de Programacao
Linear

Um problema de programagao linear pode ser definido sob a seguinte forma:

p

maximizar z = Y  ¢;; (2.1)
j=1
sujeito a:
P
S agry; <b, i=1,2,...¢q (2.2)
j=1
z; >0, j=1,2,..,p, (2.3)

onde ¢;, a;; e b; sao dados (nimeros reais) e z; representa para j = 1,2, ..., p,
as varidveis de decisdo. A funcdo linear a ser maximizada em (2.1) é deno-
minada funcao objetivo, funcao economica ou funcao critério. As restrigoes
de nao negatividade (2.3) sdo conhecidas como triviais.

Cada restri¢ao i de (2.2) pode ser substituida com o acréscimo de uma
variavel x,,; > 0, denominada varidvel de folga, por uma restricao de igual-
dade e uma restricao trivial:

e < D, J=1"1"] p+i — Yiy
Y ajry <b & 0
j=1 Tpt+i = U
ou

p Zp =)

j=1 Qiglj = Tpt+i = i
Zaz‘ﬂjzbi‘i’{ S0 ’
j=1 Tpti = U.

O leitor ou a leitora poderd, facilmente, verificar esta afirmacao.
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Uma restricao de igualdade poderd também ser substituida por duas de-
sigualdades:
p D aiixs < b
= j=1 Q57 5 Z bz
Sendo dado um problema de programacao linear com restrigoes de igual-
dades e desigualdades, poderemos acrescentar variaveis de folga as desigual-
dades nao triviais, passando dessa maneira a trabalharmos com restri¢oes de
igualdades e desigualdades triviais.

Assim sendo, um problema de programacao linear podera sempre ser
escrito da seguinte maneira:

(PPL) : maximizar z = Y _ ¢;z;

=1

sujeito a:

n
ZCLZ‘J'QZ]‘ = bi, 1= 1,2, .., m
=1

x; >0, j=1,2,...,n,

que poderd ser ainda apresentado sob a forma abaixo:

(PPL) : maximizar z = cx (2.4)
sujeito a:
Ax =b (2.5)
r >0, (2.6)
onde ¢ = (¢; ¢y ... ¢,), a8 = (21 29 ... 1,), bT = (by by ... by), A =

(a1 a ... ay) € aj = (ay; agj ... Gy), isto é, " € R*, x € R", be R™, A€
R™™ e a; € R™.

A desigualdade (2.6) indica que cada componente do vetor x é nao ne-
gativa. Indicaremos, portanto, que um dado vetor x tem pelo menos uma
componente negativa através da notacao x 2 0.

Definicao 2.1 Seja X = {z € R"|Axz =b,x > 0}. O conjunto X € denomi-
nado conjunto ou regiao vidvel do (PPL) e se x € X, entao x é uma solugao
vidvel do mesmo problema. Dado x* € X, x* € denominado uma solugao
otima do (PPL) se cx* > cx, para todo x € X .



Suporemos, sem perda de generalidade, que a matriz A tenha posto igual
a m, isto é, existem m colunas de A linearmente independentes.

Como observacao podemos dizer que a presenca de uma varidvel x; ir-
restrita em sinal serd expressa: x; = a:;“ -z, x;r >0ex; >0, deixando
sempre o problema na forma (PPL).

Particionaremos a matriz A da seguinte maneira: A = (B N), onde B é
uma matriz quadrada m x m e inversivel. Analogamente particionaremos os
vetores v e c: ol = (25 %), ¢ = (cp cn), 2 e cp possuirao m componentes
associadas a matriz B. Dessa maneira o (PPL) podera ser escrito:

(PPL) : maximizar z = cgrp + cNTN (2.7)
sujeito a:
rp >0, zy > 0. (2.9)

Explicitaremos zp em funcao de zy em (2.8):
rp =B 'b— B 'Nuy. (2.10)

Facamos zy =0 e Zg = B~ 'b.
Definigao 2.2 7 € uma solugio bdsica de (2.5) se t7 = (75 0). As varidveis
associadas as componentes de Tg sao denominadas basicas e as demais nao
basicas. Quando Tg possuir ao menos uma componente nula diremos que T
€ uma solugao bdsica degenerada.

No caso em que Zp for nao negativo, isto é, zg > 0, entao x satisfara
a restrigdo (2.6). Por forca do hébito, diremos que esta solugdo = é uma
solucao basica primal viavel. Primal pois mais adiante introduziremos a
nogao de dual.

Sejam Ip o conjunto dos indices das colunas de A pertencendo a matriz
B e Iy o conjunto dos demais indices de A. Lembremos que Ig NIy = ¢ e
IBU[N = {1,2,...,71}.

Levando a expressao de xp em (2.10) na fungao objetivo (2.7) teremos
uma outra forma do (PPL):

(PPL) : maximizar z = cgB b — (cg BN — cy)ry (2.11)
sujeito a:
rp=B"'b— B 'Nay (2.12)



Por comodidade, definiremos seguindo alguns autores cldssicos dos textos
de programacao linear, por exemplo, Dantzig [Dan 63] e Simonnard [Si 72],
novos parametros para o ultimo (PPL):

uw=cgB!, ul € R™,
fB:B_lb, Tp € R™,
Z; = ua, (jelIgUln), zj €R,
yj:Bflaj (] GIBU]N), Y, eR™,
Z= CBBflb = ub=cpTpg.

Assim poderemos escrever (cg B™'N —cn)an = Y1, (25 — ¢;)x; e o (PPL)
se tornara:

(PPL): maximizar z =z — Y _ (2j — ¢;)x; (2.14)
JEIN
sujeito a:
Tp=1Tp— Y YT (2.15)
Jjeln
CCBZO, LC]'ZO, jEIN. (216)

Definindo y]T = (Y1j Y2 - Umj) Th = (TB() TB2) - TBMm)) © 7L =
(Tpa) Tp(2) --- TB(m)) entdo (2.15) poderd ainda ser escrito como:

TG = jB(z) — Z YijZy, 1= 1, g eeey 110 (217)
JEIN
Proposicao 2.1 Sezp >0 ez —c; >0, Vj € Iy entao o vetor x* € R",

onde Tpey = Tpe), 1 =1,2,...mex; =0, j€ly, serd uma solucao otima
do (PPL).

Demonstracao

Como z; —¢; > 0ex; >0, Vj € Iy, entdo de (2.14 temos z < z = cz™.
O maximo de z nao ultrapassara z = cz*, mas x* é uma solucao viavel do
(PPL), logo x* é uma solugao étima do (PPL). "

No caso da propriedade 2.1, z* é uma solugao bésica de (2.5).
Suponhamos agora que & € R" seja uma solugao viavel de (2.5) e (2.6),
logo o serd também de (2.15) e (2.16), isto é,

Tpe) =Tpe — Y Yl 1=1,2,...,m (2.18)
Jjeln
ex >0, j € IgUly, fornecendo um valor Z a funcao objetivo:

=z— Y (2 —¢j)&; = ci.
JEIN

Q>

10



Suporemos também que Z € R"™ nao seja uma solucao bésica de (2.5),
isto quer dizer que havera ao menos uma componente z; > 0, j € Iy.
Sera possivel passar da solugao © a uma solugao basica viavel z* do
(PPL) tal que cz* > 2 = c2?
Para respondermos esta pergunta comecaremos fazendo variar o valor de uma
variavel x, k € Iy enquanto que o valor das outras varidveis cujos indices
pertencem a Iy nao se modificam, isto é, x; = z; para j € Iy — {k}. De
(2.18):

Tpe) =Tpe) — O, Y% — YTk, 1=1,2,..,m (2.19)
jeIn—{k}

onde z, poderd variar (aumentar ou diminuir).

Sabemos que z; > 0, zp; > 0, i@ = 1,2,...,m, e que os outros valores
associados a ;, j € Iy —{k}, ndo serdo modificados. Assim sendo: xp; > 0
implica que

Tpe) — . Yy —yare >0, i=1,2,..,m. (2.20)
jeIn—{k}

Consideremos Ly, L1, Ly uma partigao de {1,2,...,m}, tal que
Lo={i|yx =0}, Ly ={i | yax >0}, Ly = {i | ya <O0}.
Busquemos os limites de varia¢ao para z;, pois sabemos que de (2.20):

Ynte < Tpey — > Yy, i=1,2,..,m. (2.21)
jeIn—{k}

Para ¢ € Ly basta que o valor de x; seja nao-negativo.

Para i € Lq:
1 R
T < — (ﬂ_cB(i) — Z yijx]) .
Yik jeIn—{k}
Para ¢ € Lo:
1 .
Ty = — (fB(z‘) — Z yij%‘) .
Yik jeln—{k}
Sejam

1 . D SR ;
ap=—\Tpe) — Y Yu¥| = e ) v | TBO T 2 w0
Ysk jeln—{k} el | Yk jeln—{k}

e R 1 [ .
B = — (:cBu) - > ym‘%‘) = max { (fﬂB(i) - ) yia‘%‘) } ’
Yik jeln—{k} b Yik jeln—{k}
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e v, = max{0, O}

Logo v < xp < oy,

Quando L; = ¢ = a; = 00 e quando Ly = ¢ = (B = —o0.

A matriz B = (apa) ap@) --- @) extraida de A foi utilizada para
chegarmos ao sistema (2.15) a partir de (2.5). Os vetores agg), i = 1,2,...,m,
formam uma base do R™, logo existem \; € R, i = 1,2,...,m, para os
quais ar = Yity Napa). Seja s € {1,2,...,m} = M tal que Ay # 0, entao
ap(s)y = /\i Ak — YicM—{s} )\iaB(Z-)) , como aps) # 0, a coluna a; nao pode ser
escrita como uma combinacao linear das colunas ag(;), @ € M —{s}; isto quer
dizer que ap(), @), ---» AB(s—1)s ks AB(s+1)s ---» AB(m) formam também
uma base do R™.

Seja v! = (M A9 ... Ap), assim podemos escrever a = Bv, logo v =
B~ tay, isto é, v = y;.

Basta que yg # 0 para que possamos substituir a base formada pelas
colunas de B por uma outra base em que o vetor aps) ¢ substituido por ay.

Ja estamos aptos a responder nossa pergunta.

Procedimento 1
Tomemos zy tal que zp, =2, > 0e k € Iy.
1° caso: z; — ¢, > 0, decresceremos o valor de z;, até alcancar 7y;

se v, =0, faremos zy = 0 e utilizaremos (2.19) para
atualizar os valores de zpg(;), i = 1,2,...,m;
se Yk = B, faremos x, = B que ocasionara xrpq) = 0 em (2.19),

como Yy, # 0 entao poderemos fazer
I = (Is — {B()}) U{k},
Iy = (Iy — {k}) U{B()},
isto é, teremos uma nova matriz B inversivel, extraida
de A, onde a coluna ap() serd substituida por ay;
20 caso: 2, — ¢ < 0, aumentaremos o valor de x;, até alcancar ay;
se ay = 400, asolugdo do (PPL) serd ilimitada,
pois xp — 400 implica z — 400;
se ay, < 00, faremos x;, = a; que ocasionard xp) = 0 em (2.19),
como yg, 7 0 entdao poderemos fazer
Ip = (In — {B(s)}) U {k},
I == (Iy — {k}) U{B(s)},
isto é, teremos uma nova matriz B inversivel, extraida
de A, onde a coluna ap( serd substituida por a;
39 caso: 2z, — ¢ = 0, aplicaremos o que foi realizado no 1° caso.
Fim do procedimento 1
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Para cada j € Iy tal que ; > 0, o procedimento 1 feito para o indice
k sera repetido até que os valores atribuidos as varidveis x;, j € Iy, sejam
nulos, ou que a solu¢ao méxima (6tima) do (PPL) seja ilimitada (2° caso,
o = —{—OO).

O procedimento 1 sera aplicado r vezes onde r = [{j € Iy| &; > 0}|.

Com as explicacoes anteriores poderemos enunciar mais duas proprieda-
des a seguir.

Proposicao 2.2 Se (2.5), (2.6) admitirem uma solu¢do vidvel, entdao haverd
ao menos uma solug¢ao bdsica de (2.5) satisfazendo (2.6).

Proposicao 2.3 Se o (PPL) possuir étimo finito ao menos uma solu¢ao
otima serd bdsica vidvel.

A propriedade 2.2 poderé ser demonstrada utilizando o 1° caso do pro-
cedimento 1 para qualquer 2z, —cx € R, k € Iy, T > 0.

Aplicaremos r vezes, onde r = |{j € In| &; > 0}|, o procedimento 1 para
demonstrarmos a propriedade 3.

Exemplo 2.1 Seja o

(PPL) : maximizar z = 3x1 + 529

sujeito a:
T S 4
) < 6
31’1 + 2512'2 S 18
T Z 0
i) Z 0

Associaremos as restri¢oes nao triviais as variaveis de folga x3 > 0, x4 >
0, x5 > 0 tais que o (PPL) fique sob a seguinte forma.

(PPL) : maximizar z = 3z + 53 + 0x3 + Oxy4 + Ox5

sujeito a:
T + x3 = 4
) + x4 = 6
3271 + 2232 + x5 = 18
szoaj:1727374a57
onde

13



S = O

—_ o O
\_/

1
0
0

N — O

1
A(a1a2a3a4a5)(0
3

4
b=| 6|,c=(35000).
18

Tomemos

Ip=1{3, 2, 5}, Iy=1{1, 4},
B(1) =3, B(2) =2, B(3) =5,

100 1 00
B=(azayas)=| 0 1 0 |,logoB =10 10|,
021 0 -2 1

1
cp=(050), ucBBl(050)(0
0

4
chBlbub(O50)( 6) = 30,

1
z1=ua;=050)[ 0 [=0=2—;=0—-3=-3,

3

0

z4ua4(050)<1)5:>z4c4505,
0



Poderemos escrever:
maximizar z

sujeito a:
z = 30 + 3ZU1 — 5.CE4
T3 = 4 — Ty
o = 6 - T4
Iy = 6 — 31’1 + 2[E4

z; >0, j=1,2,3,4,5.

Tomemos 1 = 1, Ty = 4, 23 = 3, T4 = 2, T5 = 7 uma solucao viavel
deste problema, facilmente verificada, fornecendo Z = 30+3 x 1 —5 x 2 = 23.
A partir da solucao z objetivamos encontrar uma solucao béasica viavel que
forneca um valor z* para z, tal que z* > cz.

A seguir usaremos o procedimento 1.

Como z, — ¢y = 5 > 0, estamos no 1° caso, portanto faremos x4 decrescer
de valor:

4 — 11 >0 qualquer que seja x4,
6—24,>0 = x4 <6,
6-3@'1-’-21’420 = 2$4Z3i’1—6:> £L‘4Z 73X;_6 :—%, ﬁ4:—%,

logo v4 = maX{O, —%} = 0.

Basta fazermos x4 = 0 e teremos a nova solucao viavel: 77 =1, 2, =0
fornecendo 23 =3, T =6, 25 =3 e 2=30+3 x 1 = 33.

Examinaremos agora z;. Como z; —c¢; = —3 estamos no 2° caso, portanto
faremos x; aumentar de valor:

r3=4—11 20 = 1, <4,
ro =6 — 124 >0 qualquer que seja x1,
5 =06—311+224 >0 = 321 <64 224 imlngz,

logo a1 = min{2, 4} =2, s =3, B(s) = 5.
A nova base sera definida por

I =13, 2, 1}, In = {4, 5},
B(1)=3, B(2)=2, B(3) =1,

B = (a3 ay a1) =

O O =

0
1
2

w o =

1
,logo B™'=| 0
0

WIN = W
Wi O Wl

15



cp=(053), u=cgB'=(053)

Tp=B b= Zy

zy =uag = (03 1)

25 =uaz = (03 1)

ys = B lay =

ys = B7las =

o O = o O =

— o O o = O

WIN = WIN WIN = W

OO =

W= OWlE Wik O wl-

WIN = W

_— o O O = O

Wl = W WIN = WD

=3=>2zn—-—c=3-0=3,

=1l=23—c;=1-0=1,

Novamente escreveremos o (PPL) sob a seguinte forma:

sujeito a:

x3
X2
X1

maximizar z

36

N O DN

_|_

333’4
2
3L4
Ly
Xy

Wi

+

Ts
1
375

Ts

Wl

x; >0, j=1,2,3,4,5.

A solucao obtida serd 7 = 2, 9 =6, 23 =2, 4, =0, 5 = 0, que é uma
solucao bésica primal viavel. Neste caso obtivemos z; —¢; > 0, Vj € Iy,
assim sendo, pela propriedade 2.1, esta tultima solucao é também &tima,

fornecendo z* = 36.

[lustraremos, na figura 2.1, o desenvolvimento deste exemplo no espaco
1 X o do problema original. Os lados do pentagono formado pelos vértices
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To i
06— 5 26)
(1,4)
(4,3)
(0,0) (4,0) T

Figura 2.1: Busca de uma solugao basica

(0,0), (4,0), (4,3), (2,6) e (0,6) e seu interior representam a regiao vidvel
do problema. Do ponto inicial (1,4) passamos a (1, 6) e deste a solugao bésica
(2,6). "

2.1 Observacoes

Pela propriedade 2.3 podemos pensar em s6 considerar, para efeito de encon-
trar um 6timo do (PPL), as solugoes béasicas vidveis deste problema.

O sistema de equagoes lineares (2.5) pode possuir até C”* solugdes bésicas,
pois C* é o numero total de matrizes mxm diferentes extraidas de A, algumas
podendo nao ser inversiveis e entre as inversiveis poderemos ter Tg # 0.
Supondo mais uma vez que o problema de programacao linear tenha solucgao
finita, poderemos escrever o seguinte problema de otimizacao:

(P) : maximizar z = cz
sujeito a: x €V,

onde V = {z!, 22,..., 2}, e ' € R", i = 1,2,...,t, sao solugdes bdsicas
vidveis do (PPL). Lembremos que |V| =t < C.

Definigao 2.3 (P) é um problema de otimizagdo combinatdria.

17



2.2 Exercicios

1. Sendo dado o problema de programacao linear

(P) : maximizar z = 3z + 5z

sujeito a:
T + I3 = 4
) + x4 = 6
3&31 + 21’2 + x5 = 18

2; >0, j=1,2,3,4,5.

Verificar que as colunas associadas as variaveis xy, T, r3 formam um
base 6tima do (P).

2. Seja
(P1) : maximizar z = 10x; + 1229 + 33 + 44 + 225
sujeito a:
xl _'_ 1'2 + .CCS — 4
21’1 + 3I2 — X4 = 6
T + x5 = 3

z; >0, j=1,2,3,4,5.

A partir da solugao z1 = 1, 19 =2, 23 =1, x4 = 2, x5 = 2, fornecendo
um valor de z = 49. Encontrar uma solugao bésica de (P1) tal que o
valor de z associado a esta solucao basica seja maior ou igual a 49.

18



Capitulo 3

Método do Simplex

3.1 Introducao

Dantzig, em 1947, introduziu o método do simplex para resolver um problema
de programacao linear (PPL).

A idéia do método é partir de uma solugao bésica de (2.5) satisfazendo
(2.6), isto é, uma solugao bésica primal vidvel, passar para outra solucao
bésica primal vidvel sem que o valor da fungao objetivo diminua (no caso de
maximizagao). Como o nimero de solugdes bésicas é finito, o algoritmo, sob
algumas condicoes, convergira.

Dada a matriz B quadrada e inversivel, extraida de A, tal que zp > 0,
colocaremos o problema de programagao linear (2.4),(2.5) e (2.6) sob a forma
(2.14), (2.15) e (2.16). Utilizando a propriedade 2.1, testaremos se esta
solucao é 6tima, caso nao o seja tentaremos aumentar o valor de uma variavel
2y, k € Iy, tal que 2, —c;, < 0, como ja explicado no 2° caso do procedimento
1. Se a; = +00 entao nao havera étimo finito, caso contrario procederemos
exatamente como foi ilustrado no exemplo 2.1.

No caso em que s6 iremos trabalhar com solugoes basicas vidveis, o calculo
de ay é mais simplificado:

o = TBG) _ min {IB(i) }
. = _ ZB()
Ysk i€l | Y

e caso L1 = ¢ faremos o = +o0.

A seguir descreveremos um procedimento que resume o método do sim-
plex.
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3.2 Algoritmo do Simplex

Procedimento 2 (maximizagao)
Dada uma solug@o bésica primal vidvel para o (PPL).
Se zj —c¢; > 0,Vj € Iy, a solugao dada é uma solugao 6tima. PARE.
Caso contrario, escolhe-se um k € Iy para o qual z; — ¢, < 0;
se ap = 00, asolu¢do do (PPL) ¢ ilimitada. PARE.
se ap < +00, faremos x, = ay, acarretando xp() = 0,
a coluna aj ocupard o lugar da coluna ap) em B.

MUDANCA DE BASE.
Fim do procedimento 2.

Para cada nova base o procedimento 2 é repetido até que uma regra de
parada seja verificada. Este procedimento possui duas saidas: solugao 6tima
encontrada ou solucao ilimitada. Para que este método iterativo realmente
termine, teremos que considerar as condi¢oes de Bland [Bl 77] que serao e-
xaminadas mais tarde.

Exemplo 3.1 Tomemos o (PPL) do exemplo 2.1, j& com as varidveis de
folga adicionadas.

1% solugao basica:
I =13, 4, 5}, In = {1, 2},

B(1) =3, B(2) =4, B(3) =5,
100

B:(a3a4a5): 010 =1.
0 01
A base B esta associada a uma solucao bésica primal viavel, isto é, faremos
21 =29 =0 e teremos 3 =4, 4 = 6 e 25 = 18. Neste caso B~' = B = I.
E ainda

cg=(000), u=cgB = (000)I=(000),
Zp(1) T3 100 4 4
fB:B_lb: J_IB(Q) = (Z’4 = 0 1 O 6 = 6 5
T53) Ts 00 1 18 18
“h=ub=(000)(4618)" =0,

2y =wua; = (000) =0=2—-—=0-3=-3<0,



0
zg=uas=(000)] 1 | =0=20—cp=0—-5=-5<0,

2
1
ylzB_1a1:[a1:a1: 0 y
3
0
yQZB_ICLQ:IQQZCLQ: 1
2
O problema ficara sob a seguinte forma:
maximizar z
sujeito a:
z = 0 + 321 + bdxo
Trs = 4 — I
Ty = 6 - )
Ts = 18 — 31’1 - 21‘2

z; >0, j=1,2,3,4,5.

Fazendo z; = z9 = 0 teremos x3 = 4, x4 = 6, x5 = 18 fornecendo
z = 0. Faremos uma das variaveis x; ou s crescer de valor, provocando
o aumento de z. Tomemos, por exemplo, zs para ter seu valor aumentado,
isto é, faremos a coluna as entrar na nova base. Como L; = {2, 3}, pois
Y12 = 0, Yoo = 1 e y39 = 2, passaremos a calcular ap:

T T 6 18 T
Qg = Mmin {:1:3(2)7 T5@) } = min {, } =6= adilt)
Y22 Y32 12 Y22

logo ap(2) deixard a base, sendo substituida pela coluna as.

2% solucao basica:
]B = {37 27 5}) IN = {17 4}7
B(1) =3, B(2) =2, B(3) =5,

100 1 00
B=(azazas)=| 01 0 |logoB*=|0 10 |,
021 0 -2 1
1 00
cg=(050), u=cgB'=050[0 1 0]|=(050),
0 -2 1
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T3 4
Tg=B'b=| 1z, |=| 6 |,
Ts 6
1
z1=ua;=050)[ 0 [=0=2—=0-3=-3<0,
3
0
=uas =050 | 1 | =522 —-c=5-0=5>0.
0

Calcularemos o essencial para a passagem a terceira solucao basica, isto
é, a; entrard na nova base; necessitamos obter «y para saber qual a coluna
de B que sera substiuida por a;.

1 00 1 1 Y1
pw=Blar=|0 10 0Ofl=10]=| va [,
0 -2 1 3 3 Y31

logo L1 = {1, 3} e

T ;108 {4 6} 6 Tpm  Ts
Qp =mMin{——=,=min{ —, —p =—- =2 = = —.
ielq Yi1 1" 3

Assim sendo as = aps) deixara a base.

3% solucao basica:
]B = {37 27 1}7 IN = {47 5}7
B(1)=3, B(2)=2, B(3) =1,

101 1 2 —3
B=(azaza;))=|0 10 |logoB*=|0 1 0],
2 1
02 3 0 -2 I
1 2 _1
. 3 73
c5=(053), u=cgB =053 [0 1 0|=031),
0 -3
% 9
T=B'%=|z, | =] 6|,
T 2
4
F=ub=(031)] 6 | =36,
18



To i
(0,6) (2,6)
(4,3)
(070) (4,0) l‘:

Figura 3.1: Iteragoes do método primal do simplex

0

a=ua =030 1 |=3=22-a=3-0=3>0,
0
0

zs=uas=(031)] 0 [=1=2—c5=1-0=1>0.
1

Como z; —¢; > 0, Vj € Iy, esta solucao bésica (3” solugdo) é Stima
(propriedade 1).

Entao z1 = 2, 29 = 6, 23 = 2, x4 = x5 = 0 é uma solugao 6tima,
fornecendo z = 36.

[lustraremos, na figura 3.1, o desenvolvimento deste exemplo no espago
x1 X 29 do problema original. Os lados do pentagono formado pelos vértices
(0,0), (4,0), (4,3), (2,6) e (0,6) e seu interior representam a regidao vidvel
do problema. Do ponto inicial (0,0) passamos a (0, 6) e deste a solu¢ao étima
(2,6) m
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3.3 Busca de uma Solucao Basica Viavel

Quando nao tivermos uma solugao bésica viavel para o (PPL), poderemos
proceder da seguinte maneira.

Acrescentaremos uma variavel artificial g; > 0 a esquerda de cada res-
trigao >0 aw; = b, ¢ = 1,2,...,m. Suporemos b; > 0, i = 1,2,...,m.
Teriamos o seguinte conjunto de restrigoes:

Yo a4+ g =bi, i=1,2,...m (3.1)
j=1
z; >0, j=1,2,..,n, (3.2)
3 >0,i=1,2..m. (3.3)

Construiremos um outro problema de programacao linear

(PA) : minimizar » g,

i=1
sujeito a
ﬁ:aiﬁj +gi=0b;, 1=1,2,...m
j=1
r; >0, 5=12,..n,
gi>0,1=1,2,...,m.

Utilizaremos v(-) para representar o valor étimo da fungao objetivo do
problema de programacao linear (-).

E facil verificar que as varidveis x; = 0, 7 = 1,2,...,ne g = b; > 0
estdo associadas a uma solugdo béasica de (3.1) satisfazendo (3.2) e (3.3).
Esta soluc@o bésica serd tomada como solucao inicial para a solugao de (PA)
utilizando o método do simplex (procedimento 2) para o caso de minimizagao,
lembrando que min z = — max(—z).

Se v(PA) > 0 o conjunto de restri¢oes do (PPL) é vazio.

Se v(PA) = 0 asolugdo 6tima obtida para (PA) terd g; = 0,i = 1,2, ....,m
ex; = z; > 0 para j = 1,2,...,n satisfazendo a 37, a;;z; = b, @ =
1,2,...,m. Se a base final da solu¢ao 6tima de (PA) nao contiver nenhuma
coluna associada as variaveis artificiais g;, ¢ = 1,2, ..., m esta serd também
uma base primal vidvel do (PPL) original. Caso a solugao bésica étima
encontrada para o (PA) seja degenerada, isto é, h& pelo menos uma coluna
associada a g; na base ¢tima e g; = 0, poderemos iniciar o método do simplex
para o (PPL) com esta base, nao permitindo que as varidveis g; associadas a
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base tenham valores diferentes de zero. Mais tarde trataremos com detalhes
este assunto.

A solugao do (PA) é conhecida como sendo a primeira fase do método do
simplex.

3.4 Calculo de B!

Lembremos que em cada etapa do método do simplex necessitamos determi-
nar:
w=cgB™', Tg = B b ey, = B 'ay,

onde ay € a coluna escolhida para entrar na base.
Na realidade temos trés sistemas de equagoes lineares simultaneas para
serem resolvidos:
uB = cg, BTg =0be By, = a,

que determinam respectivamente os vetores u, g € Y.

Caso 86 tivéssemos de resolver uma vez esses trés sistemas, poderiamos
utilizar os métodos numéricos de resolugao de sistemas de equagoes lineares
simultaneas sem a inversao explita de B, no entanto, em cada iteracao do
simplex buscamos a solugao dos trés sistemas para os quais B, cg e ai variam
de iteracao em iteracao.

Geralmente, como descrito no exemplo 3.1, a primeira base B associada
a uma solugao basica viavel, no método do simplex, é a matriz unitaria I.
Por outro lado, ja verificamos que de uma iteracao a seguinte a matriz B se
transforma em outra matriz B’ trocando-se somente uma coluna de B.

Seja B, = (ay ay ... Gyr_1 @y Qpyq ... Q) UmMa matriz quadrada inversivel,
m x m. Suponhamos conhecida B, .

Dada B, = (a1 ag ... Gy—1 Gy Gryq ... Q) como se poderd determinar Bp_l,
caso exista, utilizando B '?

Consideremos

-1 -1 -1 -1 -1 -1 -1
B, "B, = (B, ay B, "ay ... B, 'a,_1 B, a, B, a,41 ... B, "ay),

-1 o . /
sabemos que B ‘'a; = e;, j # p, onde e; é um vetor com todas as compo-
nentes nulas exceto a j-ésima componente que é igual a um.

Seja v = B, 'a, = (v; vy ... Up_1 Uy Vpy1 ... Uy)T, entao

Br_pr =(ey €2 ... €1V Crpy ... ) = Ep, (3.4)
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ou ainda
01 0 0 v 0 0 0O
00 0 1 v.1 0 0 00O

00 0 0 vy

—_
e}
- O
(@)

00 0 0 v-1 0O 0 10
00 0 0 v, 0 0 01

De (3.4) teremos que B, = B,E,. Verificamos que existira B;l se e
somente se existir E!. Notemos que o determinante de E, ¢ igual a v,,

basta que v, # 0 para termos E !, assim sendo:

-1 -1 —1p-1
B> =(B.E,)" =E "B, (3.5)
Proposicao 3.1 Se v, # 0, entao a inversa de E, serd

—1 _
E " =(e1 6 .. €210 €rp1 .. €),

onde
r— 1 T m— m
SPRVEU . U U N S
Uy Uy Ur  Up (%% Uy Uy
Ou ainda
1 0 0 o+ 0 0 00
1 0 0 > 0 0 00
00 0 1 —=+ 0 00
El=[00 0 - 0 0 00
00 0 0 —== 0 00
00 0 0 -0 0 1
00 0 O e 0 1
Demonstracao
Basta realizarmos E,E.! e encontraremos I. ]

Suponhamos agora que B = (a; as ... a,,) ¢ uma matriz quadrada m x m
e desejamos encontrar sua inversa, caso exista.
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Partiremos da matriz unitdria I = (e es ... €,,), cuja inversa é a prépria
matriz /. Iniciaremos calculando a inversa de By = (aq e ... e,,) a partir de [
tal como foi feito neste capitulo, isto é, Ey = By, entdao B;' = E;*. A partir
de B; da qual ja conhecemos a inversa, passaremos a calcular a inversa de
By = (a; ay e3 ... e,,). Sabemos que By 'By = (e; Bi'ay ez ... e,,) = Eo,
a inversa de F5 é obtida pelo método ja visto. Assim sendo By, = B1FEs, =
By' = Ey'Bi' = E;'EY. Seja By = (ay ay as ey ... €,) cuja inversa
desejamos obter, logo poderemos escrever BQ_IBg = (e1 ey B;lag €y v E) =
Es = B;' = E;'By' = E;'Ey'Er Y. Continuando o raciocinio obteremos
B™'=E'E' . E;'Ey BTt Como saberemos que B nao tem inversa?

Exemplo 3.2 Seja

1 2 00 1 =200

{0 3 00 e 1|0 2 00
E=|y o 10| det®)=3E"=|, 8 |, =

0 -1 0 1 0 3 01

Observacao: verificamos que v = y, onde ¥, = B~ ta;, no caso em que ay
substituird a r-ésima coluna de B para formar a matriz B’. Logo, se y,.; # 0,
entao B’ serd inversivel.

3.5 Interpretacao Geométrica da Mudanca de
Base

Um conjunto C' C R"™ é convexo se para quaisquer z' e 22 € C' temos que

r = Ar' + (1 — \)2? para 0 < X < 1 pertencerd também a C.
O conjunto X = {x € R" | Az =b,x > 0 } é, por definigdo um conjunto
poliédrico quando X # ¢.

Proposicao 3.2 O conjunto X € convexo.

Demonstracao

Sejam 2t e z? € X entaoa! >0, Azt =bea? >0, Az> =b. Para0 < A < 1
podemos escrever Azt > 0, AMAz! = Xbe (1—N)z? >0, (1-N)Az? = (1-\)b
ou Az + (1 — N)a? > 0, Ma' + (1 — N)Az? = Xb+ (1 — \)b, assim temos
=Mt 4+ (1-XN2?>0, Adzt + (1 — N)a?] = Az = b, logo T € X. u
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T

Lp

Figura 3.2: Vértices ou pontos extremos

T

Figura 3.3: Combinagao convexa

Definigao 3.1 z € um vértice (ponto extremo) de um conjunto poliédrico X
se v € X e ndo existir X € [0,1] tal que x = Mz* + (1 — \)z?, onde z' e
2?2 € X, para v # v' e x # 22

Na figura 3.2 ilustramos dois vértices, z*
em R2.

A expressao x = Az! + (1 — \)x?, para A € [0, 1], representa todos os
pontos do segmento de reta unindo z! e 22. Dizemos que 2 é uma combinacao
convexa de x! e 22, ver figura 3.3.

e P de um conjunto poliédrico

Proposicao 3.3 Seja X = {x € R" | Az =b, © > 0} # ¢ e seja A uma
matriz mxn, de posto igual a m. Uma solucdo bdsica de Ax = b, satisfazendo
x > 0 corresponde a um vértice de X.
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Demonstracao

Consideremos A = (B N), e B € R™ ™ uma matriz quadrada inversivel e
N # 0, pois se N = 0 haveria um tnico ponto em X que seria o proprio
vértice.

Tomemos T = (Tg Zy)?, onde Ty = 0, uma solugao bésica vidvel, isto é,
Ip = B~'b > 0.

Sejam z! e 2% € X diferentes de T, vamos supor que exista um A € [0, 1]
tal que z = Az' + (1 — \)z?, sabemos que z! > 0, Ax' = Bz} + Nz}, =
b, > > 0, Ax?> = Bx% + N2% = b, como N # 0, x}, # 0 e 23, # 0, caso
contrério, isto é, z& = 0 implicaria r} = Tp e 23 = 0 implicaria 2% = Zp;
contrariando a hipétese de que o' # 7 e 22 # Z. Temos que

T=Ax' +(1—\)a?
implica

Tp = g+ (1= N1y e0=Avy + (1 —N)ay. (3.6)

Comozy >0exh #0,2% >0eax% #0, A >0, (1—-X)>0; Ae(1—2N)
nao podem ser anulados ao mesmo tempo, entao (3.6) nunca sera verificada.
Assim sendo demonstramos, por absurdo, que uma solucao béasica viavel
corresponde a um vértice de conjunto poliédrico X. [

[lustremos, a seguir, a propriedade 3.3. Seja

X ={z = (2, 25 23)7 € R® | 221 + 325 + 623 = 6,2, >0, 25 > 0, 23 > 0}.

As solucoes basicas de 2z1 + 3x9 + 6x3 = 6 sao:

6

ZE1—§:3, $2—l’3—0,
6

x2—§:2, .CEl—ZEg—O,
6

1’3:6:1, .’131—.1'2—0

Todas satisfazem as restricoes de nao-negatividade. Na figura 3.4 repre-
sentamos o conjunto X pelo triangulo unindo os trés vértices.

A seguir daremos uma interpretacao geométrica do processo de mudanca
de base (pivoteamento) no método do simplex. Para facilitarmos a notagao
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I‘g‘

(0,0,1)

(02,0) a2

(3,0,0)

T

Figura 3.4: Conjunto poliédrico convexo, fechado e limitado

faremos B(i) =i, i = 1,2,...,m; assim sendo o (PPL) sob a forma (2.14),
(2.17) e (2.16) serd escrito a seguir.

(PPL) : maximizar z =2z — »_ (2 — ¢;)z; (3.7)
JEIN
sujeito a:
T, =T; — Z Yij Ty, 1€ lp (38)
Jeln
ZL’jZO +$j,jE[N (39)
r; 20, 1€ lp (3.10)
T > O, ] € [N- (311)

As restrigdes do tipo (3.9) sdo colocadas para completar o sistema de
equagoes, de modo que a interpretacao geométrica se faca em R".
Estudemos o processo de entrada na base de uma coluna a, k € Iy.
T = T; — YixT, © € Ip,
T; = 0+ (5jkxk, j € IN,

onde

djr=1sej=kedy=0sej#k,

ou ainda,
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T

Figura 3.5: Direcao de subida do método do simplex

1 1 —Yik
To To —Y2k
Lm—1 jm—l —Ym—1 k
Tm T —Ymk
Tm41 0 0
= : + Ll
Th—1 0 0
Th+1 0 0
T, 0 0
caso denominemos w! = (—y1k — Y2k -+ — Ymr 0 ... 010 ... 0), poderemos
ainda escrever:
r =27+ rpw, x> 0. (3.12)

Quando x; aumentar, o vetor x serd modificado, na figura 3.5 ilustramos
este procedimento em R?. Af observamos que z estard na semi-reta T', para-
lela ao vetor w.

No caso em que z, < ap < 00 teremos T = T + agw. Verificamos que
ao passarmos da solucao bésica & para a solugao também basica z estaremos
caminhando sobre o segmento da semi-reta T" entre T e z. Este segmento é
uma aresta do conjunto poliédrico formado pelas restrigoes do (PPL), como
serd visto no capitulo 6. Isto quer dizer que w fornece a direcao desta aresta.
A determinacao de w é imediata pelo método do simplex.
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Definicao 3.2 Quando um conjunto poliédrico convexo for limitado serd de-
nominado um politopo.

Exemplo 3.3 Tomemos, novamente, o (PPL) do exemplo 2.1, ji com as
variaveis de folga consideradas.

Comecemos com

100 10 0 10 0 1 1
1 —1 1 3
011 =101 3 =E;5 (01 —3 0| = -3
00 2 00 3 00 3 3 5
Seguindo a notacao da secao 3.4 teremos
100 100\ " 100
E = —% 1 0 |, cujainversa —% 10 = % 1 ,
3 3 3
501 501 -3 01
logo B~! = E{'E;'. Finalmente
100\ 100\ /10 0 10 0
-1 3 1 3 1
3 0 2 -5 01 00 3 -5 0 3

Lembremos que Iy = {3,5} e passamos a calcular T, ue z;—c;, j € In.

10 0 0 s
u=cgB'=@B05 | 21 -1 —(—202>,
—3 1
2 2
7 4
Ip=B"b=| 24 | =| 3 |,
Ty 3
9 5\ (1 9 9 9
23:ua3:<—202> 8 _—§=>Z3—C3:—§—0:—7<0,



-1 3 _ 3\ ~
Fagamos a3 entrar na base B~ a3 = (1 5 = 5) , assim sendo
I 4 —1
3
Ty 3 -3
i) = 3 + % Is.
T3 0 1
Ty 0 0

E facil verificar que ag = 2, logo faremos z3 = 2.
Esquematizaremos no plano z; X 9, ver figura 3.6, a operacao a ser
finalizada. Para isso observamos que

1 =4—a, v9 =3+ -q,

2

para 0 < a < a3 = 2, ou ainda

(2)=(5) ()

mas, para o = 2,

Notemos que a aresta que vai do ponto (4,3) ao ponto (2,6) é paralela

ao vetor w = (—1 f)T. [

3.6 Convergéncia do Método do Simplex

Comecaremos esta secao motivando a leitora ou o leitor para a possibilidade
do método do simplex nao convergir.
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To I
(0,6) (2,6)
X
(4,3)
(0,0) (4,0) oy

Figura 3.6: Direcao de uma aresta do poliedro. O ponto x pode ser escrito

como z = (4 3)" + (=1 )Ta, a €[0,2]

3.6.1 Motivacao

Consideremos novamente o (PPL) em sua forma padrao:

(PPL) : maximizar z = cx (3.13)

sujeito a:
Az =1b (3.14)
x > 0. (3.15

)
Onde ¢ = (1 ¢y ...cp), 27 = (21 T9 ...1), b7 = (b1 by ...by), A = (a1 az ...a,)
e a]T = (a1 agj -.Qp;), isto é, ¢ € R", z € R", b € R™, A € R™" e
Q; e R™.

Suporemos, sem perda de generalidade, que a matriz A tenha posto igual
a m. Como ja foi feito anteriormente poderemos escrever ainda

(PPL): maximizar z =z — Y _ (2j — ¢;)x; (3.16)
JEIN
sujeito a:
:EB(Z) = :fB(z) - Z YijZy, 1= 17 s eeey 1ML (317)
JeIn
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Q?jZO, jGIBU[N. (318)
O numero total de solugdes basicas de (3.14) tem por cota superior

|
Con =~
ml(n —m)!

O método primal do simplex parte de uma solucao basica de (3.14) satis-
fazendo (3.15), isto é, uma solucao bésica vidvel do (PPL) e, de maneira ite-
rativa (pivoteamento), passa a outra solugao basica vidvel até que tenhamos
satisfeito as condigoes de otimalidade (z; —¢; > 0, j € Iy) ou concluindo
que a solucao é ilimitada.

Se de uma iteracao para outra a variavel x; entrar na base entao z tera
um novo valor, z = 2, onde 2 = Z — (2, — ¢;)z;. Lembremos que z, — ¢; < 0.
Caso x; tome um valor estritamente positivo entao zZ > z, caso x; tenha um
valor nulo, teremos z = Zz. Neste ultimo caso z nao modifica seu valor de
uma iteracao para outra. Quando uma variavel basica tomar um valor nulo
diremos que a solugao béasica é degenerada.

Quando aplicarmos o método do simplex a um (PPL) em que todas
as solucoes basicas nao sao degeneradas z crescera a cada iteracao, dessa
maneira nunca repetiremos uma solucao basica. O método do simplex con-
vergirda sempre neste caso.

No entanto, quando tivermos solugoes basicas degeneradas poderemos
observar, as vezes, que apos algumas iteragoes, sem que o valor de z se mo-
difique, tenhamos uma solugao basica ja visitada anteriormente pelo método
do simplex. Diremos, neste caso, que o método do simplex cicla.

3.6.2 Exemplo de Ciclagem
Seja o (PPL), ver [Ch 83]:

(PPL) : maximizar z = 10z; — 5729 — 93 — 2424

sujeito a:
0.53[’1 - 5.5 - 253173 — 9[[‘4 + Ty =0
0.51‘1 — 15[[’2 — 051’3 + Ty + Tg 0
T + x7; = 1

2; >0, j=1,2,..,7.

Caso partamos da solugao bésica tal que Iz = {5, 6, 7} e utilizarmos como
critério de entrada o indice associado ao menor z; — ¢;, j € In e, no caso
de empate, como critério de saida escolhermos a coluna ap(y com o menor
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B(i) para sair da base, verificaremos que z nao variara de valor durante seis
iteracoes e na sexta retornaremos a Ip = {5, 6, 7}!

Talvez com outro critério possamos contornar o fenomeno de ciclagem
que pode apresentar o método do simplex.

3.6.3 Regra de Bland

Bland [Bl 77] enunciou uma regra com um critério de escolha para a coluna
que vai entrar na base e um outro critério para a coluna que saird da base
durante o método do simplex que evita a ciclagem do algoritmo. Esta regra
¢ do menor indice ou de Bland. Passemos a apresentar esta regra.

Regra de Bland (Método primal de simplex)
Critério de entrada (problema de maximizacao):
a, entra na base se z, — ¢, < 0 e p for o menor indice entre todos
os j € Iy tais que z; —¢; < 0.
Critério de saida:

. 7 . TRB(;
a, sai da base se ;Tp = miny, ~0,i=1,2,..m {%(p’)} =6, onde s = B(l)

, ’, . . TpgG
e s ¢ o menor indice entre todos aqueles para os quais %“) =40.
ip

Proposicao 3.4 Caso aplicarmos a regra de Bland durante a resolugao de
um problema de progamacao linear, utilizando o método primal do simplez,
nunca haverd ciclo, isto é, o método do simplex convergira.

Demonstracao
A idéia da demonstracao é que aplicando a regra de Bland o método do
simplex cicle, dessa maneira a prova dar-se-a4 por absurdo.

Como havera ciclagem, isto é, apds um certo nimero de iteragoes voltare-
mos a uma solugao basica ja visitada pelo método do simplex anteriormente.
Para que isso seja possivel, o valor de z nao se modificara nessas iteragoes e
as solugoes basicas em questao serao todas degeneradas.

Suponhamos que na iteracao ¢ tenhamos encontrado a mesma solugao
bésica da iteracao 1 (¢ > 1), utilizando a regra de Bland.

Denominaremos K o conjunto dos indices das colunas que participaram
da base e nao participaram da base em pelo menos uma dessas ¢ iteragoes.

Seja t = max{i | © € K}. Consideremos que a; saia da base na iteragao
q (1 < g < q), isto ¢, serd nao basica na iteragdo ¢ + 1 e que a, entre na
base na iteragao g, isto é, a, estard na base na iteracao ¢+ 1, logo p € K por
definicao de K.
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Como supusemos que o procedimento cicle, poderemos continuar as ite-
ragoes ¢ + 1, ¢ + 2, ... até que a; volte a base. Seja ¢ a iteracao em que a,
voltou a base.

Sabemos que o valor de z em todas essas iteracoes permaneceu invariavel.
Na iteracao ¢ teremos:

Tpe) = Tpa) — D YTy, 1= 1,5 m. (3.19)
Jeln
(§
2=Z— ) Yoy, (3.20)
J€ElN

B 4 : fo s o m = _ . p-1 — _ p-1
onde B ¢ a base na iteracao q, ¥o; = z; — ¢j, z; = cgB " a; e y; = B a;.
Na iteracao ¢ explicitaremos z da seguinte maneira:

Z=2Z— Z @Ojflfj, (321)

JEIN
5 4 S 2 5 . -1, -
onde B ¢ a base, §o; = 2; — ¢j e 2; = c3 B~ a;, lembremos que g; = 0 para

JE .
A expressao (3.21) pode também ser considerada sob a seguinte forma:

2=z — Zgojl'j, (322)
j=1

que deve ser verificada para z, = A, x; = 0, j € Iy — {p} e wp, =
Tiu) — UpA, © = 1,2,...,m fornecendo

2 =7 — Joph (3.23)

Z=Z— YopA — Z YoB()(TBG) — UipA)- (3.24)
De (3.23) e (3.24) podemos escrever:

Z— 370p>\ =z - 330p>‘ - ZZQOB(Z') (i’B(i) - ?jip)\)- (3-25)

i=1

A equagao (3.25) pode ser também expressa como:

(Yop — Yop — Z YoB(i)Yip) A = — Z YoB(i)Th(;) = constante para qualquer \.
i=1 i=1
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Logo esta constante tem que ser nula, assim sendo:

Jop — Yop = D YoB(i) Jip = 0- (3.26)
=1

Como a, entra na base na iteracao ¢ entao g, < 0 e como a, nao esta
entrando na base na iteracao ¢ entao go, > 0 (pois p < t e estamos utilizando
a regra de Bland).

Para que a expressao (3.26) seja verificada existira r tal que YoB(r)Urp >
0, 7 € {1,2,...,m}. Sabemos que ap, é bdsica em ¢ e nio ¢é bdsica em ¢,
pois Yop(,) 7 0, portanto B(r) € K e B(r) <t.

Verificaremos que B(r) # t, pois a; deixa a base na iteragdo q e a, entra
implicando g, > 0 para B(i) = t. Como a; volta & base na iteragao ¢, temos
Gor < 0, logo Jo:Yip < 0 para B(i) =t,i € {1,2,...,m}.

S6 poderemos entdo considerar B(r) < t e assim sendo ndo teremos
Yoy < 0 (e sim YoB(r) > 0) implicando @,, > 0 para que possamos sa-
tisfazer gop(r)Urp > 0.

Todas as iteragoes de ¢ a ¢ estao associadas a bases degeneradas impli-
cando que o valor de zp(,) seja 0 mesmo na base ou fora, isto €, igual a zero.
Assim sendo, Tg(,y = 0 e como g, > 0 entao, pela regra de Bland, ap,) de-
veria deixar a base na iteracdo ¢, pois B(r) < t. Esta contradi¢cao completa
a prova. ]

3.7 Exercicios

1. Seja
(P) : maximizar zo = 6x1 + 4z,
sujeito a:
3£C1 + 2.%'2 + I3 = 18
T + x4 = 4
i) + x5 = 6

2; >0, j=1,2,3,4,5.

Verificar que a solu¢do nao bésica viavel de (P), z1 = 3,22 = g, T3 =
0,24 =125 = %, fornecendo zy = 36 é 6tima de (P).

2. Dados os pontos (z;,y;), © = 1,2,...,p, onde z; e y; sao niimeros reais.
? 9 9 ? ? 9
Gostariamos de escrever que y = ax + b tal que os parametros a e b
rnecam o minim max;—19. . ; — (ax; i rminar um
fornecam o o de max;—12,. p1|¥i i+ b Dete a
problema de programacao linear que encontre esses parametros a e b.
Justificar.
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3. Dados os pontos (z;,v;), i = 1,2, ...,p, onde x; e y; sdo niimeros reais.
Gostariamos de escrever que y = ax? + bx + ¢ tal que os parametros
a, b e ¢ fornecam o minimo de 3,y 5, |y — (az? + bx; 4 ¢)|. Fornecer
um problema de programacao linear que encontre esses parametros a, b
e c. Justificar.

4. Seja
(P) : maximizar z = 4x; + 3xe + 2w3 + 314 + x5

sujeito a:

31‘1 + 21’2 + x3 —+ 2274 + x5 = 13
51 + 4xs + 3x3 + 4dxy + x5 = 25

z; >0, j=1,2,34,5.

Verificar que (P) nao é vazio e que todas suas varidveis x; > 0, j =
1,2,3,4,5 sao limitadas superiormente. Demonstrar que toda solugao
vidvel de (P) é também solucao 6tima de (P).
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Capitulo 4

Dualidade em Programacao
Linear

Tomemos o problema de programagao linear (2.1), (2.2) e (2.3),

p

(P) : maximizar z = »  ¢;z; (4.1)
j=1
sujeito a:
p
Zaijxj S bi7 1= 1,27 e q (42)
j=1
x; >0, =12 .,p. (4.3)

Associemos a cada restricao de (4.2) a variavel u; > 0, ¢ = 1,2,....,q e
definamos o seguinte problema

q

(D) : minimizar d = »_ by, (4.4)
i=1
sujeito a:
q
Zaz]uz Z Cj, ] = 1727 Y (45)
i=1
u; >0,1=1,2,...,q. (4.6)

Por defini¢ao diremos que (P) é o problema primal e (D) o seu dual.

Proposicao 4.1 O dual de (D) é (P).
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A demonstracao desta propriedade é deixada a leitora ou ao leitor, lembrando
que mind = — max(—d).

Os problemas (P) e (D) podem ser colocados sob forma matricial:

(P) : maximizar z = cx (4.7)
sujeito a:
Ax <b (4.8)
x > 0. (4.9)
e
(D) : minimizar d = ub (4.10)
sujeito a:
uA > c (4.11)
u>0, (4.12)

onde c’ ex € RP, beul € Rie A€ RI*P.

O resultado apresentado a seguir é conhecido como Teorema da Dua-
lidade Fraca

Teorema 4.1 Se T satisfizer (4.8) e (4.9) e satisfizer (4.11) e (4.12) entao
teremos ct < ub.

Demonstracao
Sabemos que AT < b e u > 0 entao

uAzx < ub. (4.13)
Por outro lado temos também que A > ¢ e x > 0 entao
uAz > cx. (4.14)
De (4.13) e (4.14) teremos:
cr < uAx < ub, (4.15)

logo cx < ub. [

Proposicao 4.2 Se = for uma solugdo vidvel de (P), u uma solugdo vidvel
de (D) e cx = ub entao T serd um détimo de (P) e u serd um détimo de (D).

41



Demonstracao

Da propriedade 4.1 temos que ¢z < ub para todo u viavel de (D) e como, por
hipétese, ¢z = ub, o que implica ub < ub para todo u viavel de (D), logo u é
uma soluc¢ao 6tima (minimo) de (D). A demonstracdo que Z é uma solugao
6tima (maximo) de (P) é analoga. "

Proposicao 4.3 Se (P) tiver uma solu¢io “ dtima 7 ilimitada entdo (D)
serd vazio.

Demonstragao

Suporemos que (D) nao seja vazio e que u seja uma solugao vidvel de (D),
entao pela propriedade 4.1, cx < ub para todo x viavel de (P), o que é um
absurdo pois méximo {cx} — +oo. Logo (D) sera vazio. "

Quando incorporarmos as variaveis de folga z,.; > 0, ¢« = 1,2,...,q as
restrigoes (4.2) poderemos redefinir ¢,z e A de maneira que (P) possa ser
escrito de outra forma:

(Py) : maximizar z = cx (4.16)

sujeito a:
Az =10 (4.17)
x> 0. (4.18)

E simples verificarmos que o dual de (P;) seré
(D) : minimizar d = ub (4.19)

sujeito a:
uA > ¢, (4.20)

ondec’ ex €R™ beu’ € R™e A R™ ™,

Podemos verificar que em (D7), u é um vetor cujas componentes podem
ser negativas ou nulas ou positivas. Sao livres quanto ao sinal.

Tal como foi feito no capitulo 2, seja A = (B N), tal que det(B) # 0. Se
u = cgB™!, tal que uA > ¢, entdo, u é uma solugao vidvel de (D). Neste
caso diremos que Z = (Zp 0)7, onde Zy = B~'b, é uma solugao basica dual
viavel.

Sabemos que ua; = z;, j € Ig U Iy, entao ©A > ¢ implica em z; > ¢; ou
ainda z; —¢; > 0, j € Ip U Iy. Estas ultimas desigualdades representam as
condicoes de otimalidade do método do simplex, como visto anteriormente.
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Se 7 = (z5 0)T, onde Zp = B~'b (primal vidvel) e u = cgB~!, tal que
uA > ¢, entdao T é uma solucao 6tima de (P).

Poderemos, facilmente, verificar que a propriedade 4.1, deduzida para
(Py) e (D) forneceria (4.15) sob a seguinte forma:

cx < uAx = ub, (4.21)
para qualquer z de (P;) e qualquer u de (D).

O resultado apresentado a seguir é conhecido como Teorema da Dua-
lidade Forte.

Teorema 4.2 Se & for uma solugdo dtima de (Pi) e 4 uma solug¢do dtima
de (Dy) entao cx = ub.

Demonstragao

Sem perda de generalidade podemos supor que # seja uma solugao basica
viavel de (P;) associada a uma base B formada por m colunas de A e que
U= CBB_l.

Como z é uma solugao 6tima de (P), isto é, z; —¢; > 0, j € IgU Iy
entdao uA > ¢, ou ainda u é viavel de (Dy).

Por outro lado, ¢t = cgB~'b = @b. De (4.21) temos que ci < ub, para
todo w vidvel de (D), ou seja ub < wub para todo u vidvel de (D;). Assim
sendo, @ é uma solugao 6tima de (D;), implicando ub = ub, completando a
prova. ]

Consideremos agora o seguinte exemplo:

Exemplo 4.1
maximizar z = 3z + 429
sujeito a:
r1T — X2 S -1
— X1 + X9 < 0
T Z 0
z9 > 0,
cujo dual é
minimizar d = —u,
sujeito a:
U — Uy > 3
— Uy + Ug Z 4
(51 Z 0
U9 Z 0
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Verificamos facilmente que ambos os problemas sao vazios. [

As propriedades 4.2, 4.3 e 4.2 mais o exemplo 4.1 permitem que enun-
ciemos o seguinte teorema classico em programacao linear: Teorema da
Dualidade (existéncia).

Teorema 4.3 Dado um par de problemas (um primal e seu dual) uma e
somente uma das trés afirmacoes € verdadeira:

1. os dois problemas sao vazios;
2. um € vazio e o outro € ilimitado;

3. ambos admitem solugoes otimas finitas (as respectivas fungoes objetivo
no dtimo assumem o mesmo valor).

Finalmente, apresentamos a seguir um resultado conhecido como Teo-
rema das Folgas Complementares

Teorema 4.4 Se & € dtimo de (P) e u € dtimo de (D) entdo (GA —c)z =0
e 4(Az — b) = 0.

Demonstracao
Temos que ¢z = ub, assim sendo (4.15) se torna ¢ = AT = ub, ou ainda,
ct = uAz e ©AT = b, logo (WA — ) =0 e u(Az —b) = 0. "

Da propriedade 4.4 podemos ainda escrever:

p q q
Z@-(Zaijﬂi—cj) :0, COomo Zi‘j 206 Zaijai_cj ZO, j:]_,Q,..‘,p
j=1 i=1

i=1
implica )
2D ayts —¢;) =0, j=1,2,...p (4.22)
i=1

(&

q P P
Z@Z(Z a;jZ;—b;) =0, comod; > 0e Zaijfj—bi >0,i=1,2,...,qimplica
j=1

i=1 j=1

p
WD ayd; —bi) =0, i=1,2,...,q. (4.23)
j=1
As relagoes (4.22) e (4.23) sdo denominadas condigoes de complementaridade.
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A propriedade 4.4 deduzida a partir de (P;) e (D7) nos forneceria apenas
(WA — )& =0, pois At —b=0em (FP).

E interessante notar que quando Z for uma solugdo bésica (primal vidvel
ou nao) de (P;) e u = ¢cgB~! entdao z,;(3CL  au; —¢;) =0, j € IpU Iy.
As relacoes de complementaridade sao sempre verificadas na aplicagao do
método do simplex.

4.1 Uma Interpretacao das Variaveis Duais

Seja z(b) = max,{cx | Ar =b, x >0}, 2 : R"™ — R.

Suponhamos que Z = (zp 0)7, zp = B7'b > 0 seja uma solucio bésica
6tima do primal e @ = cg B~! uma solucao 6tima do dual. Podemos escrever
u= (U Uy ... Ug ... Up,).

Sejam el = (0...010 ... 0), onde a componente igual a 1 ocupa a k-ésima
linha do vetor ey, ¥ = b+ e, e Ty = B~ > 0; esta nova solugao continua
sendo 6tima de z(b'), pois ¥ = (Z3 0)7 ¢é primal e dual vidvel.

Sabemos que z(b) = ub e z(V') = ub' = ub+ uy, logo z(V') = z(b) + ux, Uy
podera assim ser interpretada como sendo a variagao de z quando aumentar-
mos de uma unidade a k-ésima componente de b, isto é, substituirmos b, por

Podemos portanto, interpretar #; como sendo a derivada parcial de z em
relagao a by, :

0z

4.2 Meétodo Dual do Simplex

Tomemos novamente o problema de programacao linear sob a forma (2.7),
(2.8) e (2.9), onde A = (B N), tal que, B~! exista.

Seja 7 = (Zp 0)T, onde Zy = B~'bh, é uma solucio bésica de (4.17) e
tal que & = cpB™! satisfaca uA > ¢ (@ é uma solugao vidvel de (4.19) e
(4.20)). Neste caso dizemos, por definigdo, que a base B é dual vidvel. Se
Zp = B7'b > 0 dizemos também que B é uma base primal vidvel. Como
uA > cimplica z; —¢; > 0, j € IgU Iy, entao se B for primal e dual vidvel
T = (Zp 0)T serd uma solucao 6tima do primal e 4 = cgB~! uma solucao
otima do dual.

Suponhamos que ¥ nao esteja associada a uma base B primal viavel, isto
é, Tg = B7'b # 0 (existe, pelo menos, uma componente negativa de Zpg).
A idéia do método dual do simplex para resolver (4.16), (4.17) e (4.18) é de
partir de uma base B basica dual viavel, passar para uma nova base dual
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viavel, pela substituicao de uma coluna de B. Este procedimento é repetido
até que atinjamos uma base primal e dual viavel.
Com a mesma notacao do capitulo 2, consideremos

TRk = Tak) — D YT (4.25)
SN
onde Tpk) < 0.

Se yr; > 0 para todo j € Iy em (4.25) e como z; > 0 para todo j €
Iy, xp@) nunca poderd ser nao negativo, implicando que o problema primal
sera vazio e o dual ilimitado.

Consideremos o conjunto Ly = {j € Iy | yr; < 0} # ¢.

Como Zp() < 0, escolheremos a coluna ap;) para deixar a base e tomare-
mos a, associada ao indice p, tal que yi, < 0 para entrar na nova base. Qual
deve ser p tal que a nova base continue dual viavel?

A matriz B’ formada pela substitui¢ao em B da coluna ag por a,, tem
sua inversa calculada, como foi exposto na se¢ao 3.4, da seguinte maneira:

(Bt = E;'B7!, onde E}, = (€1 €3 ... €41 Yp €k_1 ... €m); lembramos
que y, = B 'a,.

Desejamos calcular yf = (B')""ay, j € Iy, ou ainda yj = E; Y (B laj) =
E;ly;, isto é

Yip

?Jz/‘j =Y — — Ukj» L F K, (4.26)
ykp
/ Ykj
y L= —,
ki ykp

Observagao: vy, serd o pivo.

A atualizagao dos z; — ¢; serd feita de maneira equivalente a mostrada
em (4.26), como serd visto ainda neste capitulo.

O problema (2.7), (2.8) e (2.9) podera ser escrito:

maximizar z

sujeito a:

z—cprp —cyey =0 (4.27)
Bxg+ Nxy =10 (4.28)
zp >0, zxy > 0.
Solucionaremos o sistema (4.27) e (4.28) obtendo z e 5 em funcao de xy.

Seja

B= ( é _EB ) , como det(B) # 0 = existe B~".
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Bl 1 —cp - _ 1 cgB™! _ 1 u
0 B 0 B! 0 B! )"
Temos que
zj—c;y _ (1 cp B! —c;
Y, o 0 B! a; )

Denominemos y; = 2; — ¢;. Logo a atualizacao de z; — ¢; sera feita como em
(4.26), isto é:

Yo
yf)j = Yoj — —Ykj- (4.29)
ykp

Desejamos que a escolha de p, indice da coluna que substituird ap() na nova

base, seja feita tal que a nova base continue dual viavel: y()j >0, 7€ lgUly,
ou ainda yo; — %ykj > 0; consideremos dois casos a seguir.
P

19 caso: yx; < 0 entao

Yoi _Iw g ou PSP (4.30)
Yk Ykp Ykp Ykj

Lembremos que j € Ip implica yo; = 0. De (4.30) temos que

Yor _ max {yOJ} . (4.31)
Ykp jeLi Yk

29 caso: yx; > 0 entao

Yo . Yo
Yo; = Yoj — —2yk; = 0, pois yop > 0 e ygp < 0, logo — =Ly; > 0.
Ykp Ykp

Apenas nos interessara os yy; < 0, para os quais (4.31) nos fornecerd o
indice p da coluna que entrara na base, ocupando o lugar de ap) na proxima
iteragao.

Verificamos também que a variacao do valor da funcao objetivo em cada
iteracao: z =cgB lbe Z =7z — yopx;k(z), como Yo, > 0, Tpm <0, Yy <0,
logo Z' < Z, no caso em que yg, > 0 teremos z’ < z. Estamos minimizando a
fungao objetivo do programa dual (4.19) e (4.20).

Passaremos a descrigao de um procedimento para a solugdo de um (PPL)

pelo método dual do simplex no caso de maximizacao.
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Procedimento 3 (maximizag¢ao, método dual do simplex)
Dada uma base B dual vidvel para (4.16), (4.17) e (4.18).
Se Tp > 0, a base B esta associada a uma solucao
primal e dual vidvel. PARE.
Caso contrario (Tg 2 0) escolhe-se um k para o qual T < 0,
se Ly = ¢, o (PPL) é vazio. PARE.
se Ly # ¢, toma-se a coluna a,, p € Iy, talque

Yop __ {yo;}
Le — max; 21
Ykp JELE L ypy [

a coluna a, ocupara o lugar da coluna ap) em B.
(MUDANCA DE BASE).

Fim do procedimento 3

O procedimento 3 é aplicado, iterativamente, para cada nova base até que
uma das regras de parada seja verificada.

Exemplo 4.2 Seja o

(PPL) : maximizar z = —4x; — bz
sujeito a:
1 + 4xe > 5
3£C1 + 233'2 > 7
T1 Z 0
i) Z 0

Associaremos as restri¢oes nao triviais as variaveis de folga x3 > 0, x4 > 0
tais que o (PPL) fique sob a seguinte forma.

(PPL) : maximizar z = —4x; — 5x9 + 03 + Oy

sujeito a:
Ty + 41’2 — X3 = 5
3£L'1 + 21’2 — Xy = 7
xj207j:1)27374a
onde
1 4 -1 0 5)
A:(a1a2a3a4):<3 5 0 _1>,b:<7>,c:(—4—500).
Tomemos

Ip = {3, 4}, Iy = {1, 2},
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-1 0 _ -1 0
B:(a3a4):< 0 _1>,10g081:< 0 _1>,

u:cBB_lz(OO)<_01 _01>:(00),

_ -1y [ TBO) [ 3\ -1 0 5 - -5
o ()-(2)- (3 2)(2)-(2)
Verificamos que 7 = (Zp 0)7 % 0 (B nao é primal vidvel). No entanto,

zlzualz(00)<;}>zo:zl—cle—(—4):4>O

zzzua22(00)<§>:0:>22—02:O—(—5):5>0,

logo B é dual viavel.

Tomemos B(2) = 4 pois 4 < 0, procedendo assim estamos escolhendo ay
para deixar a base.

Calculemos 95, j € Iy, obtendo:

ya1 = (0 —1)<§>=—3ey22=(0 —1)<;l>=—2,

onde (0 — 1) é a segunda linha de B~'. Verificamos que L, = {1, 2}.

{ 4 5 } 4 Z1 — C1
maxy—», —<¢ = —(= = s
-3 =2 —3 Y2

logo a coluna a; substituira a coluna a4 na préxima base.

Segunda base:
Ip = {37 1}7 In = {47 2}7

-1
L (-1 1) (-1
we(0a) (0 )



Como ZTp) = T3 = —% < 0, ag saira da base na proxima iteracao.
Calculemos vy, j € Iy :

me () ()= (3)(3) %

onde (—1 3) ¢ a primeira linha de B~' e Ly = {4, 2}.

= —(O 4> 0 —4:> _4 O—4>O
24 = UGy = 3 =3 24 C4—3 ~ 3 )

% 7 Z9 — Co
max 1) _0(~ 10" " 79 vz

assim sendo as entrard na base no lugar de a3z na proxima etapa.

Terceira base:
Ip ={2, 1}, Iy = {4, 3},

-1
4 1 3 _1
31:< ) :( 10 10>,
23 T

8
z = CBBilb = CBfB = (—5 —4) ( ﬁ
10

112
10
X

18 8 * =0, implicando z* =
*

= I * ko ko

11“l;’odemos entao dizer que x] = {5, T3 = 75, T3 = P

, R . o o , .

—T5r €a solucao otlma do primal (PPL); up = —qp Uz = —qp € solucao
otima do dual, a variavel dual u; estd associada a restricao xy + 4xy > 5 e

Ug a restricao 3xq, + 2x9 > 7.

Na figura 4.1 sera ilustrado o método dual do simplex para o exemplo
aqui tratado. No espago x; X x5 notamos que o método sai de uma solugao
bésica dual vidvel (porém nao primal vidvel) representada pelo ponto (0, 0),
prossegue para outra solugao basica dual vidvel (ainda nao primal vidvel)
associada ao ponto (%, 0) e, finalmente, atinge a solugao bésical dual e primal

vidvel (6tima) ilustrada pelo ponto (15, ). "
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T2

(0,0)

Figura 4.1: Iteragoes do método dual do simplex

Observagao: verificamos facilmente que a expressao (4.31) pode ser subs-
Yoi

tituida por
Yoo _ min{ } , (4.32)
Yip J€LE | Ykj

seja para o caso de maximizacgao, seja para o caso de minimizacao da funcao
objetivo.

4.3 Analise de Sensibilidade

Nesta secao faremos uma analise sobre o impacto sofrido pela solugao 6tima
de um problema de programagao linear quando a sua estrutura é modificada.

Muitas vezes, devido a imprecisoes nos dados de um problema de pro-
gramagcao linear, é interessante avaliar quao sensivel a solugao étima do pro-
blema é com relagao a pequenas variagoes nestes dados, ou seja, é interessante
analisar qual o intervalo de oscilagao permitido a estes dados sem que a base
otima do problema seja alterada.

A seguir faremos esta andlise, conhecida como andlise de sensibilidade,
com relacao a oclilagoes nos custos associados as variaveis e no lado direito
das restrigoes do problema
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(PPL) : maximizar z = cx

sujeito a:

Az =0 (4.33)
x>0,

cuja solugao 6tima supomos conhecida e associada a uma base B, primal e
dual viavel.

4.3.1 Alterando o lado direito das restricoes

Suponhamos que o lado direito das restri¢oes do (PPL) (4.33) seja alterado
de b para b+ 6b. Neste caso, a base 6tima do (PPL) nao deixa de ser dual
viavel, mas para que esta base continue sendo 6tima, ela devera manter-se
também primal vidvel.

Desta forma, para que a base B continue sendo étima para o problema
modificado, devemos ter

B~ (b+ 6b) > 0.

Exemplo 4.3 Consideremos o problema de programacao linear do exemplo
4.2. Verifiquemos qual o intervalo em que o lado direito da primeira restrigao
pode se encontrar sem que a base 6tima do problema seja alterada.

Para que a base 6tima determinada por Ip = {2,1} nao seja alterada,
devemos ter:

3 _ 1
(i ean () (750 )0

10 10

S(B540b1) —5>0 = by >3,

—5(B5+0b)+35 =0 = b <9.

Portanto devemos ter 0b; € [—%, 9], ou seja, para que a base étima do pro-
blema nao seja alterada, o lado direito da primeira restricao deve satisfazer
a

7
bl € |:3,14:| . ]
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4.3.2 Alterando o vetor custo

Suponhamos agora que o vetor custo associado as variaveis do (PPL) (4.33)
seja alterado de ¢ para ¢+ dc. Neste caso, a base étima do (PPL) nao deixa
de ser primal viavel, mas para que esta base continue sendo 6tima, ela devera
manter-se também dual viavel.

Desta forma, para que a base B continue sendo étima para o problema
modificado, devemos ter

(CB + (SCB)B_lN — (CN + (SCN) Z 0.
Exemplo 4.4 Consideremos novamente o problema de programacao linear

do exemplo 4.2. Verifiquemos qual o intervalo em que o custo associado a
variavel x5 pode se encontrar sem que a base étima do problema seja alterada.

Para que a base 6tima determinada por Iz = {2,1} nao seja alterada,

devemos ter:
(co+dca ¢))B'N — (¢4 ¢3) > 0=

ﬁg)(_? _(1)>—(0 0)>0=

1

(=5 +0ca —4) (

Szl

(—5+502 —4><
T (=540c) + 10 >0 = bey > —11,

—%(—5+5C2)—% >0 = 562 <

W~

Portanto devemos ter dcy € [—11, g], ou seja, para que a base 6tima do prob-
lema nao seja alterada, o custo associado a segunda variavel deve satisfazer
a

8
Cy € |:—]_6, —3:| . ]

4.4 Pébs-otimizacgao

Consideremos agora, que apds a obtencao da solugao 6tima do (PPL) (4.33),
alguma mudanca na sua estrutura foi introduzida, levando a um novo pro-
blema (PPL), para o qual a base 6tima do (PPL) possivelmente nao é mais
primal ou dual viavel.
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O processo de pés-otimizacao consiste em obter a solucao 6tima do pro-
blema modificado (PPL), considerando-se que a solugao 6tima do problema
original (PPL) é conhecida.

O processo de pods-otimizacao torna-se mais eficiente quando a base B,
associada a uma soluc¢do 6tima do (PPL) pode ser utilizada para inicializar
o método do simplex ou o método dual do simplex na resolucao do problema
modificado. Este procedimento evita o trabalho de obtencao de uma base
inicial primal ou dual vidvel para o (PPL).

Consideraremos a seguir trés alteragoes que sao freqiientemente intro-
duzidas sobre a estrutura de um problema de programacao linear. Na tultima
alteragao, introducao de uma nova restricao ao problema, veremos que apesar
da base B deixar de ser primal e dual viavel, ela pode utilizada na construcao
de uma nova base dual viavel para o problema modificado.

4.4.1 Alterando o lado direito das restrigcoes

Suponhamos que o vetor b que define o lado direito das restri¢oes no problema
(PPL) seja alterado para b+ db e consideremos

(PPL) : maximizar z = cx
sujeito a:
Ax =b+6b
z >0,

Como ja visto na secao anterior, a base B associada a uma solucao 6tima de
(PPL) nao deixa de ser dual vidvel para o problema (PPL). Suponhamos,
no entanto que B~1(b+db) # 0, ou seja, que B deixa de ser uma base primal
viavel. Neste caso, para obter a solucao 6tima do problema modificado,
podemos aplicar o método dual do simplex, tomando B como base inicial.

Exemplo 4.5 Seja o (PPL) do exemplo 4.2. Suponhamos que o lado direito
da primeira restricao seja alterado de 5 para 15.

Como ja verificamos no exemplo 4.3, a base 6tima do problema original
deixa de ser primal viavel com esta alteragao, fato este que comprovamos

abaixo.
woe (TN (Y g (5 BB %
Tp(2) Ty 10 7 ~i5 /)

ou seja, Tg # 0.

Slesl~
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Por outro lado, sabemos que B nao deixa de ser dual viavel. Sendo
assim, aplicamos a seguir o método dual do simplex para resolver o problema
modificado, tomando a base B como base inicial.

Base inicial:
[B = {27 1}7 [N = {47 3}7
Como Zpp) =T = —% < 0, ay saird da base na préxima iteracao.
Calculemos ys;, j € Iy :

_(24)0_4 _(24>_1_2
Y207\710 10/ =1 ) T 10T 10 10 0)~ 10

onde (—1% 1%) ¢ a segunda linha de B~! e L, = {4}.
Como L, s6 tem um elemento, ele define a coluna que entrara na base,

ou seja, na proxima iteracao ay entrard na base no lugar de a;.

Segunda base:
IB = {27 4—}7 IN = {]-7 3}7

100
u=cpB ' =(-50) ( 4
2
_ 1 15
mp=B= | PO ) () (g YY) (% )0
.CEB(Q) T4 1 —1 7 1
¢ 15
Lo 75
zZ= CBB_lb = CcpIlp = (—5 0) < % ) = -
1 4
Como xg > 0, esta é uma solugao étima para o problema. Podemos entao
dizer que ] =0, x5 = %, x5 =0, 2} = %, implicando z* = —%, ¢ a solugao
6tima do (PPL) modificado. "

4.4.2 Alterando o vetor custo

Suponhamos agora que o vetor ¢, que define o custo associado as variaveis
do problema (PPL), seja alterado para ¢ + dc e consideremos e que a base
B deixa de ser dual viavel para o problema modificado:
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(PPL) : maximizar z = (¢ + dc)x

sujeito a:

Az =10
x>0,

ou seja, (cg + dcg) BN — (cy + den) 2 0.
Neste caso, para obter a solugao 6tima de (PPL), podemos aplicar o
método do simplex, tomando B como base inicial.

Exemplo 4.6 Consideremos novamente o (PPL) do exemplo 4.2. Supo-
nhamos agora que o custo associado a variavel xs seja alterado de -5 para
-1.

Verificamos no exemplo 4.4 que a base 6tima do problema original deixa
de ser dual vidavel com esta alteragao, como comprovamos abaixo.

(ca c1)B™IN — (¢4 ¢3) =

)(43)-0n-

)—(o 0)= (8 — &) #0.

Por outro lado, sabemos que B nao deixa de ser primal vidvel. Sendo
assim, aplicamos a seguir o método do simplex para resolver o problema
modificado, tomando a base B como base inicial.

10

SIS i

Sl=5l~

(-1 —4><_110

10

SIS

Base inicial:
[B = {27 1}a [N = {47 3}7

Como visto acima, z4, — ¢4 = % >0ez3—c3 = —% < 0, logo a coluna
as entrard na base na préxima iteracao do algoritmo.

3 _1 1 _3 Y
010 0 10 Yos
logo L; = {2}. Como L; 86 tem um elemento, este elemento determinara a

coluna que saira da base, ou seja, ap(2) = a; saira da base, sendo substituiida
pela coluna as.
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Segunda base:

-[B - {27 3}a ]N = {47 1}7

1 1 3 3 )
Zl—ual_( _2><3>——2:>Z1—01———(—4)—2>0,
1 1 1 1
Z4ZUG4:<O —2><_(1)>:2:>Z4—C4:2—0:2>0.

Como z; —¢; > 0, Vj € Iy, esta solucao basica é 6tima. Logo z; = 0,

7

To =1 x3=09, x4 =0 é uma solucdo étima, fornecendo z = —35. =

29

4.4.3 Acrescentando mais Restricoes

Suponhamos agora que acrescentemos mais uma restrigdo ao (PPL) (4.33)
da forma sz > b,,41, onde s = (s1 Sz ... S,) é um vetor linha dado e b,,; um
real também conhecido.

Sem inicializarmos novamente todo o processo de solugao do (PPL) com
mais uma restricao poderemos pensar em, a partir da solugao 6tima obtida
para o (PPL) original, reotimizar o novo problema utilizando os resultados
ja obtidos.

Introduziremos a variavel de folga z,.1 > 0 a essa nova restrigao: sx —
Zpt1 = bmy1 € 0 novo (PPL) serd escrito:

(PPL): z=cx+ 0z,

sujeito a:
Ar —0xp1 =0

ST — Tpy1 = bt
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x>0, x>0,

em termos matriciais as restrigoes ficariam da seguinte forma:

<A O)( v >:< b ),lembrandoqueAeRmX”.
s —1 Tn+1 bm+1

Consideremos s = (sp sy), onde sp esta associado a B. Tomemos a
matriz
B ( B0 )
SB —1
Como B~ existe entdo B~! também existe, pois det(B) = det(B) x (—1).
Proposicao 4.4 B estd associada a uma solucdo dual vidvel de (PPL).

Demonstracao
Sabemos que

— _1 —
B_1 = < B _ 0 ) eu= EBB_l, onde cg = (CB 0),
logo

esB~ = (cp 0) ( Sf;_l B ) — (5B~ 0) = (u 0),

Teremos ainda

zj = ua; = (u 0)<Zj ) =ua; =z, j=12,..n

_ __ 0
Zni1l = Uapp1 = (u 0) ( 1 > = 0.

Assim sendo temos que zZ; —c¢; = z; —¢; > 0, j = 1,2, ...,n; pois a solugao
associaida a B é 6tima do (PPL). Por outro lado Z,.1 —¢,y1 = 0—0=0.
Logo B estd associada a uma soluc¢do u viavel do dual de (PPL). ]

Exemplo 4.7 Voltemos ao (PPL) do exemplo 4.2, acrescentamos a este a
restricao 4x1 + 5xe > 20 a qual associaremos a variavel de folga x5 > 0 :
4x1 + by — x5 = 20.
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Teremos que

. 14 -1 0 0\ 5
A=(agazazasas)=|(3 2 0 -1 0 |,b= 71,
4 5 0 0 —1 20

c=(—4 —5000_).
Sabemos que B = (ay a1 a;) nos fornece uma base dual vidvel e que

4 1| 0
= B 0 = Bt 0
= 2 fnd _1:
B 3] 0 (SB _1>,B (SBB_1_>,

5 4] -1

e
3 _ 1
Bl = ( 19 10 )
10 10
Entao ; )
T 7 11
spB™' = (54) ( Y 1P ) = < ) )
T 10 10 10
logo,
3 1
( y g0
B =| -3 1| O,
A i
10 10
verificamos que
5 8
517 _ A 19 71
i 3 B)som (-2
20 4 10 10
10
e
o b 112
ub = (u 0) ( - > —ub——l—o.
Como Zp(3) = T5 = —52 < 0 faremos as deixar a base. Para escolhermos

uma coluna nao bésica para entrar na base devemos calcular os ys3;, 7 €
{3, 4} = Iy. Para isso tomaremos a terceira linha de B~! e as colunas as e

ay, tal como segue:

_<7 11 1) _(1) T _<7 11 1> (1) Rt
¥3=\10 10 o) 10 %~ \10 10 o) 10

_ T _ 11
Lembremos que 23 — c3 = {5 € que 24 — ¢4 = 15, calculemos agora

7 u

10 10

70 11

10 10
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hé empate. Escolheremos a4 para entrar na base no lugar de as.

Nova base:
4 1
_ _ u 0 -
B=(ayaas), B'=| -2 0 0
7 -1 10
11 11
e
- T B 5 0
tp=B"=| 7 |=B"' 7|=[5]>0
T4 20 8
A tltima base B encontrada é primal e dual vidvel, assim sendo a solucao
1 =05, 19 =0, x3=0, x4 =8, x5 = 0, fornecendo z = —20, é étima para
o (PPL) do exemplo da ultima secao ao qual foi acrescentado mais uma
restricao.

E interessante observar que esta solucao basica 6tima é degenerada, pois
a variavel associada a coluna @, tem valor nulo, isto é, 9 = 0. A leitora ou
o leitor poderia ter uma explicacao para este fato?

Por curiosidade calculemos Z5 —¢;. Para isso observemos que @ = égB~! =
(00 —1) logo z3 = wag = 0. Temos também que ¢3 = 0. Logo z3 — ¢3 = 0;
caso facamos ag entrar na base, usando a método primal do simplex, o valor
de z nao sera modificado. Por que?

Para saber qual coluna saira da base para dar entrada a coluna as, cal-
cularemos o vetor

4 1 4
SUT A AN A T
ys=B az=| Y3 | = T 0 18 0= U
Y33 -1 1 11 0 11
J& temos que Tp(2) = 77 = 5 e que zp(3) = T4 = 8. Consideraremos
agora min { <, §} % = ;’213 A coluna a; deixara a base. A nova base
11 11 11
sera agora
] ) 0 0 -
B (CLQ as (14), B_l = -1 0 % 5
3
0 —1 £
o T ) 5 4
tp=B"=| 23 |=B"'| 7 |=|11
Ty 20 1

Facilmente verificamos que esta ultima base também é dual viavel. Obte-
mos 1 =0, zg =4, 23 =11, r4 =1, x5 = 0, fornecendo z = —20.
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T2 i
(0,4)
(0,%)
(1515
(070) (5,0) Z£1

Figura 4.2: Pés-otimizagao

Todas as solugoes 6timas do (PPL) podem ser escritas da seguinte ma-
neira:

5 0
0 4
=X 0 |+(1—=X)] 11 |, para A €[0,1].
8 1
0 0
[lustraremos todo o procedimento de pds-otimizacao e a busca de outra
solucao basica 6tima na figura 4.2. Partimos do ponto G—g, 1%) passamos

para o ponto (5,0) (primal e dual vidvel) e, finalmente, atingimos o outro
ponto 6timo (0,4). "

4.5 Exercicios

1. Seja o problema de programacao linear

(P) : maximizar xg = 51 + 8o
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sujeito a:

€1 + X2 + 3 = 2
1 — 2%2 + x4 =0
—T1 + 4272 + x5 = 1

2; >0, j=1,2,3,4,5.

Utilizando os métodos do primal e do dual do simplex, tratar dos
seguintes itens.

(a) Verificar que as colunas associadas as varidveis xy, x5 e x3 formam
uma base 6tima de (P). Esta verificagdo deve ser feita invertendo
a matriz basica fornecida e verificando sua primal e sua dual via-

bilidades.

(b) Seja (P) o problema de programacao linear formado por (P) e
pela restricio x; + o = 1. Qual serd a solugao 6tima de (P)?
Utilizar o método dual do simplex para reotimizar.

2. Seja o problema de programacao linear

(P) : minimizar z = 3z + 29

sujeito a:
T + 31’2 — I3 = 9
51‘1 + 6£L'2 — X4 = 30
Ty + 2x9 — x5 = 8

x; >0, j=1,2,3,4,5.

Utilizando os métodos do primal e do dual do simplex, tratar dos
seguintes itens.

(a) Verificar que as colunas associadas as variaveis x5, o3 e x5 formam
uma base 6tima de (P). Esta verificacao deve ser feita invertendo
a matriz basica fornecida e verificando sua primal e sua dual via-
bilidades.

(b) Seja (P) o problema de programacao linear formado por (P) e
pela restricio 3z; + x5 > 6. Qual serd a solugao 6tima de (P)?
Utilizar o método dual do simplex para reotimizar.

(c) Verificar em que intervalo deve estar o custo associado & varidvel
(i) z1, (ii) =e, para que a base 6tima de (P) nao seja alterada.
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(d) Se em (P) substituirmos na segunda restri¢ao 30 por «, verificar
que para 24 < o < 0o a base étima de (P) serd sempre associada
as variaveis xa, T3 e Ts.

(e) Seja (P) o problema de programacao linear formado por (P), ao
se substituir o lado direito da segunda restrigao por 20. Qual serd
a solucdo 6tima de (P)? Utilizar o método dual do simplex para
reotimizar.

(f) Seja agora (P) formado por (P), ao se substituir o custo associado

a variavel xs por 10. Qual serd a solucao étima de (P)? Utilizar
o método do simplex para reotimizar.

3. Seja
(P) : minimizar z = 6x; + 925 + 4223 + 3624
sujeito a:
il + 31‘3 + 51’4 Z 2
ZE2+4$3+21’4Z3

z; >0, j=1,2,34.

Escrever (D) o problema dual de (P). Resolver graficamente (D). A
partir da solu¢do étima de (D) encontrar a solu¢do dtima de (P) uti-
lizando as relagoes das folgas complementares.

4. Estudar os valores de «, f e A pertencendo ao conjunto dos ntimeros
reais para que o problema maximizar z = axy + 829, sujeito a x1 —xy =
A, 1 > 0, o > 0, possua uma solucao 6tima limitada. Neste caso
fornecer uma solugao 6tima quando A > 0 e uma outra quando A\ < 0.

5. Supondo que para qualquer sistema de desigualdades lineares, sob for-
ma matricial, My < d exista um método para encontrar um ¥, tal que
M7y < d; como usar este método para resolver o problema: maximizar

z = cr, sujeito a, Ax < b, x > 07 Isto é, como seriam representados
M e d em funcao de ¢, A e b?
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Capitulo 5

Obtencao de uma Solucao
Viavel

Na secao 3.3 fizemos uma apresentagao de um método para encontrar uma
solucao basica inicial, conhecido também como método das duas fases. Neste
capitulo faremos um estudo mais geral.

Comecemos tratando do problema de encontrar uma solucao viavel de
um sistema de desigualdades lineares.

Seja X = {z € R" |[Az < b}, onde A € R™™ e b € R™. Desejamos
determinar um vetor £ € X ou ainda tal que Az < b. Quando b >0, z =0
¢ uma solucao. Lembremos que X pode ser vazio.

5.1 Meétodo de Eliminacao de Fourier

Passaremos a desenvolver o método de eliminacdo de Fourier [Fou 890] para
determinar solucoes de sistemas de desigualdades lineares.
Consideremos Z;‘:l a;jr; < b; a i-ésima desigualdade de Az < b, supo-
. . n
nhamos que a;; # 0, assim podemos escrever: a;;x; < b; — > AT

Se a;1 > 0 entao
a;
n<oy,
azl

e se a;; < 0 entao

$1>7—Za”

;1 j= —5 @41

O conjunto dos indices das linhas I = {1, 2, 3, ..., m} pode ser parti-
cionado em [y, [; e I; da seguinte maneira:

10:{2'€[|a2-120}, ]1:{i€l|ai1>0}812:{i€[|ai1<0}.
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Desta maneira Ax < b sera escrito sob a seguinte forma:

n
Zaij'rj S bi, 1€ [0.
i=2
Primeiramente consideremos I; # ¢ e I # ¢, entdo para eliminarmos x;
teremos que considerar o novo sistemas de desiguladades:
bk n Alq bl " Qyq
—_— — Jfbjéf— ij,k;eIQ,lell
g1 =5 Akl apy

n

Zaijxj S bi; 1€ Io.

j=2
No sistema de desigualdades acima, onde eliminamos x;, o ntimero de de-
sigualdades é igual a |I1| X |I3] + |I|. O conjunto das solugdes que satisfazem
este sistema ¢é a projecao de X no espaco xy X x3 X ... X x,. Poderiamos
entao repetir o procedimento visando a eliminagao de xs no espago proje-
tado. Continuando farfamos o mesmo para x3 e sucessivamente até obtermos
um sistema de desigualdades lineares com uma tnica variavel x,,, que sera da
forma a < x, < 3, onde « pode ser igual a —oo e § a +00. Caso a > 3, X
é vazio.

Supondo o caso em que X # ¢, basta tomarmos um z,, € [a, [], este
valor serd dado a x, no sistema contendo apenas as variaveis x,_; e x,,
teremos analogamente a(z,) < z,_; < ((Z,) e tomaremos x, | = Tp_1
tal que Z,-1 € |a(Z,) , B(Z,)]. Passaremos a seguir com os valores Zz,
e T,_1 ao sistema de desigualdades lineares contendo somente as varidveis
Tp_9, Tp_1 € T, € obteremos T, o € [(Tp_1,%n) , B(Tn_1,Tn)]. O pro-
cedimento é continuado até obtermos um valor de z; = Z; tal que z; €
[T, T3,y ooy Tp1, Tpy) 5 B(T2y Ty, evey Tp1, T

5.2 Exemplos
Seja

X ={(21 22)" | 321+ 222 > 18, 1 <4, 23 <6, 21 >0, 22 > 0},
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desejamos encontrar um 7 € X. Verificamos, facilmente, que (0 0)7 ¢ X.
Lembrando que 3z + 2x5 > 18 implica x1 > 6 — %3@, poderemos escrever o
sistema de desigualdades lineares sob uma outra forma:

T S 4
0 S T
6 — %IQ S T
i) S 6
0 S Za.

Eliminando z; do sistema acima teremos que 0 < 4, 6 — %xQ <4, z9<6e
o > 0. Observamos que 0 < 4 nao traz nenhuma contradi¢ao, no entanto,
poderimos ter obtido um resultado do tipo 9 < 4, isto é, X = ¢.

Como 6 — %flfg < 4 implica zo > 3, teremos:

3 S )
0 S T2
X2 S 67

ou seja 3 < x5 < 6, basta tomarmos um Ty € [3 , 6], por exemplo, Ty = %.
Levando este valor no sistema com x; e xy, obteremos:

I S 4
I

0
X xy,

IAINA

6 —

W
N |©

logo 3 < xy < 4, isto é, a(Z1) = 3 e B(Z;) = 4. Tomemos T; = % O ponto
(2 )7 ¢ uma solugao de X. A figura 5.1 ilustra o exemplo.

Consideremos agora um outro exemplo, onde X = {x = (x; z2)T | 3z, +
2wy > 18, 221 + x9 > 10, 1 + 8x9 > 8} e desejamos novamente encontrar

um 7 € X. A origem (0 0)” nio pertence a X. Assim sendo:

3r1+ 215 > 18 = 13 26-%%‘2,
201 + 12> 10 = a1 >5— S,
T1+8x9 > 8 = x> 8 — 8xs.

logo, neste caso, I = ¢ e Iy = ¢, assim x5 podera tomar qualquer valor real.
Tomemos T = 2 implicando que

1 >6—-2x2 = x >4,

x125—%><2 = 11 >4,
r1>8—8%Xx2 = x> -8,
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X2

(2,6)

[NJEN]

NVl e}
N—

(4,6)

(0,0)

Figura 5.1: Obtengao de uma solugao para X = {(z; x2)7 | 3z, + 229

X

Vv

18, 1 <4, x5 <6, x1 >0, x5 > 0} pelo método de eliminagao de Fourier

A
X2

(0,0)

(5.9)

T

Figura 5.2: Obtencao de uma solucao para X = {z = (21 22)7 | 3z, + 225 >
18, 2x1 + x93 > 10, x; + 8x5 > 8} pelo método de eliminacao de Fourier
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3
7, = 6. O ponto (6 2)T € X. A figura 5.2 esclarece o procedimento.
Podemos também utilizar o método de eliminacao de Fourier para re-
solvermos um problema de programacao linear.
Seja

logo a(Z) = 4! e B(Z2) = +o0; basta escolhermos Z; € {H +oo) , tomemos

maximizar z = 3x; + dzo
sujeito a
3xy + 2w 2 18, 11 <4, 29 <6, 11 20, 22> 0.

Este problema ¢é equivalente a

maximizar z
sujeito a
2 < 3x1 4+ dx9, 3114+ 229> 18, 1 <4, 29 <6, 1 >0, 25 > 0.

Iniciaremos buscando uma solugao viavel T = (7, Ty z)T para as restricoes
do problema acima. Para isso comecaremos eliminando x; :

1 5 2
52—51‘2§$1, 6—§$2§$17 0<w, 21 <4, 12 <6, 0< 2o

Fornecendo

1 12
BZ_ES@’ 3< 1o, 0 < 29, 29 <6.

A vaidvel x5 serd agora eliminada e ficaremos com um sistema s com a
variavel z :

1 12
SZ_€S6’ 3<6, 0<6,logoz e (—o0, 42].

Como desejamos o maximo de z, tomaremos z = z = 42. Fazendo z = 42
na projecao do sistema no espago xs X z teremos 6 < ZTo, 3 < Ty, 0 <
Zo, To < 6, assim sendo 6 < o < 6, implicando Zo = 6.

Levando os valores z = 42 e x5 = 6 nas restricoes originais obteremos
4 <7, 2<7, 0< 7y, 1 <4, implicando 4 < 7 < 4, entao 7, = 4.
A solucao 71 = 4, To = 6, fornecendo z = 42 é 6tima. Neste caso ela é Unica.
Por que?

O conjunto das restrigoes é esbocado na figura 5.3.
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74 (4,6,42)
(2,6,36)
e
e
e
e
(4,3,27
s
__(2,6,0)
—
_—
—
21 (4,3,0) (4,6,0)

Figura 5.3: Aplicagao do método de eliminagao de Fourier para resolver um
problema de programacao linear

5.3 Aplicacao do Método de Fourier quando
houver Igualdades

Trataremos de determinar uma solucao vidvel de X = {z € R" |[Az =

b,Dx < d, x >0}, onde A € R™*" D € RP*" d € RP, suporemos que o

posto de A seja igual a m. Como o posto de A é m, poderemos tomar uma

submatriz quadrada B € R™*™ de A inversivel.

Particionaremos A e r da maneira usual: A = (B N)e x = (zp ay)7,
assim escreveremos Bxg + Nz y = b ou ainda

rp =B 'b— B 'Nuy. (5.1)

A matriz D também serd particionada, D = (Dp Dy), o sistema Dx < d

sera escrito:
DBZ'B+DNLCN Sd (52)

Levando o valor de x5 de (5.1) em (5.2):
DpB~'b — DB "Ny + Dyay < d

ou ainda
(Dy — DB 'N)xy < d— DgB™'b. (5.3)
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X2

(070) I

Figura 5.4: Método heuristico para obtengao de uma solugao para X = {z €
R™ |Az < b}

Como x > 0, implicando zg > 0 e zy > 0, temos

B — B 'Nay >0 (5.4)

Utilizaremos o método de eliminagao de Fourier para encontrarmos uma
solugao viavel de (5.3), (5.4) e (5.5). Uma vez encontrada uma solugao
TN = Ty, esta é levada em (5.1) para obtermos Zp = B~'b — B"'Nzy.

5.4 Um Método Heuristico

Consideremos novamente X = {z € R" |Az < b} e queremos determinar um
T € X. Suporemos que o interior (relativo) de X nao seja vazio. A idéia é
a de testar se um ponto z(A) = v, onde v é um vetor dado e A € R, pode
para um certo A pertencer a X. Em outras palavras, existe A € R tal que
x(A\) € X? Esta idéia é ilustrada na figura 5.4.

Buscaremos um A tal que Az()\) < b, isto é, AMAv < b, que vem a ser a
determinacao de um A que satisfaca a a < A < . Se a > 3 entao para a

dire¢do v nao havera A tal que A(Av) <b.
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O método é de tentativas, comegaremos com v = e = (1 1 ... 1)T e seja
a;; um elemento genérico da matriz A. O sistema AAe < b ficaria

)\ZCLU‘ < bi, 1= 1,2,...,771,.

=1
Denominemos s; = >0 a5, ¢ = 1,2,...,m e consideraremos as seguintes
possibilidades:

e caso 1: s; =0 e b; <0, nao exitird \ para a diregao e;

/////

b

e caso 3: 5, >0, A< Ze

218

e caso 4: s; <0, A > b

S

Se nao acontecer o caso 1, tomaremos:

a = max — 6= min — 0,
i tal que ;<0 | S i tal que 5;,>0 | S;

logo a < X < 6.

Observacao: se a > (3 nao havera A\ para a direcao e, caso contrario
poderemos, por exemplo, tomar A = # e (\) = Ae serd uma solugdao. A
seguir apresentaremos dois exemplos utilizando a direcao

e=(11..1)"%

Primeiro exemplo:

Seja X = {z = (71 22)7 | 3wy + 225 > 18, x1 > 0, x5 > 0}, teremos

que 3x1 + 225 > 18 = (34+2)A > 18 = /\Z%;xlzo = A>0
18

ery >0 = A > 0. Basta tomarmos A € [3 , +00), por exemplo,

A =4, fornecendo um ponto viavel ; = T = 4 para X.

Segundo exemplo:

Seja X = {x = (2, 23 23)T | 621 + 8wy + 203 = 24, 21 + 25 > 0, 71 >
0, zo > 0, x3 > 0}, teremos que 61 + 8xg + 223 =24 = x3 =12 —
3r1—4xy > 0 = 3xr1+4xs < 12, assimsendo (3+4)A <12 = A < %;
r1+x2 >0 = 2X2>0 = X >0, as outras duas restrigcoes implicam
também que A > 0. Tomemos um A € |0, 1—72} . por exemplo, A\ = 1,
logo 1 =Ty =1eZ3=12—3 -4 =5 ¢é& um ponto de X.

Este método heuristico ingénuo apresentado nem sempre consegue deter-
minar uma solucao viavel de X, no entanto, pela sua simplicidade podera ser
utilizado em uma primeira etapa. Caso nao se encontre uma solugao viavel
de X apo0s testar algumas direcoes v, passar-se-a4 para um outro método.
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5.5 Meétodos Introduzindo Solucoes Artifici-
ais

Como foi dito no inicio deste capitulo, a busca de uma solucao viavel para
um sistema de desigualdades e igualdades lineares introduzindo uma solucao
artificial foi descrita rapidamente na secao 3.3. Nesta secao apresentaremos
duas maneiras de encontrar solucoes viaveis de sistemas lineares.

Primeiro Método
Seja X = {z € R" |Ax = b, © > 0}, tomemos um vetor nao negativo

T > 0, definimos b = b — AZ e seja A € R. Consideraremos o seguinte
problema de otimizacao em A e x :

minimizar A (5.6)

sujeito a: )
Az + DA =10, (5.7)
z>0e\>0. (5.8)

Verificamos facilmente que z =z ¢ A = 1 é uma solugao de (5.7) e (5.8).
Se o minimo de A em (5.6), (5.7) e (5.8) for igual a zero para x = z* entao
x* € X. Caso contrario, isto é, A > 0 no 6timo, teremos X = ¢.

Como foi explicado no capitulo 2, poder-se-a, a partir de uma solucao
inicial vidvel de (5.7) e (5.8), buscar uma solugao bésica de (5.7) satisfazendo
(5.8) sem aumentar o valor de A, visando a utilizagdo do método do simplex.

Este tipo de enfoque que acabamos de apresentar pode ser 1itil nos méto-
dos de pontos interiores para a solucao de problemas de programacao linear.

Segundo Método

Podemos também acrescentar uma variavel v; > 0 artificial a cada equagao do
sistema Az = b, isto ¢, consideraremos as seguintes equagoes 327 _; a;;T;+v; =
b;, i1 =1,2,...,m. Suporemos, sem perda de generalidade, que b > 0.

O problema de otimizacao a ser considerado tera a seguinte forma:

minimizar e’v (5.9)

sujeito a:
v+ Az = b, (5.10)
xr>0ev >0, (5.11)
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onde e = (11...1) e v’ = (vy vg ... V).

A solugdo v = b e x = 0 é bésica de (5.10) satisfazendo (5.11). Se a
solugao 6tima de (5.9), (5.10) e (5.11) fornecer ev = 0, que corresponde a
v=0e x =1=Z. Desejamos que T seja uma solucao basica de Ax = b.

Utilizando o algoritmo primal de simplex para solucionar (5.9), (5.10) e
(5.11), dois casos serao considerados no 6timo:

e v = 0 estd associado a colunas nao basicas de (5.10), entdo = é uma
solucao basica de Ax = b;

e existe v; = 0 associada a uma coluna bésica de (5.10), se houver um
yi; # 0, para j = 1,2,...,n, basta colocarmos na base a coluna a; no
lugar da coluna e; associada a variavel v;; se y;; = 0,7 = 1,2,...,n,
eliminaremos a linha 7.

No caso em que elv > 0 no étimo entao X = ¢.

5.6 Viabilidade de Sistemas com Igualdades
e Desigualdades Lineares

Consideraremos agora X = {x € R" |Ajz < by, Az = by} e desejamos
saber se X # ¢, onde A; € RP*" e Ay € RI*™.

Sejam 0 < wlT € RP, sz € R1. Poderemos escrever w;Ajxz < wyb; e
wyAsx = wyby. Consideraremos entao:

('lUlAl + 'U)QAQ)Z’ < w1b1 + 'U)ng. (512)

E facil verificar que se existirem w; > 0 e wy tais que wi Ay + we Ay = 0
e wib; + weby < 0 entao X = QZ5

Tomemos um exemplo para ilustrar o resultado acima, onde X = {z =
(.171 i) x3)T | 3$1+2$2+4QE3 S 5, $1+2$2+$3 S 4, —I1 S 0, —T9 S O, —x3 S
0, x1+x2+x3 =3}, esejam wy; = (1302 1) e wy = —6. Escreveremos para
estas desigualdades e igualdade a expressao (5.12): (1 x3+3x1—6x1)z;+
(1x24+3%x2-2x1—6x 1)za+(1x4+3x1—1x1—6x1)z3 < (1x5+3x4—6x3),
isto 6, (00 0)(w; 2o 23)7 < -1 = 0< —1(!), logo X = ¢.

Definigao 5.1 Segundo H. W. Kuhn [Ku 56], o sistema Ajx < by, Asx = by
€ inconsistente se hd wy, > 0 e wy tais que w1 A;+wsAs = 0 e wiby+waby < 0.

Kuhn [Ku 56] enunciou o teorema seguinte.
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Teorema 5.1 Um sistema de igualdades e desigualdades lineares serd vazio
se e somente se for inconsistente.

Demonstracgao

(=) J& demonstramos acima que um sistema inconsistente é vazio.

(<) Consideremos novamente Ajx < by, Asx = by e suporemos by > 0.
Particionaremos b; = (b, bg)’, onde b, > 0 e by < 0. Particionaremos

, . A : .
também as linhas de A; = Ao‘ para que possamos construir o seguinte
B

problema de programacao linear visando a encontrar uma solucao viavel para
o sistema de igualdades e desigualdades lineares em questao:

(PA) : maximizar —({ v + Efvg + & )
sujeito a:
Aot + vy < by,

ABJI—Uﬁ S bﬂ,
Ao + vg = by,
anz()) UBZ()) U?Zoa

onde & = (11 ... 1), pertencendo ao mesmo espago que by, para k = «, 3, 2.
Como a fungao objetivo de (PA) é limitada para o méximo, pois — (&L v, +
fgvg + &) <0ex =0, v, = by, vg=—bg e vy =by é uma solugao vidvel
de (PA), entao teremos que o 6timo de (PA) sera limitado.
Denominaremos w; = (w, wg) > 0 e wy 0s vetores cujas componentes
sdo as varidveis do seguinte dual de (PA) :

(DA) : minimizar wab, + wbs + waby
sujeito a:
waAa + UJgA/g + w2A2 = O,

We Z _gT —Wg Z _gga Wo Z —nga

o)
wo > 0, wg > 0.

Pelas propriedades da dualidade sabemos val(PA) =val(DA), pois (PA)
nao é vazio e possui 6timo limitado. Denominamos val(-) o valor da fungao
objetivo no étimo de (-).

Sendo o sistema Ayx < by, Asx = by vazio por hipotese, sabemos que
val(PA) < 0 e assim val(PA) =val(DA) < 0, implicando que

Wabo + webg + waby = w1by + weby < 0, onde w; = (w, wg) > 0,

74



U)aAa + U)BAg + U}QAQ = w1A1 + U)QAQ = 0,

logo o sistema é inconsistente. [

5.7 Exercicios

1. Teorema de Farkas [Fa 02]. Demonstrar que o conjunto
{(z,w) e R" x R™ | Ax <0, cx >0, wl'A=¢, w> 0} é vazio, onde
A e R™mecl € R"sao dados.

2. Resolver pelo método do simplex partindo de uma solugao artificial:
maximizar z = 3x; + dxo, sujeito a: x; < 4, x9 < 6, 31 + 229 >
18, T 2 O, i) Z 0.

3. Solucionar o mesmo problema acima utilizando o teorema das folgas
complementares.
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Capitulo 6

Conjuntos Poliédricos Convexos

A definicao de um conjunto convexo foi feita nos capitulos anteriores. A
seguir daremos as definigoes de hiperplano, de vértice, de raios e diregoes,
assim como algumas de suas propriedades inerentes. Introduziremos também
o estudo dos conjuntos poliédricos convexos.

6.1 Hiperplano, Vértices, Raios e Direcoes

Definicao 6.1 Hiperplano
Sejam p € R™, tal que p # 0 e a« € R dados. O conjunto H = {z €
R"™ | pYz = a} € denominado um hiperplano.

O vetor p é ortogonal ao hiperplano H, pois consideremos z° € H, isto é,
pla® = a e para todo x € H teremos também p’z = «, logo p? (z — 2°) = 0.
A figura 6.1 ilustra esta propriedade.

Proposicao 6.1 Um hiperplano € um conjunto convexo.

Demonstracao

Sejam ! e 22 € H, isto & plat = a e pT2? = a; tomemos A € [0,1] e
consideremos A\pTa! = Xa e (1 — A\)pfz? = (1 — M)a ou ainda p''(Az?!) +
p[(1=N)2?] = Aa+(1—N)a que implica em pT[Azt+(1—)\)z? = a. Assim
sendo, qualquer combinacao convexa de dois pontos de H também pertence
a H. [

Um hiperplano divide R™ em duas regioes, denominadas de semi-espagos.

Um semi-espago é um conjunto {x € R™ | pTz < a}, quando p # 0. Na
realidade podemos considerar um semi espaco fechado {x € R" | p'z < a}
ou aberto {z € R" | p’z < a}.
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Zo

Figura 6.1: O vetor p é ortogonal a x — x

H

Zo

Figura 6.2: O angulo entre p e x é maior do que 90°

Tomemos 2° € {x € R" | pTz = a} ex € {z € R" | plz < a}, ou seja
pla® = a e pfe < a, logo pTor < pa® implicando p'(x — 2°) < 0 como
ilustramos na figura 6.2.

Definicao 6.2 Vértice ou ponto extremo de um conjunto
Seja X CR™ um conjunto, v € X € um vértice ou um ponto extremo de X
se nao existirem x' e x* € X, xt £ a?, tais que v = Lx' + 1a”.

Na figura 6.3, dois esbocos ilustram a definicao de vértice.
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Figura 6.3: Vértices: No conjunto a direita, além de vq, todos os pontos no
arco v1vs sao vértices

Definicao 6.3 Raios e direcoes
Um raio é um conjunto da forma {xr € R" | x = 2° + \d, A > 0}, onde 2° ¢
um ponto dado e a direcao d € R™ também o €.

A figura 6.4 ilustra a defini¢ao de raio.

6.2 Conjunto Poliédrico Convexo

Consideremos H; = {x € R" | (p))Tx < o}, p* # 0 e a; dados para i =
1,2,...,m. X = N, H; é um conjunto poliédrico convexo por defini¢ao se
X # ¢.

Um conjunto poliédrico convexo é a intersegao de um numero finito de
semi-espacos fechados. Esta intersecao deve ser nao vazia. Daremos na figura
6.5 alguns exemplos de conjuntos poliédricos convexos em R? :

As restricoes dos problemas de programacao linear formam um conjunto
poliédrico convexo. Por que?

Quando um conjunto poliédrico convexo for limitado, diremos que este
conjunto ¢ um hiper-poliedro ou um politopo.

E interessante verificarmos que no caso de um politopo X, caso conhega-
mos todos os seu vértices v, v, ..., v?, podemos expressar qualquer z € X
como sendo uma combinacao convexa dos vértices de X, isto é, x € X se
e somente se, © = Y4 Ao/, I N =1e); >0, j=1,2,..,q Este
resultado serda demonstrado ainda neste capitulo.

Na figura 6.6 temos seis vértices e z € X poderd ser expresso como

c=30_ v, Y0 A =1e); >0, j=1,2,..,6.
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Figura 6.4: Raio de direcao d e vértice x
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Figura 6.5: Conjuntos Poliédricos Convexos
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Figura 6.6: Combinacao convexa dos vértices do politopo

fﬂg‘ .TQ‘

1 ™
T2
()

r
T4 3

Figura 6.7: Cones poliédricos convexos

No caso particular de a; =0, 7 = 1,2, ..., m teremos

m
Hi={zeR"| (@) z<0}, p#0,C= () H:.
i=1
O conjunto poliédrico convexo C' é denominado de cone poliédrico convexo.
Na figura 6.7 ilustramos cones poliédricos convexos em R? e R3.
Os vetores r’ ilustrados na figura sao denominados raios extremos de
C' e serao definidos da seguinte maneira: r é um raio extremo de C se nao
existirem d' e d* € C, d* # (3d? para qualquer 3 € R tais que r = 3d'+3d>.
Sendo A € R™*" entao C' = {z € R™ |Az < 0}, é um cone poliédrico con-
vexo. Supondo que rt, 72, ..., 79 sejam os raios extremos de C' mostraremos

mais A frente que para Vo € C teremos . = >0, pr?, u; >0, i=1,2,...,q.
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Figura 6.8: Conjunto poliédrico nao limitado

Voltemos ao conjunto poliédrico convexo X = {zx € R" |Az =0, © > 0},
onde A € R™" be&R™, e o posto de A igual a m.

Se X contiver um raio entao X nao sera limitado. Para verificar isto
tomaremos 2° € X e d # 0 um vetor e consideraremos r = z° + \d, A > 0
um raio de X. Para que r € X teremos que Ar = b, r > 0, ou ainda que
A(@® 4+ Xd) =b e 2° + X\d > 0, para VA > 0.

De A(z° + Ad) = b teremos que Az’ + NAd = b, como Az’ = b entdo
MAd = 0, para VA > 0, isto é, Ad = 0. Como z° + X\d > 0, VA > 0, logo
d>0.

Definigao 6.4 Diremos que d # 0, d > 0 € uma dire¢io de X = {x €
R™ |Az = b, x > 0}, se Ad = 0.

Se nao existir d # 0 tal que Ad =0 e d > 0 entao X sera um conjunto
limitado.

Na figura 6.8 apresentamos um conjunto poliédrico X em R?, nao limitado
e contendo o raio r = 2% + Ad, X > 0. Apresentamos também um cone
poliédrico C' associado as arestas de X nao limitadas.

E importante notarmos que se d é uma dire¢ao de X entao ad para o > 0
também o serd. De maneira geral, se d' e d? forem direcoes de X, entao
d#0, d= a;d" + asd?, para a; > 0 e ap > 0 também o sera.

Denominaremos de direcoes extremas de X as diregoes associadas as
arestas nao limitadas de X. Caso X seja limitado poderemos dizer que o
conjunto das direcoes extremas de X ¢ vazio.
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Como uma direcao extrema d de X é paralela a uma aresta nao limitada
de X, entao nao existem d! e d? direcoes de X, d' # 3d? para todo 3 > 0,
tal que d = %dl + %dz. Isto é, o vetor d nao podera ser escrito como uma
combinacao estritamente convexa de d! e d?.

A seguir caracterizaremos as diregoes extremas de X = {z € R" |Az =
b, x > 0}.

Suponhamos A = (B N), onde B € R™*™ é inversivel, o que é sempre
possivel, pois supusemos que o posto de A fosse igual a m. Consideremos d
uma dire¢ao de X, isto é, d # 0, Ad = 0 e d > 0; tomemos d da seguinte
forma:

d'=(dydy..d;00..00..0d0..0),

m n—m

onded; >0, j=1,2,....,k ed; > 0 para [ > m.

Os m primeiros indices estao associados as colunas aq, as, ..., Gk, ..., Um
de B.
Verificaremos que se as colunas ay, as, ..., a; nao fossem linearmente

independentes, a direcao d poderia ser escrita como uma combinacao estri-
tamente convexa de duas outras direcoes de X.

Para realizarmos essa verificacao, suporemos que as colunas ay, as, ..., aj
sao linearmente dependentes. Neste caso, existem escalares nem todos nulos
Ajs j=1,2,...,k tais que 5 Nja; = 0. Como d; > 0, j =1,2,.... k, é fécil
notar que existe um « > 0 tal que

di—aX; >0 e dj+al; >0paraj=12, ..k (6.1)

Construiremos os dois seguintes vetores:

dl — Oé)\l dl + CV)\l
d2 — Oé)\z dz + Oé/\g
dp, — al di, 4+ aX
0 0
0 0
dt = e d® = ]
0 0
dl dl
0 0
0 0
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Por construcao d' > 0 e d*> > 0. Verificaremos a seguir que d' e d? sao
também diregoes de X :

Adt = Y5 (dj — a)j)a; + diag = Ad — a X5y Nja; =

j=1

Ad' = Ad = 0, pois Z?Zl Aja; = 0.

De maneira andloga mostra-se que Ad? = 0.

Como nem todos os \; sdo nulos entao d* # d? e também d' # [d?
para 3 > 0, assim sendo d' e d? sdo direcoes distintas. Mas, neste caso,
d= %dl + %d?

Assim sendo para que d possa ser uma direcao extrema de X, as colunas
ai, as, ..., ap terao que ser linearmente independentes.

Podemos ainda escrever:

0= Ad = Zdjaj + dja; = Bdp + dia;, onde di = (dy dy ... dj, 0 ... 0).

Jj=1 m
Teremos que Bdg = —d;a; ou ainda dg = —d; B~ 'a; logo:
dp —dlB_lal —B‘lal
0 0 0
0 0 0
=14 |~ d a0 ]
0 0 0
0 0 0

lembremos que d; > 0. Assim sendo d serd uma direcao extrema de X e o
vetor

—Bilal
0

O =

também o sera.
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Suporemos agora que uma direcio d de X possa ser representada da
seguinte forma:

d'=(dydy..d;00..00..0d,0..0d,0...0).

m n—m

Aqui também suporemos que as m primeiras componentes de d estejam
associadas as colunas da matriz inversivel B. Poderemos entao escrever:

0= Ad = Z d;a; + dia; + dya, = bdp + dia; + dyay,
j=1
implicando

Bdp = —djay — dya, e dp=—dB 'a,—d,B 'a,.

Poderemos ainda representar o vetor d como

dp —dlelal — deflap —dlelal —deflap
0 0 0 0
0 0 0 0
dl dl dl 0
0 0 0 0
0 0 0 0
dp dp 0 dp
0 0 0 0
0 0 0 0
assim sendo
—B‘lal —B‘lap
0 0
0 0
1 0
_ 0 0
d=d . +dp . :dldl—kdpcp.
0 0
0 1
0 0
0 0
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Calculemos Ad' e Ad?, Ad* = B(—B™'a)) +a; = —a;+a; =0 e Ad* =
B(-B7ta,) +a, = —a, + a, = 0, logo d' e d* sdo também diregdes de X,
implicando que d seja uma combinacdo linear ndo negativa de d' e d>.

Analogamente poderemos considerar uma direcio da forma de d, onde
haja mais de duas componentes positivas entre as n —m tltima componentes
de d.

E quando todas as n — m tltimas componentes de d forem nulas, isto é,

d'=(dydy..dy00..00..0).

m n—m

Verificaremos que 0 = Ad = Bdp implicando dg = 0 pois B é inversivel.
Logo d = 0 nao poderd ser uma direcio de X.

Agora estamos aptos a caracterizar as arestas nao limitadas dos conjuntos
poliédricos convexos do tipo X = {x € R" |[Az = b, x > 0}. Basta que
durante a execucao do método do simplex estejamos em uma solucao bésica
B e exista um vetor da forma y, = —B~!a; > 0, onde a, é uma coluna de A.
A solucao basica nos fornece um vértice de X e a partir de y, construiremos
uma direcao d, teremos desta maneira um raio que definird uma aresta nao
limitada de X. Para cada base viavel de X teremos no maximo n—m dire¢oes
extremas.

Na proxima secgao caracterizaremos as arestas limitadas de X.

6.3 Caracterizacao das Arestas de um Con-
junto Poliédrico Convexo

Quando apresentamos o método do simplex no capitulo 3, ilustramos que a
trajetoria para irmos de um vértice para o seguinte estava em uma aresta
do conjunto poliédrico convexo do exemplo. Poderiamos pensar que uma
trajetéria passando pelo interior relativo do conjunto poliédrico convexo fosse
possivel também durante a execugao do método do simplex. Verificaremos
a seguir que, utilizando o método do simplex, nunca caminharemos pelo
interior relativo do conjunto das restricoes.

Consideremos novamente X = {x € R" |Az = b, x > 0}, tal que o posto
de A seja igual ao seu numero de linhas m. E que a matriz B formada pelas
primeiras m colunas de A seja uma base primal viavel de A. Seja T a solucao
basica associada a B, isto é, #7 = (z5 0), onde Zp = B~'b. Tomemos uma
coluna ay de A nao estando em B que substituird uma coluna de B para
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criar uma nova base. Escreveremos que

—B‘lak
0

0

Esta escolha de aj, estd condicionada a que —B~ta;, # 0, assim sendo exitira
a > 0 (caso nao degenerado) associado a proxima solugao bésica z, tal que
0 < a < a. Esta solugao & definird um novo vértice de X. Ou ainda que

—B_lak
0

=
Il
I
+
o

O =

0

Ou seja z* = AT+ (1 — Nz, 0 < X < 1. Todo vetor da forma z*, 0 < a <1
estard sobre o segmento de reta entre T e z. Para mostrar que este segmento
¢ uma aresta de X basta verificar que nao existem 2! e 22 € X diferentes de
Bz (8> 0), para todo 0 < a < 1, tais que z® = Lz! + 22

Consideraremos outra vez A = (B N) e suporemos que existam z! e
2? € X diferentes de Sz (8 > 0), tais que z® = 32! + 122 ¢ mostraremos a
afirmacao acima por absurdo.

Sabemos que Az? = b, i =1,2equez® >0, i=1,2;poisz* € X, i =1,2.
Particionaremos 2 = (z'5 x%)7, i = 1,2 para que possamos escrever

Ba'y + N2y = b, i =1,2. (6.2)
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Verificamos facilmente que x% # 0, ¢ = 1,2; pois caso nio fosse assim
terfamos em (6.2) 2%y = B~'b, i = 1,2 implicando que 2° = 7, i = 1,2, algo
em contradi¢ao, pois & = x® para o = 0.

O vetor 2 serd também particionado: 2% = (2% 2%)7.

Lembremos que z%; é um vetor com uma sé componente diferente de zero,
representando a k-ésima componente de x® que ¢ igual a a.

Passamos a considerar

o1, 1

Tp = 5%13 + §$2Ba (6.3)
o1, 1

Ty = 5.7:}\, + 51‘?\, (6.4)

Como z% > 0 e aly # 0, i = 1,2, teremos em (6.4) que z’y, i = 1,2 terd
apenas uma componente diferente de zero, correspondendo a componente de
x% diferente de zero. Ou ainda podemos dizer que a k-ésima componente de

x', i = 1,2 serd positiva e igual a z%, i = 1,2. Logo (6.2) serd escrita

By +xtay =b, i =1,2. (6.5)
De (6.5) temos que
vy =B '+ (=B tay)r, i =1,2. (6.6)

para que x5 > 0, i = 1,2, temos que ter 0 < z{ < a. Assim sendo os pontos
x! e 22 estao no segmento definido por 2, para 0 < a < @, contrariando a
hipétese de que 2! e 22 sejam diferentes de 2%, para 0 < o < a.

Nesta secao verificamos que, realmente, o método do simplex em cada i-
teracao caminha sobre uma aresta do conjunto poliédrico convexo que forma
o conjunto de restricoes do problema de programacao linear.

Na secao que se segue apresentaremos uma versao do teorema principal da
representacao de um conjunto poliédrico convexo em funcao de seus vértices

e de suas direcoes extremas.

6.4 Teorema da representacao de um Con-
junto Poliédrico Convexo

O teorema que serd enunciado e demonstrado a seguir foi proposto por
Minkowiski [Min 11], ver também o capitulo 7 de [Sc 86].

Consideremos mais uma vez X = {x € R" |Ax = b, © > 0}, A € R"™*"
com posto igual a m. Suporemos que v!,v?, ..., v? sejam os vértices de X e

que 1,72 ... r? as direcoes extremas de X.
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Teorema 6.1 Um ponto v € X se e somente se existirem \; > 0, j =
1,2, ...,p, tais que Z§:1 ANj=1lep >0, 1=1,2,...,q para os quais

p q
xr = Z )\jvj + Zu,;ri.
j=1 i=1

Demonstragao
Sabemos que Av =bev/ >0, j=1,2,...,peque Ar' =0er® >0, i =
1,2,...,q.
(=) | | . |
A oy Ao? + 30 par') = 25 A (A )+ 30 pa(Art) = b5, Aj)+0 = b.
(<)
Tomemos x € X e desejamos verificar a existéncia de A; e y; tais que:

P q
SN+ et =, (6.7)
=1 i=1

p
Yo =1, (6.8)
j=1

)\, <0, j=1,2...p, (6.9)
—u; <0, i=1,2,....q. (6.10)

Se o sistema de desigualdades e igualdades (6.7)-(6.10) for vazio existirao
numeros us, s = 1,2,...,n,n+1, w; >0, 7=1,2,...,pet; >0,1=1,2,....q,
tais que (ver teorema 5.1):

> ugv! + g —w; =0, j+1,2,...,p, (6.11)
s=1
Sugl —t;=0,i=1,2,..4q, (6.12)
s=1
> Uy + Upyr < 0. (6.13)
s=1

Como w; >0, j=1,2,...,pet; >0, ¢ =1,2,...,q poderemos escrever
também

> usv! + i >0, j+1,2,,p, (6.14)
s=1
dugrt>0,i=1,2,..,4q, (6.15)
s=1
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Figura 6.9: X = envoltdria convexa dos vértices de X + cone assintdtico

> usts + tpy1 < 0. (6.16)
s=1
Seja u = (uy ug ... u,) logo ur = Y7, usxs. Consideremos agora o

seguinte problema de programcao linear:

(PPL) : minimizar z = uz, sujeito a = € X.

Este (PPL) nao é vazio pois supusemos a existéncia de x € X. As relagoes
representadas por (6.15) podem ser escritas também ur® >0, i =1,2,....q.

Ja vimos que as direcoes extremas de X podem ser obtidas a partir de
uma solugao basica primal vidvel de X e que uma solucao ilimitada de um
problema de programcao linear é sempre verificada através do método do
simplex na presenca de uma direcao extrema de X. Seja ¥ uma solugao
bésica primal vidvel de X e r uma direcao extrema de X obtida a partir
de = pelo método do simplex, sabemos que os pontos da forma x = z + Ar,
para A > 0 pertencem a X, levemos esses pontos a funcao objetivo do (PPL)
e teremos: z = ux + A(ur), como uZ é um valor fixo entao se ur < 0 implica
que z — —oo quando A — oo. Caso tivéssemos que ur’ > 0, i = 1,2,....q
saberiamos, pelo método do simplex, que z teria um ponto de minimo finito.

Podemos entao dizer que o (PPL) em questdo além de nao ser vazio
possui solucao étima limitada que é um vértice de X, por exemplo, v*, k €
{1,2,...,p}, logo uwv* = " w0k < 37wz, para todo x € X. De (6.14)
teremos que 3.7 usv¥ > —u, 1. Dessas tltimas duas expressdes obteremos

" UsTs > —Upyq que é contraditéria com a expressao (6.16).

Logo nao existem u,, s = 1,2,...,n,n+ Liw;, 7 = 1,2,...,pet;, i =
1,2, ..., q satisfazendo a (6.11), (6.12) e (6.13) implicando a existéncia de
A, =12, ..,pep, i =12 ..4q. [

O resultado deste teorema pode ser ilustrado na figura 6.9.
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6.5 Exercicios

1. Sejao (PPL) : maximizar z = cx sujeito a Ax = b, « > 0. Se 0 maximo
de z nao for limitado, mostrar que existe uma dire¢ao d do conjunto
poliédrico convexo que representa os pontos das restrigdes do (PPL)
tal que cd > 0.

2. Mostrar que existe a € R satisfazendo as condi¢oes em (6.1).
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Capitulo 7

Geracao de Colunas

7.1 Introducao

Como foi visto, o teorema 6.1 serve para a representagao de um conjunto
poliédrico convexo, uma das aplicacoes desse teorema sera apresentada neste
capitulo visando a solucao de problemas de programacao linear por geracao
de colunas. A seguir consideraremos o seguinte problema de programacgao
linear:

(P) : minimizar z = cz

sujeito a:
Ar =10

x>0,

onde ¢,z € R", A€ R™" ebec R™.
Particionaremos A e b da seguinte maneira

onde A, € Rm1><n7 Ay € ngxn7 by € R™ e by € R™2.

Assim (P) podera ser colocado sob a seguinte forma:

(P) : minimizar z = cx

sujeito a:
All' = b1
Agl’ = b2
x>0



Denominemos X = {x € R" | Asx = by, © > 0} # ¢. Sejam V(X)) =
{v!, v?,..., vP} o conjunto dos vértices de X e R(X) = {r!, 7, ..., r?} o
conjunto dos raios extremos de X. Pelo teorema estudado na segao 6.4, qual-
quer x € X podera ser escrito como uma combinagao convexa dos elementos
de V(X) mais uma combinagao nao negativa dos elementos de R(X), isto é,
existem \; € R e y; € R, tais que

P q
reX = ZL‘:Z)\jUj—I—Z/LiTi,

j=1 i=1
para

p
ZAjzlv >‘j Zoa j:1727"'ap7 #1207 221727’q

j=1

Levando esta ultima expressao de x € X a Ajz = b teremos (P) escrito
em fungao dos \;, j =1,2,....,pe p; i =1,2,...,q como segue.

P q
(P) : minimizar z = C(Z vl + Z/M"i)

j=1 i=1
sujeito a:
g
Z )‘jU] + Z:uz =b
i=1
p
D=1
j=1
A]>O’j:]"27 '7p’ MZ>07Z:]‘727 7Qa
ou ainda » .
(P) : minimizar z =Y (cv/)\; + > _(er')p; (7.1)
j=1 i=1
p q '
Z Al'l}J Z(Alrl),ui = b1 (72)
j=1 i=1
p
Yo =1 (7.3)
j=1
AN >0, =12 ..,p 1; >0, 1=1,2,..4q. (7.4)

A matriz dos coeficientes dos \; e pi; poderd ser esquematizada:

M= A1v1 A1U2 e All}p AlT’l A1T2 e Aqu
1 1 e 1 0 o ... 0 '
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O problema (P) sob a forma (7.1)-(7.4) é denominado o problema mestre.
Tomemos uma matriz quadrada B formada por m + 1 colunas de M, tal
que B seja inversivel. A matriz B terd colunas dos seguintes tipos:

( Allvj ) e/ou ( A(l)ri )

Escreveremos esta matriz ainda como

B— A1U1 A1U2 A1Up1 AlTl A17”2 Aﬂ”ql
1 1 1 0 0o ... 0 ’

onde p; +q = mq + 1.
Definiremos também cg = (cv! cv? ... coPr erter? ... cr®)eu = cgB™L.

Suporemos que
b
-1 0

isto é, a matriz B estd associada a uma soluc¢ao basica primal vidvel de (7.1)-
(7.4). Teremos que verificar se esta mesma base B estd também associada a
uma solucao dual vidvel de (7.1)-(7.4). Para isso calcularemos:

Al’Uj j Alri i
Zi=1u 1 , 5 —CU e Z;=u 0 , 25 — CIr.

Sezj — ! <0, j=1,2,..,pe zi—cr* <0, i=1,2,...,¢ entdo B também
definird uma solugao bésica étima de (7.1)-(7.4). E claro que o nimero de
vértices e de raios extremos de X pode ser muito grande impossibilitando os
calculos de todos os z; — cv? e z; — cr', assim sendo poderemos proceder da
seguinte maneira:

Seja u = (ug ug), onde uy € R, entao

zi —cv! = u Ajv? +ug — ! = (A — ) +ug, j=1,2,..,p;  (7.5)

zi—cor' = u Ayt — o' = (A —o)r', i =1,2,..,q. (7.6)

Poderemos pensar em calcular o méximo dos z; —cv’ em (7.5) e 0 maximo
dos z; — cr’ em (7.6); se ambos os méximos forem nao positivos a matriz B
estard associada a uma soluc¢ao 6tima de (7.1)-(7.4).

Sabemos que

R b _ J1 — _
j:r{}%%’p{z] v’} = g +j:1,2af,<,,p{(u1Al o)’} u0+U£I‘1/_6(L>)<()(u1A1 o),
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ainda podemos considerar o problema de programagcao linear

(PA) : maximizar (u3A; — ¢)v + ug

sujeito a:
AQU = bg
v >0,
para o qual sé estaremos interessados nas solugoes basicas de Asv = by,

satisfazendo v > 0, pois assim verificariamos os vértices de X que otimizam
(PA). O método do simplex serd utilizado na solugao de (PA).
Trés casos devem ser considerados.

e Na solugao de (PA) podemos durante o desenrolar do método do sim-
plex verificar a existéncia de uma solugao ilimitada, isto é, encontramos
uma solucao da forma v + ar, para a > 0 que pertence a X, onde
veV(X)er e R(X), tal que (u1A; — ¢)r > 0, neste caso faremos a

Al’f‘

0 entrar na base, como ja foi visto no capiitulo 3.

coluna

e Ao resolvermos (PA) obtivemos um vértice 6timo v, tal que (u;A; —

_ Ao , e .
¢)v 4+ ug > 0, a coluna ( 11 entrard na base, como ja foi visto no

capiitulo 3.

e Se o vértice 6timo v* obtido para (PA) fornecer (u; A; — ¢)v* +ug < 0,
logo a base B estard associada a um étimo de (7.1)-(7.4). Com os \; e
1 associados a base B e seus vértices e raios extremos correspondentes
calcularemos o x 6timo de (P). Denominaremos de Iy os indices j
dos Aj em B e de Ip(, os indices i dos p; em B, assim sendo a solugao
Gtima ficaria © = Y jeq, vl + Yielng, it

Exemplo 7.1

(P) : minimizar z = z1 + 2x9 + x3 + 224 + 675

sujeito a:
r, -+ To — T3 = 5
4ZE1 + i) — Xy = 8
ry — 21‘2 + 14 = 2

z; >0, j=1,2,3,4,5.
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Definiremos X = {(271 To XT3 T4 I5)T ’ 1 — 2I2 + x4 = 2, T > 0, j =

1,2,3,4,5 }. Os vetores v/, j = 1,2, ...,p representarao os vértices de X
er', 1 =1,2,..,q os raios extremos de X. Poderemos ainda escrever que
vl o= (v] v v v v e rt = (ri vl rl i rl)T. Assim sendo para todo

r = (1) 29 v3 14 ¥5)7 escreveremos

P . .
T =Y A+ > i, k=1,2,34,5,
j=1 i=1
onde »
N=1, 020, j=1,2p >0, i=1,2...q.
-1

J

Levando o valor de zy, k = 1,2,3,4,5, em funcao de A; e u; na funcao
objetivo e nas duas primeiras restrigoes de (P), teremos o seguinte problema
mestre.

(P) : minimizar z =

p . . . . ) g ) . . ) .

(v] + 20 + v} + 20 4+ 6V)N; + > (r + 2y + i+ 20 + 6r)p (7.7)

j=1 i=1

sujeito a:
p . . . q . . .

S (v +vd —vh)A + D (L — i) =5 (7.8)

j=1 i=1

p . . ) q . . )

> (dv] + v — v\ + > (4r +rh — i) =8 (7.9)

=1 i=1

p
=1

A >0, j=12.p >0 i=12 .4 (7.11)

Como nao conhecemos uma solucao basica viavel para o problema mestre
(7.7)-(7.11), utilizaremos o método das duas fases do simplex. Assim sendo
definiremos o seguinte problema artificial.

(ART) : minimizar £ = g1 + g2 + g3 (7.12)
sujeito a:
(vl v — v+ Y (1 1y =)+ g1 =5 (7.13)
j=1 i=1
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p . ) . q ) ) )
(dvf +vb —v3)A; + > _(dr) + 75 —r5)i + g2 =8 (7.14)
j=1 i=1
p
S Ait+gs=1 (7.15)
j=1

A >0, 5=12..p, >0, i=1,2...q g. >0, s=123 (7.16)

As colunas associadas as variaveis artificiais g1, g» e g3 formam uma base
B = I3 primal vidvel de (ART). Podemos em fungao dessa escolha de base
definir:

100
cg=(111),u=cgB'=(111)[0 1 0 |=(111)
001

ol + v} — v}
zi=ua; = (111)| 4v] +v) -0l
1
ry+ry =713
zi=ua; = (111)| 4 +ri—ri |,
0

para os j associados a A; e os ¢ associados a p; temos que ¢; = ¢; = 0 em
(ART).
Consideremos primeiramente os z; — ¢; = z; visando ao estudo da viabi-

lidade dual de B :
ol + b —vf S
zi=wuaj=(111)| 4v] +v)—vl | =50 +2v) —v3 — v+ 1
1

BUS uemos o méximo de Zi — Cj onde ) =1,2,... ara isto formemos
J 7 ) < )
(0] problema auxiliar:

(PA) : maximizar t = 5vy + 209 — v3 — v5 + 1 (7.17)

sujeito a:
V1 — 2U2 + vy = 2 (718)
v >0, k=1,2,3,4,5. (7.19)

Devemos resolver (PA) utilizando o método do simplex. Na defini¢ao de
(7.17)-(7.19) o indice j estd implicito.
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De (7.18): v1 = 2+ 2vy — vy et = 5(2 4 209 — vy) + 209 — v3 — v5 + 1.

Verificamos que para v = vy = vq4 = v5 = 0 teremos v; = 2, logo v
(2000 0)7 ¢ um vértice de X. Este vértice fornece ¢t = 11 > 0, isto ¢, se a

coluna
24+0-0 2
4x24+0—-0 | =1| 8
1 1

associada a varidvel \; entrasse na base no problema (ART), o valor da

1

funcao objetivo ¢ diminuiria. Nao precisariamos resolver (PA) até a oti-
malidade, basta encontrarmos um vértice de X que fornega um ¢ > 0. No
exemplo presente resolveremos (PA) visando ao seu étimo ou determinando
que sua a solucao ¢ ilimitada. Colocando v; em funcgao de vy e vy teremos
t = 114 12v9 —v3—bvy —v5. Podemos notar que se o valor de v, crescer a par-
tir de zero, mantendo-se v3 = vy = v5 = 0, o valor de ¢ aumentara também.
Neste caso v; = 2 4+ 2v, > 0 o que implica v > —1, logo a componente vy
nao é limitada superiormente. Assim sendo, se v, — oo implica t — oo.

Passaremos a determinar o raio extremo associado:

U1 2 2U2
(%) 0 ]_Ug
vs | =10 |+] Ovy |,
V4 0 O’U2
Us 0 01)2

logo r! = (21 00 0)T é um raio extremo de X.
Calculemos entao
Ti—i- 7’5 — rg | | | |
zi—c=z= 111 4ri +r5—rt | =5r] +2ry —ry —rs,
0

Neste caso i =1, r{ =2, rg =1, ry =71y =13 =0, 2, — ¢,

5x24+2x1—-0—-0=12. A coluna

2+1-0 3
4x24+1-0 =19
0 0

= Z

Mi

associada a varidvel p; entrard na base no problema (ART'). Para sabermos

qual coluna da atual base B saird faremos os seguintes calculos:

a1 5 100 5 5
G |=B1[s8|=]010 8 | =18,
s 1 00 1 1 1
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5
E=(111)| 8 | =14,

1
3 1 00 3 3
B't'lol=[010 9 =1|o9
0 00 1 0 0

Poderemos esquematizar a determinacao da coluna que saird da base da
seguinte maneira:

Ll
2 319 pois 9 < 3
gs 110

Entrara a coluna associada & variavel p; e saird a coluna associada a
variavel artificial g;. A nova base B sera:

130 1 -3 0
B=[09 0],logoB'=[0 § 0|,cp=(101),
0 01 0 01
1 - 0
-1 i 1
u=cgB " =(101)]1 0 5 0 |= 1—31 ,
0 01
)

1 10

e Ly(e]-n

3 1 3

o] +vf —of 191
Zj—cj =z = (1 — = 1) ] v —vl | =—cvl+sv— vl + cvl 4+ 1.
3 1 3 3 3
Consideremos novamente:
o 1 2 1
(PA) : maxnmzart:—§v1+§vg—vg+§v5+1 (7.20)
sujeito a:

v — 209 + Vg = 2 (7.21)
v >0, k=1,2,34,5. (7.22)

Escrevendo novamente v; em funcao de vy e vy, isto é, v; = 2 4 209 — vy,
fazendo com que t = —1(2 4+ 2uy — vy) + 209 — v3 + Lvs + 1, ou ainda t =
3 3 3 3Y5 )

% —v3 + %04 + %U{,. Se vy entrar na base no lugar de vy obteremos o vértice
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v?2 = (000 20)" associado a varidvel Ay e t = 3 + 3 x 2 = 1. Se v; entrar
na base fara também com que ¢ aumente de valor, mas vs nao é limitado
superiormente, logo se v5 — oo implica t — 00. Determinemos o raio extremo
de X associado a variavel ps.

Ul 2 0U5
(%) 0 O’U5
U3 = 0 + OU5 s
(2 0 OU5
Us 0 1U5
logo 72 = (000 0 1)”. Calculemos agora
iy —rh ] 5 )
Zuy = Cuy = Zuy = (1 —3 1) dri+ry—ry | = 3" + 3727 + 375
0
Nestecasoi =2eri =rj=r3=ri =0, r2 =1, = 2z, — ¢y = 3. A
coluna
0+0-0 0
0+0-1 | = -1
0 0

associada a varidvel ps entrard na base no problema (ART). Para saber qual
coluna deixara a base repetiremos o processo anterior:

7 5 1 -+ 0 5 z
m | =B"'8|=l0 3 0 8 =13 |.
93 1 0 01 1 1
0 1 -2 0 0 3
-1
B -1 |=]0 50 -1 | =] —3
0 0 01 0 0

Determinaremos a coluna que saira da base utilizando o seguinte esquema:

1 125
g1 % %
g | —g
g3 1] 0

Assim sendo a coluna associada a variavel artificial g; saird da base e
teremos a nova base:

0 30
B=]1-190
0 01
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Para calcularmos B~! sabemos que

1 —3 0 0 3
0 5 0 -1 |=| -4
0 0 1 0 0
Seja
100 300
R 1|1
E= Y10 ept=|110],
001 00 1
logo
030\ " 300 1—%0 3 -1 0
Bl'=|-190 =13 10 0 5 0]=|3% 00];
00 1 00 1 0 01 0 0 1

3
cg=(001), u=(001)| 3
0

por outro lado

v{‘{—vg'—v?‘
2j—c;=2=001)| 4] +0v) -0l | =1, t=1
1

em (PA) para qualquer vértice de X.
Tomemos v? = (0 0 0 2 0)7 associado & varidvel Ay, cuja coluna associada

em (ART) seré:
0+0-0 0
0+0-0[|=101].
1 1

Esta coluna entrard na base em (ART). Teremos, mais uma vez, que
saber qual coluna saird da base.

iz 5 3 10 5 7
() (-1 38)6)-(0)
73 1 0 01 1 1
0 3 -1 0 0 0
Bl<0 (; 00 0l=1]0

1 0 01 1 1
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Utilizando o mesmo esquema para saber qual coluna saira da base:

1] A
pe | 710
|30
gs | 1|17

A coluna associada a variavel artificial g3 deixard a base. Neste caso
particular a matriz bésica é a mesma que a anterior, no entanto, sua terceira
coluna esta associada agora a variavel \s. A solucao bdsica que minimiza
(ART) nao possui varidveis artificiais na base, logo é uma solugao bésica
primal vidvel para (P). Isto é,

iz 5 3 -10) /(5 7
o |=B"|8 =4 0o0]|8]|=]|2%2].
Ao 1 0 01/)\1 1

que é uma solucao bésica primal vidvel de (P).
Passamos entao a segunda fase do método do simplex. Temos agora que
cg = (cr? crt cv?), onde c=(12126) e

cr?=(12126) =6, cr' =(12126)

—_—o o oo
cC oo
Il
~

Assim cp = (6 4 4), logo

u=(644)

O wl—= W

cv2(12126)[
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Verifiquemos a dual viabilidade da base atual com rela¢do ao problema (P).

v+ vp — 3

RN . — (38 _ J J J — e
Zj — C¢j = Uaj — C; —(3 64) dvi + vy — vy cv
1
17 4
= —1T] + 3] — Sof — 20] + 4.

definiremos novamente o problema auxiliar (PA) :

17 34 61

(PA): maximizar t = 3 + V2T g U 204 +4 (7.23)
sujeito a:
v1 — 209 + vy = 2 (7.24)
v, >0, k=1,2,3,4,5. (7.25)
Expressando novamente v; = 2+ 2vy — vy, teremos t = —% — %1’03 + 1?)1"04.

Faremos v, entrar na base no lugar de v;. Sabemos que vy = 2 — v + 2v; €

t=0— Qvl + —vg — 631 V3 € como v nao € limitado superiormente, se vy — 00

entao t — oo. Determlnemos o raio extremo associado:

(%1 0 01)2
V2 0 11)2
vs | =101+ Ovy |,
V4 2 21)2
Vs 0 Ovg

logo 3 =(01020)7T. A coluna (r¥+7r3 —7r3 4r? +r3 —r2 0)7 associada a
varidvel u3 entrard na nova base de (P). Determinemos esta coluna:

rt4rh —rh 0+1-0 1

dri+ri—rl | = 4x0+1-0 | =] 1
0 0 0
1 3 -1 0 1 2

B'l1 =3 00 1 |=13
0 0 01 0 0

Repetindo a mesma esquematizacao para saber a coluna que saird da base
temos:

L ps
Mo | T |27
H1 § % '
X |1]0
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Sai a coluna associada a variavel ps. Calculemo a inversa da nova base

130 2.0 0 100
B=[190]|,E=|310],logoE'=|—-¢ 10 [;
001 00 1 001
130\ Loo)/3 -10 3 1
B'=[190 =| -5 10 s 00 |=| - & 0][;
001 001 0 01 0 01
B () (2 e (o) o[

Ao 1 0 01 1 1

0
1
Sabemos que cr® = (12126) | 0 [ =6, cg = (cr® er! cv?) = (6 4 4).
2
0

Determinemos u :

. 3 0 %5 7 25 7 N[
u=(644)| -5 & 0 —(3 —34), 5:(3 —34> 8 | =27
0 01 1
Escreveremos novamente
ol + v — v} S
zj—c¢j = (% —%4) 4] +v) — vl | — (v] + 20] + v + 20 + 6uvl)
1
= —21}{ + 41}% — %vg — 21}1 — %vg + 4.
O problema auxiliar ficara:
.. 28 11
(PA) : maximizar t = —2v; + 4vg — e 2uy — 5 U +4 (7.26)
sujeito a:
V1 — 2U2 + vy = 2 (727)
v, >0, k=1,2,3,4,5. (7.28)
Fazendo, mais uma vez, v; = 2 + 2vy — vy temos t =0 — %’Ug — %U{,.

Assim sendo, o vértice v! = (2 0 0 0 0)7 é 6timo de (PA), fornecendo
t = 0. Logo a tltima base B é 6tima de (P). A solucao 6tima do problema
mestre sera:

7
Hs = 5 associada a r* = (01 0 2 0)7,
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X2

(0,0)

Figura 7.1: Solugao do problema mestre (7.7)-(7.11) por geragao de colunas

1
=3 associada a 7' = (2100 0)7,

Ao = 1, associada a v? = (0002 0)7,

fornecendo z = 27. Retornemos ao problema nas variaveis z;, j = 1,2, 3,4, 5.

To 7 1 1 0 4
T3 = - 0 + = 0 + 0 = 0 s
ol 22 0 2 9
Ts 0 0 0 0

ousejary =1, xo=4, xt3=0, v4 =9, x5 =0, fornecendo z = 27.

Caso projetemos as restrigoes do problema original no plano x; X x5 poder-
emos ilustrar a evolucao da solucao do problema mestre neste plano, como
se pode observar na figura 7.1. ]
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7.2 Problema Auxiliar Limitado

Se o conjunto X = {x € R" | Agx = by, x > 0} # ¢ for limitado R(X) = (),
s6 teremos no problema mestre colunas do tipo

(47)

Neste caso, o problema auxiliar (PA) terd sempre um vértice por solugao
6tima, e conseqiientemente o valor da funcao objetivo de (PA), no étimo,
serd igual a (u; A; — ¢)v/ + ug, onde v/ € V(X). Suponha ainda que (u;A; —
c)vd +ug > 0, e que \; entrard na nova base B do problema mestre fazendo
com que

z =2 — [(u1 Ay — c)v) + up));, onde 0 < \; < 1.
Lembremos que z é o valor da funcao objetivo do problema mestre antes da
entrada de \; na base. Logo

2>z — [(ur Ay — e)v? + ug).

Entao z —[(u3 A; — ¢)v? —up] é uma cota inferior para a solugao 6tima de (P).
A partir de uma solugao basica vidvel do problema mestre associada a matriz
B, a cada iteracao do simplex (a cada nova coluna gerada) encontraremos
uma cota inferior para o minimo de (P). Nao se pode garantir que a cota
inferior calculada na iteracao j serda menor do que a calculada na ieracao
j+ 1. Isto é, nao se pode garantir um comportamento mondtono para a cota
inferior em fungao do nimero de iteragoes.

Na figura 7.2 ilustramos um possivel comportamento dessas cotas inferi-
ores, onde z; ¢ o valor de z na etapa j e t; o valor da funcao objetivo de
(PA) na etapa j associada a geracao de uma nova coluna para a etapa j + 1.
Assumimos que z* é o valor 6timo de z em (P).

7.3 Exercicios

1. Resolver o seguinte problema de programacao linear por geracao de

colunas:
minimizar z = —3x1 — dTs
sujeito a:
I S 4
To S 6
3.1'1 + 233'2 S 18
T Z 0
i) Z Oa
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fvalor de z
Z1
z2
~%3
\Z4
25
\\Z* -
= ts 1teragoes
Z4 — ty
Zo — tg
z3 — t3
Z1 — tl

Figura 7.2: Um possivel comportamento de cotas inferiores para a solucao
6tima de (P), obtidas a partir da solu¢ao étima de (PA)

onde X = {(z; 22)7 | 0 <12y <4e0 < xy <6 }. Calcular as cotas
inferiores em cada geracao de coluna. Esquematizar no plano x; X x5 as
iteragoes realizadas de geracao de colunas para a obtencao da solugao
otima do problema mestre.

2. Resolver pelo método de geracao de colunas o problema, maximizar
2x1 + 4xo + 3, sujeito a: 2xy + 19 + 13 < 10, 1 + 29 — 23 < 4, 0 <
r1 <4, 0 <29 <6, 1 <23 <6, onde o problema auxiliar para a
geracao de colunas terd como restricoes 0 < z; <4, 0 <25 <6, 1 <
r3 < 6. Fornecer a cada iteracao uma cota superior para o 6timo da
funcao objetivo, utilizando a solucao do problema auxiliar. Tentar
esquematizar o método em um esboco no espago a trés dimensoes x; X
T X T3.
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Capitulo 8

Tratamento Implicito de
Variaveis Limitadas

Muitas vezes temos restricoes num problema de programacao linear do tipo
a; < x; < (3, onde j pertence a um subconjunto de {1, 2, ...,n}. Denominare-
mos estas restricoes de canalizadas. Neste capitulo trataremos de considerar
as restricoes canalizadas de maneira implicita.

8.1 Método Primal do Simplex para
Restricoes Canalizadas

Poderemos considerar um problema de programagao linear sob a seguinte
forma:

(PPL) : maximizar z = cx (8.1)

sujeito a:
Ar =b (8.2)
onde ¢ = (c1 ¢y ...cp), 2T = (21 By ..x,), b7 = (by by ..by,), A = (ay ay ...a,)
e ajT = (a1 agj ...Qp;), isto é, ¢! € R", z € R", b € R™, A € R™" e

m y
a; eR™, O(j<6j, 7=12 ..n.
Lembremos que x é o vetor cujas componentes sao as variaveis de decisao

do (PPL).

Quando x; nao for limitada superiormente consideraremos 3; = 400 e da
mesma maneira z; nao for limitada inferiormente tomaremos a; = —oo. A
varidvel z; serd dita livre quando 3 = 400 e a;; = —00; neste caso faremos

=t 27
Tj=T; —

i, xf >0ex; >0,ousejac; =a; =0e f =0 =+oo.
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Ao longo de todo este capitulo suporemos que se o; = —00 entao [3; sera
finito e se B; = +00 entao a; serd finito.

Suporemos que a caracteristica da matriz A seja igual a m. Como ja
foi realizado no capitulo 2, particionaremos a matriz A da seguinte maneira:
A = (B N), onde B é uma matriz quadrada mxm e inversivel. Analogamente
particionaremos os vetores ¥ e ¢ : 7 = (25 zk), ¢ = (¢ cn), Tp € cp
possuirao m componentes associadas a matriz B. Suporemos ainda que Ig
seja o conjunto dos indices das colunas de A pertencendo a matriz B e [y
seja o conjunto dos demais indices de A. Lembremos que Ig NIy = ¢ e
[BUIN = {1,2,...,”}.

Outros parametros serao utilizados: v = cgB~!, u!' € R™, g =
B_lb, Ip € R™, Zj = uaj (] € Ip U IN), zj € R, Yj = B_laj (] S
Ig U ]N), Y; € Rm, zZ = CBBflb =ub = cpZp.

Desta maneira o (PPL) podera ser escrito:

(PPL) : maximizar z =2z — »_ (zj — ¢;)z; (8.4)
Jjeln
sujeito a:
QTB(l) = jB(z) — Z Yij Xy, 1= 1, g eeey N0 (85)
JeIN
ape) < e < Beay, 1 =1,2,...,m; (8.6)
Q; < Z; < ij ] € Iy. (87)

Definiremos uma solugao bésica de (8.2) ou de (8.5) quando fizermos
xj; = o ou x; = f3j, para j € Iy; claro que a; ou B tem que ser finito pelas
hipéteses feitas acima.

Particionaremos também Iy = [, U Ig, onde I, = {j € Iy | z; = a;} e
Is={j € Iy | x; = §;}. Podemos assim escrever:

iB — xB(z Z Yo — Z yljﬁ]7 1= 1a 27 ey M. (88)

]Efa jEI@

Quando apu) < T < Bpa), @ = 1,2,...,m, diremos que estamos diante
de uma solugao bésica primal viavel.

E interessante notarmos que a mesma base B pode fornecer mais de uma
solugao béasica viavel dependendo da particao de Iy.

A leitora ou o leitor podera verificar que esta solucao basica primal viavel
corresponde a um vértice do poliedro formado pelas restrigoes (8.2) e (8.3).

O valor de z correspondendo a esta solucao basica sera:

=2-) (5 —c)a— D (35— )b (8.9)

j€ly jEIﬁ

108



Observando a expressao (8.9) é facil deduzir as seguintes condigoes de
otimalidade para o caso de maximizacao:

zj—c¢; >0, Vjel,ez—c; <0, Vjels. (8.10)

O algoritmo do simplex neste caso partird de uma solucao basica primal
viavel. Verificamos se esta solucao basica satisfaz as condigoes de otimalidade
(8.10). Se a resposta for afirmativa esta solugao basica serd étima do (PPL).
Caso contrario partiremos a busca de uma nova solugao basica primal vidvel
que possa aumentar o valor de z.

19 caso: k € I, e z — ¢, < 0, o valor de z,, = «y poderd passar a xp =
ar+ A (A > 0), podendo aumentar o valor de z. Como a nova solugao bésica
devera ser viavel, isto é,

ar+ A< By (8.11)

ap@) < T — Z YijQj — Z YiiBi — YirA < Bpay, 0 =1,2,...,m. (8.12)

j€la J€ls
Podemos expressar (8.12) da seguinte maneira:
ap@) < Te) — Yier < Beay, 1= 1,2,...,m. (8.13)
Consideraremos
L ={ilya >0}, Ly ={i |y <0}e Ly = {i | ya = 0}.

Nas retrigoes de (8.13) para as quais ¢ € LY nada serd modificado com a
variagao do valor de A, isto é, os valores de zpg(;), @ € LY ficarao inalterados.
Teremos entao, a partir de (8.11) e (8.12), que

N< Br — ap, AS”?B@;OCB@, ie Lt Agmwy—ﬁfsm, ie Lt
ik ik
Sejam
Aoy = LEO ZOB0) _ {f@Ba) - aB(i)}
g Ypk €L} Yik
Aoy = B0 =0 {ifB(n — B } '
! Yqk i€L; Yik

Consideraremos agora:
0 = min{ ﬁk — O, )\B(p) s )‘B(q) } (814)

Antes de continuarmos faremos as seguintes observagoes:
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(i) quando para Vi € L, o; = —o0 ou quando L; = ¢ faremos Ap(,) =
4005

(i) quando para Vi € L, 3; = oo ou L;; = ¢ faremos Ap(q) = +00.

Se B = 400, e tivermos as condigoes (i) e (ii) acima, entdao 6§ = +oo.
Isto é, A nao serd limitado superiormente, logo neste caso quando A\ — +o0
implica z — 400, determinando que o (PPL) é ilimitado.

Supomos agora que 6 seja finito e consideraremos a possibilidades seguin-
tes:

1. 0 = Br — ai, a base B sera mesma na proxima iteracao, no entanto, os
valores de & p(; poderao ser modificados, pois x = fi, Io := Io — {k}
e Ig:= I3 U{k}; Ip nao se modifica;

2. 0 = Mg, a coluna a;, entrard na base substituindo apyy e Tpp) =
ap(p), teremos ainda que Ip := (Ig—{B(p)}) U{k}, I, = (Io—{k})U
{B(p)}; Is nao se modifica;

3. 0 = Ap(g), a coluna a;, entrard na base substituindo ap) € ) = Bp(g),
teremos ainda que Ip := (I —{B(q)}) U{k}, I3 :=13U{B(q)}; I, =
I, —{k}.

29 caso: k € Ig e zp — ¢, > 0, logo x), = [y, poderd passar ao valor x = [ —
A (A > 0), podendo aumentar o valor de z. Seguiremos o mesmo procedimento
desenvolvido para o 1° caso. Assim sendo, devemos ter:

B — A = ay (8.15)

ap@) < Ty + YA < Beay, 1= 1,2,...,m. (8.16)

Consideraremos novamente L = {i | yix > 0}, Ly = {i | yix < 0} e
LY = {i | yi. = 0}. Nas retrigoes de (8.16) para as quais i € LY nada sera
modificado com a variacao do valor de A, isto ¢, os valores de xgyy, i € LY
ficarao inalterados.

Sabemos que A tera que satisfazer

i — T . api) — TBG) . -

A< B — o, ASM,ZELZ} )\SM,ZELk-
Yik Yik

Sejam

AB(p) = ———— = min
®) Ypk i€l Yik

BBw) — TB(p) : {ﬁBa) — 5 }
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Aoy — 2EO = TB@ {OéBu) ~ Zp@ } |
Yqk i€L; Yik
Passaremos a considerar

0 = mm{ 5k — Qg , )\B(p) y )\B(q) } (817)
Supondo em (8.17) que 6 seja finito:

1. 0 = B — ay, teremos I, := [,U{k} e Ig :== I3 —{k} e Ip serd o mesmo
na proxina iteragao;

2. 0 = Ap(p), a coluna a;, substituird ap(,), teremos ainda que I := (Ip —
{Bm)) ULk}, 1= (I — {k}) U{B()}; L, ndo se modifica;

3. 0 = Ap(), a coluna a; entrard na base substituindo apy) e Ip =

(Is ={B(@)}) U{k}, Lo = Lo U{B(q)}; Is:=Is = {k}.

Adaptando o mesmo raciocinio feito para o 1° caso, teremos no 2° caso,
quando A nao for limitado superiormente, isto é, em (8.17) § = 400, que o
(PPL) serd ilimitado.

8.2 Busca de uma Solucao Basica Viavel

Trataremos de encontrar uma solugao bésica de (8.2) satisfazendo (8.3). Para
isso acrescentaremos uma variavel artificial v;, ¢ = 1,2,...,m as linhas de
(8.2), isto é,

n
Zaijxj—i—vi :bi, 1= 1,2,...,m. (818)

j=1
Suporemos que Iy = {1,2,...,n} seja o conjunto das varidveis nao bésicas,
isto € , todas as variaveis x;, j = 1,2,...,n serao consideradas nao basicas
inicialmente. Tomemos I, e I3, como fizemos anteriormente, uma partigao de
Iy, faremos com que toda as varidvel z; tome valor «; (finito) ou 3; (finito).

Determinemos

S; = bz - Z A0 — Z ai]ﬂj, 1= 1,2, e, Mm.

J€lu jelg

Se s; > 0 faremos v; > 0 e tera seu coeficiente na funcao objetivo artificial
igual a +1. No caso em que s; < 0 faremos v; < 0 e seu coeficiente na fungao
objetivo artificial sera —1.
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Sejam I1 ={i|v; >0} ely={1i|v; <0 }, assim sendo nosso problema
auxiliar que constituird a primeira fase do método do simples sera

(PA): minimizar £ = Z v — Z v;
i€l 1€l

sujeito a

n
v; + Zaijxj = bi, 1= 1,2, M,

j=1
O(JSZE] SBJ? j:1,27,n,
0 < Vi, (NS Il7
Vi S 0, 1€ IQ.

Verificamos facilmente que v; = s;, 1 = 1,2,....m; o, = o, j € Iy e x; =
Bj, j € Iz é uma solucdo primal vidvel de (PA).

Caso o minimo de & em (PA) seja estritamente positivo o (PPL) serd
vazio.

Quando no 6timo de (PA) tivermos £ = 0 e todas as variaveis v;, i =
1,2,...,m forem nao bésicas, entao a solugao obtida eliminando todas as
varidveis v; serd uma solugao bésica primal vidvel de (PPL). Se houver v; = 0
na base, procederemos como foi apresentado no capitulo 5.

Exemplo 8.1
(PPL) : maximizar z = 3x1 + 529
sujeito a:
3.771 + 2513'2 2 18
201 4+  xy < 12
0 < 2 < 1 (8.19)
0 S 4 S 6a

Introduzindo as variaveis de folga x3 > 0 e x4 > 0, o sistema de restrigoes
passa a ser equivalente a:

3ZL'1 + 21‘2 — T3 = 18
2$1 + T + x4 = 12
0 < =z < 4
0 < 22 < 6
0 < 3
0 < @y,

daremos, por exemplo, os seguintes valores as variaveis z;, 7 = 1,2,3,4 :
=409 =13 =14 =0, ou seja [, = {2,3,4} e I5 = {1}.
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Calculemos
§1=18—3%x4-2x0+1%x0=62>0, 5=12—-2%x4—1x0—-1x0=4 >0,

ambos sao nao negativos.
O problema auxiliar (primeira fase) serd escrito como se segue

(PA) : minimizar £ = v + vy

sujeito a
U1 + 33171 + 2[[‘2 — T3 = 18
Vg + 21‘1 + i) + T4 = 12
0 < n
0 S (%)
O S T S 4
0 S i) S 6
0 S T3
0 S ZTy.

A base B = ( (1) (1) ) = B7'. I, e I j& foram definidos anteriormente.

Determinemos v = cg B~ = (1 1) ( L0 ) =(11).

Calculemos:

21—01:(11)<:23>— :3+2:56I1:ﬁ1:4,

satisfazendo a condigao de otimalidade (minimizagao);

2z — g = (1 1)(?)—0:24—1:3%@'2:0@:0,

nao satisfazendo a condi¢ao de otimalidade (minimizagao).

Se w9 tomar um valor estritamente positivo o valor de ¢ diminuirda na
prooxima iteracao.

Sabemos que

()=o) ()= (8)

5= ((1) (1)>’ yi = aj, J=1,2,3,4

e que, como
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Temos que:

v = 01 —3Xx4-2x04+1x0-22=18—-12-22>0 = X <3,
Vg = U9—2—1x0—-1x0-A=12-8—-A>0 = <4,
eﬂg—a2:6—O:6.

Logo 8 = min{6,4,3} = 3, assim sendo a coluna ( 2

1 ) , associada a

variavel xo, entrara na base substituindo L associada a variavel artificial

v1. Neste caso podemos eliminar vy e I, = {3,4}. Consideremos agora a nova

iteracao:
(20 1 0
p(1) = (0)
1

cB:(Ol),u:(01)<_

N[O | —

N[ =D | =
)
~—
I
—~
|
DO |

—_
S~—

1 3 3 1
Z1—01=(—§ 1)<2>—0=—2+2—0:2>0, r1 =0 =4,

satisfazendo a condigao de otimalidade;

1 — 1 1
23—03:(—21)< é>—022+0—022>0,x3:a320,

nao satisfazendo a condicao de otimalidade.

Se a variavel x3 assumir um valor estritamente positivo o valor de & de-
crescera. Passaremos a calcular

()= (L 0)05)-(5)
).

D[ =D |2

<
w
<
I =
vy I
oyl
]
w
I £
| N
N | I
NN |
i)
N—— )
P ~
| /N
O = N QO
SN— MO | = A 7
I I
VN —
|
NN |
N————



assim podemos escrever

0<z=34+3A<6 =<6,
0<wvy=1-3A =<2

—1 ) . ., ., 0
A coluna 0 associada a variavel zz substuird a coluna | ) asso-

ciada & variavel artificial v em B. Agora nao hd mais varidvel artificial na
base e poderemos comegar a segunda fase do simplex.
Verificamos que Ip = {2,3}, I, = {4} e I3 = {1} assim sendo,

-1
(2 -1 o 1 -2 5 0
(T ) == (0 ) (L
B 11)(%0
0 2 -3 1
_ 0 1
- -1 2 /)

Sabemos que

e = (50), u:cBB—1:(50)< B ;) —(05),
logo
3

zl—cl—ual—cl—(05)<2

)—3—10—3—7>07

nao satisfazendo a condigao de otimalidade (maximizagao).
Se x; tomar um valor estritamente menor do que 4 = 4, o valor de z
aumentara. Assim sendo, passaremos a calcular

(2)=r= () ()
nese=( 03 )(2)=
e[ )(0)=(2)

Ty=12-2x4—-1x0=4, 23=6—1x4—-2x0=2

I
VR
—_
DN
~__—

assim teremos que

115



0<ap=4+20<6 = A<,
0<z3=241A = A > -2 (mas A > 0),
0<r=4-2<4 = <4

Dessa maneira a; entrard na base no lugar de ay. teremos entao Igp =

{1,3}, I, ={4} e I3 = {2}.

Consideremos
3 —1
B _<2 0>:>
24
2 0 01
1 _ _
= (V) ()

Como cg = (3 0), teremos que u = (3 0)

3 0 3
Z4—C4—<02><1>—0—2>0,

como 4 € [, satisfazendo a condigao de otimalidade.

3 2 7
22—C2:<02)<1>—5:—2<0,

como 2 € Ig, satisfazendo a condi¢ao de otimalidade.
Finalmente teremos que 21 = 3, x3 = 3, 2 = 6 ¢ x4 = 0 é uma solucgao

bésica étima do (PPL), fornecendo z = (0 %) ( 1223 ) - (—%) X6 =18+21 =
39.

Na figura 8.1 ilustraremos os passos do método do simplex executados no
exemplo. [

N DO |00 [ =
|
—_ o i)
~—
DO | LoD | J—
|
Il )
—
S N —
po 1w ~ _
N—
Il
VR
|
— O
N[O [ =
~_—

Calculemos agora

8.3 Método Dual do Simplex para Restrigcoes
Canalizadas

Nesta se¢ao apresentaremos o método dual do simplex adaptado para tratar
implicitamente as restrigoes canalizadas.

Apresentaremos novamente o problema de programagao linear (8.1), (8.2)
e (8.3) sob a seguinte forma:

116



i) I
(2,6) (3,6)
 (4,4)
 (4,3)
(0,0) 4,0) a1

Figura 8.1: Passos do método do simplex executados no exemplo 8.19

(PPL) : maximizar z = cx (8.20)
sujeito a:
zn: ajr; =b (8.21)
=1
2 < B j=1,2,..n; (8.22)
—z; < —aj, j=1,2,...,n (8.23)

Suporemos, sem perda de generalidade, que a; e 35, 7 = 1,2,...,n sejam
finitos. Associamos o vetor u = (uj ug ... Uy,) as restrigoes de (8.21), as
varidaveis w; > 0, j = 1,2,...,n as restri¢oes de (8.22) e, finalmente, t; >
0, 7=1,2,...,n as restri¢oes de (8.23).

O dual do (PPL) seré escrito:

(DPL) : minimizar d = ub+ > Bjw; — > ajt; (8.24)
j=1 j=1
sujeito a:
uaj—i—wj—tj:cj, j:1,2,...,n, (825)
w; >0, t,>0, j=1,2,...,n. (8.26)
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Lembrando que ua; = z;. Assim sendo as restrigoes (8.25) poderdo ser
representadas por

Zj — Cj = tj — wy, j = 1,2, D (827)

Como foi comentado no capitulo 4, as relacoes de complementaridade sao
sempre verificadas durante a aplicagao do método do simplex, seja primal ou
seja dual. Vamos supor que B esteja associada a seguinte solucao basica de
(8.21),isto é,

aA:B(Z) = :Z.B('L) - Z YijQj — Z yijﬁj? 1=1,2,...,m,
J€ln je€lg

sem que as restricoes apy) < Tpu) < Bpu), ¢ = 1,2,...,m, sejam todas
verificadas.

Supondo que a; < §;, j = 1,2,...,n e lembrando que u(Azx —b) = 0,
pois a solucdo = que estamos considerando é basica, logo satisfaz Ax = b.
Verificaremos a seguir os valores de w; e t;. Para que as relagoes de comple-
mentaridade w;(z; — 3;) = 0 e t;(x; — ;) =0, j = 1,2,...,n possam ser
verificadas:

jGIa,.Z'j:CYj =>.lej<5j :>wj:0 iZj—Cj:thO; (828)

jEIﬂ,l’j:ﬁj = T; > Q4 :>t]:O iZj—Cj:—ijO. (829)

Quando j & I, U Ig, isto é, j € Ip, teremos z; — ¢; = 0 que implica
por (8.27), t; = wj; mas por hipdtese o; < (; que fornece ou t; = 0 ou
w; = 0, para que tenhamos as relacoes de complementaridade, neste caso,
tj == ’lUj =0.

Dado o exposto dizemos que uma solu¢ao bésica de (8.21) associada a
matriz quadrada inversivel B, é dual vidvel de (PPL) se z; —¢; > 0, Vj € I,
er—CjSO, VJGIB

A idéia é de partir de uma solugao béasica dual vidvel do (PPL), passar a
outra, também dual viavel, até encontrar uma solucao primal e dual vidvel.

Para iniciar a exposicao do método dual do simplex no contexto deste
capitulo suporemos conhecida uma solugao bésica do (PPL) dual vidvel e
que exista k € {1,2,...,m} tal que Zx) < apw). Isto é a solucao considerada
nao é primal viavel.

O valor de zg) deve ser aumentado para que atinja, pelo menos, ap),
assim temos que ao menos um yi; < 0, j € I, ou y; > 0, j € Ig.
Suponhamos que a coluna a,, onde p € I, U Ig, seja escolhida para en-
trar na base substituindo apg). O pivo serd yy, e como jé foi visto em (4.29),
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Yo, = Yoj— %ykj. Para que a nova solucao basica continue dual vidvel teremos
que ter:
Yoj >0, j € Laeyy <0, j€ s (8.30)

Consideremos L, = {j € I, | yx; < 0} e Lg = {j € Iz | yr; > 0}
Deveremos verificar que
o %2%, j € La, pois yj; > 0, j € I, e

Yop ~ Yoj

. Uri'
Yep — Ykj

j € Lg, pois yp; <0, j € I,
A coluna a, a entrar na base estara associada ao p da expressao abaixo:

Yop _ {wﬁ

= max .
Ykp JE€ELAULg Ykj

Apés o pivoteamento teremos que xpr) = apr) ou seja B(k) € I,.

Observemos que se L, = Lz = ¢ o (PPL) nao possuird solugdo primal
viavel.

A titulo de ilustragao tomemos o exemplo 8.1, cuja solugao bésica étima
¢ definida por Ip = {1,3}, I, = {4} e I3 = {2}. Consideremos 7 < z; < 4
no lugar de 0 < z; < 4. A solucao 6tima obtida no exemplo 8.1 nao sera mais
primal viavel, pois agora temos que x; > %, mas continuara dual viavel.

A coluna a; deixara a base, para sabermos qual coluna entrara na base,
teremos que calcular y,;, j € I, U Ig = {4,2}.

Lembremos que

B:(a1a3)2<3 _é>,B_1:<_(1)

N Qo [

Logo

—01 2 —1>0 —01 0 —1>0
y12—<2> 1 —2_7914—<2> 1 —§_~

Verificamos que L, = ¢ e Lg = {2}. Caso em que s6 hd um elemento a ser
considerado, assim sendo a, entrara na base substituindo ay.
Agora teremos que

B:(a2&3)2<? _[1)>,B_1:<_(1) ;)
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Poderemos escrever

()= (2 ()= () () (2 ()

ou ainda
To = 12 — 21’1 — T4,

[E3:6—£L‘1—2[E4.

Sabemos que x; = % e x4 = 0, fornecendo zo = 5,23 = g, solugao primal
e dual viavel, logo étima. Solicitamos a leitora ou ao leitor que ilustre o
procedimento deste ultimo exemplo sobre a figura 25.

De maneira analoga, vamos supor agora a existéncia de uma solugao
bésica do (PPL) dual vidvel e que exista k € {1,2,...,m} tal que Zpr) >
Bp(k)- Isto é a solugao considerada nao ¢ primal vidvel.

O valor de xp(;) deve ser diminuido para que atinja, pelo menos, Bp),
assim temos que ao menos um yi; > 0, j € I, ou yp; <0, 5 € Ig.

Suponhamos que a coluna a,, onde p € I, U Ig, seja escolhida para entrar
na base substituindo apgy. O pivo serd y, e como ja foi visto em (4.29),
Yo; = Yoj— %ykj. Para que a nova solugao basica continue dual viavel teremos
que ter:

yéj >0,5€l,e yéj <0, j¢€ s (8.31)

Consideremos L, = {j € I, | yx; > 0} e Lg = {j € Iz | yr; < 0}

Deveremos verificar que

° y&<%,jeLa,poisy{)jZO,jE]a,e

Yep —

. yﬂgﬁvjeLﬂ?pOisyéjg(Ljelﬁ'

Ykp

A coluna a, a entrar na base estard associada ao p da expressao abaixo:

Yo, . Yo;
2P — min { L.
ykp JELQULB yk]

Apés o pivoteamento teremos que xpxy = Bpk) ou seja B(k) € Ig.
Observemos que se L, = Lz = ¢ o (PPL) nao possuird solugao primal
viavel.

8.4 Exercicios

1. Utilizando o método dual apresentado neste capitulo, como seriam de-
terminadas as variaveis duais Otimas associadas as restrigoes canal-
izadas?
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2. Sendo dado o seguinte problema de programacao linear com varidveis
canalizadas:

maximizar g = Z;‘:l ¢4, sujeito a: Z}‘:l a;x; <b, 0 < x; <dj, onde
¢; >0,a; >0,d; >0, j=1,2,...,n, 0> 0.

Demonstrar que se % > %, j=1,2,...n—1ektal que Z?f;ll ajd; <

b < Zé?zl a;d; entao uma solucao 6tima do problema seré:

CCJ':dj, j:1,2,,k—1,
2; =0, j=k+1k+2 .. n
_ =301 ayd;

T ax
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Capitulo 9

Métodos de Pontos Interiores

9.1 Introducao

O método do Simplex visto nos capitulos anteriores tem se mostrado bastante
eficaz na resolucao de problemas de programacao linear aplicados. Em 1972,
no entanto, Klee e Minty [KIMi 72] apresentaram um problema teérico com
n restricoes e 2n variaveis para o qual o método executa 2™ — 1 iteracoes até
encontrar a solucao 6tima.

Ficou entao aberta a questao quanto a existéncia de um método eficiente
para resolver o problema de programacao linear. Um método ¢é dito eficiente
se ele tem complexidade polinomial, ou seja, se o nimero de instrugoes por
ele requerido para solucionar um problema é limitado por um polinomio no
tamanho do problema.

Em 1979, Khachian [Kha 79] respondeu a esta questao com a publicagao
do primeiro algoritmo polinomial para resolver o problema de programacao
linear, o método de elipséides. Apesar de sua grande importancia tedrica, no
entanto, o método de elipsdides se mostrou ineficaz na pratica.

Em 1984, Karmarkar [Kar 84] revolucionou a drea da programacao linear
com a publicacao de um algoritmo com complexidade polinomial e bom de-
sempenho quando aplicado a problemas praticos. Esta publicacao deu origem
a um novo campo de pesquisa chamado de métodos de pontos interiores. Ao
contrario do método do Simplex, que utilizando a estrutura combinatoria do
problema, caminha pelos vértices de sua regiao viavel, os métodos de pontos
interiores caminham pelo interior da regiao viavel.

Comparando-se os métodos de pontos interiores com o método do Sim-
plex, os primeiros claramente serao os melhores, se critérios tedricos forem
considerados, como por exemplo a complexidade de pior caso. No entanto,
na pratica os métodos competem até hoje. Uma andlise comparativa entre os

122



melhores métodos de pontos interiores, sob o ponto de vista computacional,
e o método do Simplex foi realizada por Illés e Terlaky em [I1Te 2002], onde
concluem que, de uma forma geral, nao ha método vencedor. Na pratica, a
chave para o sucesso dos métodos é a utilizacao da estrutura dos problemas,
da esparsidade e da arquitetura dos computadores.

Os métodos de pontos interiores serao tema deste capitulo. Devido a sua
grande importancia historica, iniciaremos o capitulo descrevendo o método
de elipsoides. Em seguida apresentaremos o algoritmo afim-escala. Este algo-
ritmo foi descrito pela primeira vez por Dikin em 1967 [Di 67], mas apenas re-
centemente foi reconhecido, apds reaparecer como uma simplificacao do algo-
ritmo de Karmarkar. Resultados quanto a convergéncia global deste método
ja foram demonstrados por diversos pesquisadores, incluindo o proprio Dikin
[Di 74], que publicou em 1974 a primeira anélise de convergéncia. No en-
tanto, até hoje nao se conseguiu demonstrar a polinomialidade do método.
Conjectura-se inclusive que ele nao é polinomial por ter um comportamento
bastante parecido com o método do Simplex quando aplicado a alguns pro-
blemas. Entretanto, a direcao percorrida pelo algoritmo afim-escala em cada
iteracao, é uma importante ferramenta que serd utilizada em praticamente
todos os algoritmos de pontos interiores. O seu entendimento portanto, aju-
dara bastante no aprendizado destes algoritmos.

Em seguida apresentaremos a trajetéria central e os algoritmos de pon-
tos interiores primais-duais de trajetoria central, de redugao potencial e os
algoritmos inviaveis.

Consideraremos neste capitulo o seguinte problema de programacao line-
ar:

(P) : maximizar ¢’z
sujeito a: Ax
T

b
0,

ondecex € R", be IR" e A € [R™™ é uma matriz com posto completo.
O conjunto de solugdes vidveis de (P) e o conjunto de pontos interiores
associado sao dados por:

X ={zr e R"|Ax = b,z > 0}

Vv

X° ={z € X|z > 0}.
O problema dual de (P) é

(D) : minimizar bTu
sujeito a: ATu—s = ¢
s > 0,
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onde s € R"eu e IR™.
O conjunto de solugoes vidveis de (D) e o conjunto de pontos interiores
associado sao dados por:

S ={s € R"|ATu — s = c para algum u € IR™,s > 0}

S"={seS|s >0}
Notacao

Durante todo o capitulo, quando dado um vetor x = (1, xa, . . . ,xN)T €
IRY, denotaremos por X a matriz diagonal em IRV*¥ cujos elementos da
diagonal sao as componentes do vetor x, ou seja,

T
X =
TN

Denotaremos por e, o vetor cujos elementos sao todos iguais a um e cuja
dimensao ¢ indicada pelo contexto, ou seja,

1
e=1: |-
1
e denotaremos por || - || a norma Euclideana.

9.2 O Método de Elipséides

A questao quanto a existéncia de um método eficiente para resolver o pro-
blema de programacao linear ficou respondida com a publicacao do método
de elipséides pelo soviético Khachian em 1979. O método de elipsdides nao
fornece um algoritmo pratico para resolver o PPL, ji que sua convergéncia
¢ lenta quando aplicado a grande parte das instancias do problema e com-
parado ao método do Simplex. No entanto, sua contribuicao para a area
da programacao matematica é grande, uma vez que ele mostra que o pro-
blema de programagao linear pode ser resolvido de forma eficiente sob uma
abordagem tedrica. Este resultado motiva a busca de outros algoritmos para
resolver o problema que sejam tanto teoricamente eficientes, como também
eficazes na pratica. De fato, depois da publicacao do método de elipséides,
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uma nova classe de algorimos para o PPL surgiu. Esta classe recebeu o nome
de métodos de pontos interiores e sera o tema das segoes seguintes.

Nesta secao daremos uma nogao geométrica de como o método de elipsoi-
des funciona. Uma apresentacao mais formal do algoritmo e as demonstracoes
dos resultados de convergéncia, podem ser encontrados em [BeT's 97].

O método serd inicialmente apresentado para resolver o problema de de-
cidir se o poliedro definido por

P ={x € R"|Az > b}

¢ vazio ou nao. Em seguida descreveremos como ele pode ser utilizado para
resolver o PPL.

Primeiramente definimos um elipséide com centro y € IR™ como o seguinte
conjunto F de vetores de IR™:

E=E(y.D)=f{a € R'|(x —y)" D a —y) < 1},

onde D é uma matriz n X n simétrica e semidefinida positiva.

A cada iteracao k do método de elipsdides é gerado um elipséide Ej com
centro em um dado ponto zj, que contém o poliedro P, como exemplificado
na figura 9.1.

Figura 9.1: Método de Elipsdides: Construcao do elipséide Ej, com centro
Zk, que contém o poliedro P.

Se x € P entao P nao é vazio e o algoritmo para. Se x, ¢ P, entao
existe i tal que (a’)Tzp < b;, onde a’ é a i-ésima linha da matriz A e b; é o
1-ésimo componente do vetor b.

Notemos que se z € P entdo (a‘)Tx > b;, consequentemente o poliedro
P pertence ao semi-espago {z € IR"|(a’)"z > (a’)Txx}. Sendo assim, se
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x ¢ P, sabemos que P pertence a interse¢ao do elipséide Ej com um semi-
espago que passa pelo centro do elipsdide. Esta regiao esta representada na
figura 9.2.

Figura 9.2: Método de Elipsoides: A area pontilhada corresponde a in-
tersecao do elipséide Ejy com o semi-espaco {x € IR"|(a’) 'z > (a")Tx}}.

Utilizando entao o resultado do teorema 9.1, enunciado a seguir, con-
struimos um elipsdide Ej,; que contém esta intersecao e tem volume menor
que o volume de Fj. Este processo é entao repetido até que se obtenha um
ponto, centro de um elipsdide, que pertenca a P, ou até que se conclua que
P é vazio, quando o volume do elipséide gerado é menor do que um dado
numero v. A figura 9.3 mostra a ultima iteracao do algoritmo.

O seguinte teorema comprova que é possivel construir analiticamente o
elipsdide Ej 1 com volume menor do que o volume de E}. Sua demonstragao
pode ser encontrada em [BeT's 97].

Teorema 9.1 Seja E = E(y, D) um elipsdide em IR", a € IR™ um vetor nao
nulo e H = {x € R"|a"z > aTy} um semi-espaco em IR™. Seja:

— 1 Da

y = y+ n+1+aT Da €

N n? 2 Dad’D
D = n2—1 D n+1 al Da
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Figura 9.3: Método de Elipséides: O ponto .1, centro do elipséide Ej.q,
pertence ao poliedro P.

Os sequintes resultados sao verdadeiros:

1. A matriz D é simétrica e positiva definida. Consequentemente, E =

E(y, D) € um elipsdide.
2. ENHCE.

3. Vol(E)< e~¥/C0+0) Vol(E),
onde Vol(S) denota o volume do do conjunto S € IR".

Da maneira como foi apresentado o método de elipséides, para que ele
seja aplicado com sucesso, é preciso que o poliedro P seja limitado e tenha
volume positivo quando nao for vazio. Assume-se que é conhecido a priori
um elipsdide de volume V' que contém P e um numero v tal que, se P nao for
vazio, entao Vol(P)> v. Estas hipdteses, no entanto, podem ser relaxadas
uma vez que é sempre possivel construir um outro poliedro P’ que satisfaz a
estas hipdteses e serd vazio se e somente se P também o for (ver [BeTs 97]).

Finalmente, observamos que o método de elipsdides para decidir se um
dado poliedro é vazio, pode ser aplicado para resolver o problema de pro-
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gramacao linear. Basta considerarmos o problema (P) e seu dual (D):

(P): maximizar c'x (D) : minimizar bl
sujeitoa: Axr = b sujeito a: ATu—s = ¢
z > 0, s > 0,

e lembrarmos que, pela teoria de dualidade (P) tem solucao 6tima se e sé
se (D) também tem. Os vetores x e (u, s) sado soluges Gtimas de (P) e (D)
respectivamente, se o seguinte sistema de inequacoes lineares é satisfeito:

Tr = bvlu
Ar = b
z > 0
ATu—s = ¢
s > 0

Aplicando o método de elipsdides para decidir se este sistema de inequagcoes
tem solugao, estaremos portanto, resolvendo o problema de programacao
linear.

9.3 O Método Afim-Escala

Nesta secao apresentaremos o algoritmo afim-escala, descrito primeiramente
pelo matemadtico soviético I. I. Dikin em 1967 [Di 67]. Este algoritmo nao é
mais utilizado em implementagoes praticas. A sua importancia estd no fato
de que a direcao de busca nele utilizada é também utilizada na maioria dos
algoritmos de pontos interiores, como veremos mais tarde.

A Direcao Afim-Escala

No algoritmo afim-escala nos ¢ dado um ponto 2° € X°, e 0 nosso objetivo
final ¢ caminhar do ponto z° para a solucao étima do problema. A curto
prazo, no entanto, nosso objetivo é caminhar numa direcao Az que melhore
ao maximo o valor da funcao objetivo. A direcao de maximo aclive de uma
dada funcao, descoberta por Cauchy na primeira metade do século passado,
¢ dada pelo gradiente da funcao. Por definicao, a direcao de maximo aclive
de uma dada funcao linear ¢'h, onde ¢ # 0, é a solucdo do problema de
maximizacao da fungao, em uma bola de raio unitario, ou seja ¢é a solucao de

maximizar ¢ h

sujeito a ||h|| < 1. (9-1)
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A solugao de (9.1) pode ser obtida da desigualdade de Cauchy-Schwarz,
"] < lelllII,

onde a igualdade é verificada quando ¢ e h sao colineares e tem o mesmo
sentido. Concluimos assim, que a solugao de (9.1) é dada por

—— (9.2)
el
Comprovamos portanto, que a direcao de maximo aclive é realmente dada
pelo gradiente da funcao linear ¢’ h.

A direcdo (9.2) é certamente uma diregdo de acréscimo para a funcao
objetivo de (P). No entanto, ndo necessariamente, ela é uma dire¢ao vidvel
para o problema. Ao caminharmos em (9.2), o novo ponto obtido provavel-
mente nao satisfaz a restricao Axr = b. Para garantirmos a viabilidade da
nova solucao, devemos caminhar numa direcao d que satisfaga

Ad = 0, (9.3)

e conseqiientemente teremos A(z° + d) = b.

Antes de apresentarmos esta direcao, no entanto, devemos recordar alguns
conceitos de dlgebra linear. Lembramos que dada uma transformacao linear
A € IR™ ", associa-se a A dois espagos:

o espaco nulo de A,
N(A) = {z € R"|Azx = 0},

e 0 espaco imagem de A,

IZ(A)={ye R"|ly = Az,x € R"}.

Existe uma relagao interessante entre N'(A) e o espago imagem de AT, Z(AT).
Esses dois espagos sao sub-espagos ortogonais de IR"™ e geram todo o espaco.
De fato, é sabido que IR™ é a soma direta desses dois sub-espagos, ou seja,
dado qualquer vetor v € IR™, ele pode ser escrito como

v = vy + v, (9.4)

onde vy € N(A) e vr € Z(AT). O vetor vy é a projegao de v sobre N'(A) e
vz é o complemento ortogonal de v em relagao a N (A).

Voltemos agora a andlise da direcao em que devemos caminhar a partir
do ponto zY; de forma a aumentar o valor da funcao objetivo de (P), sem
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sair da regiao viavel do problema. Notemos que a imposigao (9.3) implica na
pertinéncia de d ao espaco nulo de A. A diregao que passaremos a considerar
agora entao, é a projecao da dire¢ao de maximo aclive (9.2) em N(A).
Para calcularmos esta projecao, consideraremos inicialmente ¢ escrito
como em (9.4), ou seja
c=cy+cr (9.5)
onde ¢y € N(A) e cr € Z(AT).
Sabemos que
ez = AT, (9.6)
para algum A\ € IR™.
Substituindo-se (9.6) em (9.5) e multiplicando-se a expressao resultante,
a esquerda, por A, temos

Ac = Acy + AAT .
Como Acy = 0 e AAT é nao singular,
A= (AAT) " Ac. (9.7)
Utilizando agora a expressao para A acima, podemos reescrever (9.5), como
ey =c—cr=c— AT(AAT) " Ac = (I — AT(AAT) ' A)c = Py,

onde Py = [I — AT(AAT)71A] ¢ a matriz de projecao sobre o espago nulo de
A.

Verificamos facilmente que a diregao cyr é uma direcao de acréscimo da
funcao objetivo ja que o produto escalar do gradiente da funcao objetivo
por ¢y é um numero positivo sempre que ¢y é um vetor nao nulo. Abaixo
demonstramos esta afirmacao.

clen = (c+ v —en)Ten = (ev + er)ew = [Jen”-

De fato, considerando-se as condigoes de otimalidade que apresentaremos
na proxima se¢ao, é possivel mostrar que cp é solugao do problema obtido
ao incorporar-se a restricao (9.3) ao problema (9.1). Ou seja, cyr é solucao
de

maximizar  ¢'h (9.8)
sujeitoa Ah =0
IR]l < 1.

Na figura 9.4 estd representada a direcao cp para o problema de maxi-
mizar —x; — T sujeito apenas as restricoes de nao negatividade das varidveis
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x1 e To. Neste caso, P4 = I e a direcao cy é dada pelo préprio vetor custo
¢ = (—1,—1)T. Partindo do ponto (5,0.5), observamos que pouco podemos
caminhar ao longo da direcao cys, antes de atingirmos a fronteira da regiao
viavel do problema. O progresso obtido com este passo, é portanto pequeno.
Uma vez que esta situacao é gerada pela proximidade do ponto (5,0.5) a
fronteira da regiao viavel, uma forma de evita-la seria a de aplicar uma mu-
danga de escala sobre as varidveis do problema, que mapeasse o ponto (5,0.5)
num outro ponto mais distante da fronteira. Devemos portanto, manter este
propdsito inicial em mente.

X2

(5,0.5)
Y

X1

Figura 9.4: Direcao de Cauchy

No calculo da diregao de Cauchy (9.8), utilizamos uma regiao de confianca
circular, ou seja, maximizamos a fun¢ao objetivo do problema numa bola de
raio unitario. Através de uma mudanca de escala nas varidveis, podemos
trabalhar com uma regiao de confianca elipsoidal.

A idéia do algoritmo afim-escala é de calcular a direcao de méximo aclive
da funcio objetivo de (P), a partir de um dado ponto z* € F, utilizando
como regiao de confianca um elipséide, e nao mais um circulo. O ideal seria
utilizar o maior elipsdide contido dentro da regiao viavel do problema. No
entanto, para simplificar o calculo da direcao, os eixos do elipséide escolhido
sao paralelos aos eixos coordenados. Neste caso, trabalhamos com o maior
elipséide com centro em z* e contido no primeiro ortante, sem considerarmos
as restricoes Ar = b. Este elipsdide é chamado de elipsdide de Dikin com
centro em z* e é definido por

E={z¢c R"Ar = 0,27 (X") %z < 1}.
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A diregao de busca do algoritmo afim-escala para o problema (P) é entao
definida como a solucgao de

maximizar ch
sujeito a Ah = 0 (9.9)
RT(X®)2h < 1.

Representamos a direcao d do algoritmo afim-escala na figura 9.5. Na
figura também esta representado o elipséide de Dikin e as curvas de nivel
da fungao objetivo do problema. O problema considerado é o mesmo da
figura 9.4 e podemos observar com clareza a melhoria obtida ao se substituir
a direcao de Cauchy pela direcao do algoritmo afim-escala.

X2

\\ d (5,0.5)

ANN g
\\

Figura 9.5: Elipséide de Dikin e Direcao Afim-Escala

Finalmente, devemos observar que a direcao do afim-escala dada pela
solugao do problema (9.9) é equivalente a diregao de Cauchy projetada no
nulo de A, dada por ¢y, apés uma mudanca de escala definida por

r = X"z
Esta mudanca de escala mapeia o ponto z* no ponto e = (1,1,...,1)T,
uma vez que z*¥ = X*e; e transforma o elipséide de Dikin numa bola de raio

unitario centrada em e.
Apés a mudanga de escala, o problema (P) passa a ser representado por

(P) : maximizar &'z
sujeito a: AT
z

vVl
o

onde ¢ = XFce A = AXF.
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De fato, considerando-se a mudanca de escala h = X*h, o problema (9.9)
passa a ser representado por

maximizar ETEL
sujeito a  Ah
hTh

0 (9.10)
1

IA I

Y

no qual calculamos a direcao viavel de maximo aclive da funcao objetivo
de (P), utilizando novamente como regiao de confianca, uma bola de raio
unitario.

Considerando a equivaléncia dos problemas (9.8) e (9.10), podemos agora
apresentar a solugao do ultimo deles, dada por:

d= Pje,
onde Py = [I — AT(AAT)"'A] ¢ a matriz de projecdo no espaco nulo de A.
Retornando a escala original, temos entao a direcao de busca do algoritmo
afim-escala, dada por: B
d= X"d. (9.11)

Finalmente observamos que ao utilizarmos o elipséide de Dikin como
regiao de confianga no calculo da direcao de maximo aclive, estamos de forma
equivalente buscando o nosso propésito inicial: mapear o dado ponto z*, que
pode estar préximo de uma fronteira da regiao viavel, no ponto e, que dista
de pelo menos uma unidade de cada fronteira.

Uma vez apresentada a direcao de busca do algoritmo afim-escala, es-
tamos agora preparados para a apresentacgao do algoritmo completo para
resolver (P).

Algoritmo 9.1 (Afim-Escala) Dados: 2° € X° e a € (0,1);
k:=0;
Repita

Mudanga de escala:

Projecao:

Direcao de busca:



Retorno a escala original:
d=X"d

Passo:
oM = 2% 4+ add (9.12)

Fim (Repita)

No passo (9.12), A é dado pelo teste da razao, ou seja,
A= min {—af/d;|d; < 0}

e a, que em geral é aproximadamente 0.995, garante que o novo ponto seja
estritamente positivo.

Observamos que nenhum critério de parada foi especificado no algoritmo.
Para implementa-lo, é preciso que algum critério seja escolhido. Normal-
mente o critério de parada de algoritmos depende do problema considerado.
No exemplo abaixo, no entanto, utilizamos um critério bem geral para algo-
ritmos iterativos. Nele, o método é interrompido quando nao ha mudanca
significativa entre as solugoes de duas iteragoes consecutivas.

Exemplo 9.1 Resolver o problema de programacao linear abaixo utilizando
o algoritmo afim-escala.

maximizar 3x; + 5xo

sujeito a:  x < 4
o < 6 (9.13)
3r; + 2z < 18
T o, x = 0
E dada uma solugao inicial interior viavel para o problema: x; = 1,
ro = 1. Em seguida, reescrevemos o problema na forma padrao, com a
adi¢ao de variaveis de folga:
maximizar 3x; + 5x9
sujeito a:  x + 3 = 4
To + x4 = 6
3r1 4+ 2x9 + x5 = 18
r , X9 , Tz , x4 , x5 > 0

A solucgao inicial interior viavel correspondente é

134



=1 1 3 5 13)7,
e o valor da funcao objetivo em ¥ é 8.
Na primeira iteracao a mudanca de escala é definida pela matriz diagonal

1
X0 = 3

13

A matriz A e o custo ¢ obtidos apds a mudanca de escala sao dados por:

1
1 1 1
A = AX" = 1 1 3 ,
3 2 1 D
13
logo
1 3
A = AX° = 1 5 ,
3 2 13
1 3 3
1 5 )
c = X% = 3 01=10
) 0 0
13 0 0

Em seguida calculamos a matriz de projecio no nulo da A:

Py = I—AT(AA")A

1
1
— 1
1
1
1 3 1 3\1"
1 2 13 1 2
— |3 1 5 3
5 3 2 13 5
13 13
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0.8597
—0.0287
—0.2866

0.0057
—0.1940

1 3
1 5
3 2 13

—0.2866

0.0057 —0.1940

0.0096 —0.1882 —0.1382

0.0955 —0.0019

—0.0019
0.0647

A direcao de busca sera entao dada por:

logo

S
I

0.8597 —0.0287

—0.0287
—0.2866

0.0057 —0.1882
—0.1940 —0.1382

2.4357
4.6194
—0.8119
—0.9239
—1.2728

—0.2866

Retornando a escala original, temos:

d

Determinamos em seguida,

X0
1

Finalmente, o novo ponto é dado por:
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0.0057 —0.1940
0.0096 —0.1882 —0.1382

0.0647
0.0376  0.0276
0.0276  0.0660

S OO ot Ww

0.0955 —0.0019  0.0647

—0.0019  0.0376  0.0276

0.0647  0.0276  0.0660
2.4357 2.4357
4.6194 4.6194
—-0.8119 | = —2.4357
—0.9239 —4.6194
—1.2728 —16.5458



= 20+ ald

1 2.4357 2.9041
1 4.6194 4.6113
= 3 | +0.995 % 0.7857 % —2.4357 | = | 1.0959
) —4.6194 1.3887
13 —16.5458 0.06501

O valor da funcao objetivo em ! é 31.7688. A primeira iteracao do algoritmo
estd completa. Como houve uma mudanca significativa entre as solucoes °
e x', seguimos com uma nova iteracdo. Deixamos a préxima iteracao do
algoritmo como exercicio para o leitor

Apresentamos abaixo o programa em MATLAB que implementa o algo-
ritmo afim-escala para resolver o exemplo. Consideramos a precisao e = 1074
e o parametro o = 0.995.

%Algoritmo Afim-Escala

n=>5;

k=0;
epsilon=10"(-4);
alfa = 0.995;

A=[1 01 00;01010;3200 1];
c=[3 500 0]’;
x=[11 35 13]’;
custo=c’*x;
dif = 10;
while (dif>= epsilon)
Abar = Axdiag(x);
cbar = x.*c;
aux=(AbarxAbar’)\ (Abar*xcbar) ;
dbar = cbar - Abar’*aux;
d = x.*dbar;
aux2=[];
for i=1:n
if (d(1)<0)
aux2 = [aux2; -x(i)/d(i)];
end
end
lambda = min(aux?2);
x=x+alfa*lambda*d;
custoant=custo;
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k 0 1 2 3 4 bt 6
1 | 1.0000 2.9041 1.9840 2.0030 1.9999 2.0000 2.0000
9 | 1.0000 4.6113 5.9931 5.9954 6.0000 6.0000 6.0000

Tabela 9.1: Iteragoes geradas pelo Algoritmo Afim-Escala

T2

X1

Figura 9.6: Algoritmo Afim-Escala

custo=c’*x;
dif=abs(custo-custoant);
k=k+1

end

Os valores de z; e x5 obtidos pelo algoritmo a cada iteracao k estao
representados na tabela 9.1.

A trajetéria definida pelos pontos gerados a cada iteracao do algoritmo,
na regiao viavel do problema, esta representada na figura 9.6. [
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9.4 A Trajetéria Central

Na secao anterior verificamos que a cada iteracao do algoritmo afim-escala,
o valor da funcao objetivo aumenta. Mesmo com a mudanca de escala, este
fato faz com que, a seqiiéncia de iteragoes gerada pelo método, se aproxime
aos poucos da fronteira da regido vidvel de (P). Com a proximidade da
fronteira entao, a elipse na qual a fungao objetivo é minimizada se torna
cada vez menor, levando também a passos cada vez menores realizados pelo
algoritmo em direcao ao 6timo. Para evitar tal dificuldade, os algoritmos de
pontos interiores visam, a cada iteracao, aumentar o valor da funcao objetivo
de (P), mantendo-se no entanto, distantes da fronteira, ou seja, no interior
da regiao viavel. Pela motivacao destes dois objetivos conflitantes, a seguinte
funcao barreira logaritmica, definida para todo x > 0, foi empregada:

flx,p) = e+ uZlong,

J=1

onde p é um parametro maior que zero.

A funcao barreira foi utilizada pela primeira vez em otimizacao por Frisch
[Fr 55]. O algoritmo de programacao nao linear resultante, conhecido como
método de barreiras, foi estudado no livro de Fiacco e McConmick [FiMc 55]
e é um caso particular de uma familia de algoritmos conhecidos como métodos
de penalidade.

Definamos agora a seguinte familia de problemas barreira associados a
(P) e parametrizados por pu:

maximizar f(x, p)
sujeito a: Ax = b. (9.14)

Verificamos claramente que o primeiro termo de f(z, ) mede o valor
da fungao objetivo de (P) enquanto o segundo termo funciona como uma
penalizacao aos pontos que se aproximam da fronteira da regiao viavel do
problema.

Os problemas (9.14) aproximam (P) tanto melhor, quanto menor for o
valor de . Mostramos na figura 9.7, as solugoes étimas do problema bar-
reira associado ao problema (9.13) para diferentes valores de p. O ponto x*
corresponde a solugao 6tima de (9.13). Observamos que para cada valor de
i, a solugao de (9.14), a qual é chamada de ponto central, estd no interior
da regiao viavel de (9.13). Este fato pode ser melhor compreendido se no-
tarmos que em cada uma das faces do poliedro, o valor de uma das varidveis
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1

Figura 9.7: Pontos Centrais

do problema se anula. Conseqiientemente, conforme nos aproximamos das
faces, o valor da funcao barreira tende a menos infinito.

O conjunto de pontos centrais de um problema descreve uma curva suave
chamada de trajetéria central do problema. Pode-se mostrar que, se (P) e
(D) tém solugao vidvel com x e s estritamente positivos, entdo o problema
barreira admite solugao unica para cada valor positivo de u, ja que, neste
caso, a fungdo barreira é estritamente concava [GuRoTeVi 95]. Este fato
torna a trajetéria central uma curva bem definida. A figura 9.8 ilustra a
trajetéria central para o problema (9.13). A trajetéria central desempenha
um importante papel na apresentacao dos algoritmos de pontos interiores.
de fato, na proxima secao estudaremos uma classe destes algoritmos que se
propdem a seguir esta curva em cada iteragao. Sendo assim, reservamos
o restante desta secao para estudarmos algumas propriedades da trajetoria
central.

Como ja mencionado, cada ponto pertencente a trajetoria central de um
problema soluciona o problema barreira associado, para um determinado
valor de p. Apresentaremos a seguir as condi¢oes de otimalidade que devem
ser satisfeitas pela solucao de um problema geral de otimizacao restrita, as
quais s@o conhecidas como condigoes de Karush-Kunh-Tucker (ou KKT).
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T2

1

Figura 9.8: Trajetoria Central

9.4.1 Condigoes de Karush-Kunh-Tucker (ou KKT)

Consideremos o seguinte problema de programagcao nao linear restrito

(NLP) maximizar f(x)

sujeitoa g1(z) = 0
g2(x) = 0
gm(z) = 0,
ondexz € IR"e f,g; : IR" — IR, 1 =1, ..., m sao funcgoes diferencidveis.

As condigoes de KKT para este problema sao descritas a seguir:

Se T é uma solucao 6tima de NLP, entao existem multiplicadores y; €
R,i=1,...,m, tais que

gi(z) = 0, i=1,...,m
Vi) = YL yVa(T).
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Particularizando estas condigoes para o problema barreira (9.14), definido
para um determinado u, verificamos que a sua solucao 6tima deve satisfazer
ao seguinte sistema de equacoes nao lineares:

cj—l—ux%—zg:luiaij = O, j:1,2,...,?7,

p — M
bi—zjzlaijxj = 0, 1—1,2,...,m.

onde os multiplicadores u; € R, i =1,...,m.
Utilizando a notacao matricial, podemos reescrever este sistema de equa-
¢oes como:
ATy — uXte
Axr = b.

Il
o

onde u € IR™.
Definindo agora s = uX 'e, s € IR™, reescrevemos o sistema como

Aty —s =
Ax
s = puX e

Finalmente, multiplicando a terceira equacao por X, chegamos as condi-
coes de otimalidade para o problema da barreira na forma primal-dual:

ATy —s =
Ax = b (9.15)
XSe = pe

Denominaremos a solucao deste sistema para um dado p de (z,,u,,s,).

Verificamos que, se u = 0, as equagoes acima juntamente com as restrigoes
x,s > 0, sdo exatamente as condigoes de otimalidade dos problemas (P) e
(D). Neste caso, as duas primeiras equagoes garantem a viabilidade primal e
dual, enquanto a terceira corresponde as condigoes de complementaridade. Se
> 0, a terceira condigao é denominada condigao de p-complementaridade.
Ela impoe que o produto das variaveis primais e de folga duais z;s; tenham
o mesmo valor para todo:=1,...,n.

O sistema (9.15) é um sistema nao linear que envolve 2n + m restrigoes e
2n+m variaveis. A utilizacao do método de Newton para resolver o sistema,
da origem a familia de métodos de pontos interiores primais-duais. A cada
iteracdo destes métodos, parte-se de um ponto (z,u,s) tal que x é primal
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viavel, (u,s) é dual vidvel e x,s > 0. Se definimos a regiao vidvel primal-
dual F e seu interior F°, como:

F = {(v,u,8)|Az = b, ATu — s = ¢, (z,5) > 0}

FOi= {(z,u,s)| Az = b, ATu — s = ¢, (z,5) > 0},

podemos dizer que a cada iteracao, os métodos primais-duais partem de um
ponto (z,u,s) € F. A direcio na qual se caminha a partir deste ponto é
baseada na aplicacdo do método de Newton ao sistema de equagdes (9.15).

O Método de Newton

No método de Newton, dada uma funcdo F : IRYN — IRY, a busca de um
zero da funcdo, isto é, a busca de um ponto A € IRY tal que F()\) = 0, é
realizada através de um processo iterativo, no qual a cada iteracao parte-se
de um dado ponto A € IRY e caminha-se numa aproximacao da direcao A\
tal que F(A+A\) = 0. Esta aproximacao é calculada a partir de um modelo
linear para a funcao F', dado pelo truncamento da sua expansao em Série de
Taylor em torno de A,

FO + AN & F(\) + JO\)AN,

onde J ¢é o Jacobiano de F. Sendo assim, o cdlculo da diregao A\ a ser
tomada a cada iteracao ¢é realizado através da solucao do sistema linear
JA)AN = —F(N).
Podemos agora reescrever o sistema (9.15) como F'(A) = 0, onde A :=
(x,u,s) e
Ay —s—c

F(\) = F(z,u,s) = Az —b
XSe — pe
Neste caso o Jacobiano de F' é dado por
0 AT -1
JAN) =J(zu,s)= A 0 0 |,
S 0 X

e a diregdo de Newton A\ := (Az, Au, As), quando calculada a partir de
um ponto (z,u,s) € FY, é dada pela solucao do sistema linear

0 AT —I7[Ax 0
A 0 0]]|Au]= 0 (9.16)
S 0 X As pe — X Se
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Quando p = 0, a solugdo do sistema de equagoes (9.16) é denominada
direcao afim-escala. A justificativa deste nome estd na expressao de Az que
soluciona o sistema. Para chegarmos a esta expressao, vamos inicialmente
obter da terceira equagao de (9.16), a seguinte expressdo para As.

As = X (ue — X Se — SAx). (9.17)
Substituindo (9.17) na primeira equagao de (9.16), temos
ATAu+ X'SAx = uX e —s. (9.18)
Podemos agora resolver (9.18) para Az, obtendo
Ar = XS e — ATu+ puXte — AT Au), (9.19)

onde consideramos s = ATu — c.
Substituindo (9.19) na segunda equacao de (9.16), temos

—AXST'ATAu = —AXS e — ATu 4 pXte). (9.20)
Resolvendo (9.20) para Au e substituindo em (9.18), temos
AT ((AXSTTAT)TAX S (e — ATu+ pX'e)) + X 'SAx = pX e — 5,
ou ainda,

X1'SAz = pXle—s (9.21)
AT ((AXSTIAT)TAXS e — ATu+ pX e)) .

Definindo D? = X S~! e considerando novamente s = ATu — ¢, podemos
reescrever (9.21) como

Az = (D*- D?AT(AD?*A")'AD?) (c — ATu+ pXe)
= (D> - D?AT(AD*A") ' AD?) ¢ (9.22)
+ p(D? = D*AT(AD?AT)'AD?) X e
Finalmente, podemos entender a escolha do nome afim-escala dado a

dire¢ao (9.16), quando u = 0. Basta observarmos que, neste caso, (9.22) se
reduz a

Az = (D* - D*AT(AD*A") ' AD?) c,

que difere da dire¢ao do algoritmo afim-escala (9.11), apenas na escolha da
matriz que define a mudanga de escala.
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Como ja mencionado, se u = 0, o sistema de equagoes (9.15) em conjunto
com as restricoes de nao negatividade para x e s representam as condigoes
de otimalidade para os problemas (P) e (D). A diregdo de Newton (9.16)
calculada para p = 0 deve portanto, apontar aproximadamente para o étimo
destes problemas. Como foi verificado, em geral, pouco se pode caminhar
ao longo desta direcao sem que uma das componentes de x ou s se torne
negativa e conseqiientemente, o progresso obtido ao longo deste caminho é
pequeno.

Por outro lado, a solugao de (9.15) para um dado g > 0, é um ponto
pertencente a trajetdria central. Neste caso, a diregdo de Newton (9.16)
deve apontar aproximadamente para trajetoria central, ou seja, para o inte-
rior do ortante nao negativo. Espera-se assim que um caminho maior possa
ser percorrido ao longo desta direcao antes que a fronteira do ortante seja
encontrada. Pode-se considerar entdo, que a diregao (9.16), calculada para
algum p > 0, é obtida ao se desviar para o interior do ortante nao negativo,
a direcao que aponta para o 6timo do problema. O objetivo do desvio é
manter-se afastado da fronteira do ortante, de forma a permitir um maior
passo ao longo da direcao calculada, sem sair da regiao viavel do problema.

Os algoritmos de pontos interiores primais-duais consideram em geral
duas diregoes a caminhar a partir de um dado ponto (x,u, s), ambas obtidas
a partir de (9.16). A primeira é a ja mencionada diregdo afim-escala que é
obtida quando pu = 0, e a segunda, denominada direcao de centralizagao, é
obtida quando p assume o valor dado por

12 xT's
p= L= (9.23)

Devemos observar que o gap de dualidade associado as solugoes x e (u, s) dos
problemas (P) e (D), é dado por

biu—cl'e =2 ATy — v = (uA — o)Tx = 27s. (9.24)

Verificamos entdo, de (9.23), que o gap associado a z e (u, s) pode ser escrito
como nu, quando p assume o valor que lhe ¢ atribuido no célculo da direcao
de centralizacao a partir do ponto (x,u, s).

Notemos agora que a direcao de centralizagao aponta aproximadamente
para o ponto da trajetéria central (x,,u,, s,) que satisfaz a relacdo z;s; = p
para todo i = 1,...,n. O gap de dualidade associado a este ponto central,
dado por xﬁsu, é, portanto, igual a nu e igual ao gap associado ao ponto de
partida (x, u, s).

Concluimos entao que a direcao de centralizacao aponta bem para o inte-
rior do ortante nao negativo. Mais especificamente, ela aponta aproximada-
mente para o ponto central que tem o mesmo gap de dualidade que o ponto
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de onde partimos. Esperamos assim que possamos caminhar razoavelmente
na direcao de centralizacao antes de encontrar a fronteira do ortante nao ne-
gativo. Por outro lado, esperamos também que pouca ou nenhuma reducao
seja obtida no gap de dualidade ao longo desta direcao.

Finalmente, considerando ao mesmo tempo os objetivos de diminuir o
gap de dualidade e manter-se longe da fronteira do ortante nao negativo, os
algoritmos primais-duais partem a cada iteragao de um dado ponto (z,u, s)
e caminham numa direcao obtida pela combinacao das duas direcoes acima
descritas. Esta combinagao é dada pela solucao do sistema abaixo,

0 AT —I7[Ax 0
A 0 O Au | = 0 (9.25)
S 0 X As Te — X Se

onde = zTs/nerel0,1].

Quando 7 assume um valor entre 0 e 1, a diregdo (9.25) se torna uma
direcao intermedidria entre as direcoes afim-escala e de centralizagao. Dife-
rentes escolhas de 7 caracterizam diferentes algoritmos pertencentes a familia
dos algoritmos de pontos interiores primais-duais. Nas proximas secoes, es-
tudaremos alguns destes algoritmos.

9.5 Algoritmos de Trajetéria Central

Na secao anterior definimos uma curva chamada trajetoria central em fungao
de um parametro pu. Comentamos que, se F° # (), cada ponto desta curva
corresponde a solugao unica, (z,,u,,s,), do problema barreira (9.14) para
um dado p. E possivel mostrar também que neste caso lim,, o (2, wps 54)
existe, e que lim, oz, é uma solucdo 6tima de (P) e lim,_(u,,s,) é uma
solugao étima de (D) [Mc 80].

Nesta secao estudaremos os algoritmos de trajetoria central que se carac-
terizam por seguir esta trajetdria na direcao em que p decresce. Os algorit-
mos seguem a trajetoria, no sentido em que a cada uma de suas iteragoes sao
gerados pontos (z*, u*, s*) que ndo necessariamente pertencem a trajetoria,
mas que se localizam proximos a ela. Estes pontos sao estritamente positivos
e satisfazem apenas as duas primeiras equagoes de (9.15), enquanto a ter-
ceira equacao, ou a condi¢ao de p-complementariedade, nao necessariamente
¢ exatamente satisfeita. Sendo assim, para medir a proximidade entre tais
pontos e a trajetoéria central, consideramos justamente o quanto esta terceira
equacao é violada.

Definicao: Dados (z,u,s) € F° e u > 0, a proximidade entre os pontos
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(z,u,s) e (z,,u,,s,) ¢ medida por:
1
Oz, s, 1) == —|| X Se — ue||. (9.26)
v

Os métodos de trajetéria central geram uma seqiiéncia de pontos que se
situam numa vizinhanga da trajetéria caracterizada por §. Dado o € (0, 1),
definimos esta vizinhanca como:

N():= | {(z,u,s) € Flo(z,s pn) <a} (9.27)

1e(0,00)

Notemos que dado o ponto (x, u, s) na trajetéria central, a relagao X Se =
pe é satisfeita para algum p > 0, e, conseqiientemente, x7s = nu. Esta
igualdade indica a relacao entre pontos da trajetéria e o gap de dualidade a
eles associado. Uma relacao analoga também pode ser obtida para pontos
pertencentes a vizinhanga N («). Para estes pontos, o gap de dualidade dado
por x1s relaciona-se com ¢ pela expressao:

2's < (n +60(z, s, u)ﬁ) 1 (9.28)

Para verificar esta expressao basta multiplicar por e, a relacao XTse =e+
B, onde ||B]| = d(z, s, ), e aplicar a desigualdade de Cauchy-Schwartz. A
importancia desta relagao esta no fato de que ela nos da um bom critério de
parada para os algoritmos.

O Algoritmo de Trajetoria Central de Passos Curtos

Estamos agora preparados para apresentar algoritmos que geram pontos
sempre na vizinhanga N («). Estes algoritmos, chamados de algoritmos de
trajetoria central de passos curtos, adotam valores proximos de 1 para 7.
Desta forma, ao tomarmos o passo (Az, Au, As) a partir de um ponto em
N (a), o novo ponto alcangado também pertencerd & vizinhanga.

Para entendermos o comportamento do algoritmo de trajetéria central de
passos curtos, devemos observar que, se a cada iteragao, o ponto de partida
estd em N («), entdao o ponto (z,u, s) estd proximo do ponto da trajetéria
central (x,,u,,s,). Ao tomarmos o valor de 7 préximo de 1, teremos Ty =
e, portanto, (x,u,s) também estard proximo de (2, Ury, ;). Essa proxi-
midade garante que a diregdo de Newton (9.25) seja uma boa aproximagao
para a direcao que aponta para a trajetéria central e, conseqiientemente, que
o novo ponto obtido pertenca também a proximidade da trajetoria definida

por N ().
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Uma vez garantida que todas as iteragoes do algoritmo pertencem a N («),
concluimos que a cada iteracao, gera-se solucoes viaveis para os problemas
(P) e (D), cujo gap de dualidade pode ser estimado por (9.28).

Apresentaremos agora o algoritmo primal-dual de trajetoria central de
passos curtos que foi introduzido por Kojima, Mizuno e Yoshise [KoMiYo 89|
e Monteiro e Adler [MoAd 89] independentemente. A andlise de complex-
idade apresentada a seguir é devida ao segundo grupo de autores. Nela
verificamos que a complexidade do algoritmo é de \/nlog1/e, onde € mede a
precisao da solucao obtida.

Algoritmo 9.2 (Trajetéria Central de Passos Curtos) Dados: € > 0,
a=04,17=1- ﬁ, (2%, 1, %) € N(a);

k:=0;

Repita

T
Faca 7, = 7, pup, = 2% % /m;
Y Y

Calcule a direcao de Newton (9.25), ou seja, resolva o sistema

0 AT —I7 [AzF 0
A 0 0 AuF | = 0 :
Sko0 Xk AsF Tepxe — X Ske

(karl’ uk+17 Sk+1) = (l’k,uk, Sk) + (Axk, Auk, Ask);
k:=k+1,

Até que pi < e.

No lema 9.2, verificaremos que a medida do gap de dualidade, u, é re-
duzida de forma linear a cada iteracao do algoritmo de trajetéria central
de passos curtos . Este resultado é fundamental para que comprovemos a
complexidade polinomial do algoritmo. O resultado do préximo lema serd
utilizado na sua demonstracao.

Lema 9.1 A dire¢io (Ax, Au, As) definida por (9.25) satisfaz a

AzTAs = 0.
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Demonstracao
Das duas primeiras equagoes de (9.25), temos:

ATAu = As,
AAx = 0.
Portanto,
AxTAs = AxT AT Au = (AAz)T Au = 0. "

Lema 9.2 Seja (x,u,s) € N(a), (Ax, Au, As), o passo de Newton dado por
(9.25), (%,4,3) := (z,u,s) + o(Azx, Au, As), para o € [0,1] e i := z75/n.
Entao

fi=(1—o(l— )

Demonstracao
njii = 1§
= (v+0Azx) (s + 0As)
= 27s+ oAzx"s + ozt As + oAz’ As
= 2's+o(Axts + 2T As), (9.29)

onde a ultima igualdade utiliza o resultado do lema anterior.
Da tltima equagao de (9.25), temos:

SAx + XAs = Tpe — X Se.
Multiplicando esta expressao por e! e observando que pe’e = un, temos:
sTAzr 4+ 2" As = mnp — 27s = (1 — 1)np. (9.30)
Das relagoes (9.29) e (9.30), temos entao
ni = (1—o(l —7))nu.

Finalmente, dividindo-se esta tltima relagao por n, obtem-se o resultado do
lema. [

Com o resultado obtido no lema anterior, comprovamos a reducao linear
no parametro u, sempre que um passo ¢ dado na direcao de Newton. Esta
reducao ¢é proporcional ao tamanho do passo, o qual é medido pelo parametro
o € [0,1]. No caso particular do algoritmo de trajetéria central de passos
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curtos, um passo unitario é dado na dire¢ao de Newton a cada iteragao. Neste
caso entao, ao substituirmos o valor o = 1 no resultado do lema, verificamos
facilmente que a reducao do parametro u, a cada iteragao do algoritmo, é
dada por

i =T (9.31)

Teorema 9.2 Suponha que (2°,°, o) € N'(a) e

fo < 5. (9.32)

para alguma constante positiva (3.
Entao, o algoritmo de trajetoria central de passos curtos pdara em
O(y/nlog ) iteragoes.

Demonstracao
Utilizando-se a expressao (9.31) e o valor atribuido a 7 no algoritmo, temos:

P = 1—i Hk—1
()
(e

Sendo assim, o algoritmo para quando k é tal que

A

Aplicando-se a funcao logaritmica a esta relacao, temos

1
klog (1 — ﬁ) + log pg < loge.

Considerando (9.32), observamos que a relagao acima serd satisfeita se

1 1
klog <1 — \/ﬁ> —l—ﬂlog; < loge.

Como log (1 4+ v) < 7, para todo v > —1, a relagdo acima continuara sendo
verificada se

1
—k <loge— fFlog—,
€

Si-

150



ou, equivalentemente,

1 1
—k— < (1 log =
N (+ﬂ)0g€,

O critério de convergéncia do algoritmo, py < €, é satisfeito entao se

k:Z\/ﬁ(l—{—ﬂ)logi. n

Uma vez demonstrada a complexidade polinomial do algoritmo, resta-nos
apenas verificar que ao tomar-se um passo na dire¢ao de Newton (9.25), a par-
tir de um dado ponto (x,u, s) € N(«a), a nova iteracao (x, u, s)+(Ax, Au, As)
serd também um ponto pertencente a N («).

No restante da analise do algoritmo, estaremos, portanto, interessados em
fornecer um limite superior para a norma ||[AXASe||. Este limite constitui
um ingrediente importante na analise. Para entendermos tal importancia,
devemos lembrar que a cada iteracao do algoritmo, partimos de um ponto
(x,u, s) e calculamos uma aproximagao para o passo que nos levaria ao ponto
(x4, uy, s,) da trajetéria central. Esta aproximacao é estabelecida pela lin-
earizagao da terceira equagao de (9.16), a qual d4 origem ao passo de New-
ton (9.25). Nesta linearizacao, o termo AXASe é justamente o termo de-
sprezado. Conseqiientemente, a eficiencia do passo de Newton estard asso-
ciada ao tamanho de sua norma. Mantendo-a dentro de um certo limite,
garantimos que a aproximagao dada pelo passo de Newton, apesar de nao
nos levar exatamente para um ponto na trajetéria central, nos leva para um
ponto préximo a ela, onde esta proximidade ¢ medida pela vizinhanga N ().
O lema a seguir formaliza o objeto deste pardgrafo.

Lema 9.3 Seja (x,u,s) € N(«a); (Z,a,5) := (x,u,s) + o(Azx, Au, As) para
o € [0,1], onde (Ax, Au, As) € o passo de Newton dado por (9.25); e i :=
..,T,.

2. Entao

| X Se — fie]| < (1 —0)ap+ o?[|AXASe|

Demonstracao

|XSe—jie]] = || XSe+oSAXe+oXASe+ d?AXASe — jiel|
= || XSe+o(tue — XSe) + 0?’AXASe — jie|  (9.33)
= || XSe+o(rue — XSe) + c?AXASe
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(1= o1 —=7))pel (9.34)
(1 —o)(XSe — pe) + > AXASe|
(1—0)||XSe — pe| + o?||AX ASe||
(1 —o0)ap+ o?||AXASe| (9.35)

<
<

onde (9.33) utiliza a terceira equacao de (9.25), (9.34) utiliza o resultado
do lema 9.2 e (9.35) decorre de (z,u, s) € N(«).

Uma vez apresentado o lema anterior, resta-nos agora verificar que a
medida ||[AXASe|| é pequena o suficiente para garantir que o ponto (Z, @, §)
pertenga & N(«). Este resultado serd demonstrado no teorema 9.3. Os
lemas apresentados a seguir constituem ferramentas a serem utilizadas na
sua demonstragao.

Lema 9.4 Se u,v € IRP sdo tais que u’

1

v =20, entao

UVe| < u+ v
[UVell < \/gH I
Demonstracao
Considerando a igualdade
1
U;V; = Z ((UZ + UZ')2 — (UZ — Ui)2) s
para todo ¢ =1,...,p, temos:
p
[UVell? = > (wvi)®
i=1
12 ) o\ 2
= 1—62 ((uz +v;)° — (u; — v;) )
i=1
1 & 4 4
=1
1 P 2 P 2
< 1 [ > (u —i—vi)Z) + <Z:(uZ — vi)2> ] (9.37)
i=1 i=1
1
= o (lut ol +u—v]*)
1
= (2l +v]*) (9.38)
1
= 3 (llu+v]*) (9.39)

onde:
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(9.36) se verifica porque se temos a,b > 0, entao (a — b)? < a? + b?;

(9.37) utiliza a relagao

n

Z < (> a),

i=1

para a; > 0,7=1,...,p, a qual é um caso particular da desigualdade
de Holder.

(9.38) se verifica porque u e v sdo ortogonais (u’v = 0), e conseqiien-
temente ||u + v|| = ||lu — v|. "

Lema 9.5 Seja (z,u,s) € N(a) e (Ax,Au, As), o passo de Newton dado
por (9.25). Entao
o +n(l—71)?

V8(1—a)

IAXASe| <

Demonstragao

Iniciamos a demonstracao aplicando uma mudanca de escala sobre a terceira
equacao de (9.25), com o intuito de escrevé-la de forma mais conveniente.
A mudanca de escala é definida ao multiplicar-se a equagao pela matriz
(XS)~1/2. Considerando D, a matriz diagonal cujos elementos da diago-

nal sdo dados por y/x;/s; para todo i = 1,...,n, ou seja, D = S~/2X'/2 o
resultado deste produto pode ser escrito como

D 'Az 4+ DAs = (XS) V2 (—XSe + Tpe). (9.40)

Observando que AXAS = (DAX)(D'AS) e utilizando (9.40) e os resulta-
dos dos lemas 9.1 e 9.4, temos:

IAXASe| = |(DAX)(D'AS)e||
< \}§||DAJ:+D1A5H2

1 _
ﬁH(XS) V2 (=X Se + rpe)|?
1 & (s 4 T)?
B @; TS
Sy (—isi + i)’
V8(1 —a)p
| X Se — Tpel?

= B0 (841
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onde a ultima desigualdade se verifica porque (z,u,s) € N(«). Conseqiien-
temente, |x;s; — p| < ap, e x;8; > (1 — a)u, para todoi =1,... n.
Temos ainda que

IXSe —Tpe* = [(XSe— pe)+ (L —7)pel
| X Se — pell® +2(1 — 7)ue” (X Se — pe)

+ (1 —7)*u%"e

= [IXSe — pel* +2(1 = m)u(a’s — un)

+ (I=7)°w’n

— XS — el + (1= Ypn

< &+ (1 —1)uPn, (9.42)

onde a tltima igualdade se verifica porque i = x7s/n e a tltima desigual-
dade se verifica porque (z,u, s) € N(a).
Substituindo (9.42) em (9.41) temos o resultado do lema. "

Lema 9.6 Seja (x,u,s) € N(«a); (Z,a,5) := (x,u,s) + o(Azx, Au, As) para
o € [0,1], onde (Ax, Au, As) € o passo de Newton dado por (9.25); e i :=

...T... o .
2 Entao, considerando-se que o e T assumem os valores adotados no

algoritmo 9.2, temos:

IX Se — fiell < aj,

Demonstracgao
|XSe—fie|| < (1—o0)au+ d®|AXASe| (9.43)
o +n(l—71)?
< (1- + 0’ 9.44
< (-t (9.41)
< (1 —o)ap+o*rau (9.45)
< (I—o+om)ap (9.46)
= «ji, (9.47)
onde:

(9.43) utiliza o resultado do lema 9.3,
(9.44) utiliza o resultado do lema 9.5,

(9.45) pode ser facilmente verificada quando « e 7 assumem os valores
adotados no algoritmo 9.2,
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(9.46) se verifica porque o € [0, 1], e

(9.47) utiliza o resultado do lema 9.2. "

Teorema 9.3 Seja (z,u,s) € N(a) e (Az, Au, As), o passo de Newton dado
por (9.25). Entao

(,10,35) = (z,u,s) + o(Ax, Au, As) € N(a)
para todo o € [0, 1].

Demonstracao

O resultado do lema 9.6 indica que §(Z, §, i) < a. Resta-nos apenas mostrar
que (Z,u,8) € F° As restricoes AT = b e AT — § = ¢ sao facilmente
verificadas j& que, de (9.25), temos que AAz = 0 e ATAu— As = 0. E,
finalmente, a nao negatividade de 7 e § é garantida ao considerar-se que
se 0(z,8, 1) < a, entdo |7;8; — fi| < afi, ou seja, ;8 > (1 —a)p = (1 —
a)(l—o(1—=7))u>0,ji que o, 0,7 € [0,1]. Portanto, (z,5) > 0 para todo
o€ [0,1]. "

Exemplo 9.2 Resolver o problema de programagao linear (9.13) utilizando
o algoritmo de trajetéria central de passos curtos.

E dada uma solugao inicial interior vidvel para o problema em N (0.4):
xr1 = 1.6559, xo = 4.2932,u; = 2.2632, uy = 3.3758, uz = 1.3144. Em
seguida, reescrevemos os problemas primal e dual na forma padrao, com a
adigao de varidveis de folga z;, i = 3,...,5 e s;, 5 = 1,...,5. A solucao
inicial interior viavel correspondente é

2% = (1.6559 4.2932 2.3441 1.7068 4.4458)T,
uw’ = (2.2632 3.3758 1.3144)T,
9 = (3.2065 1.005 2.26320 3.3758 1.3144)7.

O valor da funcao objetivo em 2° é 26.4337 e o gap de dualidade inicial é
dado por
10 = (2°75%) /5 = 5.3067.

Para definir a direcao de busca, resolvemos o sistema linear

0 AT —I7[A2° 0
A 0 o0 |law|= 0 :
SO0 X0 A Tuge — X°S%
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onde

11
A = 11 :
3 2 1
1.6559
4.2932
X0 = 2.3441 :
1.7068
4.4458
3.2065
1.005
S0 = 2.26320 :
3.3758
1.3144

T o= 1- % =05528 ¢
Thoe — X°S% = (~2.3762 — 1.3798 — 2.3716 — 2.8283 — 2.9103)".

A solugao do sistema linear é dada por

Az" = (0.0342 0.7613 —0.0342 —0.7613 —1.6251)7,
Au’ = (—0.9788 —0.1513 —0.1741)7,
As" = (=15012 —0.4996 —09788 —0.1513 —0.1741)7.

O novo ponto é dado por

sl =20+ A0 = (1.6901 5.0545 2.3099 0.9455 2.8207)7,
=04+ Au® = (1.2844 3.2245 1.1403)
sl=s"+As® = (17054 05051 1.2844 3.2245 1.1403).

O valor da funcao objetivo em z! ¢ 30.3428 e o gap de dualidade é dado por
pt = (27" /5 = 2.9335.

A primeira iteracao do algoritmo esta completa. Como o gap de dualidade
ainda é bastante grande, seguimos com uma nova iteracao. Deixamos a
proxima iteragao do algoritmo como exercicio para o leitor.

Apresentamos abaixo o programa em MATLAB que implementa o algo-
ritmo de trajetoria central de passos curtos, no qual consideramos a precisao
e=10"%
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% Algoritmo de Trajetoria Central de Passos Curtos

n=5;

m=3;

k=0;
epsilon=10~(-4);
alfa = 0.4;

tal = 1 - (1/sqrt(n));

A=[1 0100;01010;3200 1];

%ler solucao inicial sol=[x,u,s]:

sol=input (’Entre com a solucao inicial sol=[x,u,s]:’);
x=s01(1:5);

5=501(9:13);
mi=(x’*s)/n;

while (mi>= epsilon)

M=[zeros(n,n) A’ -eye(n,n); A zeros(m,m) zeros(m,n);

diag(s) zeros(n,m) diag(x)];

ld=[zeros(n,1); zeros(m,1) ; (tal*mixones(n,1))-(diag(x)*s)];
dir=M\1d;

sol=sol+dir;

x=s01(1:5);

s=s501(9:13);

mi=(x’*s)/n;

k=k+1;

end

Os valores de x1 e x5 obtidos pelo algoritmo, estao representados na tabela
9.2. A figura 9.9 mostra a trajetéria definida pelos pontos gerados a cada
iteragao do algoritmo, na regiao viavel do problema. [

Comparando as figuras 9.9 e 9.8, observamos o quanto as iteragoes real-
izadas pelo algoritmo de trajetéria central de passos curtos se aproximam da
trajetoria central definida para o problema (9.13). Verificamos que tanto a
trajetéria central quanto a curva definida pelas iteragoes do algoritmo con-
vergem para o vértice (x; = 2,29 = 6), do poliedro que representa a regiao
viavel do problema. Este ponto é de fato a tnica solugao 6tima do problema
considerado.

Vamos ilustrar com o exemplo a seguir o comportamento do algoritmo de
trajetoria central de passos curtos e da propria trajetéria central no caso em
que o problema de programacao linear tem infinitas solugoes étimas.
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k 0 1 2 3 4 ) 6
xp | 1.6559 1.6901 1.7815 1.8866 1.9430 1.9693 1.9831
g | 42932 5.05645 5.4902 5.7109 5.8367 5.9092 5.9497
k 7 8 9 10 11 12 13
1 | 1.9907 1.9949 1.9972 1.9984 1.9991 1.9995 1.9997
T | 99721 5.9846 5.9915 5.9953 5.9974 5.9986 5.9992
k 14 15 16 17 18 19

1 | 1.9999 1.9999 2.0000 2.0000 2.0000 2.0000

2 [ 5.9996 5.9998 5.9999 5.9999 6.0000 6.0000

Tabela 9.2: Tteracoes geradas pelo Algoritmo de Trajetoria Central de Passos
Curtos

T2

X1

Figura 9.9: Algoritmo de Trajetéria Central de Passos Curtos
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Exemplo 9.3 Resolver o problema de programacao linear abaixo utilizando
o algoritmo de trajetéria central de passos curtos.

(P) maximizar 2z
sujeito a: I

L1

I

O dual de (P) é dado por

(D) minimizar 2u,
sujeito a:  uy

U

Uy

+

Y

+
+

Y

2ZE2
T2
T2
T2

U2
Uz
Ug
Ug

IV IV IV

AV VANIVAN
—_

2
-2
0

(9.48)

(9.49)

E dada uma solucéo inicial interior vidvel para o problema em A (04): =, =
0.5725, xo = 0.7818,u; = 5.4027, uy = 2.7760. Em seguida, reescrevemos os
problemas primal e dual na forma padrao, com a adi¢ao de variaveis de folga

x;, 1 =3,4esj,5=1,...,4, obtendo

(P) maximizar 2z; — 215
sujeito a: 1 + X9
ry — i)
o, T2
e

(D) minimizar 2u; + ug
sujeito a: w3 + us — 5

Ur — U2

Uy
Ug

S1

Y

€3

X3

S2

592

)

+ 24

53

53

A solucgao inicial interior viavel correspondente é

Y

AV

¥ = (0.5725 0.7818 0.6458 1.2093)7,

u’ (5.4027 2.7760)T

9

s = (6.1787 4.6267 5.4027 2.7760)7.

O valor da funcao objetivo em 2°

dado por

pd = (:EOTSO)/4 ~ 3.50.
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k 0 1 2 3 4 > 6 7
x| 0.5725 0.6766 1.1407 1.2046 1.2405 1.2574 1.2658 1.2701
xo | 0.7818 0.6524 0.3592 0.3172 0.2951 0.2847 0.2795 0.2769
k 8 9 10 11 12 13 14 15
xy | 1.2722  1.2732 1.2738 1.2740 1.2742 1.2742 1.2743 1.2743
o | 0.2756 0.2749 0.2746 0.2745 0.2744 0.2743 0.2743 0.2743

Tabela 9.3: Exemplo 9.3 - Iteragoes geradas pelo Algoritmo de Trajetéria
Central de Passos Curtos - Variaveis Primais

k 0 1 2 3 4 5 6 7
wp | 5.4027 1.1444 0.9435 0.4788 0.2426 0.1211 0.0606 0.0303
ug | 27760 1.2596 1.4259 1.6923 1.8431 1.9218 1.9609 1.9804
k 8 9 10 11 12 13 14 15
uy | 0.0151 0.0076 0.0038 0.0019 0.0009 0.0005 0.0002 0.0001
ug | 1.9902 19951 1.9976 1.9988 1.9994 1.9997 1.9998 1.9999

Tabela 9.4: Exemplo 9.3 - Iteracoes geradas pelo Algoritmo de Trajetéria
Central de Passos Curtos - Varidveis Duais

Utilizamos para resolver o problema, o mesmo programa em MATLAB
apresentado no exemplo anterior, substituindo apenas os dados de entrada.
Os valores de z; e x5 obtidos pelo algoritmo estao representados na tabela
9.3. A figura 9.10 mostra a trajetoria definida pelos pontos gerados a cada
iteracao do algoritmo, na regiao viavel do problema.

Observamos na figura, que a curva definida pelas iteragoes do algoritmo
nao converge para nenhum dos vértices do politopo que representa a regiao
viavel do problema, isto é, ela nao converge para nenhuma solucao bésica
viavel do problema. Na verdade esta curva estd convergindo para o centro
analitico da aresta do politopo, que corresponde ao segmento de reta que une
os vértices (1 = 1,29 = 0) e (z; = 1.5,29 = 0.5). Todos os pontos neste
segmento de reta sao solugoes 6timas do problema. Este exemplo tem uma
segunda caracteristica interessante. O problema dual definido em (9.49),
também tem apenas duas varidveis, u; e us e portanto pudemos plotar na
figura 9.11 as iteragoes realizadas pelo algoritmo no espaco das varidveis
duais. Observamos que o problema dual tem apenas uma solucao 6tima, u; =
0, us = 2. A curva representada na figura 9.11 esta portanto convergindo
para a unica solucao 6tima do problema dual. O valor das varidaveis nestas
iteracoes esta representado na tabela 9.4. n
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T2

T

Figura 9.10: Exemplo 9.3 - Algoritmo de Trajetoria Central de Passos Curtos
- Variaveis Primais

U2

U

Figura 9.11: Exemplo 9.3 - Algoritmo de Trajetéria Central de Passos Curtos
- Variaveis Duais
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O Algoritmo Preditor-Corretor

Em (9.25) definimos a direcdo de Newton para 7 € [0,1]. Observamos
que quando 7 assume os valores extremos 0 e 1, a direcao de Newton é co-
nhecida respectivamente como direcao afim-escala e dire¢ao de centralizacao.
A primeira aponta aproximadamente para o 6timo dos problemas P e D, no
entanto, ao caminharmos nela, podemos nos aproximar muito rapidamente
da fronteira do ortante nao negativo. Na verdade, se tomarmos um passo
unitdrio na diregao afim-escala a partir de um ponto em N («), o novo ponto
pode até mesmo nao satisfazer as restricoes de nao negatividade das varidveis
x e s. Por outro lado, ao tomarmos um passo unitario na direcao de cen-
tralizacao a partir de um ponto em N(«), temos a garantia de que o novo
ponto também pertencerd a N («), ou seja, ele serd vidvel e estard longe
da fronteira do ortante. No entanto, este passo mantém aproximadamente
constante o gap de dualidade. No algoritmo de trajetéria central de passos
curtos atribuimos para 7 um valor menor do que 1, sem no entanto, perder
a garantia fornecida pela direcao de centralizacao. Ou seja, continuamos
exigindo que ao tomarmos um passo unitario na direcao de Newton a partir
de um ponto em N (a), o novo ponto também pertencerd & vizinhanga. Esta
exigéncia faz com que o valor de 7 continue muito préximo de 1 e, conseqiien-
temente, a convergéncia do algoritmo em direcao ao 6timo do problema é,
em geral, lenta, como pode ser visto nos exemplos da se¢ao anterior.

Resultados melhores foram obtidos na pratica com a aplicacao do cha-
mado algoritmo preditor-corretor. Neste algoritmo, trabalhamos com duas
vizinhangas da trajetéria central definidas por (9.27) para dois diferentes
valores de a.. Tipicamente utiliza-se a; = 0.25 e ap = 0.5, de forma que a
primeira vizinhanca é um subconjunto da segunda. Dois tipos diferentes de
iteracao se intercalam entao, da seguinte forma:

Iteragoes fmpares: Constituem o chamado passo corretor no qual par-
timos de um ponto em N () e tomamos um passo unitério na diregao
de centralizacao. E possivel mostrar que o novo ponto obtido pertence
a N (o). Este passo tem entao como objetivo, centralizar.

Iteragoes Pares: Constituem o chamado passo preditor no qual parti-
mos de um ponto em N(a;) e caminhamos na diregdo afim-escala o
maximo possivel sem, no entanto, sair da vizinhanga A(az). Mais es-
pecificamente, partimos do ponto (x,u,s) € N(a;) e tomamos o novo
ponto (Z,u, 5) := (z,u, s)+o(Ax, Au, As), onde (Az, Au, As) é o passo
de Newton (9.25) calculado para T = 0 e o € [0, 1] assume o maior valor
para o qual (Z, 1, §) € N(ay). Este passo tem como objetivo, diminuir
o gap de dualidade.
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O algoritmo preditor-corretor mantém a complexidade de O(y/n log %) do
algoritmo de trajetéria central de passos curtos. Ele foi apresentado pela
primeira vez na forma mencionada por Mizuno, Todd e Ye em [MiToYe 93].

Exemplo 9.4 Resolver o problema de programagao linear (9.13) utilizando
o algoritmo preditor-corretor.

E dada uma solugdo inicial interior vidvel para o problema em N (0.5):
r1 = 1.6569, xo9 = 3.6706,u; = 3.8104, u, = 4.1066, uz = 1.7468. Em
seguida, reescrevemos os problemas primal e dual na forma padrao, com a
adigao de varidveis de folga z;, i = 3,...,5es;, j = 1,...,5. A solucao
inicial interior viavel correspondente é

29 = (1.6569 3.6706 2.3431 2.3294 5.6879)7,
u® = (3.8104 4.1066 1.7468)7T,
s = (6.0508 2.6003 3.8104 4.1066 1.7468)T.

O valor da funcao objetivo em 20 é 23.3237 e o gap de dualidade inicial é
dado por
10 = (2°75%) /5 = 9.6000.

Iniciamos o algoritmo com o passo corretor. Para definir a dire¢ao de busca
deste passo, resolvemos o sistema linear

0 AT —I7[Az° 0
A 0 0 Aul | = 0 :
SO0 XY | As poe — X°S%
onde
1 1
A = 11 ,
3 2 1
1.6569
3.6706
X0 — 2.3431 ,
2.3294
5.6879
6.0508
2.6003
S0 — 3.8104 ,
4.1066
1.7468

poe — X°S% = (—0.4258 0.0555 0.6721 0.0340 — 0.3357)7.
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A solucao do sistema linear é dada por

Az’ = (—0.0598 0.0618 0.0598 —0.0618 0.0557)T,
Au’ = (0.1896 0.1236 — 0.0761)7,
As® = (-0.0387 —0.0287 0.1896 0.1236 —0.0761)T.

O novo ponto, que pertence a N'(0.25) ¢ dado por

ot =204+ Az® = (1.5972 3.7324 2.4028 2.2676 5.7436)7,
u' =u + Au® = (4.0000 4.2302 1.6707)7,
st=s"4+As" = (6.0121 2.5716 4.0000 4.2302 1.6707)7T.

O valor da funcao objetivo em z! é 23.4536 e o gap de dualidade é dado por
pt = (25" /5 = 9.6000.

Como ja era esperado pela andlise tedrica, nao houve diminuicao no gap de
dualidade no passo corretor.

Partimos agora para o passo preditor. Para definir a direcao de busca
deste passo, resolvemos o sistema linear

0 AT —I7T[Ax! 0
A 0 0 Aut| = 0 ;
st X! Ast —X'Ste
onde
1.5972
3.7324
Xt = 2.4028 e
2.2676
5.7436
6.0121
2.5716
IS 4.0000
4.2302
1.6707

A solugao do sistema linear é dada por

Azt = (0.0903 1.3024 —0.0903 —1.3024 — 2.8758)7T,
Aul (—3.8496 —1.8006 — 0.8342)7,
As! = (—6.3521 —3.4689 —3.8496 —1.8006 — 0.8342)T.
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Uma vez calculada a direcao a seguir, devemos agora calcular o tamanho do
passo que pode ser dado nesta dire¢ao sem que se saia da vizinhanga N (0.5).
Iniciamos este calculo pelo teste da razao, uma vez que o novo ponto deve
também ser interior viavel, ou seja, as componentes de x e s devem se manter
positivas.

AN = minj:17..,,n{—x}/Aw]1-\Ax]1- < 0} = 1.7411,
PO— minj:17.,,,n{—3]1-/As}]As} < 0} = 0.7413,
A = 0.995 x« min{\;, A2} = 0.7376.

Como (z1 + NAzy,u; + Mug, sy + AMAs;) € N(0.5), calculamos o menor g
inteiro e positivo, tal que

(.Tl —+ (095)q)\A£U1, U + (095)q/\AU1, S1+ (095)q)\A51) S N(O5)
Encontramos ¢ = 5 e consequentemente o novo ponto é

22 =2 + (0.95)°AAz! = (1.6487 4.4758 23513 1.5242 4.1022)7,
w2 =u' + (0.95)°AAu! = (1.8028 3.2025 1.1946)7,
s2 = s' 4+ (0.95)°AAst = (23866 0.5917 1.8028 3.2025 1.1946).

O valor da funcao objetivo em 22 é 27.3251 e o gap de dualidade é dado
por
pt = (2*"s%)/5 = 4.1208.

Observamos que houve uma diminui¢ao no gap de dualidade no passo predi-
tor.

A primeira iteracao do algoritmo esta completa. Como o gap de dualidade
ainda é bastante grande, seguimos com uma nova iteracao. Deixamos a
proxima iteragao do algoritmo como exercicio para o leitor.

Apresentamos abaixo o programa em MATLAB que implementa o algo-
ritmo preditor-corretor, no qual consideramos a precisao € = 1074,

%Algoritmo Preditor-Corretor

n=>5;

m=3;

k=0;
epsilon=10"(-4);
alfal=0.25;
alfa2=0.5;
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A=[1 01 00;01010;3200 1];

%ler solucao inicial sol=[x,u,s]:

sol=input (’Entre com a solucao inicial sol=[x,u,s]:’);
x=s01(1:5);

s=s01(9:13);

mi=(x’*s)/n;

while (mi>= epsilon)
M=[zeros(n,n) A’ -eye(n,n); A zeros(m,m) zeros(m,n);
diag(s) zeros(n,m) diag(x)];
ld=[zeros(n,1); zeros(m,1) ; (mi*ones(n,1))-(diag(x)*s)];
dir=M\1d;
sol=sol+dir;
x=s0l1(1:5);
s=s01(9:13);
mi=(x’*s)/n;

M=[zeros(n,n) A’ -eye(n,n); A zeros(m,m) zeros(m,n);
diag(s) zeros(n,m) diag(x)];
1ld=[zeros(n,1); zeros(m,1) ; -(diag(x)*s)];

dir=M\1d;
aux=[10];
for i=1:5
if (dir(i)<0)
aux = [aux; -sol(i)/dir(i)];
end
end
for i=9:13
if (dir(i)<0)
aux = [aux; -sol(i)/dir(i)];
end
end

perc = min(1,0.995*min (aux)) ;
soll=sol+perc*dir;
x1=s011(1:5);

s1=s5011(9:13);
mil=(x1’%*s1)/n;
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k 1 2 3 4 ) 6
passo | x; | 1.5972 1.6772 1.8484 1.9682 1.9978 2.0000

corretor | x| 3.7324 4.8167 5.5683 5.9070 5.9934 6.0000
passo | x; | 1.6487 1.7621 1.9557 1.9983 2.0000 2.0000

preditor | xy | 4.4758 5.5089 5.8969 5.9923 6.0000 6.0000

Tabela 9.5: Iteragoes geradas pelo Algoritmo Preditor-Corrtetor

while (norm(xl.*sl-mil*ones(n,1))> alfa2*mil)
perc=0.95%perc;
soll=sol+perc*dir;
x1=s011(1:5);
s81=5011(9:13);
mil=(x1’#*s1)/n;

end

sol = solil;

x=x1;

s=s1;

mi=mil;

k=k+1;

end

Os valores de x; e x5 obtidos pelo algoritmo a cada iteragao k estao
representados na tabela 9.5. A trajetoria definida pelos pontos gerados a
cada iteragao do algoritmo, na regiao viavel do problema, esté representada
na figura 9.12. n

O Algoritmo de Trajetoria Central de Passos Longos

A utilizagado da norma Euclideana na defini¢do de § em (9.26) restringe
bastante o conjunto de pontos que pertencem & vizinhanga AN (a). Mesmo
para valores de o préximos de 1, o conjunto de pontos em F° é bem maior
que o conjunto de pontos em N (). Como resultado, os algoritmos que per-
manecem sempre nesta vizinhanga, podem caminhar pouco a cada iteracao
em direcao ao étimo.

Algoritmos praticos utilizam outras normas para definir vizinhancas da
trajetéria central mais abrangentes. As duas vizinhancas mais interessantes
sao:
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X2

X1

Figura 9.12: Algoritmo Preditor-Corretor

No(a) := U {(z,u,5) € FOlbuo(, s, 1) < a},

e (0,00)

onde .
5%(37’ S, :u) = ;”XS@ - u6||oo7
e
Now(a):= |J {(z,u,s) € Flo_o(z,s,1) < a},

we(0,00)

onde .
5—oo($a57:u) = ;”Xse_uen—om (950)

e dado v € IRY, temos por definigao que ||v]|_o < 3 se e somente se v; > —3
paratodoi=1,..., N.

Podemos verificar facilmente que para um dado « estas duas vizinhancas
contém um nimero de pontos vidveis dos problemas (P) e (D) consideravel-
mente maior que N(a). A vizinhanga N («), em partilcular, torna-se bem
préxima de F° & medida que o tende para 1.

Algoritmos de trajetoria central de passos longos utilizam estas vizinhan-
¢as mais abrangentes. Neles, o parametro 7 recebe um valor menor do que
o recebido no algoritmo de trajetoria central de passos curtos e, portanto, a
tentativa de decrescer o gap de dualidade é mais agressiva a cada iteracao.
Como eles tém mais espaco para trabalhar, o progresso em direcao ao étimo
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¢ mais rapido. Ao tomarmos um valor pequeno para 7, no entanto, nao
garantimos mais que o ponto resultante de um passo unitario na direcao
de Newton (9.25) continue pertencendo a vizinhanga da trajetéria. Neste
caso, utilizamos um procedimento analogo ao descrito no passo preditor do
algoritmo preditor-corretor, no qual realizamos uma busca linear que estabe-
lece o maior passo permitido na direcao de Newton, para que o novo ponto
alcangado permanega na vizinhanga. Os algoritmos de trajetoria central de
passos longos tém uma melhor performance na pratica do que os algoritmos
de passos curtos. Sua complexidade, no entanto, aumenta para O(nlog %)
iteragoes.

Exemplo 9.5 Resolver o problema de programagao linear (9.13) utilizando
o algoritmo de trajetéria central de passos longos.

E dada uma solucio inicial interior vidvel para o problema em N_(0.8):
x1 = 1.1307, xo = 3.3837, uy = 2.5332, uy = 3.9880, uz = 1.9028. Em
seguida, reescrevemos os problemas primal e dual na forma padrao, com a
adi¢ao de variaveis de folga z;, ¢ = 3,...,5 e s;, j = 1,...,5. A solucao
inicial interior viavel correspondente é

¥ = (1.1307 3.3837 2.8693 2.6163 7.8404)T,
(2.5332  3.9880 1.9028)7T,
s = (52415 2.7936 2.5332 3.9880 1.9028)T.

<
=)
|

O valor da funcao objetivo em 2% é 20.3108 ¢ o gap de dualidade inicial é
dado por

10 = (2°"s%) /5 = 9.6000.

Para definir a dire¢ao de busca resolvemos o sistema linear

0 AT —I1[Ax° 0
A 0 0 Aul | = 0 :
SO0 X | As Tige — X°S0%
onde
1 1
A = 11 ,
3 2 1

169



1.1307
3.3837
X0 = 2.8693
2.6163
7.8404
5.2415
2.7936
SV = 2.5332
3.9880
1.9028

7 = (1-(1/5))/10 = 0.0553,
Tige — X°S% = (—5.3961 —8.9219 —6.7377 — 9.9031 — 14.3878 )7,

A solugao do sistema linear é dada por

Az’ = (0.1371 1.3910 —0.1371 —1.3910 —3.1932)7,
A’ = (22272 —1.6649 —1.0601)7,
As® = (—5.4076 —3.7851 —22272 —1.6649 —1.0601)T

Uma vez calculada a direcao a seguir, devemos agora calcular o tamanho
do passo que pode ser dado nesta diregao sem que se saia da vizinhanca
N_5(0.8). Como verificamos que (xg + Azg, ug + Aug, so + Asg) & Noo(0.8),
calculamos o menor ¢ inteiro e positivo, tal que (z¢ + (0.95)7Axg, ug +
(0.95)7A\Aug, so + (0.95)7Asy) € Nx(0.4). Encontramos ¢ = 7 e conseqiien-
temente o novo ponto é

ol =204 (0.95)7Az° = (1.2265 4.3551 2.7735 1.6449 5.6104)7,
ul =u® + (0.95)7Au’ = (0.9778 2.8254 1.1625)7,
st =50+ (0.95)7As" = (1.4652 0.1503 0.9778 2.8254 1.1625)7.

O valor da funcao objetivo em z! é 25.4549 e o gap de dualidade é dado
por
pt = (275" /5 = 3.2666.

A primeira iteragao do algoritmo esta completa. Como o gap de dualidade
ainda é bastante grande, seguimos com uma nova iteracao. Deixamos a
proxima iteragao do algoritmo como exercicio para o leitor.

Apresentamos abaixo o programa em MATLAB que implementa o algo-
ritmo de trajetoria central de passos longos, no qual consideramos a precisao
e=10"%
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% Algoritmo de Trajetoria Central de Passos Longos

n=5;

m=3;

k=0;
epsilon=10~(-4);
alfa = 0.8;

tal = (1 - (1/sqrt(n)))/10;
A=[1 0100;01010;3200 1];
%ler solucao inicial sol=[x,u,s]:
sol=input (’Entre com a solucao inicial sol=[x,u,s]:’);
x=s01(1:5)
5=501(9:13);
mi=(x’*s)/n;
while (mi>= epsilon)
M=[zeros(n,n) A’ -eye(n,n); A zeros(m,m) zeros(m,n);
diag(s) zeros(n,m) diag(x)];
ld=[zeros(n,1); zeros(m,1) ; (tal*mixones(n,1))-(diag(x)*s)];
dir=M\1d;
perc=1;
soll=sol+percx*dir;
x1=s011(1:5);
s1=s011(9:13);
mil=(x1’*s1)/n;
while (min(x1.*sl-mil*ones(n,1))< -alfa*mil)
perc=0.95%perc;
soll=sol+perc*dir;
x1=s011(1:5);
s1=5011(9:13);
mil=(x1’%*s1)/n;
end
sol = soll;
x=x1;
s=s1;
mi=mil;
k=k+1;
end

Os valores de x; e x5 obtidos pelo algoritmo a cada iteragao k estao

representados na tabela 9.6. A trajetoria definida pelos pontos gerados a
cada iteragao do algoritmo, na regiao viavel do problema, esté representada

171



k 0 1 2 3 4 > 6 7
i | 1.1307 1.2265 1.3320 1.6593 2.0050 2.0001 2.0000 2.0000
x2 | 3.3837 4.3551 5.1780 5.8038 5.9742 5.9986 5.9999 6.0000

Tabela 9.6: Iteracoes geradas pelo Algoritmo de Trajetoria Central de Passos
Longos

T2

T

Figura 9.13: Algoritmo de Trajetoria Central de Passos Longos

na figura 9.13. ]

Algoritmos de Trajetoria Central Inviaveis

Os algoritmos de trajetéria central apresentados até agora requerem uma
solucao inicial (z°,u°, s°), tal que Az° = b, 2° > 0 e ATu’—s = ¢, s > 0. Ou
seja, para inicializarmos os algoritmos, precisamos de uma solucao viavel e
estritamente positiva tanto para o problema primal, quanto para o problema
dual. E possivel, no entanto, utilizar o método de Newton para desenvolver
algoritmos que partem a cada iteracao de pontos nao viaveis. A tnica im-
posicao feita sobre o ponto de partida destes algoritmos é a positividade de
xes.
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Consideremos os residuos primal e dual associados a um ponto (z,u, s),
definidos respectivamente por:

ppi=b— Ax e pe:=c— Alu+s.

A direcao de Newton, que aproxima a direcdo que nos leva ao ponto da
trajetoria central (z,,u,,s,), a partir de um ponto (z,u,s), é dada pela
solucao do seguinte sistema linear:

0 AT —I7[Ax Pe
A 0 0 Au| = Db (9.51)
S 0 X As pe — X Se

onde as duas primeiras componentes do lado direito da equagao (9.16)
deixam de ser nulas para assumirem o valor dos residuos associados ao ponto
de partida.

Consideremos entao algoritmos que partem, a cada iteracao, de um ponto
(x,u,s) e caminham na direcdo de Newton, dada pela solugao de (9.51).
Devemos observar que ao caminharmos nesta direcao, estamos ao mesmo
tempo interessados na centralizacao e na diminuicao dos residuos primal e
dual. Facilmente verificamos que, se um passo unitario é dado na direcao
de Newton, o novo ponto encontrado sera primal e dual viavel, ja que, pela
equagao (9.51) e pelas definigdes de p. e py, temos:

AT(u+ Au) — (s + As) = ATu— s+ ATAu— As = ATu— s+ p, = c,

¢,

A(x + Azx) = Az + AAx = Az + p, = .

A partir de um ponto primal e dual viavel, passos sucessivos na direcao de
Newton, nos levarao sempre a pontos também vidveis, ja que, neste caso
teremos p. = pp = 0 em (9.51).

Algoritmos de trajetéria central invidveis partem a cada iteragao de um
ponto (z,u,s) tal que z > 0 e s > 0, e caminham na dire¢ao (9.51) se
mantendo sempre numa vizinhanca da trajetéria central. Esta vizinhanca é
uma estencao da vizinhanga N («), definida para o algoritmo de trajetéria
central de passos longos, que contem pontos que violam as restricoes Az = b
e ATy — s = c. Na vizinhanca estendida, as normas dos residuos primal e
dual sao limitadas por uma constante vezes . Desta forma, conforme u — 0,
os residuos ficam cada vez menores e nos aproximamos portanto, da regiao
viavel dos problemas (P) e (D). A defini¢ao da vizinhanca estendida é dada
por:
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| (pos pe)ll }
N—oo s = 5—00 y Oy > O T N é M s 0
7 MGHOO){ (@am) S o) < et () >

onde o € (0,1), 3> 1, §_oo(x, s, 1) estd definida em (9.50) e p) e p° sdo os
residuos relativos ao ponto de partida do algoritmo, (z°u°, s°).

Os algoritmos de trajetoria central inviaveis geram uma solucao para os
problemas (P) e (D), (x%,u* s*), para a qual y* < ¢, em nao mais que

O(n*log ¢) iteragoes.

Exemplo 9.6 Resolver o problema de programagao linear (9.13) utilizando
o algoritmo de trajetoria central inviavel.

Reescrevemos os problemas primal e dual na forma padrao, com a adicao
de varidveis de folga x;, 1 = 3,...,5 e s;, j = 1,...,5. E dada uma solugao
inicial nao vidvel para o problema em N_,,(0.8,1.4):

O = (11 1 1 17,
W o= (2 2 27,
L= (2 2 2 2 2.
Neste ponto, temos 1° = (207 s°) /5 = 2 e os residuos primal e dual sao dados
por:
1
4 1 1 1 2
ppi=b—A2"=| 6 | — 1 1 1= 4 |,
18 3 2 1 1 12
1
3 1 3 2 -3
) 1 2 2 2 1
pei=c—ATW +s"=[0 || 1 2 14+ 2 (= 0
0 1 2 2 0
0 1 2 0

Para definir a dire¢ao de busca resolvemos o sistema linear

0 AT —I7[Ax° Pe
A 0 0 Al | = Pb ;
SO0 X0 [AS Tuge — X°S%
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onde

1
1
X = 1 ,
1
1
2
2
SO = 2 ,
2
2
T = 0.1,

e — X°S% = (=18 —-18 —-18 —18 —1.8)T.
A solugao do sistema linear é dada por

Az’ = (1.7800 3.2700 0.2200 0.7300 0.1200)7,
Au’ = (-22400 —3.2600 —2.0400)7,
As® = (=53600 —8.3400 —2.2400 —3.2600 —2.0400)7.

Uma vez calculada a direcao a seguir, devemos agora calcular o tamanho
do passo que pode ser dado nesta dire¢ao sem que se saia da vizinhanca
N_(0.8,1.4). Iniciamos este calculo pelo teste da razdo, uma vez que no
novo ponto as componentes de x e s devem se manter positivas. Como
todas as componentes de Az® sdao positivas, s6 realizamos o teste da razao
considerando o passo dado em s.

A =0.995 j:rrll’i“r.l’n{—s? /As]|As] < 0} = 0.2386.

Como (zg + MAxg, ug + Mug, so + AAsg) ¢ N_(0.8,1.4), calculamos o
menor ¢ inteiro e positivo, tal que (xq + (0.95)9 Az, ug + (0.95)9 \Aug, s +
(0.95)7A\Asg) € N_(0.4,1.4). Encontramos ¢ = 2 e consequentemente o
novo ponto é

2t = 2%+ (0.95)2AAx” (1.3833  1.7042 1.0474 1.1572 1.0258)7,
ut = u® + (0.95)2 2 Au’ (1.5176  1.2980 1.5607)7,
st =5+ (0.95)20As" = (0.8458 0.2040 1.5176 1.2980 1.5607)T.

Neste ponto temos
pt = (275" /5 = 1.2420.

A primeira iteracao do algoritmo estda completa. Como p ainda é bastante
grande, seguimos com uma nova iteracao. Deixamos a préxima iteracao do
algoritmo como exercicio para o leitor.
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Apresentamos abaixo o programa em MATLAB que implementa o algo-
ritmo de trajetéria central invidvel, no qual consideramos a precisao € = 1074,

%Algoritmo de Trajetoria Central Inviavel

n=5;

m=3;

k=0;

epsilon=10"(-4);

alfa = 0.8;

beta = 1.4;

tal = 0.4;

A=[1 01 00;01010;3200 1];
b=[4 6 18]°;

c=[3 500 0]’;

%ler solucao inicial sol=[x,u,s]:
sol=input (’Entre com a solucao inicial sol=[x,u,s]:’);
x=s01(1:5)

u=s01(6:8);

s=501(9:13);

mi=(x’*s)/n;

miO=mi;

rob=b-Ax*x;

roc=c-(A’*u)+s;

robO=rob;

rocO=roc;
normrrO=norm([rob0;roc0],inf)/mi0;

while (mi>= epsilon)
M=[zeros(n,n) A’ -eye(n,n); A zeros(m,m) zeros(m,n);
diag(s) zeros(n,m) diag(x)];
ld=[roc; rob; (tal*mi*ones(n,1))-(diag(x)*s)];
dir=M\1d;
%teste da razao
aux=[10];
for i=1:5
if (dir(i)<0)
aux = [aux; -so0l(i)/dir(i)];
end
end
for i=9:13
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if (dir(i)<0)
aux = [aux; -sol(i)/dir(i)];
end
end

perc = min(1,0.995*min (aux)) ;
soll=sol+perc*dir;
x1=s011(1:5);

ul=s011(6:8);

81=s011(9:13);
mil=(x1’%*s1)/n;

robl=b-A*x1;
rocl=c-(A’*ul)+si;

while((min(x1.*s1)<(1-alfa)*mil) | (min([robl;rocl])
<-beta*normrrO*mil) | (mi1>(1-0.01*perc)*mi))

perc=0.95%*perc;
soll=sol+percxdir;
x1=8011(1:5);
ul=s011(6:8);
s1=5011(9:13);
mil=(x1’*s1)/n;
robl=b-A*x1;
rocl=c-(A’*ul)+si;

end

sol = soll;

x=x1

u=ul;

s=s1;

mi=mil;

rob=robil;

roc=rocl;

k=k+1;

end

Os valores de x1 e x5 obtidos pelo algoritmo estao representados na tabela
9.7. A figura 9.14 mostra a trajetoria definida pelos pontos gerados a cada
iteragao do algoritmo, na regiao viavel do problema.

Observamos que apesar do ponto (1, x3) pertencer a regiao viavel primal,
desde a primeira iteracao do algoritmo, como pode ser visto na figura 9.7;
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k 0 1 2 3 4
z; | 1.0000 1.3833 1.4617 1.4795 1.5599
x2 | 1.0000 1.7042 2.5206 3.3535 4.9700
k ) 6 7 8

1 | 1.8569 1.9954 1.9999 2.0000

x2 | 5.7649 5.9976 5.9997 6.0000

Tabela 9.7: Iteragoes geradas pelo Algoritmo de Trajetéria Central Invidvel

o ponto inicial utilizado, (2% u° %) = (1,1,1,1,1,2,2,2,2,2,2,2,2), nao é
primal nem dual viavel. [

9.6 Algoritmos de Redugao Potencial

Na secao anterior apresentamos os algoritmos de trajetoria central. Verifi-
camos que estes algoritmos geram pontos sempre numa vizinhanca da tra-
jetoria central, como forma de evitar a fronteira do ortante nao negativo.
Nesta secao estudaremos os algoritmos de reducao potencial. Estes algo-
ritmos também objetivam aumentar o valor da funcao objetivo de (P) a
cada iteracao, sem se aproximar da fronteira da regiao viavel do problema.
Seguindo este intuito, o progresso do algoritmo em direcao ao 6timo é medido
pela seguinte fungao potencial:

f(x,s) = ploga’s — > logx;s; (9.52)
i=1
onde p é uma constante maior que n.
Lembrando de (9.24), que s”x = bTu — ¢z, verificamos que o primeiro
termo da funcao potencial mede o gap de dualidade. E considerando a equi-
valéncia

> logas; =Y logz; + Y logs;,
i1 =1 =1

verificamos que o segundo termo da fun¢ao penaliza a proximidade a fronteira
da regiao viavel tanto do problema primal quanto do dual.

As fungoes potenciais sempre foram consideradas nos métodos de pontos
interiores. O algoritmo de Karmarkar ja empregava a redugao de uma fungao
potencial que constitui uma pequena variacao de (9.52). Como sugerido pelo
nome, os algoritmos de redugao potencial visam a cada iteracao, reduzir o
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X2

1

Figura 9.14: Algoritmo de Trajetoria Central Inviavel

valor da funcao potencial de um determinado valor constante. A motivagao
para tal procedimento estd no préximo teorema, que nos fornece um resultado
global quanto a complexidade desses algoritmos.

Teorema 9.4 Considere um ponto inicial primal vidvel z° € X°, um ponto
inicial dual vidvel (u°,s°) € 8° e uma tolerancia ¢ > 0. Suponha que um
algoritmo gera uma seqiiéncia de pontos ¥ € X0 e (u*,s*) € S° e reduz a
cada iteragdo o valor da fungao potencial (9.52) de uma grandeza maior ou
tgual a 0 > 0. Entao este algoritmo gera uma solucao com gap de dualidade

T
AR <e€
para todo k > K, onde

K = (15 ((p —n) 1og1 + f(2°, s°)> (9.53)

Demonstracao
Da definigao da funcao potencial (9.52), temos

z,s) = plogzTs —3"  logz;s;
f( ) ) plog =1 g
—n)logzTs — 3" . 1o
P g =1 g
(p—n)logaTs.

XiS4
zl's

AV
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Logo,
(p—n)loga*" s* < f(a*,s*) < f(a°,5%) — ko,

ou,

0 0y _ k
logkaskgf(x’S) 5.
p—n
Para que o critério 2k gk < € seja alcancado, basta entao que k satisfaca a
relagao
0 L0\ _ ko
p—n
isto é,
—kd < (p—n)loge — f(a°,s°)
ou,

k25 (0= mtog > + 7 59)

O algoritmo de reducao potencial primal-dual de Kojima, Mizuno e Yo-
shise [KoMiYo 91|, apresentado e analisado a seguir, utiliza a diregdo de
Newton (9.16) como diregao de busca. A sua analise de complexidade consiste
basicamente em verificar que determinada escolha do parametro 7 garante a
reducao da funcao potencial a cada iteracao, de um valor constante.

Dada uma solucao inicial (2%, u°, s°) € F° e € > 0, este algoritmo requer
O(y/nlog %) iteracoes para reduzir o gap de dualidade 27's a um valor menor

que €.

n

Algoritmo 9.3 (Redugao Potencial) Dados: p >n, T = 2 (2% u° s%) e
FO .

k:=0;
Repita enquanto kT sk > ¢
Faca 1, = T, i, = :vas’“/n;

Calcule a direcao de Newton (9.25), ou seja, resolva o sistema

0 AT —I7 [AxF 0
A 0 0 AuF | = 0 :
Sko0 Xk AsF Teppe — XFSke
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Faca

(2L bt kL) = (2F ub %) 4+ ap Ak, AuP, AsF);

b=kt 1 (9:54)

Fim (Repita)

No passo (9.54), ay é obtido por uma busca linear, ou seja,
ap = argminae[o’u{f(xk +aAxk s* + aAsh)|2" +aAz® > 0,57 +aAs” > 0},

No teorema 9.5, verificaremos a redugao da fungao potencial f(z,s), a
cada iteragao do algoritmo (9.3). Os resultados dos lemas colocados a seguir
serao utilizados na demonstracao do teorema.

Lema 9.7 Seja u € IR™, tal que ||ul|oo < 1. Entdo
N ]l

log(1 4+ u;) > efu — .

;::1 2(1 — [Julls)

Demonstragao
Desenvolvendo-se a fungao log(1 + u;) em série de Taylor, obtem-se

g
(—1)3"*' u

log(1+u;) = X324 7 A
> U= =2 |uil?
= Ui a—fu)

Considerando agora que |u;| < ||ul|» para todo i, temos

n n 1 n
log(1+uw) > > u— ———= > ul.
2 loa(l ) 2 2w = 5 2 -

=1 i=1

Lema 9.8 Seja
T=x+alAzxr e §5=s+als.

Defina
V=X:57 ¢ D=X357,
e considere a constante 3, tal que
B> amax (| X Azl [| ST Asluo) - (9.55)

Entao,
f(j?,éj-f(l’,S) < —OéﬁHD_lAI—FDASHQ

+ ﬁ%“l)_lAl’ + .DASH2

181



Demonstracao
Utilizando a definicao da fungao potencial (9.52), temos

f(iag) —f(.CL’,S) = p(log:i’Té—longs)
— P ilogz, + >0 logx;
— >, logs; + >0 log s;.

Logo,
T3 n e n =
~ o~ T S ZT; S;
f(2,8) = f(z,8) = plog —— — Zlog— — Zlog—.
A A e
Consideremos agora as seguintes relagoes:

T
T

(z+alAz)T (s+als)
zT's

ﬁ (sz +a« (xTAs + sTAx) + a2AxTAS)
(xTAersTA:(:)
T ZTs

&1
wy

8
»

= l+a

onde a ultima igualdade utiliza o resultado do lema 9.1,

— = =14« ,
¢ 5 A A

S; S; + aAs; S;

—=— =14« .

Si S Si

Temos entao

f(z,3) = f(z,s) = plog (14’04%)

— Xt log 14‘04%)
- i1 log

T

1+0zAs—fi).

Considerando que x, Z, s e § sao vetores estritamente positivos, temos que

713 2T As + sTAx 2T As+ sTAx
—>0=1l+ta—F——>0= —a—+—— <1

zTs xTs 2Ts

Aplicando entao a conhecida relagao log(1l —t) < —t, para t < 1, temos

T As + STAx> 2T As + sTAx
—g | S

T T

T T~ S

log (1 +
s

Utilizando agora o resultado do lema 9.7, temos que, se o é pequeno o sufi-
ciente para satisfazer as relagoes

| XT'Az|l €1 e al|STMASs|e <1, (9.56)
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as seguintes desigualdades sao verificadas:

" Ax; a?|| XAz |?
—Ylog (1 ') < —aeXTIA
2 Og( e > = T - XAzl
€ n A 2”5 1A ||2
S; a?|[STAs
—Ylog (1 L) < —ae’STIA :
2 Og< o ) =T T3 a5 As]L)
Conseqlientemente,

~ o~ TA TA
f(iL‘,S) - f(wa 8) < pa% 2 X1 Aa?
Ty -1 2| XAz
— e XTAT + 5 AL

— T g-1 _a?ISMAs|?
ae’ ST As + 2(1—al[S—TAs]o) "

Seja a constante (3, tal que
B> amax (| XAzl [|S7 Al
temos entao
f(#,8) = f(x,5) < pathspsie

— ael ()ngx + S71As) (9.57)
b (XA 4 S As?).

Utilizando as defini¢oes de V' e D, temos

7$TA:SB}L§TA$ — el (X7 1Az + S71As)
el (XAs+ SAz) — e (X TAz + S71As)

el (VDAs+ VD 'Az) — el (VID™ Az + V7IDAs)
e (" (VTIDT Az + VT DAs) — VD' Ax — VDAs) |
e (V=1 (D7 Az + DAs) — V (D7 Az + DAs) )|

el (V-1 — V) (D'Az + DAs)|

my —le — Ve)T (D7 'Az + DAS):|

(
(v (e - v2e))" (D e + DY)
(

hs

V=1 (e — XSe))' (D7 Az + DAs)
(V-1 (SAz + XAs))" (D'Az + DAs)
(

(D'Az + DAs)" (D7'Ax + DAS)]
- ﬁH_D*le + DAs|]?,

IEl 2 B 2R 2R ERER Y

(9.58)
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onde a nona igualdade é conseqiiéncia da terceira equacao do sistema de
Newton (9.25). Temos também

| X TAz|* + ||S~tAs|? |[VID71Az|? + ||V IDAs|?
IVZHE (D~ Az|* + | DAs|?) - (9.59)
2= (D71 Az|* + [ DAs|?) .

INIA

onde a ultima desigualdade decorre da relacao ||Al < /|| A|l1]|Al|, vélida

para toda matriz A, e demostrada em ([GoVo 96, corolario 2.3.2, pp.58]).
Finalmente, utilizando novamente o resultado do lema 9.1, temos que

|D7'Az + DAs||? = (D™ 'Ax + DAs)T(D 1Az + DAs)
= ||D7'Az|* + 2Az2TAs + || DAs||? (9.60)
= [ID7 Az[* + || DAs|.

Portanto, utilizando as relagdes (9.57), (9.58), (9.59), (9.60), temos

f(f,g)—f(iL’,S) < _aﬁHD_lAw_'_DASHQ

+ s | D7 A + DAs|? "
Lema 9.9 Seja x,s >0 e p > n++/n. Entao
1 V3
ID'Ax 4 DAs| > ML V3
P Umin 2
Demonstracao
£ | DT Az + DAs|? = [[Vle - Lo 2
[V=lel? = 2.8 e"V o + 65 |u]%.

Considerando que

V=(X9) = |jv|?*= Y aisi=a"s=npu

i=1

Vv =ele=n,

temos
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LD Az + DAS|P = [V le|f? — 22 + £

[Vt + 52

= [Vl + 7,35*"2
> ||v- e||2+("+\/ﬁn$
= [[V-'te]?+

_ —1,112 n2 1

= [[V7le|l® - netu

= Vel = 20+
e e

= e - By Lty

= IVt - feryiy + Lol + 2
— Ve w2“

(2~ o)+ 2

Umin

2
n .
(vmin Umln) + /JL}
b ) 43 y
2Umin min 4 vmm
1

2.
min

v

=
m"_‘ o

vV
Blw T

onde a segunda desigualdade mais uma vez decorre da relacao

A< /T[] Al oo- "

Teorema 9.5 Seja p > n + /n. Entao existe &, tal que
flz + aAx, s + alAs) — f(z,s) < —0.18.

Demonstracao

Seja

~ Umin B 1

T 9|DAz + DAs|

Utilizando (9.59) e (9.60), temos

1
| X tAz|]? + ||SAs|)? < —— D' Az + DAs|*

Portanto,

A|X 1Azl < GIX Az < a-L||D'Az + DAs|

—L_||D71Ax + DAs||

Umin
2||D—1Az+DAS]| vmin

IFIA

|
ol
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a7 Asll < IS NS < agl DT AT + DAS|

|D7'Az + DAs||

I IA

Umin

2||D IAz+DAS|| Vimin

|
Qv

Conseqiientemente, & e 3 satisfazem as especificacoes (9.56) e (9.55) respec-
tivamente, e podemos entao, utilizar os resultados dos lemas e teoremas
anteriores.

Do lema 9.8, temos

f(x+alAz,s+ads) — f(z,s)
< —OépllD 'Az + DAs|?
+ s, 1P A + DAs|*
- meD 'Ax + DAs||?
" 2 1D+ DA

4]/ D— 1Az+DAs||2 2(1-p8) v2,

=~ 2| D7 Ag + DRs| + b

Utilizando agora o resultado do lema 9.9, temos

flz+ aAx, s+ alAs) — f(x,s) < —tmnl V3 oy

- 2 np 2Urmn P ( B)
B ST
Finalmente, considerando B = %, temos
flz+ alAx, s + alAs) — f(z,s) < —0.18. "

Considerando agora p =n++/n e § = 0.18 em (9.53), chegamos a ordem
do ntimero de iteragoes realizadas pelo algorimo 9.3, O(y/nlog 1).

Exemplo 9.7 Resolver o problema de programagao linear (9.13) utilizando
o algoritmo de redugao potencial.

E dada uma solucao inicial interior viavel para o problema: xz; =1, x5 =
1, uy = 2, us = 2, uzg = 2. Em seguida, reescrevemos os problemas primal e
dual na forma padrao, com a adicao de variaveis de folga x;, i = 3,...,5 e
sj, j=1,...,5. A solugao inicial interior vidvel correspondente é
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O gap de dualidade em (2°,5°) ¢ 2°7s = 48 e
fo = :UOTSO/n = 9.6.

O valor da funcao potencial neste ponto inicial é dado por:

f(2°,5°) = plog 20750 — Zlog 19s? = 281.3782,
i=1
onde p = 2n = 75. Para definir a direcao de busca resolvemos o sistema
linear

0 AT —I7 [AZ° 0
A 0 0 AWl | = 0 ;
SO0 X0 [AS Tupe — X%S%
onde
1 1
A = 11 :
3 2 1
1
1
X0 = 3 ,
5
13
5
1
SO = 2 ,
2
2

T = n/p=0.0667,
Tuge — X°S% = (—4.3600 — 0.3600 — 5.3600 — 9.3600 — 25.3600)7.

A solugao do sistema linear é dada por
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Az’ = (0.1206 2.6309 —0.1206 —2.6309 — 5.6236)7,
Aud = (=1.7063 —0.8197 —1.0856)7,
As® = (—4.9631 —29909 —1.7063 —0.8197 —1.0856)7.

Uma vez calculada a direcao a seguir, devemos agora calcular o tamanho do
passo que pode ser dado nesta direcao. Iniciamos este cdlculo pelo teste da
razao, ja que as componentes de x e s devem se manter nao negativas:

1111

Ao = minj_y . {—s)/Asf|As) <0} = 0.3344,

1111

A = min{l,0.995 x min{A\;, \»}} = 0.3327

A= minjy{—2f/Az)|Az) < 0} = 1.9005,

Calculamos o valor da fungao potencial no ponto (z° + AAz?, s° + AAsY):

Fa® 4+ AAZ0, 0 + AAsY) = plog (20 + AAZ%)T (s° + AAS)
— 3 log(x? + AAZY%) x (sY + AAsY)
= 259.5658.

Como
f(@® +2A2Y 5% + AAs?) < (a2, 5%), (9.61)

tomamos 0 novo ponto como:

vt =2+ NA2% = (1.0401 1.8752 2.9599 4.1248 11.1292)7,
ul = u® + NAW® = (1.4324 1.7273 1.6388)7,
st =5+ NAs" = (3.3489 0.0050 1.4324 1.7273 1.6388)7.

O gap de dualidade em no novo ponto é 275t = 33.0959 e
i =2 s"/n = 6.6192.

A primeira iteragao do algoritmo estd completa. Como o gap de dualidade
ainda é bastante grande, seguimos com uma nova iteracao. Deixamos a
proxima iteracao do algoritmo como exercicio para o leitor.

Lembramos que, caso a relagdo (9.61) nao fosse satisfeita, deveriamos
calcular o menor ¢ inteiro e positivo, tal que

f(2% 4 (0.95)7AAz°, 5% + (0.95)\As") < f(2°,sY).
O novo ponto, neste caso, seria
(' ut, sY) == (2° 4+ (0.95)2AA2%, u® + (0.95)2AAu’, s° + (0.95)7AAsY).

Apresentamos abaixo o programa em MATLAB que implementa o algoritmo
de reducao potencial, no qual consideramos a precisao € = 107,
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% Algoritmo de Reducao Potencial

n=5;

m=3;

k=0;
epsilon=10"(-8);
ro=2%*n;
tal=n/ro;

A=[1 0100;01010;3200 1];

%ler solucao inicial sol=[x,u,s]:

sol=input (’Entre com a solucao inicial sol=[x,u,s]:’);
x=s01(1:5)

8=501(9:13);

gap=x’*s;

f = roxlog(gap) - sum(log(x.*s));

while (gap>= epsilon)
M=[zeros(n,n) A’ -eye(n,n); A zeros(m,m) zeros(m,n);
diag(s) zeros(n,m) diag(x)];
ld=[zeros(n,1); zeros(m,1) ; (talx(gap/n)*ones(n,1))

-(diag(x)*s)];
dir=M\1d;
%teste da razao
aux=[10];
for i=1:5
if (dir(i)<0)
aux = [aux; -sol(i)/dir(i)];
end
end
for i=9:13
if (dir(i)<0)
aux = [aux; -sol(i)/dir(i)];
end
end

perc = min(1,0.995*%min (aux)) ;
soll=sol+percx*dir;

x1=s011(1:5);

s1=5011(9:13);

gapl=x1’x*sl;

f1 = roxlog(gapl) - sum(log(xl.*sl1));
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k 0 1 2 3 4 5 6 7
z; | 1.0000 1.0401 0.8092 1.1349 2.0069 1.9997 2.0000 2.0000
x2 | 1.0000 1.8752 5.6794 5.9668 5.9830 5.9983 5.9999 6.0000

Tabela 9.8: Iteragoes geradas pelo Algoritmo de Redugao Potencial

while (f1>f)
perc=0.95%perc;
soll=sol+perc*dir;
x1=s011(1:5);
s51=5011(9:13);
gapl=x1’x*s1;
f1 = roxlog(gapl) - sum(log(xl.*s1));
end
sol = solil;
x=x1;
s=s1;
gap=gap1;
f=£f1;
k=k+1,;
end

Os valores de x; e x5 obtidos pelo algoritmo a cada iteracao k estao repre-
sentados na tabela 9.8. A trajetéria definida pelos pontos gerados a cada
iteracao do algoritmo, na regiao viavel do problema, esta representada na

figura 9.15. [

9.7 Exercicios

1. Considere a transformagao linear A € IR™*". Demonstre que um vetor
v € IR™ é ortogonal a Z(AT) se e 86 se v € N(A).

2. Fazer programas em MATLAB para desenvolver os passos da segunda
iteragao de cada um dos algoritmos abaixo na resolu¢ao do problema

(9.13).

(a) algoritmo Afim-Escala,
(b) algoritmo de trajetdria central de passos curtos,

(c) algoritmo preditor-corretor,
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T2

1

Figura 9.15: Algoritmo de Reducao Potencial

(d) algoritmo de trajetdria central de passos longos,
(e) algoritmo de trajetéria central invidvel,

(f) algoritmo de redugao potencial.
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Capitulo 10

Introducao a Programacao
Inteira

Quando nos problemas de programacao linear obrigarmos algumas ou todas
as variaveis de decisao a s6 admitirem valores inteiros, estaremos diante de
um problema de programacado linear inteira. Como exemplo, seja

(P) : maximizar z = xy — 3z — 4x3

sujeito a:
2:B1 + To — x3 < 4
41[)1 — 3%2 < 2
3%1 + 2]72 + 3 < 3
T Z 0
i) Z 0
I3 2 0

To € T3 inteiros.

O problema (P) restringe x5 e x3 a valores inteiros ndo negativos, en-
quanto que z; é um real qualquer nao negativo. (P) pode também ser de-
nominado de um problema de programacao linear mista, pois nem todas as
variaveis sao restritas a valores inteiros.

Poderiamos imaginar a solugao de (P) ignorando as restri¢oes de integra-
lidade, para isto o problema seria considerado como sendo de programacao
linear, visto nos capitulos anteriores. Caso a solugao obtida fornecesse va-
lores inteiros para todas as varidveis de decisao, teriamos também resolvido
o problema original (P). No entanto, se algumas varidveis tomam valores
fracionarios na solucao do problema linear, quando deveriam ser inteiras, a
primeira idéia é tentar arredondar esses valores aos inteiros mais préoximos
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de maneira que as solugoes inteiras obtidas sejam vidveis. Infelizmente este
procedimento podera fornecer solugoes inteiras distantes do étimo. A titulo
de ilustracao consideraremos o seguinte exemplo.

(P) : maximizar z = x1 + 1929

sujeito a:
z1 + 202, < 50
T + Ty <20

T Z 0
T

v
o

I € X9 inteiros.

Deixando de lado as restri¢oes de integralidade o problema (P) se tornaré:

(P) : maximizar z = x1 + 1929

sujeito a:
ry + 20%2 S 50
T + T9 <20

T Z 0
o)

0.

v

(P) é um problema de programacao linear que pode ser solucionado uti-
lizando o método do simplex. Para isto devemos acrescentar as variaveis de
folga x3 > 0 e 4 > 0 da seguinte maneira.

(P) : maximizar z = x1 + 1929

sujeito a:
Ty + 20%2 + 3 = 50
ry + i) + 14 = 20

z; >0, j=1,2,34.

Resolveremos (P) na proxima se¢ao e, a0 mesmo tempo, apresentaremos o
método do simplex por operacoes entre colunas.
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10.1 Esquematizando o Método do Simplex
por Operacoes entre Colunas

Para resolver o problema (P) da se¢do anterior apresentaremos, para facilitar
a visao das iteragoes do método do simplex, uma disposicao dos dados em
quadros proposta por Gomory [Go 58a]. Sem perda de generalidade (P)
podera ser escrito sob a seguinte forma.

(P) : maximizar z

sujeito a:
z = 0 —1(—z1) —19(—x9)
r1 = 0 —1(—z1) +0(—mz)
To = 0 +0(—£L'1) —1(—1’2)

z; >0, j=1,2,3,4.

As equacgoes acima poderao ser representadas esquematicamente pelo seguin-
te quadro:

Q]_ 1 —T1 | —T9

z| 0] =1|-19
T 0 -1 0
) 0 0 -1
x3 | 50 11 20

O quadro acima denominado ()1, possui na primeira linha da esquerda
para direita sua denominacao ()1 associada a coluna das variaveis, 1 asso-
ciado a coluna dos termos independentes (segundo membro), —z; associado
a coluna da forma —(1 0 — B7'a;), e —wy associado & coluna da forma
—(0 1 — B7tay). As varidveis x; e x9 sao nio bésicas. Para x; = x5 = 0
teremos x3 = 50 e x4 = 20. Assim sendo a matriz (a3 as) = (e e3) é bésica
primal vidvel de (P). Sobre o quadro Q1 poderemos aplicar os testes de oti-
malidade do método do simplex, assim como a escolha do pivo visando a
melhorar o valor da funcao objetivo z.

Retomemos o quadro inicial Q1.
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Q| 1| —x1| —xo

z| 0| —=1]-19
x| 0| —1 0
i) 0 0 -1
x3 | 50 1] 20*
x4 | 20 1 1

onde * representa o elemento pivo, isto é, a coluna associada a varidvel xs
entrara na base substituindo a coluna associada a variavel xs.

Por operagoes de pivoteamento (método de eliminagao de Gauss-Jordan),
ja descritas sob forma matricial no capitulo 3, obteremos os quadros seguin-

tes.
QZ 1] —24 —T3 Q3 1 —Xy4 | —T3
95 [ =1 19 8 T 18
5 T T 11 1 1
T2] 5| 2| % T2 | 151 —15] 19
x3| 0 0] —1 T3 0 0] —1
35 | 19F T
Ty 20 20 ~ 950 Ty 0 -1 0
O quadro @3 é étimo (maximizagao), pois
1 18
Z4—cyp=—20 e z3—c3=-—2>0.
41T = 192 370G = 192

Esse quadro nos fornece a seguinte solucio 6tima para (P),

T = 185, Lo = 113}, T3 = Ty = 0,
fornecendo z = 4818—9.

Denominemos val(-) o valor da fungdo objetivo no 6timo de () e |a] o
maior inteiro < «. Entao sabemos que, para o exemplo que estamos tratando,
|val(P)] > val(P), pois (P) é uma relaxacio de (P), o conjunto de solucoes
possiveis de (P) estd contido no de (P) e todos os coeficientes da funcio
objetivo de (P) sao inteiros. Sabemos que [48% ] = 48, logo se houver uma
solugao viavel de (P) fornecendo para z um valor igual a 48, esta sera étima
de (P).

Tentaremos arredondar a solucido 6tima de (P) visando & busca de uma
solugdo dtima de (P).

e 1 =19, 9 = 2, solugdo invidvel para (P).

e 11 =18, zo =1, z=3T7.
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e 1 =18, 9 = 2, solugdo invidvel para (P).
e v =19 2o=1, z=38.

Outras solucoes nao provenientes de arredondamento da solucao 6tima

de (P).
o 11 =0, 2 =2, z=38.
o 11 =10, x9 =2, z = 48 (solugao Stima de (P).

Pudemos observar nesse exemplo que o puro arredondamento da solugao
6tima de (P) nao fornece o 6timo de (P), nem mesmo uma boa aproximagao!
A seguir apresentaremos os métodos de planos de corte ou, simplesmente,

métodos de cortes.

10.2 Métodos de Planos de Corte

Consideremos novamente o seguinte problema:
n
(P) : maximizar zo = » _ ¢;z;
Jj=1

sujeito a:
n
Zaija:j = bl, 1= 1,2, cey TN
j=1
X5 > 0, ] = 1,2, D
z; inteiro, j € S C {1,2,...,n}.

Onde cj, a;; e b; sao ntimeros reais dados e z; varidvel de decisao.

Definamos F'(+) como o conjunto de solugoes vidveis de (-). Quando nao
considerarmos as restri¢bes z; inteiro, j € S C {1,2,...,n} em (P), teremos
a relaxagao linear de (P), denominada (P).

Os métodos de planos de corte sao motivados visando a determinacao da
envoltoria convexa das solugoes vidveis do problema de programagao inteira
(P). Uma vez essa envoltéria convexa obtida, aplicamos o método do sim-
plex para otimizar a func¢ao objetivo de (P) sujeito as restrigoes que definem
a envoltoria convexa das solucoes vidveis do problema de programacao in-
teira (P). Sabemos da grande dificuldade em obter a envoltéria convexa dos
pontos inteiros que satisfacam desigualdades lineares. O poliedro que define
essa envoltéria convexa pode possuir um nimero enorme de desigualdades
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lineares, as vezes, este nimero é de ordem exponencial em fun¢ao do nimero
de varidveis, por exemplo, 2", onde n é o nimero de varidveis de (P).

Define-se uma desigualdade linear valida para (P) como uma desigual-
dade linear {x € R" | d'z < o}, para d € R", e a € R, tal que para todo
T € F(P), tem-se d'7 < a.

Os métodos de planos de corte introduzem a cada iteracdo uma ou mais
desigualdades vélidas & relaxacao linear de (P), j4 designada acima por (P),
isto é, introduzem desigualdades validas ao problema obtido quando elimina-
mos as restrigoes de integralidade de (P). Essas desigualdades vélidas elimi-
nam uma solucio fraciondria de (P), sem eliminar as solucoes inteiras vidveis
de (P).

Uma desigualdade valida interessante para F'(P) é aquela para qual

{r eR" | d'z=a}NF(P) # ¢.

Um método classico de corte foi proposto em 1958 por Gomory [Go 58a.
Passamos a apresenté-lo para (P), quando S = {1,2,...,n}, isto é, todas as
varidveis tém que ser inteiras. O método comegca resolvendo (P) pelo algo-
ritmo do simplex, se a solugao obtida for inteira, teremos também resolvido
(P). Caso contrario introduziremos uma desigualdade vélida para (P), que
eliminard a solucdo (P)—d6tima e um novo problema linear sera obtido, o
processo se repete até a obtencao de uma solucao inteira ou a inexisténcia
dessa solugao.

Utilizando as notagoes dos capitulos anteriores e que |« representa o
maior inteiro menor ou igual a a € R, supomos que tivéssemos resolvido (P)
com o algoritmo do simplex e que B base 6tima de (P): 2z = B~'b > 0, e
zj—c; >0, j € Iy. Existe um k € {1,2,...,m} para o qual Zpy) € Z, desta
maneira a solugao 6tima de (P) nao resolve (P).

Consideremos

QZB( = JJB(k Z Yk Ty (101)
SN
Podemos ainda escrever
T4 T D YkiTi = TB(k),
JEIN
onde k) = 0, Tpwy =0, ; >0, j € Iy, entao
W+ D le < Tew.
JEIN

Ainda mais temos que zpy) e x;, j € Iy tém que ser inteiros em (P).
Assim

W+ D Lkl < Zsw). (10.2)

JjelN
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E fécil observar que todas as solugoes de F (P) sao também vidveis de
(10.2). Para transformar (10.2) numa igualdade, introduzimos uma varidvel
de folga s > 0 e obtemos:

Tk t+ Z Lykjja:j + s = LfB(k)J- (10.3)

Jeln

Levando em consideragao as equagoes (10.1) e (10.3) teremos

TB(k) — Z YrjTj + Z lykjlzj + 5 = [Zp)]

JEIN JEIN

ou
s = LEB(k)J — Tpk) + Z (ykj - Lyij )ajj'

JEIN
Definamos fi; = Yrj— Yril, 7 € In € fro = Ty — | TBw) ], € facil verificar
que 0 < fi; < 1,e0 < fro < 1. Assim

s=—fro+ Z frjz;,

JeIN

e s > 0 fornecendo

> frizi > fro- (10.4)

JjEIN
A desigualdade (10.4) é uma desigualdade linear valida para (P). Esta

desigualdade é conhecida como sendo o corte de Gomory, ver [Go 58a].
Para ilustrar o método consideremos o seguinte exemplo.

Exemplo 10.1

(P) : maximizar z = 2x1 + x5 + 0x3 + Oxy + Ox;

sujeito a:
ry + T2 + I3 = 5
—X1 T + x4 = 0
6l‘1 —I— 2ZE2 —f- Iy = 21
x; >0, 7=1,2,3,4,5
x; inteiro 7 =1,2,3,4,5. (10.5)

Para resolver (P) utilizaremos o algoritmo do simplex, onde

11100 5
A=(ayaza3asas)=| -1 1 0 1 0 [, b= 0 1.
6 2 0 01 21
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T'=(21000).

Consideraremos
110 -5 0
B=(aiazas)=| -1 1 1 |, logo B! = 20 —5 |,
6 2 0 -2 1 3
-5 0 5 T T
Ip=B"b=| 35 0 —; 0= 2 |=1| Zso
-2 1 3 21 3 Tp(3)

Temos Tp1) = T1, Tp) = T2, € Tp(z) = T4. E facil de observar que esta

base B estd associada com uma solugao 6tima de (P), isto é, &; = 14—1,

%, Ta = %, and T3 = ¥5 = 0. Esta nao é uma solugao inteira. Tomemos a
linha associada a Tp(3) para gerar um corte de Gomory. Assim
1 1

I‘B(g) = Ty = 5 + 2!173 — 51’5.

Ty =

Desta restri¢ao obtemos

1 1
= - :O = -
f30 2,f33 e fas 9

o corte gerado de Gomory serd
+ ! >0
——x5+8 =—-,¢€s :
9 5 1 2, 1 =

Acrescentaremos uma nova linha e uma nova coluna a matriz A. A nova
base formada pelas colunas associadas a x1, xo, x4, € s; € dual viavel, as-
sim comecgaremos o problema de otimizacao utilizando o algoritmo dual do
simplex. A regra para a obtencao do pivo para este novo problema diz que
a coluna associada a variavel s; deixa a base e a coluna associada a varidvel
x5 entra na base.

Seja B a nova base,

1
-1
6
0

B = (al Q2 a4 a5) =

O N ==
OO = O
== O O

logo

|
O DO N =
O = O O
|
=N =N [

O NI [ =

I
N\
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1 1 1 5 =
ootV o) () (B
= _ p-lp _ 2 —1 T3 _ 2 [ 2
To=Brb=| 5 4 1o |71 o || z
00 0 —2 -1 1 T

B, esta associada a uma solucao 6tima, mas esta solucao ainda nao é in-

teira. Tomemos a linha associada a Z; para gerar o novo corte de Gomory,

obteremos
1 1 1
S9 = —5 + 5233 + 581, Sg > 0.

A regra do simplex nos indica que a coluna associada a variavel s, deixara
a base e a coluna associada a variavel z3 entrara. Seja By a nova base,

11 10 0
-11 01 0
By = (ay as a3 a4 as) = 6 2 00 1]/,
00 00 —3
00 —5 0 0
logo X X X X
A B A
2 4 2
By' = 00 0 0 -2,
-2 1 1 1
00 0 —2 0
-0 1 % -1 5 3 T
S0 -3 -2 3 0 1 Ty
Tp, = By'b = 00 0 0 -2 21 | =] 1 | =| 23
-2 1 1 1 - -1 2 T4
00 0 -2 0 — 1 Ts

Esta tltima solucdo é uma solucdo 6tima inteira, resolvendo (P). Para
esse pequeno exemplo tivemos que gerar apenas dois cortes de Gomory para
resolvé-lo. O método de Gomory possuird convergéncia finita quando todos
os dados de (P) forem inteiros, mas para isso tem-se que seguir uma ordem
especial na geracao dos cortes apresentada por Gomory em [Go 58al, ver
[Sa 75, Ma 78].

A seguir apresentaremos um método de solugdo para (P) quando todas
as variaveis forem restritas a tomarem valores zero ou um.
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10.3 Meétodo de Balas para Otimizacao Line-
ar 0-1

Balas apresentou em [Ba 63] e [Ba 65| um método de enumeragao implicita
para a solucao do problema de programacao linear inteira 0 — 1 ou pro-
gramagcao linear bivalente, no qual somente as operacoes de soma, de sub-
tracao e de comparacao sao utilizadas.

Consideremos o seguinte problema

n
(P) : minimizar xy = Z i,
j=1

sujeito a:
n
Zaijxj < bi, 1= 1,2, T
Jj=1

z; € {0, 1}, 7=1,2,...,n,

onde ¢;, a;; € b; sao numeros reais dados e x; variavel bivalente de decisao.
O problema (P) definido acima é de programacao linear bivalente (0, 1).
Poderemos sempre supor, sem perda de generalidade, que ¢; > 0, 7 =
1,2,...,n, pois caso exista um k para o qual ¢, < 0, faremos uma mudanca
de varidvel: xp = 1 —t;, tx € {0, 1}. Seja I = {1,2,...,n}, assim teremos
g — Zje]—{k} CiT; — thk + Ck.
E passaremos a minimizar

Ty — Cp = Z Cjx; — Cyty.
jel—{k}

Durante toda esta segao suporemos que ¢; > 0, j=1,2,...,n.

Definiremos também ¢ = (¢1 ¢z ... ¢,), b7 = (by by ... by) € A = (aij)mxn,
uma matriz com m linhas e n colunas; 27 = (2 2y ... x,).

O problema (P) poderd ser também escrito sob a seguinte forma:

(P) : minimizar zo = cx (10.6)

sujeito a:
Az <b (10.7)
z e {0, 1} (10.8)

Uma solugao de (10.8) serd representada pelo vetor z? = (zf af ... aP),
ou também pelo conjunto J, = {j | z; =1 }, por exemplo

r"=01110011)"€{0, 1}® ou J;,={23,4,7,8}.
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Uma solugao 27 de (10.8) é dita descendente de a? se .J, C .J,, por exemplo
27=(111011)" édescendentede 2 =(00101 1)

Em alguns problemas certas varidveis sao fixadas a priori, vejamos nos
exemplos a seguir:

3x1 + Txe + 223 + x4 <5 implica que x5 = 0.

21 + 8x9 + x3+ x4 > 9 implica que x5 = 1.

No caso em que ambas restri¢oes acima fagam parte de (10.7), o problema
(P) serd vazio.

Proposicao 10.1 Sex? € {0, 1}", entdo >jc; c;jv; < X ey, €25 para todas
as solucoes =¥ descendentes de xP.

Demonstracao:
Basta lembrarmos que ¢; >0, 7 =1,2,...,n e que J, C Jj. [

Proposigao 10.2 Sex? = (00 ... 0)T satisfizer (10.7) entdo x° serd também
uma solugao dtima de (P).

Demonstracao:
_ 5 0 _ : , S A
Tro = > ¢jr; 2 0, mas cx” = 0, assim sendo zy é uma solugao otima de

(P). "

Observagao: o esquema de enumeracao que serd apresentado a seguir supoe
que a solucao inicial 2° seja tal que Jy = ¢, isto é, 2° = (0 0 ... 0)T; pois
caso ¥ satisfaca também 10.7, neste caso b; > 0, i = 1,2,...,m, entao x°
serd uma solugao 6tima de (P).

10.3.1 Esquema de Enumeracao

Suponhamos que estejamos em uma solugao a? de (10.8) e que Ty seja o
melhor valor da funcdo objetivo de (P) associada a uma solucdo vidvel de
(P), isto é, existe %, tal que Zop = Y ;e ¢; e que 2z satisfaca (10.7) e
(10.8). Caso nao tenhamos ainda encontrado uma solucao viavel, colocamos
Ty = +00.

A partir da solucao xP desejamos obter z¢ descendente de xP, tal que
|Jy| = |Jp| + 1 ou melhor J, = J, U{l}.

Consideremos as seguintes hipdteses.
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1. aP é vidvel de (P), neste caso nao nos interessa buscar uma solugao x?
P 1 . . 1
descendente de a¥, pois 3} ;c; ¢; < Xjey, ¢j, ver propriedade 1.

2. Se
Z ¢j + ¢ = To, VZQ/JP,
JE€Jp
isto quer dizer que todas as solucoes descendentes de zP fornecerao
valores & fungado objetivo (10.6) sempre superiores ou iguais a o, neste
caso nao nos interessara também enumerar as solucoes descendentes de
aP.

3. Se existir um 7 tal que

bi—Zaij—Zmin{O, Clij}<0,

J€Jp J€Jp

nunca havera uma uma solugao descendente de z? viavel de (P), desta
maneira nao teremos interesse em enumerar as descendentes de .

As trés condigoes discutidas acima serao definidas como condigoes de
parada em xP.

Quando tivermos parado em x” por uma das trés condigoes, teremos enu-
merado implicitamente todas as solucoes descendentes de zP.

Caso em 2P nao satisfacamos nenhuma condicao de parada, temos que
procurar uma solugao descendente de zP, por exemplo, z9, tal que J, =
J, U{l}, onde, evidentemente, [ & .J,,.

Consideremos s; = b; — ?:1 aijr; e s; > 0,0 = 1,2,...,m, s; serd a
variavel de folga associada a restricao .

Seja st =b; — > je, ij, isto &, s? representa o valor de s; quando x = .

Em 2P podemos definir os seguintes conjuntos:

Ap: k|ZCj+CkZZZ’0,/{J€Jp s

Jj€Jp

D, = {k | se para todo i com s} <0, a; >0, k& J,},

C,=A{12,...,n}—(J,UA,UD,).

O conjunto C), fornecerd os indices das varidveis candidatas a tomarem
valor igual a um, isto é, um indice [ € C,, para formar J, = J, U {{}.
Seja df = > min{ 0, s7 —ay }, j€Cpe

P __ /4
dj = max{d;}.
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Dizemos que dj é a “menor”’soma das inviabilidades.

Caso d = 0, entdo a solugao descendente associada ao conjunto J, =
Jp, U{l} sera viavel de (P).

No caso em que haja mais de um indice para o qual d; = 0, isto é, o
conjunto

_f P _
L, ={jeC|dj=0;
possui cardinalidade maior ou igual a dois. O indice [ € L, escolhido para
formar a solucao descendente de xP sera o [ associado a
¢ = min{c;}.
min{e;)
E féacil verificar que no caso de que nenhuma solucao de parada seja
verificada teremos C), # ¢.
Supomos agora que em z¢ descendente de 27, o conjunto C; seja vazio, ou

ainda, uma das trés condicoes de parada seja verificada. Teremos que voltar
de 27 para z” e para isso atualizaremos C), de duas maneiras:

1. Cp:=C,—{l}, onde [ é tal que J, = J, U{l},

2. A, podera ser modificado caso 7y também o seja, acarretando outra
modificacao em C,,.

O retorno de z? para x? é denominado de backtracking.
A enumeracao termina completamente quando Cy = ¢. Lembremos que

Ty é sempre atualizado durante a enumeragao. Caso (P) seja vazio entao
Zp = 400 no final da enumeracao.

Exemplo 10.2 Este exemplo foi tomado de [Ba 65].

(P) : minimizar xg = 51 + Txg + 1023 + 324 + 5

sujeito a:
—r1 + 3%2 — 51’3 - T4 + 41‘5 S -2
21’1 - 6ZE2 + 31’3 + 21’4 - 21‘5 S 0
To — 2x3 + 14 + x5 < —1

z; €{0,1}, j=1,234,5.
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Definiremos as variaveis de folga s; :

s1T = =2 + x — 32 + dx3 + w4 — 4dx5 > 0
Sg = 0 — 21 + 6x9 — 33 — 224 + 225 > 0
S3 = -1 — T2 + 2I3 — Ty — Is > 0

Etapa inicial

P =00000)7, Jy=9, ) =2, s§=0, =1

Como s? < 0, i = 1,3, entdao z° é invidvel. Suporemos Zy = 400, isto é, nio

conhecemos nenhuma solugao vidvel para (P). As duas primeiras condigoes
de parada nao sao verificadas, vejamos a terceira:

—241404+5+1+0=5>0,

0+0+6+0+0+2=82>0,
-1+0+0+2+0+0=12>0,

também nao é verificada.
Necessitamos encontrar uma solucao descendente de z°. Para isso definire-
mos os seguintes conjuntos: Ag = ¢, pois Ty = +00, Dy = {2,5}, logo

C(] - {1,2,3,4, 5} - (A(] U DO U Jo) - {1,3,4},

isto é, as variaveis x1, x3 e x4 sao as candidatas a tomarem o valor um
(apenas uma entre elas o tomara). Calculemos dj, j € Cp :

d=-1-2-1=-4;d}=0-3+0=-3; d}=-1-2-2=-5

dg = maX{d(l)a dga dg} = =3
ir a etapa 1.
Etapa 1
J1 = JoU{3} = {3}, pois Jy = ¢. Teremos entao s} = 3, sy = —3, s3 = 1.
Assim sendo 2! = (0 0 1 0 0)7 nao é vidvel, Zy continua igual a +o00. As duas
primeiras condi¢oes de parada nao sao satisfeitas e a terceira

341+0+1+0=52>0,

—-3+0+6+0+2=52>0,
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1404+0+0+0=1>0,

também nao é verificada. Passaremos entao a buscar uma solucao descen-
dente de z1.
Ay = ¢, pois Tg = +00. Lembremos que Dy = {1,4}, logo

Cr=1{1,2,3,4,5} — ({1,4} U {3}) = {2,5).

Sabemos também que dy = 0+0+0 =0, &t = -1 —-1+0 = —2, logo
dy = max{di, di} = 0 (a préxima solucio descendente serd vidvel), ir a
etapa 2.

Etapa 2

Jo=JiU{2} ={2,3}, 22 =(01100)7, s =0, s2 =3, s2=0, 22
é vidvel, cx? = ¢y + c3 = 7T+ 10 = 17, logo T, seréd atualizado, To = 17. A
primeira regra de parada é satisfeita. Ir a etapa 3.

FEtapa 3 (backtracking)

Na realidade voltamos & etapa I, onde J; = {3} e 2! nao é viavel, mas
agora To = 17. Impediremos que a variavel z, seja candidata a tomar valor
igual a um, ela ficara zerada, para que nao encontremos novamente a solucao
associada a etapa 2. Neste caso a terceira condicao de parada é verificada:

3414+1+0=52>0,
—34+0+04+2=-1<0,

1404+0+0=12>0.
Ir para a etapa 4.
FEtapa 4 (backtracking)
Voltamos a etapa inicial, onde Jy = ¢ e a variavel x3 serd fixada a zero.

Lembremos que x5 é uma variavel candidata novamente a tomar o valor um.
Sabemos que Ty = 17. A terceira condicao de parada é verificada:

—24+1+0+14+0=02>0

0+0+6+0+2=82>0
-1+0+0+0+0=-1<0.

Como estamos na etapa inicial e nao temos mais possibilidades de buscar
solugoes descendentes viaveis com x3 = 0, assim sendo temos a parada final.
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A melhor solugao encontrada é 22 = (0 1 1 0 0)7, fornecendo 7y = 17. Logo

22 é a solucao Stima.

Observemos no exemplo que na etapa 2 temos Jo = {3,2} e quando
voltamos a etapa 1 (etapa 4), J1 = {3} fixando z5 = 0, por convengao
podemos designar esta etapa pelo conjunto {3, —2}, isto significa que z3 = 1
e xo = 0 para toda busca dos descendentes. [

10.3.2 Convergéncia do Método de Balas

A seguir forneceremos uma enumeragcao implicita finita baseada nos trabalhos
de Glover [Gl 65] e Geoffrion [Ge 67]. Nunca enumeraremos explicitamente
a mesma solugao mais de uma vez, assim sendo a enumeracao termina.
Enunciaremos o algoritmo de Balas, utilizando uma estrutura de pilha.
Essa pilha representa o conjunto dos indices associados as variaveis fixadas.
Seja a pilha 7, para a qual p(j) serd sua j-ésima componente, tal que:

p(j) >0sexp;y =1 e

p(j7) < 0se xp;y = 0.

Por exemplo,
T =1[-3,2,-7,—4],
isto é,
173:0, IL‘QZL 177:0, x4y =0

sao os valores fixos, todas as solucoes descendentes x* da solucao associada
a m nao terao os indices 3, 7 e 4 pertencendo a Jj.

Procedimento de Balas

Fase 0 (inicializacao)
T=¢; To=+00;

Fase 1 Se uma das condigoes de parada for verificada (no caso de ser a primeira,
isto é, 7 estd associada a uma solugao vidvel de (P), xP, neste caso se

caxP < Ty far-se-4 o = cz? e a melhor solugao até o momento é z?), ir
para a fase 2;

Caso contrario, ir para a fase 3;
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Fase 2 Enquanto o iltimo elemento da pilha for negativo, removée-lo da pilha;
Se a pilha for vazia, ir para a fase 4;

Caso o ultimo elemento da pilha for positivo, trocar seu sinal e ir para
a fase 1;

Fase 3 Escolher uma variavel xj pelo critério aconselhado e colocar na pilha o
elemento k, ir para a fase 1;

Fase 4 Pare, solucao associada a T, serd otima se Ty # +00; o problema sera
vazio se Ty = +00;

No exemplo tratado anteriormente teriamos:

<

(inicio);
;
3,2];
,—2];
—3];

ww

—

309 3 3 3 3
|
w

I
©

10.3.3 Otimizacao Nao Linear 0-1

Nos problemas de Otimizag¢ao Nao Linear em varidveis 0-1, quando os termos
nao lineares sao produtos de variaveis 0-1, podemos lineariza-los da seguinte
maneira.

Seja o produtério de p variaveis z; € {0,1}, j = 1,2, ..., p, isto é, TTj_; ;.
Utilizando uma transformagao de Fortet [Fo 60], teremos:

p
y= H xju
j=1

Verificamos facilmente se x; = 0 teremos y = 0, e se ; = 1, para j =
1,2,...,p, teremos y = 1. Assim sendo y € {0, 1}.

Y
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Exemplo 10.3

minimizar xy = 37y + 475 — br w73 + 31173,
sujeito a :
z; € {0,1}, j=1,2,3.

Como x5 € {0,1}, logo 5 = w».
Facamos y = zyxow3 € t = 1123,
O problema podera ser escrito da seguinte forma:

minimizar ro = 3x1 + 49 — Dy + 3,
sujeito a:
y<uw, y <o, y< 3, T1+22+w13—2=< Y,
t<z, t <23, 11 +23—1< 4,
y>0,t>0ex; €{0,1}, j=1,2,3.

Ou ainda:

minimizar ro = 3x1 + 4x9 — Dy + 3¢,
sujeito a:
y<uw, y<mwe, y <13, T1+x2+w3—2=<7,
t<x, t<x3 x1+23—1<1,
ye{0,1}, t €{0,1} e z; € {0,1}, j =1,2,3.

Poderemos resolver esta ultima formulacao do problema pelo método de
Balas. [

10.4 Métodos de “Branch-and-Bound”

Os métodos de “branch-and-bound” foram desenvolvidos a partir do tra-
balho pioneiro de Land e Doig [LaDo 60]. O termo “branch-and-bound” foi
empregado pela primeira vez em [LiMuSwKa 63].

Apresentaremos a seguir a versao proposta por Dakin [Da 65] para os
métodos de enumeracao implicita do tipo “branch-and-bound”.

10.4.1 Tlustracao dos Métodos de “Branch-and-Bound”

Seja
(P) : maximizar zo = ;& + Coy
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sujeito a:
A1{L’ + Agy S b

>0
y=>0
x inteiro,

ondecl € RP, I e R, x e RP, ye RI, be R™, Ay € R™Pe A € R™*4,
Sabemos que (P) pode também ser escrito como se segue:

(P) : maximizar zg (10.9)
x4 coy —x9 >0 (10.10)
Ajx+ Ay < b (10.11)
z>0 (10.12)

y>0 (10.13)

x inteiro. (10.14)

O conjunto formado pelas restrigoes (10.10) até (10.13), caso nédo seja
vazio, é um conjunto poliédrico convexo em R4+, Projetemos este conjunto
poliédrico sobre o plano x; X x(, onde x; ¢ uma componente de x. Esta projecao
estd ilustrada a figura 10.1.

Podemos observar que Z, = val(P), onde (P) é a relaxacao linear de (P),
isto é, a restrigdo de integralidade (10.14) nao é considerada. Suponhamos
que T; € Z seja o valor de z; na solucao 6tima de (P). Verificamos, na
figura 10.1, que z} é o maior valor que zy poderd assumir quando somente a
variavel x; deva ser inteira. Dependendo da ilustracio x2 poderia ser maior
do que z}. Logo poderemos concluir que o maior valor de z supondo apenas
a variavel x; restrita a valores inteiros serd observado para x; = |Z;| ou para
X, = I_le + 1.

Denominemos F'(-) o conjunto dos pontos que satisfazem as restrigoes do
problema (+).

O método proposto por Dakin [Da 65] comeca verificando se a solucao de
(P) satisfaz as restrigoes de integralidade (10.14). Caso afirmativo teremos
também resolvido (P). Caso contrario tomaremos uma variavel z; para a qual
o seu valor x¥ ndo seja inteiro no étimo de (P), construiremos dois problemas
descendentes diretos:

e (P), parao qual F(P) = F(P)N{z € RP | 7y < |2¥]};

o (P,), parao qual F(P) = F(P)N{zx € RP | 2; > |2V]| + 1}.
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Figura 10.1: Projecao sobre x; X xg

Introduziremos a nocao de nés abertos e fechados associados aos proble-
mas (P;). Cada problema (P;) serd associado a um né (que sera também
designado de (P;)) de uma arvore binaria desenvolvida para enumerar (im-
plicitamente) as solugoes de (P). Um problema (P;) ou seu né associado é
dito fechado se:

o F(P) = ¢;

e (P,) possui uma solugdo Gtima onde todas as componentes de z sdo
inteiras;

e val(P;) < o (no caso de maximizagao de ), onde Zo é o melhor valor
obtido para zy, tal que (x,y) € F(P), até o desenvolvimento atual da
arvore de enumeracao. Dizemos que Iy ¢ a melhor cota inferior para
val(P) até o momento considerado da enumeragao.

Outras condigoes poderao ser introduzidas visando a fechar um né.

Um né serd aberto se tivermos que construir e resolver seus dois nos
descendentes diretos.
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Podemos iniciar com um &, associado a uma solugao heuristica para (P),
isto é, (x,y) € F(P), ou comegar com &y = —00, para o caso de maximizagao.
H& métodos heuristicos interessantes para varias classes de problemas com-
binatérios, ver [CaMa 94].

Teremos uma lista de nds abertos e uma outra de nés fechados. Quando a
lista de nés abertos se tornar vazia, o método de branch-and-bound terminara.
Algo que sera melhor entendido através de um exemplo mais abaixo.

Sejam (F,) e (P,+1) os descendentes diretos de (P;) :

e (P,), paraoqual F(P)=F(P)N{z e R | z; < |z}]};

e (P,1), parao qual F(Py1) = F(P)N{z € R | z; > |z}| + 1}.

Onde z} é o valor nao inteiro da varidvel z; na solugao de (P;).

Como F(F,) C F(P,) e F(P,;41) € F(F;) entao teremos que val(P,;) <
val(P;) e val(Pyy1) < val(B;).

E f4cil verificar que se F(P,) # ¢, teremos que xf = |zi] e que se

F(P.1) # ¢, teremos que z{™' = |zi] 4+ 1, onde zf é o valor de z; no
6timo de (P,) e zf™ é o valor de 2; no Gtimo de (P, ;).

Exemplo 10.4 Seja

(P) : maximizar xo = —4x; — bxg
sujeito a:
x| + 41’2 — I3 = 5
3r1 + 219 — x4 = 7
T Z 0
T2 Z 0
I3 2 0
Ty Z 0

Ty € X9 inteiros.

Inicialmente teremos que resolver (P), isto é, consideraremos a solugao
da relaxagao linear de (P), as restri¢oes de integralidade nao serao levadas
em consideracao. Para isso utilizaremos o método do simplex. Para facilitar
o desenvolvimento deste exemplo definiremos os seguintes vetores:

ap =137 aa =427, a3=(-10)7, ay = (0 — 1),
b=0B7", c=(—4 —500)=(c1 c3 ¢35 ¢4).
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Verificamos que a matriz B = (a3 as) = —1 ¢ inversivel e B™1 = — 1.

Utilizando as notacoes anteriores temos que

e (3)-(2)- ()20
u=(c3c)B=(00)B"'=(00),
z1—01:(00)<:1))>—(—4):420,

22—02:(00)@)—(—5):520.

A base B é dual vidvel de (P). Assim sendo, utilizaremos o método dual

do simplex para a solucao de (P).
Faremos a coluna a4 sair da base, pois a4 esta associada a variavel x4, que
estd com valor negativo, x4 = —7. Qual sera a coluna que entrard na base no

lugar de a4? Calcularemos 91 € 999.

Y11 -1 Y12 -1
e = B a s = — B a 3
( Yor ) Y 1 ( Yoo > Y2 2

(0D G)-(5)-() = mm
(0 () -(5)-(5n) =

Facamos o teste da razao:

i —r

logo a; entrard na base no lugar de ay.

A nova
-1 1
5=(T0s)

ou ainda,

21— C
Y21

Z9 — Co
Y22

21— C
Y21

Y

5’}_4‘_
—20) =31

cuja inversa

ve)
L
Il
VR
|
O =
W=
N~



Teremos que

o ()1 ()

ag saird da base. Facamos novamente as operacoes de atualizacao com a nova
base.

W= oo

VR
|
—_

QO |00 =

0

u=(cs 1) B™" = (0 —4)<_0 i
3
22—02=ua2—02=<0 —é)(;l)—(—5):—§+5:;

(O 4> 0 0 4
24— C4 = UQy — C4 = - = —0=-.
40 4 C 3 1 3

Temos que calcular os novos valores de 15 € Y14 :

( o1z > :yQIBilCLQ, ( Y1 ) :y4:Bila’47
Y22 Y24

ou ainda,

N
|
O =
W= WIW |~
~__—
/N
|
— O
~__—
I
VR
* |
* ol
~__—
Il
/-~
x <
* =
~__—
<
=
S
|
|
\

[0

Facamos o teste da razao:

min{ 2-c| |za=cs } _

Y12 Y14

: 7/3 43 1\ | 73 | _ 7 |ze—co
mln{‘—l()/ii g ’—1/3’} = ’—10/3 =10 | Ty |0

logo as entrard na base no lugar de as.
Obtivemos a nova

cuja inversa
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Teremos que

= 3 1 8
B = = - - — Y,
<$1> <_120 i)\ 7 1

Esta tltima solucdo é 6tima de (P), ela é primal e dual vidvel de (P).
No entanto, T, € Z e Ty &€ Z, isto é, essas duas varidveis restritas a serem
inteiras nao o sdo, assim sendo a solucao de (P) nao resolve (P).

Para iniciar o método de enumeracao escolheremos a variavel x; para
realizarmos as duas ramificacdes a partir de (P). Lembremos que na solucio
de (P) obtivemos 1 = 7; = 15 = 1,8 & Z. Formaremos os dois problemas
(Py) e (P;) da seguinte maneira:

e F(P)=FP)N{zeR |z, <1} e
o F(P)=F(P)Nn{zeR* |z >2}.

O préximo passo serd a solucao de (P;) e (FP,). Para isso serd utilizado o
método dual do simplex especializado para tratar restri¢oes canalizadas. E

importante notar que a solucao bésica 6tima de (P) é também uma solugao
bésica dual viavel de (P;) e (P,).

Inicia-se o procedimento de enumeragao fixando £y = —oo (melhor valor
da funcao objetivo obtida até este momento). No caso de nao se ter uma
solugao vidvel para (P), faz-se &y = —00.

Na resolugao dos (P;), i = 1,2, ... serao utilizadas as notagoes do capitulo
8. No caso de (P;) tem-se que I, = {3,4}, Iz = ¢,a(1l) = a(2) = a(3) =
a(4) =0, f(1) =1, B(2) = B(3) = B(4) = +oo. Observa-se que a varidvel
x1 estd associada a segunda linha da matriz B~ N, cujos elementos sao cal-
culados a seguir.

( o ) =y3 = B la, ( g ) =ys = B lay,
Y23 Y24

ou ainda,



Lo={j€lalyy>0}={3} e Lg=¢

Como 3 ¢é o tnico elemento de L, e Lg ¢ vazio, as entrard na base sub-
stituindo a;.

Assim sendo I, = {4}, Iz = {1}, Lembrar que a(l) = a(2) = a(3) =
a(d) =0, 5(1) =1, B(2) = B(3) = B(4) = +oo.

A nova base sera
4 —1
5=(3 ),

o 04)

rp = ( 2 > = B7'b — y1a1 — yaa.
L3

cuja inversa

DO M=

Sabemos que

UTolw

< (2)-(0)-(1)-(2)

A solugao 6tima obtida para (P) é x1 = 1, 29 = 2, 23 = 4, x4 = 0,
fornecendo val(P,) = —14. O 6timo de (P;) é uma solugao viavel de (P),
logo o problema (P;) nao terd descendentes, isto é, o né associado a este
problema sera fechado. Por outro lado o valor atual da fungao objetivo de
(P) é &g = —o0, mas val(P;) > —oo, atualiza-se Tg = val(P;) = —14.

A resolucio de (P;) serd também feita a partir da solugao 6tima de (P)),
como jé visto acima. Sabe-se que I, = {3,4},Is = ¢, Lo ={j € Lo | y2; <
0} = {4} e Lg = ¢. S6 existindo um elemento em L, = {4}, entéo a; saird
da base e a4 entrara. Para representar a nova solugao bésica tem-se: I, =
(1,3}, a(1) = 2,0(2) = a(3) = a(d) = 0, 4(1) = H(2) = B(3) = H(4) = +o0
e [5 = ¢

A nova base seréd

B=(azoz4)=<;1 :?)
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cuja inversa

-

rp = ( 2 > = B7'b — y121 — yss.
Ly

NN
|
)
N~

Sabemos que

Neste caso 1 = a(1) =2 e x3 = a(3) = 0, logo

@B=<§i>=3-1b—2y1:<

DO [ =
|
)

N———

/N
3 Ot

N———

|
[\

/N

DO [ =
|
)

N———

/N
W =

N———

o= ()= ()= ()= (1)
rp = 4 = 18 -2 10 == 2 Z 0.
4 4 4 4
A solugao 6tima obtida para (P) é x; = 2, x5 = % = 0,75, 3 =
0, x4 = % = 0,5, fornecendo val(P,) = —% = —11,75. Como val(P,) =
—11,75 > 2y = —14, o n6 associado ao problema (P,) nao podera ser fechado.

Consideraremos seus descendentes (Ps) e (Py) que podem ser:
o () =F(P)N{zeR*|z,<0}e
L] F(P4):F(P2)ﬂ{x€724 | 1’22 1}

Para solucionar (Ps) utilizaremos o método dual do simplex com varidveis
canalizadas, algo ja feito acima. A solu¢do 6tima de (P,) é dual vidvel de
(Ps). A coluna ay saird da base. Sabe-se que I, = {1,3}, I = ¢, a(l) =

2, a(2) = a(3) = a(4) =0, B(2) =0, B(1) = B(3) = B(4) = +00. E preciso
lembrar que a base associada & solugao 6tima de (P,) é

BZ((IQOM):(;l :(1)>,

cuja inversa

Determina-se:

Y11 3 Y13 1 —
Y21 — Y23 1



Ter-se-4 Lo, = {j € 1o | y1; > 0} = {1} e Lz = ¢. Assim sendo a; entrard
na base no lugar de as.
A nova base serd

B:(a1a4):<§ _?)
(1)

rp = ( . > = B7'b — ypw3 — ysws.

Ly

cuja inversa

Sabemos que

Neste caso x5 = 3(2) =0 e z3 = «(3) = 0, logo
(T (1 0[5
=)= ) (7);

.z _[5
Irp = .@4 = ] .

Para (P3) obteve-se a solugdo x1 = 5, o =0, x3 =0, x4 = 8, fornecendo
val(P3) = —20. Essa é uma solugao viavel de (P), mas pior que a solugdo
vidvel ja obtida no né associado a (P;), tal que val(P;) = —14. Assim sendo

o né associado a (P3) serd fechado.
Como foi feito para (Ps), a solugao de (Py) serd encontrada a partir de

(P). Verifica-se que L, = {j € I, | y1; < 0} = {3} e Ly = ¢. Logo a3 entrard

na base no lugar de as. Sabe-se que a(1) = 2, a(2) =1, a(3) = a(4) =
0, B(1) = 5(2) = B(3) = B(4) = +00. A nova base serd

B -1 0\ Bl
Sabemos que

x -
$B_<xi > = B™'b — y171 — yaia.

Neste caso 1 = a(l) =2 e 29 = a(2) = 1, logo
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- {0 4 E?(é )05
o () (30

Obtém-se assim uma solugao 6tima de (Py), 1 =2, 9 = 1, 23 = x4 =0,
fornecendo val(Py) = —13. Esta solugao é também vidvel de (P), logo o né
associado a (Py) serd fechado, mas val(Py) = —13 > &y = —14, assim sendo
far-se-4 T9 = wval(P;) = —13. Como nao ha mais nés abertos a solugao de
(Py) fornece o étimo de (P). "

10.5 Exercicios

1. Suponhamos que estejamos em uma etapa do método de enumeracao de
Balas associada a soluc¢ao z? de (10.8). Temos que para uma restrigao

i de (10.7):
> ai+ Y aya; b
Jj€Jp i€ Jp
ou ainda
Z aijr; < b — Z a;; = st (10.15)
Ji€Jp J€Jp

Demonstrar que Vz; € {0,1}, j & J,, solucao de (10.15), para as quais

> min{0, ap} + |ay| > st
ke,

entao r; = 0se a;; > 0ex; = 1sea;; <0.Dar um exemplo. Referéncia
[Ge 69].

2. Demonstrar que o algoritmo de Balas aqui apresentado, utilizando a
estrutura de pilha converge. Referéncias: artigos [Gl 65], [Ge 67] e o
livro [Ta 75], as paginas 85-138.
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3. Resolver pelo algoritmo de Balas o seguinte problema.

(P) : minimizar xy = 421 + 6z + 223 + 624 + Txs — Txg

sujeito a:
61’1 — 41’2 — 61’4 + 2%6 Z 0
31‘1 + T2 + 7[L’3 + 71‘4 + 81’5 - 8[)’26 Z 17
—9[[’1 + 41’2 —|— 5$3 + 2[L‘4 —|— 81’5 — 81‘6 Z 15

z; €{0, 1}, j=1,23,4,56.

4. Escrever e executar um programa para computador do método de
Balas.

5. Introduzindo varidveis bivalentes (0 —1), fornecer uma formulagao para
resolver o seguinte problema de programacao matematica:

3

(P) : minimizar Y _ f;(z;)

j=1
sujeito a:
3r1 + 2x9 4+ 223 < 18
rT — ) + Z3 S 8
Ty + To + xIs3 Z 0,5
x; >0, j=1,2,3,
onde
T, se 0<z; <1
fj(l'j)jzlgyg = 07 51’]‘ + 0, 5 se 1 S X S 2
1,5 se Ty > 2.

(Obs.: deseja-se 0 minimo de uma fungao concava restrita a um con-
junto convexo)

6. O custo de fabricacao de z; unidades de um determinado produto em
uma localidade i é d; + ¢;x;(d; > 0 e ¢; > 0) se z; > 0 e zero se z; = 0.
O custo para transportar uma unidade deste produto da localidade ¢
para a localidade j é a;; > 0. A demanda do produto em j éb; > 0e a
producao méaxima em 7 é de g; unidades. Supondoi € [ eje€ J([ e J
conjuntos finitos conhecidos), formular um problema de programagao
linear mista (com varidveis continuas e inteiras) que determine a dis-
tribuicao do produto, satisfazendo as demandas e minimizando o custo
total de fabricagao e de transporte (supor que >;c; i > > ;e b; € que
haja sempre uma ligacao de i € I para j € J).
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10.

11.

12.

13.

14.

Resolver pelo método de Balas:
minimizar ro = 3x1 — 229 + T3 + 214,
sujeito a, Ty + xo + 2x3 + 224 > 5, z; € {0,1}, j=1,2,3,4.

. Transformar o problema abaixo de tal maneira que as varidveis x; e

x9 sejam substituidas por variaveis 0 — 1. A transformacgao é tnica?
Justifique. Fornecer aquela com o menor niimero de variaveis e menor
nimero de restrigoes.

Maximizar x¢y = 4x1 + bxs + 9x3 + by, sujeito a:

T+ 3$2 + 9563 + 6$4 < 16, 65(?1 + 6LE2 + 2%3 + 7%4 < 19,

z; >0, j=1,2,3,4, x1 e x5 inteiros.

. Transformar o problema de programacao nao-linear 0 — 1 em um pro-

blema de programacao linear mista:

Minimizar x¢g = 3x1 + 229 + T3 + dr1x2 — T2z + Tx12273, Sujeito a:
z; €4{0,1}, j=1,2,3.

Aplicar um método de branch-and-bound para resolver este problema
de programacao linear mista.

Resolver utilizando o método de cortes de Gomory o seguinte problema:
minimizar ro = 4x, + 529, sujeito a:

3x1+ 29 > 2, 1 +4x9 > 5, 3x1+ 222> 7,

x1 > 0,29 > 0,z inteiro e x4 inteiro.

[lustrar no plano x; X x5 os cortes gerados em cada iteracgao.

Utilizar um método de branch-and-bound para resolver também o pro-
blema da 7% questao. Esquematizar a arborescéncia gerada para esta
resolucao.

Se 3x1 + 6x9 + 18x3 > 7 representar um corte de Gomory para um
problema de programacao linear em que x1,xs e x3 s6 podem tomar
valores inteiros, poderemos melhoré-lo? Justificar.

Sem resolver o problema

maximizar o = 4x, + 5Ty — 3x3, sujeito a:

3r; — w9 + Txg < 10, 321 + dxo + dx3 = 15, 41 + 625 + 10253 = 11,
x; > 0 e inteiro, para j = 1,2, 3;

dizer se ha uma solucao viavel. Justificar.

Procurar algumas formulagoes matematicas para o problema do caizeiro
viajante simétrico (sobre um grafo no orientado) e assimétrico (sobre
um grafo orientado).
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Capitulo 11

Dualidade em Programacao
Inteira

Acreditamos que o trabalho de Lorie e Savage [LoSa 55| seja a primeira pu-
blicacao da nocao de dualidade em programacao inteira, onde os métodos
de relaxacao lagrangeana sao utilizados visando a solucao dos problemas
de otimizagao combinatéria. Um outro trabalho pioneiro foi publicado por
Everett [Eve 63]. No entanto, os trabalhos de Held e Karp ([HeKa 70],
[HeKa 71]) que, realmente, desenvolveram essa drea do conhecimento cien-
tifico. Geoffrion [Ge 74] cunhou o termo "relaxacdo lagrangeana”. Outros
trabalhos importantes dos anos 70 nao podem ser esquecidos: [Fi73], [Fi 81],
[FiSh 74], [FiNoSh 75|, [Sh 71], [Sh 79].

11.1 Relaxacao Lagrangeana

Nossa exposicao sera desenvolvida para os problemas de programacao linear
com todas as varidveis 0-1, mas podemos estender, sem muitas dificuldades,os
resultados apresentados para os problemas de programagao linear inteira mais
gerais. Ver, por exemplo, [P1 2000].

Seja o problema de programacao inteira:

(P) : minimizar zy = cx (11.1)
sujeito a:
Az <b (11.2)
Dz <d (11.3)
z e {0, 1}", (11.4)
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onde ¢ € R", v € R", A uma matriz m x n, b € R™, D uma matriz
pxXn, deRP.

Associemos as restrigdes (11.2) o vetor linha u = (uy us ... u,,), tal que
u > 0, conhecido como vetor dos multiplicadores de Lagrange associados as
restricoes em questao. Entao para v > 0 escrevemos o seguinte problema:

L(u) = min{ cz + u(Az —b) } (11.5)

sujeito a:
Dz <d (11.6)
xz e {0, 1}". (11.7)

O problema (11.5)-(11.7) serd denominado uma relaxagao lagrangeana de
(P).
Suporemos que as restrigoes (11.2), (11.3) e (11.4) formam um conjunto
nao vazio.

Proposicao 11.1 L(u) < val(P).

Demonstragao

Suponhamos que z* seja uma solugao 6tima de (P), isto é, val(P) = cx*.
Sabemos também que L(u) < cz* + u(Az* —b), como u >0 e Az* —b <0,
entao poderemos escrever

L(u) < ca”™ +u(Azx™ —b) < cx™ = val(P). "

Esta propriedade nos diz que £(u) é uma cota inferior de val(P). Visando
a busca da maior cota possivel, consideramos o seguinte problema.

(D) : maximizar L(u)
sujeito a : u > 0.

(D) é considerado um problema dual de (P). Se u* for uma solugao étima
de (D), teremos val(D) = L(u").

Geralmente val(D) < val(P) para os problemas de programagao inteira,
dizemos que existe um salto primal-dual. Em lugar de considerarmos o ve-
tor dos multiplicadores de Lagrange u, poderemos utilizar um espaco de
fungoes de Lagrange generalizadas como apresentado em [TiWo 78], [Wo 81]
e [NeWo 88]; esse enfoque elimina o salto primal-dual, no entanto, a solugao
do novo problema dual nao é pratica em termos computacionais.
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11.2 Solucao do Problema Dual

Construiremos a seguir dois métodos para resolver (D): uma técnica de
geragao de colunas do tipo Dantzig e Wolfe [DanWo 60] e um método uti-
lizando sub-gradientes sugerido por Held, Wolfe e Crowder [HeWoCr 74].

11.2.1 Técnica de geracao de colunas

O problema (D) pode ser escrito sob a forma de um problema de programagao
linear:
(D) : maximizar L£(u) = w

sujeito a:
w < cx® +u(AzF —b), k=1,2,.. K,
u >0,
onde {z!, 22, ..., 25} = {z € {0,1}" | Dx < d}. Devemos notar que w e u

sdo as incégnitas de (D); os vetores ¥ de componentes 0-1, solucoes vidveis de
(11.3) e (11.4), sao considerados, inicialmente, conhecidos. Poderiamos pen-
sar em resolver o problema (D) acima por técnicas de geracao de linhas,ver
[Las 70], mas optamos por trabalhar com seu problema dual de programagao
linear. O problema (D) pode ser escrito sob a forma de um problema de
programacao linear:

(D) : maximizar L(u) = w

sujeito a:
w—u(Az® —b) <ecaf, k=1,2,. K,

u > 0.
Tomando o problema dual de (D) teremos:
K
(DD) : minimizar Y _ (cz¥)\
k=1

sujeito a:

K
R

K
S (AzF —b)A, >0

=1
0, k=1,2,... K,

I\/w

Ak
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onde \p, k = 1,2,..., K representam as variaveis duais. Podemos ainda
escrever

K
(DD) : minimizar Y _(cz¥)\; (11.8)
k=1
sujeito a:
K
D=1 (11.9)
k=1
K
Z A< b (11.10)
N >0, k=1,2,.. K. (11.11)

Para resolvermos (11.8)-(11.11), introduziremos um vetor
s = (81 Sg ... S) >0,

cujas componentes sao as variaveis de folga das restrigdes (11.10), assim
sendo:

K
(DD) : minimizar Y _(cz*)\; (11.12)
k=1
sujeito a:
K
=1 (11.13)
k=1
K
(AN +s=10 (11.14)
k=1
Me >0, E=1,2,..,K (11.15)
s > 0. (11.16)

A matriz que define as restrigoes de igualdades (11.13) e (11.14) serd
esquematizada abaixo:

A 1 1 ... 1 0O 0 ... 0
= 1 2 K

Axt Az ... Ax™ e ey ... e

Os vetores ¢;, ¢ = 1,2,...,m representam os vetores unitarios, isto é, a
unica componente diferente de zero é a i—ésima, sendo esta igual a um.

Seja B uma matriz (m+1) x (m+1) formada por m+1 colunas de A, tal
que B seja inversivel. Suponhamos também que a solucao basica associada a
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B seja primal vidvel de (11.12)-(11.16). A otimalidade desta solucao basica
serd verificada, como ja foi estudado anteriormente, através de sua viabilidade
dual.

Os coeficientes associados as varidaveis A\; na funcao objetivo sao iguais
a cx®, ao passo que os associados as varidveis de folga s; sao iguais a zero.
Denominaremos de gg o vetor linha, cujas componentes sao os coeficientes
das variaveis basicas na fungao objetivo. O vetor linha v representando os
multiplicadores do simplex serd entao escrito como v = ggB~!. Podemos
particionar v da seguinte forma: v = (vy v!), onde vy € R e (v})T € R™, isto
é, vy estd associado & restrigao (11.13) e as componentes de v! as restrigoes

(11.14).
Caso uma das componentes de v', por exemplo, v} seja positiva entdo a
0 . 0
coluna ( . ) deve entrar na base, pois v ( ) = v}. Como supusemos que
i i

v} > 0, logo se a variavel s; entrar na base o valor da funcao objetivo (11.12)
diminuira se s; tomar um valor positivo na nova solucao basica.
Suporemos agora que v' < 0, e passaremos a determinar:

0
k=I1r,122,l§,K{ (o0 ) ( Azt > —cat }.

A expressao acima pode ainda ser escrita:

N g ok
t(a’) =, max {(v'A—c)a”+uo}, (11.17)
z! 6 uma solugao deste problema. Caso t(z!) > 0 a coluna ( A(lcl ) entrara

na base. Caso contrdrio, isto é, t(z!) < 0 a base corrente B é uma solucio
6tima de (DD).

Como nao conhecemos todos os pontos z¥, k = 1,2, ..., K, teremos que
resolver o problema de programacao matematica:

(PA) : maximizar (v'A — ¢)z + vy (11.18)
sujeito a:
Dz <d (11.19)
z e {0,1}". (11.20)
Seja val(PA) = (v'A — ¢)a! + vy. Como ja foi mencionado acima, se

val(PA) > 0 a varidvel \; entrard na nova base. Caso contrério a atual base
B é uma solucao 6tima.
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As regras de pivotemanento para o algoritmo primal do simplex ja foram
vistas nos primeiros capitulos. Mais adiante apresentaremos um exemplo
completo para a solugao de (D D). Lembremos que val(D) = val(DD). Além
disso nao devemos esquecer que v' associado ao 6timo de (D D) é uma solugao
6tima de (D), isto é, u* = v'. verificar que vy associado ao 6timo de (DD) é
igual a val(D).

Se acrescentarmos ao problema (11.8)-(11.11) as restri¢oes de integrali-
dade para as variaveis A\,, k = 1,2,..., K, isto é, \, € Z, k =1,2,..., K,
teremos um problema equivalente a (P). Por que?

Seja a relaxagao linear de (PA) :

(PA) : maximizar (v'A — ¢)z + vy (11.21)

sujeito a:
Dz <d (11.22)
x € [0,1]". (11.23)

Por outro lado sabemos também que a relaxagao linear de (P) serd

(P) : minimizar z¢ = cx (11.24)
sujeito a:
Az <b (11.25)
Dz <d (11.26)
z €0, 1. (11.27)

Proposicao 11.2 val(P) < wal(D) < val(P).

Demonstracao B
Da propriedade 11.1 temos que val(D) < val(P). Para verificar que val(P) <
val(D) basta notar que

{reR"| Dz <d, z€{0,1}"}C{reR"|Dx<d, xel0, 1]" }. n

Observagao: Se todos os vértices do politopo formado pelas restricoes de
(PA) pertencerem a {0, 1}, entdao val(PA) = val(PA). Neste caso sabere-
mos, a priori, que val(P) = val(D). Esta particularidade é conhecida como
a propriedade de integralidade de Geoffrion [Ge 74].

Quando a relaxacao lagrangeana nao possui a propriedade de integrali-

dade, a solu¢ado computacional de (PA) pode ser muito dificil, pois temos
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que resolver um problema de programagao inteira 0-1, com menos restri¢oes
que o problema incial (P).

E interessante a utilizacao da relaxacao lagrangena com a propriedade
de integralidade, apesar de a cota inferior obtida valer val(P). Na realidade,
durante a solugao de (DD) geramos pontos z* que podem ser também vidveis
de (P). Dessa maneira temos também uma cota superior para val(P). Isto
é, val(P) < cx*.

11.2.2 Método utilizando sub-gradientes

Definiremos sub-gradiente e forneceremos um método especifico para maxi-
mizar L(u), sujeito a u > 0.

Proposicao 11.3 L(u) é uma fun¢do concava e afim por partes.

Demonstracao
Ver [GoMi 79], pagina 497. "

Antes de continuarmos, apresentaremos um exemplo. Seja
(P) : minimizar o = —6x; — 83 + bx

sujeito a:
—4xy —dxg — x5 < =2
209 — 223 < 1
—2r9 + 223 <1
201 + 229 4+ 223 < 5
z; € {0, 1}, j=1,2,3.

Associamos a variavel u > 0 a restricao —4x; — 4xy — v3 < —2 e obteremos
a seguinte expressao:

(2% u) = —62% — 8ah + 5% + (—da¥ — 4ak — b 4+ 2)u,
onde 2% = (F 2% %), k =1,2,..., K sdo as solugoes vidveis de
2[E2 — 21‘3 S 1

—2x9 4+ 223 < 1
21’1 + 25(]2 + 2.173 S 5
z; € {0, 1}, j=1,2,3.
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Figura 11.1: A fungao dual

Neste caso muito simples verificamos que apenas trés pontos, z' = (0 0 0),
r2=(100)eax®=(011), satisfazem

2%2 —21’3 S 1

—2$2 + 2.]73 S 1
2x1 + 229 4+ 223 < 5
z; € {0, 1}, j =1,2,3.

A funcao objetivo do problema dual dessa relaxacao lagrangeana poderd
ser escrita:

L(u) = min3 { 12", u)},

k=1,2,

onde I(z,u) = 2u, l(z?,u) = —6 —2u e (23, u) = =3 — 3u.
Na figura 11.1 representamos L(u), para u € R .
Sabemos que o dual associado a relaxacao em questao serd

(D) : maximizar L(u)

sujeito a:
u > 0.
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Podendo ser escrito sob a forma de programacao linear:

(D) : maximizar L(u) = w

sujeito a:
w < 2u
w< —6—2u
w< —3—3u
w > 0.

Resolvendo (D) acima pelo método do simplex obteremos v = 0 e w =
—6, isto é, val(D) = —6. Algo que pode ser verificado na figura 13.1. Como
o ponto 2 = (1 0 0) é vidvel de (P) e fornece a xy um valor —6, concluimos
pela propriedade 13.1 que 2?2 =(100) é um 6timo de (P).

E interessante verificar que val(P) = —11,5, cota bem pior do que val(D)
para este exemplo. A propriedade da integralidade nao é valida.

Definicao 11.1 Um vetor v € R"™ € um sub-gradiente de uma fun¢dao con-
cava f : R™ — R, no ponto 2° se f(x) < f(a°) + 4T (xz — 2°) para todo
x € R"

Se a funcao f for diferencidvel em 2° entao teremos apenas um sub-
gradiente que serd igual ao gradiente de f em z°.

Na figura 11.2, consideramos o grafico de uma funcao f concava nao
diferencidvel em z', mas diferencidvel em z?. Os hiperplanos h;(z") = f(x*)+

’ij({E —z'), para j = 1,2,3, sao também ilustrados na figura 11.2

Definigao 11.2 O subdiferencial df(z°) de f em 2° é o conjunto de todos

0s sub-gradientes de f em x°.

Se f ¢ diferencidvel em z° entdao df(2°) = {7 f(2°)}, onde v/ f(2°) repre-
senta o gradiente de f em 2°.

Podemos notar também que 0L(u) # ¢.
Proposigao 11.4 9f(x°) # ¢ é convezo e fechado.
Demonstracao

Para demonstrar a convexidade de 9f(z°), tomaremos v, e v, € 9f(z?),
entao

fla) < f@°) + 7 (@ — 2% (11.28)
fla) < f(@) + 7 (@ = 2°). (11.29)
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Figura 11.2: Idéia de sub-gradientes

Consideremos 0 < a < 1, multiplicamos (11.28) por ac e (11.29) por 1 —«,
apods essas operagoes somemos membro a membro as duas desigualdades:

af(@)+ (1 —a)f(z) <af(@®) + (1 -a)f(a®) +[ar + (1 —a)r](@—a?)
ou ainda
flz) < f@) +lani + (1= a)p](z - 2",
logo vy =ay + (1 —a)y, 0 <a <1, étambém um sub-gradiente de f em
0
Y.
Para mostrar que df(2") é um conjunto fechado, consideraremos uma
sequéncia {v;} de elementos de f(2") convergindo para ¥ & df (7).
Logo existe 7 € R", tal que: f(z) > f(2°) + 77 (z — ), ou ainda
f(@) — f(@°) =77 (z —2°) > e>0. (11.30)

Por outro lado sabemos também que

—f(Z) + f(2°) + 7] (z —2°) >0, Vv; € Of (2). (11.31)

Somando membro a membro (11.30) e (11.31) temos que
(=@ -2") 2e
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Utilizando a desigualdade de Schwarz teremos

e < (v —W)T(f—l’o) <l =7l ||f—$0||,

uma contradigdo com a convergéncia da sequéncia {7;} de elementos de

of(x°) para 7 ¢ Of(z0).  m

Proposicao 11.5 Se f : R™ — R € uma funcgdo concava, entao x° mazimiza

[ se e somente se 0 € Of (z).

A demonstragao ¢é deixada para o(a) leitor(a).

Retornemos a fungao £ definida em (11.5), (11.6) e (11.7), suporemos que
T seja uma solugao vidvel de (11.6) e (11.7), tal que £(u’) = ¢z +u’(AZ —b).
Assim sendo consideraremos a seguinte propriedade.

Proposigao 11.6 AT — b é um sub-gradiente de L em u°.

Demonstragao
Podemos escrever

L(u®)+ (u—u")(AZ —b) = cz+u(Ax —b)+ (u—u’) (AT —b)
= T+ u(Az —b) > L(u), u>0.

A propriedade 11.6 nos fornece um maneira de obter um sub-gradiente
de £ em um dado ponto u°.

Um método utilizando sub-gradientes descrito em [HeWoCr 74] para re-
solver o problema dual

(D) : maximizar £(u) (11.32)

sujeito a:
u >0, (11.33)

sera apresentado a seguir.
Partiremos de um ponto u® > 0 arbitrario, definiremos uma sequéncia de
pontos:

uF T = uF 4 0,(/F)T, onde AF € OL(uF).
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E importante notar que v* pode ndo ser uma direcao de subida para £
em ¥, ver [Mino 86].
Uma escolha do passo 6y, para v* # 0 foi estudada em [HeWoCr 74].

L—-L
= Pk A2 para 0 < pp < 2, (11.34)

onde £ é uma cota superior de val(D) e £ uma cota inferior de val(D). Essas
cotas serao atualizadas durante as iteracoes do método, visando a diminuir
o salto £ — L. A escolha de py, segundo Beasley [Bea 92], deve ser igual a 2
no inicio do método iterativo e caso nas tltimas p iteracoes o valor de £ nao
aumentar, dividiremos py por 2. Beasley [Bea 92| diz que em suas extensas
experiéncias computacionais um bom valor para p é 30.

Sabemos que u*! pode ser negativo quando fazemos u*! = u*+0,(v*)T.

Assim sendo, o algoritmo serd escrito com segue:

ubt = max{ 0, uf +07F },

isto é, quando uma componente u¥ +6,y¥ for negativa, faremos ubtt = 0.

Exemplo 11.1 Resolucao de (D) por geracao de colunas.
Seja

(P) : minimizar o = —bz; — 629 — 313
sujeito a
3xy +4xy + 223 < 4 (11.35)
T+ a9+ a3 <2 (11.36)
21+ a3 < 1 (11.37)
z; €{0,1}, j=1,2,3. (11.38)

Denominemos de X o conjunto formado pelas restrigoes (11.36), (11.37) e
(11.38). E facil verificar que

X =A{ xl 000)", z2=(100)7, 22 =(010)7,
=007, 25 = (110), =117}
Dualizaremos a restri¢ao (11.35) a qual associaremos a variavel dual u.

Podemos entdo considerar

l(x,u) = =bxy — 6xe — 33 + (321 + 42e + 223 — 4)U.

Lembremos que
(D) : maximizar L(u)
sujeito a: u > 0.
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Figura 11.3: Funcao dual para o exemplo

Sabemos que :

[zt u) = —4u, 1(2?,u) = =5 —u, I(z3,u) = —6,
[(z*u) = =3 — 2u, (2, u) = —11 + 3u, (2% u) = —9 + 2u.

L(u) = min{ I(z,u) | * € X}, cujo gréafico pode ser visto na figura 11.3.

Verificamos, graficamente, na figura 11.3 que u*,tal que L£(u*) = val(D)
é determinado pela intersecao de (2%, u) com I(z°,u), istoé,

—5 —u* = =11+ 3u*, logo u* = ¢ =1,5.

Nosso intuito aqui é o de resolver (D) por geracao de colunas, assim sendo

escreveremos (D) sob uma outra forma:
(D) : maximizar L(u) =t

sujeito a: '
t <l(z',u), 1=1,2,3,4,5,6
u > 0.

Ou ainda:
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(D) : maximizar L(u) =t
sujeito a:

t < —bx! — 6xh — 3wk + (32} + 4ah + 204 — d)u, i =1,2,3,4,5,6

u > 0.

Escreveremos ainda:

(D) : maximizar L(u) =t

sujeito a:

t+ (=32t — 4zl — 225 + 4)u < —5a} — 62h — 32k, i =1,2,3,4,5,6

u > 0.
Cujo dual:
(DD) : minimizar Y (—5z] — 6z} — 3z4)\;
i=1
sujeito a:
6
i=1
> (=3af — Azl — 22% + 4)\; > 0
i=1

A\ >0, i=1,234,5,6.

Apos algumas operagoes teremos:

6

(DD) : minimizar Y _(—5x} — 624 — 3z5)\;
i=1
sujeito a:
6
Ni=1
i=1
6 . . .
> (3} + 4t + 2ah)\; < 4
i=1

N >0, i=1,23,4,5,6.
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Como observacao importante definiremos o seguinte problema:

6
(DDI) : minimizar » (—5z} — 6z — 3z4)\;

i=1

sujeito a:

> (3z] 4 dah + 224N < 4
i=1

A >0,i=1,2,3,4,5,6.
NEZ i=1,23456

E facil verificar que (DDI) e (P) sio equivalentes. Por outro lado
val(DD) > val(P).

Por que?
Voltemos para a solugao de (DD). Introduziremos a variavel de folga

s>0:
6

(DD) : minimizar »_(—5z} — 62 — 3z%) ),
i=1

sujeito a:

Ai=1

6
=1

(2

6
> (3z) 4+ dah + 22\ +s =4
i=1

N >0, i=1,23,4,56 s>0.

Uma solugao bésica inicial associada & solugao ' = (0 0 0) € X e a varidvel
de folga s (sendo \; a varidvel associada a z') é vidvel. Isto é, a base B

inicial seria
B_ 1 oy (10
T\ Bzt+dxt 422 1) N0 1)

No entanto, a titulo de ilustragao utilizaremos o método das duas fases
para encontrar uma solugao inicial basica viavel de (DD).
Seja o problema auxiliar da primeira fase:
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(FASE1) : minimizar w = A,

sujeito a:

> (3z) 4+ dah + 22N +s =4

=1
N >0,i=1,2,3,4,56 s>0e\ > 0.
10

01
de (FASE1L). O vetor custo associado a esta base é (1 0) e o vetor dos

A = 1 e s = 4 estao associadas a uma base primal vidavelB =

01
Logo v = (1 0), os z; associados as varidveis \;, serdo escritos:

-1
multiplicadores do simplex v = (1 0) ( L0 ) .

1 1
Zi_v(Sx%+4x%+2xé ) = O)<3x%+4x%+2x§ ) =L

Como o custo associado a variavel \; é nulo, teremos, utilizando a notagao
deste livro, que z; — ¢; = 1 — 0 = 1. Utilizando as técnicas de geracao de
colunas apresentadas no capitulo 7 para a solugao de (FFASE1), teremos que
resolver:

(PA) : maximizari:1,2737475’6 1

sujeito a:
1+ 29+ a3 <2
T +w3 <1
z; €{0,1}, j=1,2,3.
Qualquer z', ¢ = 1,2,3,4,5,6, serd uma solugao Gtima deste (PA).

Tomemos z! = (z} 2} z3) = (0 0 0). Sabemos que val(PA) = 1 > 0, logo

1 1 1
faremos ( 3ul + 4} + 2z} ) - ( 3x0+4x0+2x0 ) - < 0 ) entrar
na nova base. Para saber qual coluna saira temos que pré-multiplicar esta

coluna pela inversa da base atual. Ou seja:

(D))
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Para esquematizar as operagoes de troca de base, por pivoteamento (eli-
minagao de Gauss-Jordan) utilizaremos o seguinte quadro Q:

Q j

w | 1|cgB™! 2j — ¢

Ag | 0O B! AB Yj

A\

&=

Para o nosso caso, teremos o quadro inicial Q1 :

o1 TN 02 Ty
w11 011 w 110 000
Nlo1T o1~ N0t 011
s |00 1]4] 0 s (010 1]4]0

onde * indica o pivo. O quadro ()2 fornece uma base primal vidavel para o
problema (DD), pois val(FASE1) = w = 0.

Teremos que formar um novo quadro associado ao problema (DD), para
darmos inicio a segunda fase do método do simplex. A base agora estd
associada a coluna de A; e a coluna de s. Os custos associados as variaveis
bésicas sao as componentes do vetor

(—=5x] — 63 — 325 0)=(=5x0—-6x0—-3x0 0)=(00).

Sabemos ainda que

v:(vovl):(00)<(1) ?>_ ~ (0 0).

Denominando de f.o. o valor da fungao objetivo de (DD) a cada iteragao,
formaremos o quadro inicial para a segunda fase.

Q3 LA
fo. 1110 00

A |O]1 01

s |00 1] 4

Para preenchermos a tltima coluna do quadro ()3 teremos que resolver:

1

' - _ 1
(PA) : maximizar t = (vo v°) ( 31 + 4xe + 275

> — (—5371 — 6I2 — 3[L‘3)

sujeito a:
1+ To+ a3 <2
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T +ax3 <1
z;€{0,1}, j=1,2,3.

Ou ainda:

. 1

(PA) : maximizar t = (0 0) ( S0y + Ay + 2 ) — (=5z1 — 62y — 3x3)

sujeito a:
T+ To + XT3 S 2
T +w3 <1
z; €{0,1}, j=1,2,3.
Finalmente
(PA) : maximizar t = bz + 622 + 3z3

sujeito a:

1’1+$2+$3§2
T +r3 <1
z; €{0,1}, j=1,2,3.

Cujasolucaoéxzy =1, x5 =1, 23 = 0, fornecendot = 5x1+6x14+3x0 =
11 > 0. Esta solucao é o ponto z°. A coluna gerada é

1 1
<3><1+4><1+2><0>_<7>'

Pré multiplicando esta coluna pela inversa da base:

(8) (-G ()-(5)

O quadro ()3 ficara entao

Q3 1 Q4 1T [ X
fo |T[0 0J0][1T] _ [fo [T[0 —11/7][~44/7] 0
¥ I M |01 —1/7 | 3/7 || 0
s 10]0 1|47 Xs 010 1/7 || 4/7 || 1

onde (*) indica o pivo.
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Novo problema gerador de coluna:

o 1
(PA) : maximizar t = (0 —11/7) ( Sy + Ay + 20 ) — (—=bzy — 629 — 3x3)

sujeito a:
1+ To + T3 S 2
T +r3 <1
z; € {0,1}, 7=1,2,3.
Ou ainda:
2 2 1
PA) : imizar t = —x1 — =y — —
(PA) : maximizar 73:1 7.CB2 73:3
sujeito a:

l’1+$2+1’3§2
131+ZE3§1
z;€{0,1}, j=1,2,3.

Cuja solugao é 1 =1, x5 = x3 = 0, fornecendo t = % > (, representando

o ponto 2. A coluna que entrard na nova base sera

1 1
<3><1—|—4><0+2><0>_<3>'

Pré-multiplicando esta coluna pela inversa da base atual:
1 —=1/7 LY\ [ 4)7
0 1/7 3 ) \3/7 )"

Assim sendo

Fo. [110 —11/7 —44/7| 2/7
M| 0|1T —1/7 || 3/7 | (4/7)
Ns |00 17 || 4/7 | 3/7

l

Fo [1[=1/2 —3/2| —13/2 0
X |0 7/4 —1/4 3/4 |1
Xs |0 —3/4 1/4 | 1/4 |0
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Novamente geraremos uma coluna:

(PA) : maximizar t =

1
(—1/2 —3/2) ( 32, + 4y + 225 ) — (=531 — 635 — 313)

sujeito a:
T+ To + XT3 S 2
T +x3 <1
z; €{0,1}, 7=1,2,3.
Isto é,
. 1
(PA) : maximizar t = —1/2 + ixl + 0z + Ox3
sujeito a:
T1+ 2o+ a3 <2
r1+x3 <1
z; € {0,1}, 7=1,2,3.
Podemos verificar que as solugoes 1 = 1, 2o = 23 = 0, e x1, x5 =

1, x3 = 0 sdo solugoes Gtimas, fornecendo t = —1/2+1/2 = 0, logo Q5 é
um quadro 6timo. Deste quadro se tem que Ay = 3/4, A5 = 1/4 fornecendo
val(DD) = —13/2 = —6,5 = val(D). Logo val(P) > —6,5, mas como 0s
coeficientes da fungdo objetivo de (P) sado inteiros, podemos escrever que
val(P) > —6. verificamos que para 23 = (0 1 0), xg = —6, assim sendo z* é
uma solucao étima de (P). "

Exemplo 11.2 Resolucao de (D) por um método utilizando sub-gradientes.
Retomaremos o mesmo problema (P) do exemplo acima. Seja

(P) : minimizar o = —bz; — 629 — 373
sujeito a
11.39
11.40
11.41
11.42

3r1 + 4wy + 223 < 4
1+ 2o+ a3 <2
r1+a3 <1
z; € {0,1}, j=1,2,3.

e N
~— N N~
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Associaremos a restrigdo (11.39) a variavel u; > 0 e a restricao (11.40)
a variavel uy > 0. Denominemos de X o conjunto formado pelas restrigoes
(11.41) e (11.42).

Seja

l(x,u) = =5y — 629 — 323 + (311 + 4wy + 323 — 4)uy + (1 + T2 + T3 — 2)Us.

Assim sendo, a fungao dual serd: L(u) = min {l(z,u) | x € X}.
O problema dual serda mais uma vez escrito como

(D) : maximizar L£(u)

sujeito a:
u > 0.

Para resolvermos (D) acima, iniciaremos o método de otimizagao com a
solucao u® = (u? u3) = (0 0) e utilizaremos uf ™ = max{0, u¥ 4+ 6i7F}, i =
1,2. Lembremos que v, € 0L(u*) e ), = pkui%l%, para 0 < pp < 2, como
definido em (11.34).

Se L(u*) = —5xk — 625 — 32k + (32 +4ak + 32k —4)uf + (af +2h + b —2)ub,

entao i} i i i
(o By a4 3u —4 k
7k_<7§>_< o+ ah + 2k -2 € OL(w).

L > val(P) > L, para obtermos um valor inicial para £, basta conseguirmos
uma solugao viavel de (P); por exemplo, 1 = 1, x5 = 23 = 0, fornecendo
29 = —5. Logo tomaremos £ = —5. O valor inicial de £ poderd ser

L= L(u’) = min{—5r; — 6x9 — 313 | 71 + 23 < 1, z; € {0,1}, j =1,2,3}.

E facil observar que £(u®) = =5 x 1 —6x1—3x0 = —11, isto ¢,
) =29 =1, 2§ = 0; faremos entdao £ = —11. Tomaremos
o [N B 320 + 429 + 325 — 4
\w) ] + a5+ a3 — 2

3xX1+4x14+3x0-4)\ (3
Ix1+1x141x0-2) '

Tomaremos p = 2, [[7°]* = 32 + 0% = 9. Logo 6y =
calculemos entao

4 4 4
u; = max{0, §><3}:§><3:4, uy = max{0, §><O}=O.
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L(u') sera dado por
min {—5z; — 61y — 33+ (321 +4w9+ 373 —4)ui + (11 + 20 +13—2)uy | € X},
ou ainda

L(u') = min {—5x; — 629 — 373 + 32y + 42y + 323 — 4)4 | z € X},

L(u') = min{7x; + 1025 + 5x3 — 16 | 21 + 73 < 1, x; € {0,1} }.

O valor de L(u') serd obtido quando 1 = x5 = 23 =0, L(u') = —16.
Como —16 < —11 nao modificaremos o valor de L, isto é, £ continuard
valendo —11. Verificamos também que z; = x5 = z3 = 0 é uma solucao

vidvel de (P), fornecendo xy = 0. Continuaremos com £ = —5.
Tomaremos
1 v 3x1 4+ 4ay + 3z — 4
7= 1 = 1.0, 1
72 xl +£L‘2-|-l’3 2
B 3x0+4x0+3x0—-4)\ [ —4
n Ix0+1x04+1x0-2) \ =2 )°
—5—(—11
PR = (—4) 4 (<2 = 16+4=20 ¢ -2

ui = max{0, 4 + g X (—4)} =

L(u?) sera dado por
min {—5z; — 61y — 33+ (321 +4w9+ 373 —4)ud + (v, + 20 +23—2)us | 7 € X},

ou ainda
8
E(UQ) — min {—5.731 - 61’2 - 3I3 + (3%’1 —+ 4%’2 + 3],‘3 — 4)5 | €T E X}’

L(u?) = min{—;xl + ?.:1:2 + ;% — 352
L(u?) ¢ encontrado para 3 = 1, 23 = 23 = 0, fornecendo L(u?) = -2 =
—6,6. Para a préxima iteracao farifamos £ = —6,6. Como a funcao objetivo
de (P) possui todos os coeficientes inteiros,entao —6 < val(P) < —5. Logo a
solugao viavel de (P), x1 =0, x5 = 1, 23 = 0, fornecendo zq = —6 é étima
de (P).
E interessante notar que a funcdo objetivo de (D) comegou com o valor
—11 decresceu para —16 e, finalmente, cresceu até —6, 6. [

’$1+$3§1, a:jG{O,l} }
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11.3 Exercicios

1. Seja
(P) : maximizar zg = 2z + 3x9 + 4x3 (11.43)
sujeito a:
1221 4+ 1929 + 3023 < 46 (11.44)
4921 + 4029 + 31x3 < 76 (11.45)
z; € {0,1}. (11.46)

Determinar o valor 6timo do dual de (P) quando relaxarmos (11.44).
Determinar o valor 6timo do dual de (P) quando relaxarmos (11.45).
Calcular val(P), onde (P) é formado de (P) trocando-se (11.46) por
0 <z; <1, j =123 Encontrar um étimo de (P). Seja (Q) o
problema dual-lagrangeano de (P) quando relaxamos ao mesmo tempo
(11.44) e (11.45), mostrar que val(Q) = val(P), sem resolver (Q).
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