Prov Viewer: a graph-based visualization tool for interactive exploration of provenance data

Troy C. Kohwalter¹ Thiago Oliveira¹, Juliana Freire², Esteban W. G. Clua¹, Leonardo G. P. Murta¹

¹Instituto de Computação – Universidade Federal Fluminense (UFF) ²New York University

OF ENGINEERING

Introduction

Recent attention to provenance gathering

- Many tools for capturing provenance data
 Provenance for each task
- Displaying provenance is an issue in present times
 - Simple node-link diagrams
 - Basic visualization features

Goal

Introduction

Prov Viewer

Case Studies

Conclusion

Motivation

- Workflow management systems
 - Build-in visualization features
 - Lack manipulation features
 - Incompatible with other tools
 - Restricted metadata visualization

3

Introduction

Conclusion

Motivation

- Standalone visualization tools
 - Additional knowledge (e.g., SQL, prolog)
 - Not compatible with PROV
 - Restricted metadata visualization

Prov Viewer

Goal

Specialized provenance visualization tool

• Prov-compatible

Exploratory and interactive visualization

• Visual analysis of provenance data

Prov Viewer

• Provenance Graph Visualization Tool

Configuration

- Layout
- Relationships (Edges)
 - Color scheme
 - Summarization formula for values (if any)
- Vertices
 - Color schemes
- Automatic detection
 - Relationships
 - Vertex attributes for Color schemes

- <default_layout>SpatialLayout</default_layout> <layoutAxis_X>ObjectPosition_X</layoutAxis_X> <layoutAxis_Y>ObjectPosition_Y</layoutAxis_Y> <imageLocation></imageLocation> <imageOffset_X>0</imageOffset_X> <imageOffset_Y>0</imageOffset_Y> <spatialLayoutPosition>0.0</spatialLayoutPosition> <zoomLevel>0</zoomLevel> <temporalLayoutbackbone>Player</temporalLayoutbackbone>
- <temporalLayoutscale>1.0</temporalLayoutscale>

```
<edgetype>
```

```
<edge>wasGeneratedBy</edge>
<edgestroke>MAX</edgestroke>
<collapsefunction>SUM</collapsefunction>
</edgetype>
```

<colorscheme>

```
<attribute>Duration</attribute>
<class>ActivityInvertedScheme</class>
<values></values>
<goodvalue></goodvalue>
<badvalue></badvalue>
</colorscheme>
```


Shapes and Colors

- PROV shapes
 - Pentagon: Agent
 - Circle: Entity
 - Square: Activity

- Default PROV colors
- Color Schema
 - Traffic light color based on metadata information

Case Studies

Conclusion

Shapes and Colors

Shapes and Colors

Prov Viewer

Temporal Filter

Introduction

Conclusion

Vertex Metadata

Introduction

Conclusion

YU

TANDON SCHOOL OF ENGINEERING

Vertex Metadata

Graph 01

- Combine similar vertices
 - Compare vertices
 - **Detect similarity**
 - No information loss
- Similarity
 - Vertex type
 - Attributes
 - Values
- Between graphs
 - Graph merge
 - Analyze multiple trials or sessions
- Within same graph
 - Sequential vertices
 - Deduplication

Program v1

Program v4 Merge

Instituto de

Program v5

Prov Viewer

Case Studies

Coding

Derek

Program 2 Coding

Conclusion

ogram v3 Coding

Introduction Goal

- Combine similar vertices
 - Compare vertices
 - Detect similarity
 - No information loss
- Similarity
 - Vertex type

Introduction

- Attributes
- Values
- Between graphs
 - Graph merge
 - Analyze multiple trials or sessions
- Within same graph
 - Sequential vertices
 - Deduplication

Jordan

Program v5

Goal

Prov Viewer

Case Studies

Conclusion

Introduction

Goal

Prov Viewer

Case Studies

Conclusion

Automatic Summarization

- Combine similar vertices
 - Compare vertices
 - Detect similarity
 - No information loss
- Similarity
 - Vertex type
 - Attributes
 - Values
- Between graphs
 - Graph merge
 - Analyze multiple trials or sessions
- Within same graph
 - Sequential vertices
 - Deduplication

Troy Kohwalter

Prov Viewer

- Combine similar vertices
 - Compare vertices
 - **Detect similarity** —
 - No information loss
- Similarity
 - Vertex type

Introduction

- Attributes
- Values
- Between graphs
 - Graph merge
 - Analyze multiple trials or sessions

Goal

- Within same graph
 - Sequential vertices
 - Deduplication

Case Studies

Conclusion

Prov Viewer

Prov Viewer

- Combine similar vertices
 - Compare vertices
 - Detect similarity
 - No information loss
- Similarity
 - Vertex type

Introduction

- Attributes
- Values
- Between graphs
 - Graph merge
 - Analyze multiple trials or sessions

Goal

- Within same graph
 - Sequential vertices
 - Deduplication

Derek

Case Studies

Conclusion

Computação

- Combine similar vertices
 - Compare vertices
 - Detect similarity
 - No information loss
- Similarity
 - Vertex type
 - Attributes
 - Values
- Between graphs
 - Graph merge
 - Analyze multiple trials or sessions
- Within same graph
 - Sequential vertices
 - Deduplication

Introduction

Case Studies

Conclusion

Spatial referencing data

Prov Viewer

Case Studies

Conclusion

- Case Study
- Game session

- Angry Bots from Unity

- Graph
 - Vertices: 1275
 - Edges: 2976
- Vertices represent actions (Activity), objects (Entity), and agents

Case Studies

Conclusion

Case Studies

Conclusion

Zoom

1st Combat

2nd Combat

3rd Combat

Troy Kohwalter

Prov Viewer

Conclusion

Troy Kohwalter

Prov Viewer

Troy Kohwalter

Científico e Tecnológico

Goal Prov Viewer

Case Studies

Conclusion

Prov Viewer

• Future work

Introduction

- Improved summarization techniques
- Explore more visualization features and layouts
- Tool optimization
- Improved graph merge heuristic

Acknowledgements
 OFFARE

The authors thank CAPES, CNPq, and FAPERJ for the financial support.

CAPES

Prov Viewer: a graph-based visualization tool for interactive exploration of provenance data

https://github.com/gems-uff/prov-viewer/wiki

Troy C. Kohwalter¹ Thiago Oliveira¹, Juliana Freire², Esteban W. G. Clua¹, Leonardo G. P. Murta¹

¹Instituto de Computação – Universidade Federal Fluminense (UFF) ²New York University

OF ENGINEERING