Entertainment Computing 52 (2025) 100778

Contents lists available at ScienceDirect Btz
Entertainment
Computing
Entertainment Computing
journal homepage: www.elsevier.com/locate/entcom " | e

Using provenance and replay for qualitative analysis of gameplay sessions

Leonardo Thurler *, Sidney Melo, Leonardo Murta, Troy Kohwalter, Esteban Clua

Institute of Computing, Universidade Federal Fluminense, Niterdi, Rio de Janeiro, Brazil

ARTICLE INFO ABSTRACT

Keywords:

Game telemetry

Game provenance

Game data analysis

Provenance graph data visualization
Spatio-temporal data visualization
Qualitative analysis

There is an increasing interest to use game telemetry for analyzing gameplay sessions, with numerous
techniques created to help game developers analyze different game aspects like game balancing and behavioral
analysis. Among different gameplay session analysis techniques, the collection of provenance data has stood
out due to a crucial advantage of this approach: the possibility to identify cause-effect relationships between
game events. In previous work, we presented our conceptual framework called Prov-Replay, which provides a
replay synchronized with an interactive provenance graph visualization. We validate Prov-Replay by creating
PinGU Replay, a tool that implements our conceptual framework and applied it in a commercial game. Due
to the promising results, this paper extends our previous work by presenting a detailed overview about Prov-
Replay implementation, introducing a new feature that provides an analysis dashboard, and applying our
experiment methodology to a new commercial game. We also enhance the concept of analytics related to
provenance through the replay pipeline. Finally, we made PinGU Replay available as open-source software.
Our new experiment results reinforce that, when using our conceptual framework fundamentals, it is possible

to improve the efficiency and effectiveness of qualitative analysis process.

1. Introduction

Lately, there has been a notable surge in enthusiasm surrounding
game data utilization, often called game telemetry. This heightened
interest spans across both academic and industry circles [1-3]. This is
attributed to the diversity of use that this area has, which includes but is
not limited to game balancing [4-6], detection of failures during game
design [7,8], and player profiling [9-11]. Kleinman et al. [12] observed
that data analytics remains one of the most efficient ways to collect
large-scale generalized insights regarding what players do in-game.

Kleinman et al. [13] conclude that there is a notable movement
to use data visualization with the objective of making the analysis of
granular telemetry more transparent and accessible to be analyzed by
humans. This movement led to the creation of several game data visual-
ization techniques such as Charts and Diagrams [14,15], Heatmaps [16,
171, Movement visualizations [18,19], Self-organizing maps [20,21],
and Node-link representations [22,23]. The authors still observed a
significant growth of spatio-temporal visualization technique com-
pared with other game data visualization approaches. They associate
this growth with the ease with which this technique has to present
low-level, granular, and context-sensitive information [12,24,25]. The
authors highlight that such visualizations play a crucial role in assisting
human analysts in deriving meaningful insights from context-sensitive

* Corresponding author.

information, providing positive reactions from users [26-30]. They also
mentioned two works [31,32] provides a interactive spatio-temporal
visualization technique, the main difference is that this interactive
approach allow the user to manipulate the elements that are being
presented in an interactive way, further helping in the analysis process
when compared with non-interactive approach.

Using provenance data in games was first proposed by Kohwalter
et al. [33] with the Provenance in Games (PinG) conceptual framework.
Kohwalter et al. [33] introduced a conceptual framework called Prove-
nance in Games (PinG) to leverage game telemetry through usage of
provenance data in game context. Their main objective is to collect
provenance data that, when analyzed, can provide feedback to the
developers, making it possible to understand the cause-effect relations
of players’ decisions. They implemented a provenance gathering frame-
work for the Unity! game engine called Provenance in Games for Unity
(PinGU) [34], providing an easy way to collect provenance data. In
another work, they extended the use of PinGU to collect provenance
data from different games while showing examples of how to do some
common analysis using provenance data [35]. Subsequently, numerous
works have expanded upon and applied these frameworks for diverse
purposes [11,36,37].

E-mail addresses: 1p.thurler@gmail.com (L. Thurler), sidneymelo@id.uff.br (S. Melo), leomurta@ic.uff.br (L. Murta), troy@ic.uff.br (T. Kohwalter),

esteban@ic.uff.br (E. Clua).
1 https://unity.com

https://doi.org/10.1016/j.entcom.2024.100778
Received 17 April 2024; Accepted 15 June 2024
Available online 24 June 2024

1875-9521/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

https://www.elsevier.com/locate/entcom
https://www.elsevier.com/locate/entcom
mailto:lp.thurler@gmail.com
mailto:sidneymelo@id.uff.br
mailto:leomurta@ic.uff.br
mailto:troy@ic.uff.br
mailto:esteban@ic.uff.br
https://unity.com
https://doi.org/10.1016/j.entcom.2024.100778
https://doi.org/10.1016/j.entcom.2024.100778

L. Thurler et al.

Nevertheless, one of the major challenges found in studies involv-
ing the analysis of game provenance graphs is comprehending the
contextual information associated with the graph. This understand-
ing is crucial for facilitating the interpretation of the cause—effect
relationships presented within the graphs. Motivated by this issue,
in [38] we proposed a new approach to analyzing provenance graphs
on games through Prov-Replay, a conceptual framework that combines
a provenance tracker module and provenance graph viewer controller
integrated with a replay module for providing a interactive spatio-
temporal visualization from game session data, which can facilitate
user analysis, visualizing both the provenance graph and game state in
game space, allowing understanding of the entire context of a desired
moment. To evaluate Prov-Replay, we implemented the Provenance in
Games for Unity with Replay (PinGU Replay), a tool for the Unity game
engine that incorporates the elements of our conceptual framework.
Furthermore, we applied PinGU Replay in Smoke Squadron, a split
screen local multiplayer arcade flight battle three-dimensional (3D)
under-development commercial game, and we collected real game
session data and performed an experiment with its developers using
our proposed solution to analyze game sessions.

Due to the promising results, this paper extends our previous work
by providing more detail about Prov-Replay implementation through
PinGU Replay, improving PinGU Replay with the inclusion of a new
feature that provides an efficient way for users to consult all content
contained in the session’s provenance data and that is relevant to up-
date their visualization and filters rule through an analysis dashboard.
This new visualization concept groups all functionality and information
in just one place. We validated our experiment methodology into
Survivor Heroes, an online multiplayer roguelike survival adventure
two-dimensional (2D) under-development commercial game. Further-
more, we provide additional comparisons with related work and a more
detailed discussion about our experiment methodology, case study re-
sults, and conclusions, indicating limitations and supplementary future
works. We made PinGU Replay available as open-source software with
a sample project.

Our new experiment results reinforce that, when using our concep-
tual framework fundamentals, it is possible to improve the efficiency
and effectiveness of qualitative analysis processes by providing effective
ways to capture and access important information, enabling a more
informed qualitative analysis. Finally, with the additional information
of this work together with the availability of PinGU Replay, we provide
an efficient system to other researchers and game developers to use and
expand our work.

This paper is organized as follows: Section 2 presents some related
work in game data analysis with visualization techniques. Section 3
provides background information about the usage of provenance in
games and issues to consider when making a replay system. Section 4
presents details about Prov-Replay implementation through PinGU Re-
play and provides information about PinGU Replay availability as an
open-source software with a sample project. Section 5 presents our case
studies’ methodology, implementations, and results. Finally, Section 6
presents our conclusions with considerations about limitations and
future work.

2. Related work

Liu et al. [23] proposed a method for visually analyzing play traces
called Playtracer. It illustrates how groups of players move through
the game space, aiding the designer by showing common pathways
and alternatives that players use to succeed or fail in their tasks and
identifying pitfalls and anomalies in the scene. Nonetheless, Playtracer
does not consider temporal information or preserve the order of the
states visited by players. Besides that, incorporating Playtracer in the
game design is challenging because it requires designers to define a
state distance metric and identify relevant states.

Entertainment Computing 52 (2025) 100778

Wallner and Kriglstein [25,39] described and formalized the Play-
Graph visualization system. This system captures and illustrates the
sequence of states and the actions that caused the player’s state changes
throughout the game. The game state describes a certain configuration
of the game or an entity, while actions consist of player interactions
within the game, such as shooting, jumping, or using an object. Due
to the nature of how the data is structured in Play-Graph, the under-
standing of player behavior is guided by the player’s progression in the
game (e.g., killed a boss) and not by how he/she interacted with the
world (e.g, player changes direction to try to collect an item). From
the available documentation, only the state changes caused by players’
actions can be identified in the graph. Thus, the graph does not present
influences and causal relationships in the player’s action.

Kuan et al. [31] presented a study with an analysis process using
an interactive, spatio-temporal visualization system for analyzing battle
information from StarCraft 2.> Their analysis involved utilizing their
custom-developed tool in conjunction with an official replay system
provided by the game. This work is limited only for real-time strategy
(RTS) game genre and presents information that depends on an external
tool and does not display the data inside the game space. Moreover,
this study has a significant distinction when compared with our work.
They focus on giving a tool for players to analyze matches to improve
their performance, and our work focuses on giving a tool for game
developers to understand the elements that influence players’ decisions
and improve the game based on this information.

Afonso et al. [32] presented a study that used animated maps
for spatio-temporal data analysis applied to Multiplayer Online Bat-
tle Arena (MOBA) game genre using League of Legends (LoL)® as
a case study. In this study, they designed a prototype tool named
VisuaLeague. This tool uses animated maps to allow users to visualize
player trajectories and events during a LoL match. This study focused
on understanding if animated maps are an effective visualization tech-
nique to help inexperienced users (i.e., players inexperienced with data
visualization) extract relevant information to solve tasks related to
players’ performance in the game. Similar to [31], this study is limited
only to the MOBA game genre. Besides that, the presented information
depends on an external tool presented by the authors, and the study
focus in give a tool for players analyze matches to improve them
performance.

Ahmad et al. [24] proposed Interactive Behavior Analytics (IBA)
a methodological approach for study player behavior using two visu-
alization tools: a spatio-temporal visualization tool for game events
called StratMapper and a graph-based visualization tool to investigate
player behavior in a fine-grained level named Glyph. Both visualization
tools are combined to provide an iterative game session visualization
with rich contextual information. However, to analyze the information
considering spatio-temporal information, users need to follow a com-
plex workflow that consists of labeling the game using StratMapper
and exporting data to be visualized in Glyph. Kleinman et al. [12]
expanded this work, adding a sequence analysis at the beginning of
the process. This addition facilitated the development of preliminary
high-level behavioral labels, but the rest of the process remained.
Although promising, this is not a simple approach to use and involves
getting used to several tools. In addition, the tools are limited to a 2D
visualization of the game space, making some information difficult to
visualize and understand adequately, such as the position of agents,
entities, and activities of a 3D game.

Kohwalter et al. [40,41] presented the ProvViewer,* a visualization
tool for provenance graphs generated using the PROV-N notation [42].
This tool displays data in a 2D visualization and provides several op-
tions such as filters, merging, highlighting, and collapsing information

2 https://starcraft2.com
3 https://www.leagueoflegends.com
4 http://gems-uff.github.io/prov-viewer

https://starcraft2.com
https://www.leagueoflegends.com
http://gems-uff.github.io/prov-viewer

L. Thurler et al.

Activity Activity

1D: vertex_316
Label: LostControl
Timestamp: 361 ()

Frequency: 100.00%

ID: vertex_314
Label: Landing
Tmestamp; 359)
Frequency: 100.00%

Speed: 43.99001

TumRate: 12.55611

Label: LostControl

Veloc tyVector_7: 0.9622772

Veloc ityViector Y- -0.0591417 Y

Speed: 33.81357
TurnRate: 13.12147

Label: Landing
VelocityVector_Z: 0.7320845 4
VelocityVector_: -8.05603067

CurrentEnginePomer; 2290.262 L N CurrentEnginePowers 1624.96
Veloc ityWector_X: 0,2655648 ?Rb VeleeityWector X: -0.6779318 i
Timestamp: 361.1049 C‘pg Timestamp: 359.6451
CurrentGear: 2.0 \ ", CurrentGear: 1.0
Angularvelocity_Y: -0.362719 \ oy, AngularVelocity_Y: 0.03014321
AngularVelosity X: -0.006670494 s, Anaul.wmmyj 05 actrty
Angularvelocity_Z: 0.9318746 T, Angularvelocity

Py
tPosition_2: 4197305 4,

GraphFile: speedchallenge.xmi

ObjectPosition_¥: 133.3764

ObjectPosition X: -16.66012

ObjectPostion 2 -asqm vertex 313
GraphFile: speedchallé Labol: Flying
oo ObjectPoction, Y: 136, Timestamp: 389 ()
| ObjectPosition_X: 14.9 Frequency: 100.00%
”/ anding->
3 Ging>ChangedGear Speed: 3381357
Activy TumRate: 13.12147
Label: Flying
10s Ve n VelocityVector_Z: 0.7329845
Label: Cliangad“rviv

Timestamp: 359 ()
Frequency: 100,00%

CurrentEnginePower: 1624.96

;Y
VelocityVector_X: -0.6779338
Tetvstartp. 350.8451
CurrentGear:

Mguzarvelmw ¥: 002014321
Dragvector ¥: 0.0
Angularvelocity_X: 0.9787968
DragVector_X: 0.0
A"qv!arvdww Z “0.3706163
DragVector Z: 0

SbjectPosition_ 2 1407610
GraphFile: speedchallenge.xml
ObjectPosition_Y: 136.8136
QbjectPosition_X: 1494745

Speed: 35.30096

TumRate: 13.03884

Labelz ChangedGea
ValseityVeeter_7: 0.7470820
Velocityvector_Y: -0.0680778
QurrentEnginePower: 1624.96
ValocityVactor_X: -0.6602174
Timestamp: 3398051
CurrentGear: 1.0
AngularVelocity_Y: 0.3778947
AngularVelocity X: 0.04795447

FIYINg->Landing vaiaciyvacter Y: -0.05603067 [

Entertainment Computing 52 (2025) 100778

Fig. 1. Racing game provenance graph example with a zoom of a particular moment of provenance graph showing some of the collected activities and their attributes. Source: [11].

that facilitates the visualization and analysis. Although ProvViewer pro-
vides visualization and facilitates data analysis, it has some limitations.
Similar to StratMapper, this tool presents all data collected from a 3D
game space in a 2D visualization. Another limitation is the impossibility
of verifying the state of game elements that were not captured in
provenance data at a specific moment in the graph, making it difficult
to analyze and understand the entire context of the game.

Thus, compared with the cited papers, our work makes a contribu-
tion by presenting a framework that is integrated with the game engine,
presenting information inside the game space without the need of any
external tools, and that can be applied to different game styles [35,37].
In addition, provenance data allows to capture and display data about
the relationship between graph vertex, which, combined with the re-
play display, allows users to analyze the game context in detail in order
to understand the cause—effect relations of players’ decisions.

3. Background

In art and digital libraries context, provenance refers to the docu-
mented history of an art object or the documentation of processes in
a digital object’s life cycle [43]. Moreau et al. [44] assumed that the
provenance of objects is represented by an annotated causality graph,
which is a directed acyclic graph enriched with annotation capturing
further information pertaining to execution.

Using provenance data in games was first proposed by Kohwalter
et al. [33] with the Provenance in Games (PinG) conceptual framework.
This framework is based on the PROV model [43] and is used to map
provenance concepts to the context of games. PinG relates each type of
provenance graph data to elements found in games. In the provenance
context, there are three vertex types: Entities, Agents, and Activities.
PinG maps these vertexes as follows: Entities represent objects without
autonomous behavior, like items, weapons, and static obstacles in the
environment; Agents represent objects capable of making decisions
or have some responsibilities in the game, like players, enemies, and
non-playable characters (NPCs); Activities are actions or events that
occur throughout the game like attacking, jumping, collect items and
others; The activities could be related with other activity, entity or
agent, like “Activity A was triggered by Activity B”, these relationships

are mapped as edges between vertex elements. Following provenance
definitions, PinG provides a solution to associate attributes with each of
these types of vertices, allowing you to collect extra information when
the vertex was generated, such as the player’s name, amount of life of
the player or enemy, which items the player had, and many others.

Later, Kohwalter et al. [34] provides a PinG implementation for the
Unity game engine, named Provenance in Games for Unity (PinGU).
PinGU is a generic implementation that can be easily integrated with
any game in the Unity game engine to collect all provenance data
(i.e., agents, entities, activities, relationships, and attributes). The col-
lected data throughout a game session is saved into a .xml file. This
file contains the information that documents the whole session and can
be used to generate and analyze the provenance graph or generate the
provenance graph visualization in other tools like ProvViewer [41].

PinGU implements several methods to facilitate the capture of
domain-specific provenance information and attach them to each entity
in the game, and the amount of data gathered depends on analytic
choices from game developers [35]. So, game developers control the
granularity of the provenance data. They define what and how prove-
nance data needs to be captured, considering their needs and the
game’s nature. For example, the game designer can define to capture
an action named “PlayerMove” every second and configure this action
to include information about the player’s position and items. The
captured provenance data includes contextual information and causal
relationships, enriching the telemetry data that a simple log could not
capture in detail. Fig. 1 presents the diversity of information that can
be captured in provenance graph through a racing game’s provenance
graph, in this figure is possible to observe four distinct activities
(ie., LostControl, Landing, ChangedGear, Flying), their components
(i.e., Speed, TurnRate, CurrentEnginePower), and influences between
activities (i.e., ChangedGear influences LostControl).

There are still numerous works that use these frameworks for di-
verse purposes [11,36,37]. Melo et al. [36] developed a framework
called PINGUMIL® with the objective of detecting long-range cause-and-
effect relationships by leveraging methods of representation learning

5 https://github.com/sidneyaraujomelo/PingUMiL

https://github.com/sidneyaraujomelo/PingUMiL

L. Thurler et al.

«Annotations
Provenance Graph Viewer
Controller communicates with
Replay Module to synchronize
the replay with graph

Entertainment Computing 52 (2025) 100778

«Annotations
Provenance Graph Viewer
Controller read Provenande
Graph Visualization Settings to
manipulate layout information.

Provenande Graph
Visualization Settings

Provenance Graph

Viewer Controller

Provenande Graph
Filter Settings

visualization.
Replay Module
Provanance Tracker
Module Data
«Annotations

Provenance Graph Viewer
Confroller read Provenance
Tracker Module Data to create
session provenance graph.

«Annotations
Provenance Graph Viewer
Controller read Provenande
Graph Filter Settings to
manipulate filters information.

Fig. 2. Prov-Replay high-level architecture.

in game provenance graphs. In [11], the authors use the provenance
data to analyze player behavior profiles with machine learning. Ko-
hwalter et al. [37] proposed a probabilistic approach for game analytics
named Provenance for generating stochastic models (Provchastic). This
approach merges the tracked provenance data from multiple game
sessions into a stochastic graph that is used to understand and predict
game events.

Wagner [45] defines a replay system as an in-game system that lets
the player record a gameplay sequence and replay it, just like recording
a video with a phone and playing it again. Despite there being several
ways to implement a replay system, the two most popular approaches to
making a replay system are state-based and input-based. Wagner [45],
Montville [46], and Engel [47] show some issues to consider when
making a replay system with these approaches, as discussed in the
following.

The state-based strategy captures a sequence of states from desired
game elements inside a frame interval. A state represents a snapshot of
the properties of an entity in a specific moment; for example, in frame
1, the state of the player character can have the position value (X:0, Y:1,
7:0), and in frame 20 (X:5, Y:6, Z:7). To replay, the replay system read
the frames in order and apply the saved values to respectively game
elements.

The input-based strategy consists of capturing an initial state from
game elements and a sequence of inputs (i.e., keypresses, touch ges-
tures, joystick buttons) that can update their state values. To replay, the
replay system sets the entire state of game elements at the beginning
and then processes the frames by applying the recorded inputs for that
frame.

Both strategies have advantages and disadvantages. The state-based
strategy is more versatile than the input-based because it can repro-
duce faithfully in non-deterministic and deterministic games, while the
input-based only reproduces a faithful replay in deterministic games.
On the other hand, the input-based strategy needs less memory space
than the state-based since it requires saving only the initial state and
input information to reproduce replay, while the state-based needs to
save the state of several frames. So, the choice of which approach
should be used depends on the characteristics of the game in which
it will be applied.

4. PinGU Replay

In [38], we proposed a new conceptual framework named Prov-
Replay to perform interactive analysis through gameplay sessions using
spatio-temporal visualization techniques synchronized with replay. Our
solution provides a visual representation of the provenance graph inside
the game level space, allowing users to configure rules to interactively
manipulate the graph by making it possible to omit or highlight desired

elements during the analysis process. The displayed graph is integrated
with the replay data, allowing for advancing and rewinding the replay
time to view the exact moment of a graph event and display graph data
based on the current state of the replay.

To validate Prov-Replay, we created a tool for the Unity game
engine named PinGU Replay that incorporates the elements of our
conceptual framework. Fig. 2 presents the communication between
Replay Module, Provenance Tracker Module, Provenance Graph Viewer
Controller, Provenance Graph Visualization Settings and Provenance
Graph Filter Setting, that are key elements of Prov-Replay architec-
ture. In this section, we detail how PinGU Replay implements each
element of Prov-Replay architecture and provide information about the
availability of PinGU Replay as an open-source software and sample
project.

4.1. Replay module

The Replay module is responsible for recording and reproducing the
replay of game sessions. This module must provide functions allowing
the user to play, pause, stop, and forward the replay to a specific game
session time. This module must reproduce a faithful gameplay session
replay. This is necessary to allow users to see the states of any objects
that might impact the gameplay experience and player decisions, thus
understanding the whole context information.

Since Unity is not a deterministic game engine, we created a state-
based replay module to reproduce a faithful replay. In Fig. 3, we
present an overview of the architectural design of our replay module,
with the core elements that our replay module uses to identify which
game object and data must be saved. The ReplayController plays a
pivotal role in handling the various tasks associated with recording
and reproducing replays. It takes charge of processing replay read-
ings, configuring the necessary settings, and creating saved objects to
ensure an accurate and faithful reproduction of the recorded events.
IReplayComponent is the interface that a component must implement
to save information into replay data. ReplayComponentBase is an ab-
stract component that implements IReplayComponent and needs to be
inherited by the component that saves any information into the replay.
The ReplayTransformComponent inherited ReplayComponentBase and
defines how to save game objects’ transform information (i.e., position,
rotation, and scale), it is possible to create other components that
inherit from ReplayComponentBase to store and load other information
relevant to game replay (i.e., animations, domain-specific information,
and others). ReplayObject is the class that identifies a game object as an
object that must be saved and contains a list of ReplayComponentBase.
ReplaySettings defines general information about how replay must be
saved (ie., the frequency of replay information must be saved and
the path to spawn the correct replay object when reproducing replay).

L. Thurler et al.

Entertainment Computing 52 (2025) 100778

«Annotations
Replay Controller read replay
settings to reproduce and record
session properly.

«interfaces Replay Settings
IReplayComponent
JA
: 1
| 1.x : 1.3
| ReplayComponentBase H ReplayObject < <> ReplayController P S

| 1

[r «Annotation»
! Replay Controller manages
| ReplayTransformComponent | objects and components to read

: and update states to reproduce
and record sessions

+ Record Replay 3

+ Reproduce Replay

ReplayDataSerializer

«Annotations
Replay Controller uses replay
data serializer to create replay
data when record session, and to
read replay data when reproduce
session.

Fig. 3. Replay Module architecture overview.

(Session | Call StartRecording from / on \
\ Stat | ReplayController (ReplayObject —»! Notifies ReplayController
 Created that was created

f On \
{ \ Call StopRecording and {ReplayObject Notifies ReplayController
| Se.*"?""" —» SaveReplayData from \ Dp ‘y Jd / that was destroyed
\ Finish / estroye:
\ / ReplayControlier b
[Every Game | ReplayController check

[—»{save information frequency

UES and save information

Fig. 4. Replay module important events.

Lastly, ReplayDataSerializer is responsible for defining how the replay
data will be stored.

Fig. 4 shows important events that the replay module uses to save
replay information. Red circles indicate events and blue rectangles
describe, in high-level, what occurs after the event activation. When
the session starts, we need to call StartRecording from ReplayController
to the replay module to start saving information. While a session
is executing, the ReplayController use ReplaySettings to check save
information frequency to save information if needed. The ReplayOb-
jects notify ReplayController when they are created and destroyed, so
ReplayController can store and remove these objects from an internal
list to save information. When the session finishes, it is necessary to call
StopRecording and SaveReplayData from ReplayController to replay
model stop saving information and store saved information in a file
that will be read to reproduce the replay later.

To reproduce replay, ReplayController uses ReplayDataSerializer to
load stored data and ReplaySettings to spawn, destroy, and set up
ReplayObjects state information according to game session time.

4.1.1. Integrating replay module into an existing game

The configuration for the save session consists of four stages. The
first stage is to configure the module to save replay data, which con-
sists of identifying and configuring ReplayObject and ReplayTransform
components on game objects that represent agents and entities. These
components allow the system to identify each object that should be re-
produced on replay and what information should be stored. The second
stage consists of creating a ReplaySettings scriptable. This file contains
configurations to generate replay files, locate replay objects prefabs,
and replay save data frequency. The third stage consists of creating a

game object in the scene to act as a controller for the replay system.
This game object will have two attached components, ReplayCon-
troller and ReplayDataSerializer, and will reference the ReplaySettings.
The last stage consists of updating your code to use ReplayController
methods to start and stop records and save replay data into a file.

To reproduce a saved session, it is necessary to duplicate the original
game scene and remove all objects related to game logic and con-
trols, leaving only the environment and the ReplayController object in
the scene. Afterward, it is necessary to configure ReplayDataAsset in
ReplayController with the saved file of the session to be reproduced.
Finally, one must add the ReplayCanvas object to the game scene. This
object implements a user interface that allows all replay functionalities
(ie., play, pause, and stop replay).

4.2. Provenance tracker module

The Provenance Tracker module is responsible for gathering prove-
nance information about game sessions and storing it into a file that
can be used to generate a provenance graph of the game session.
PinGU Replay uses PinGU as a provenance tracker module, so all
provenance data of activities, agents, entities, and their relations are
collected by PinGU and stored in a .xml file that the provenance graph
viewer controller processes to generate provenance graph visualization.
Kohwalter et al. [34] described the details of PinGU implementation
and how to integrate this framework into a game to gather and store
provenance information.

4.3. Provenance graph viewer controller

The Provenance Graph Viewer Controller is responsible for creating
and updating provenance graph nodes and connecting with the replay
module to synchronize the provenance graph with the replay. This
controller must allow users to manipulate the graph interactively,
enabling users to define what and how information must be displayed.
It also manages other elements involved in this process to enable the
manipulation and visualization of the provenance graph.

To develop the Provenance Graph Viewer Controller, we followed
our Prov-Replay architecture presented in Fig. 2. So, the Provenance
Graph Viewer Controller communicates with the Replay Module and
uses the provenance data stored in the .xml file generated by PinGU
with information of Provenance Graph Visualization Settings and Prove-
nance Graph Layout Settings to display provenance graph information
to the user.

Fig. 5 shows Provenance Graph Visualization Settings, these
settings allow the user to configure and create presets with informa-
tion for the graph layout, which provides functionalities to highlight

L. Thurler et al.

dgeNode)

Node Size Co

Fig. 5. Provenance Graph Visualization Settings.

desired elements using rules to colorize and resize provenance graph
elements. The visualization strategy is based on different shapes and
colors for vertices. Vertices’ shapes are used to map semantic concepts
from the provenance: activities (rectangle), entities (circles), and agents
(pentagons). Colors are used to highlight vertices and show edges’
relationship intensity. The user can configure rules to change vertex
colors based on vertex name, tag, label, and type, which allows them
to highlight fine-grain information for specific analyses (i.e., modify the
color of a vertex with “Player 1” or “Player 2” name). The edge value,
if any, defines the color (i.e., green to positive values, red to negative,
and gray when the value is zero or empty) and is more common on
influences (i.e., relations with wasInfluencedBy type). Also, edge lines
are thicker when they are close to the source vertex and thinner when
they are close to the target vertex. Furthermore, the user can configure
what information will be shown on vertices and edges and configure
the vertex size curve to increase or decrease closed nodes to replay at
the current time.

Fig. 6 shows Provenance Graph Filter Settings, these settings
allows the user to configure and create presets with information related
to filters in the displayed graph, which provides functionalities that
show or hide specific provenance graph elements using rules and time
configurations. The time setting allows you to hide information that is
very far from the current moment of the replay, so if it is configured to
only see information that is 10 s before and after the current moment,
any event beyond that time frame will not be displayed. The user
must define the filter mode, we created two filtering modes: Exclude
and Include. The Exclude filter mode uses a top-down visualization
strategy, where the provenance graph excludes only information that
matches user-configured rules and presents everything else. The user
can configure much information to exclude, like vertex label, type,
object name, object tag, edges relations (i.e., Source and Target), la-
bels, type, and all vertex information linked by a given edge relation.
Furthermore, users can use the exclude filter mode without any rule
to show all provenance graph information. The Include filter mode
uses a bottom-up visualization strategy, where the provenance graph
shows only information that matches user-configured rules. The user
can configure vertex labels to show and define whether they display
relations that involve desired vertices. Moreover, users can configure
the exclude rules to be applied only on elements with configured vertex
labels (i.e., Configure to show vertex with the label “Collectltem” and
exclude tags “Player02”). Both modes require the user to configure a
visualization time.

Entertainment Computing 52 (2025) 100778

g Provenan GraphFilterSettings

Visualization Time Settings

tion Filters

Fig. 6. Provenance Graph Filter Settings.

Depending on the provenance information, creating or updating
many nodes at once is necessary. This operation can be heavy to process
and cause lag in replay processing. So, to improve performance, we
create the ProvenanceNodesPoolManager component. This component
implements an object pooling® to create and consume the objects that
represent graph node information in replay processing. Fig. 7 presents
provenance nodes object pooling elements. In addition, it shows the
communication between ProvenanceGraphViewerController and Prove-
nanceNodesPoolManager. [ProvenanceNodePoolComponent is an in-
terface implemented by ProvenanceNodesPoolComponent to define a
game object as a provenance node that ProvenanceNodesPoolManager
will use. ReplayProvenanceVertexNode and ReplayProvenanceEdgeN-
ode are two components that represent a graph node without rela-
tionships and with relationships, respectively. These components im-
plement the IProvenanceNodePoolCleanUp interface to define how to
reset information when the object will be reused.

4.3.1. Configure to show graph with session replay

To visualize the provenance graph, we must create a game object in
the scene to act as a controller for the provenance graph viewer system.
We need to attach the ProvenanceGraphViewerController component
to this game object, and this component is responsible for setting the
provenance graph input graph data (ie., the .xml file generated by
PinGU), provenance graph visualization settings and provenance graph
filter settings.

4.4. Analysis dashboard

In this work, we also include a new feature that provides an efficient
way for users to consult all content within the session’s provenance
data, which is relevant to updating their visualization and filter rule
through an analysis dashboard. The primary purpose of this dashboard
is to enhance the user’s analysis experience by offering improved
usability across various aspects of the Prov-Replay framework. Since
it is essential that this tool groups all the information necessary for the
user to carry out the analysis process, different features are designed:

« Settings for showing and hiding layout and filter settings and
updates of this information.

6 https://learn.unity.com/tutorial/introduction-to-object-pooling

https://learn.unity.com/tutorial/introduction-to-object-pooling

L. Thurler et al.

Entertainment Computing 52 (2025) 100778

«interfaces ReplayProvenanceEdgeNode __________________)
IProvenanceNodePoolComponent !
L . v
‘ Pr NodesPoolComponent ProvenanceGraphViewerController ¢ | «interface»
E | } IProvenanceNodePoolComponent
1. A
L 2 1*

| ProvenanceNodesPoolManager

ReplayProvenanceVertexNode __________________ '

Fig. 7. Provenance nodes object pooling elements.

Fig. 8. Provenance Graph Viewer Inspector window.

Replay.Statei...ReplayPaused!
Tick: 137/672

Fig. 9. Running sample project replay with ReplayCanvas object showing provenance
information.

+ Display information about the current graph, like possible values
for each piece of information that can be configured in layout,
filter rules, and session duration.

+ Display selected vertex or edge information
+ Update replay time to the selected vertex or edge.
+ Refresh provenance graph visualization

The Fig. 8 presents our custom window with all the mentioned
features. This window has “Edit Visualization Settings” and “Edit Filter
Settings” flags that allow the user to update visualization and/or filter
rules that were shown in Fig. 5 and Fig. 6 respectively. Selecting
the “Show Graph Values Helper” flag, the user can observe different
information about the current game session, such as graph duration,
all vertex labels, tags, object names, edges labels, and types captured
in the game session. Furthermore, when the user selects a node, this
window presents all provenance information of the selected node and
has a button to update replay time to the exact moment that the node
event occurs in the game session.

4.5. Available as open-source software

In order to allow other researchers and game developers to use our
tool, we make it available at GitHub.” We provide the tool’s source
code, two videos, and a sample project on the GitHub page.

About the videos, the first® shows how to use PinGU Replay features,
and the second’ shows an analysis sample that illustrates how game
developers can use this tool to analyze a game session.

Fig. 9 shows the sample project, and it is a 2D platform game
where the player needs to collect five coins to finish. This project is
configured to save player and coins information to reproduce replay
and store provenance information about the agent (i.e., player), entities
(ie., collectible), activities (i.e., player position, collect and spawn col-
lectibles), influences (i.e., player position influences the next position)
and attributes (i.e., the collectible entity has the “CollectableName”
attribute).

For the sake of conciseness, we list below the overall features that
a node from a provenance graph of this sample project might contain:

» Common features: ObjectPosition_X, ObjectPosition_Y, ObjectPo-
sition_Z, ObjectName, ObjectTag, ObjectID
+ Collectable features: CollectableName

However, each node type draws a different subset of the above-
mentioned features.

Table 1 presents an overview of sample project node feature infor-
mation. Additionally, PlayerPosition activity is collected every 1.5 s and
has an influence with the next PlayerPosition activity with value 1 and
configured to be consumed after generating one edge, so the player’s
previous position has a positive relation with the player’s next position,
which is illustrated by green edges in Fig. 9.

5. Case studies

In our previous work, we performed a case study to evaluate Prov-
Replay. This case study encompassed various stages, including defining
research hypotheses (RH), integrating PinGU and PinGU Replay into

7 https://github.com/gems-uff/ping
8 https://www.youtube.com/watch?v=MYISXwFbTVM
9 https://www.youtube.com/watch?v=NXfzvyxo3w8

https://github.com/gems-uff/ping
https://www.youtube.com/watch?v=MYl8XwFbTVM
https://www.youtube.com/watch?v=NXfzvyxo3w8

L. Thurler et al.

Table 1

Sample project provenance node and feature information.
Node label Node type Node feature set
Player Agent Common
PlayerPosition Activity Common
SpawnCollectable Entity Common, Collectable
CollectCollectable Activity Common, Collectable

Smoke Squadron, collecting game sessions with actual players, con-
ducting experiments with game developers analyzing game sessions
using PinGU Replay, and evaluating the developers’ responses through
a questionnaire and interview to validate our research hypotheses.

In this paper, we defined the methodology behind our case study
experiment where game developers analyze game sessions using PinGU
Replay, presented a more detailed analysis of the Smoke Squadron
case study, integrated PinGU and PinGU Replay into Survivor Heroes,
collected real game session data and applied our game developers
qualitative analysis methodology into Survivor Heroes game.

5.1. Research hypotheses

In order to assess the efficiency and effectiveness of Prov-Replay,
we formulated two research hypotheses (RH).

» RH 1 - The visualization of the provenance graph with the replay
provides more information about the context than only using
the replay, facilitating the understanding of different elements
involved in players’ decision-making and allowing more in-depth
qualitative analysis;

* RH 2 - Visualizing the provenance graph with the replay allows
the user to quickly identify points with relevant events in the
game session, making it easier to analyze points of interest in the
game session.

5.2. Game developers qualitative analysis methodology

We conducted analysis sessions with six developers, three from
Smoke Squadron and three from Survivor Heroes. Each developer an-
alyzed sessions of their own game. Ops Game Studio and Double Dash
Studios are small companies. Hence, they have a limited number of
developers for each project, so this number of participants was almost
the entire team involved in the game’s production.

Each analysis session lasted 2 h and was divided into seven steps.
We introduce participants to the experiment roadmap and objectives
in the first step. In the second step, the participants had 15 min to
analyze the first game session using only the replay module without any
information about the provenance graph. In the third step, we introduce
participants to provenance concepts and show how to use the interac-
tive provenance graph module of PinGU Replay. This step had 20 min
of duration. In the fourth step, the participants had 15 min to analyze the
first game session again, but using replay with interactive provenance
graph visualization; the objective of this step is for participants to
confirm previously analyzed information and to acclimate themselves
to how to use the visualization tool. In the fifth step, the participants
had 30 min to analyze the second game session using all PinGU replay
features. In the sixth step, the participants answered questions about
their experience in analyzing the game using only the replay and using
the replay with graph visualization, as well as the positive and negative
aspects and how we could improve PinGU Replay. In the final step, we
conducted a small interview to collect any additional feedback and find
out if they believed the tool could help them improve future projects
they are developing. 2nd, 4th, and 5th steps were recorded so that we
could observe how they used PinGU Replay features.

Furthermore, at the end of 2nd, 4th, 5th, and 6th steps, the devel-
opers answered a form with some questions about the analyzed game

Entertainment Computing 52 (2025) 100778

Fig. 10. Screenshots of Smoke Squadron game.

sessions and their experience using PinGU Replay. Below are listed
questions that all developers answered in 6th step. These questions
were about PinGU Replay. The other step questions were specific to
each game and are described in the following sessions.

1. Did you feel that visualizing the graph in conjunction with replay
improved (or hampered) the analysis process compared to using
only replay? Why?

. What did you like about PinGU Replay?

. What did you dislike about PinGU Replay?

. What can we improve in PinGU Replay?

. Do you want to comment on anything else?

a b~ wN

5.3. Case study I - Smoke Squadron

Smoke Squadron'® is a split screen local multiplayer arcade flight
battle game under development by the indie game studio Ops Game
Studio,'! which provided access to game source code to capture prove-
nance data and realize experiments.

The game match consists of players controlling a small remote
airplane. Players must battle each other using machine guns, missiles,
and a solid smoke trail that kills at touch. The match ends when one of
the players loses all his life. Fig. 10 presents a screenshot of the game.

5.3.1. PinGU and PinGU Replay integration

Previously, Melo et al. [48] integrated the PinGU framework into
Smoke Squadron to collect provenance data. The study details all the
provenance information that PinGU collects in this game. We list below
the most relevant attributes that the Smoke Squadron provenance graph
might contain:

» Type attribute: Provenance node type (i.e., Agent, Activity, or
Entity)

 Date attribute: Time the node happened since the game started.

» Object Tag attribute: determines the game element that in-
stantiates that node. The possible values are Player01, Player02,
Smoke, Rocket, Smokeltem, SmokeltemHalf, and SmokeSpawner.

10 https://youtu.be/g9h720URmlw
11 https://www.opsgamestudio.com

https://youtu.be/g9h720URmlw
https://www.opsgamestudio.com

L. Thurler et al.

Smoke Squadron - Players pair matches percentage

Players 5 and 6 Players 1 and 2

Players 2 and 4

Players 3 and 7

Players 2 and 6

Players 3 and 6 Players 3 and 4

Fig. 11. Smoke Squadron played matches’ percentage of players pair.

Label attribute: determines a label for the node. The possible
values depend on the Type and Object Tag values. For example,
the label value of a node with Object Tag Missile and Type Entity
is the type of the missile. Conversely, the label value of a node
with the same ObjectTag but with Type Activity is the action
performed by that missile.

Movement related attribute: position, direction, and rotation in
axis X, Y, and Z, and Speed.

Weapon related attributes: Weapons and Smoke’s counters,
cooldowns, and explosion timers.

To integrate PinGU Replay in Smoke Squadron, we configured the
replay object and replay transform component on the following game
elements: players’ airplanes and pick-up items, Missiles, and Smokes.
These configurations collected all information about position and rota-
tion from game objects. Furthermore, we need to create a replay smoke
component to allow the collection of domain-specific information since
this information is very important for developers to understand the
entire context of the game. Ultimately, it was necessary to make these
settings in 15 game objects.

5.3.2. Playtest data collect and session select

We conducted a playtest with seven male players, aged between
22 and 34 years old, with intermediate to advanced game skills. The
playtest session lasted 4 h and generated 32 game sessions.

During the playtest, the players only needed to play the game
normally and try to win the adversary. We arranged for players to face
each other during some matches, allowing them to get used to the game
with the aim of having matches where players were learning how to
play and others where they already knew how to play. Fig. 11 presents
the played matches percentage of players pair.

Lately, we selected two specific sessions that we considered to
contain distinct data to be analyzed by game developers. The first
selected session had 114 s of duration. This session was the second
match between players 5 and 6. These players had some difficulties
getting accustomed to the game, so both players were still learning
how to play. We considered this session as a sample match between
beginner players. The resulting provenance graph of this session has
3422 edges and 2465 vertices. The second session is 343 s long. This
session was the third match between players 1 and 2. Unlike previous
players, these players quickly got accustomed to the game, so both
players were already familiar with it. We considered this session as a
sample match between intermediate players. The resulting provenance
graph of this session has 12749 edges and 8912 vertices.

Entertainment Computing 52 (2025) 100778

5.3.3. Specific analysis information

The primary roles of Smoke Squadron developers who participated
in the test are 3D Artist, Programmer, and Game Designer/Producer.
Nevertheless, in a small company, it is common for developers to be
aware and help in other production areas, so all three have knowl-
edge of game design and usually analyze players’ behavior during
playtest sessions. However, none of them have prior experience using
provenance or other tools to assist in this analysis. This distribution
of primary roles also allowed us to analyze the tool with three differ-
ent and complementary user profiles. Below are listed questions they
answered during steps 2, 4, and 5 of the analysis process.

. What were the causes of player deaths?

Which moments did the players die?

. What weapons did the players use throughout this session?

. Were there times when a MachineGun weapon hit a player?

. In your opinion, which weapon was most effective in this ses-
sion? Why?

. Which items did each player collect?

7. Describe any other information or observation you consider

relevant.

(S RN

o)}

5.3.4. Results

Finding 1: Using a provenance graph combined with a replay
to analyze game sessions allowed Smoke Squadron developers
to become more confident in their analyses and correct some
observations when using only the replay.

When using only the replay to analyze game sessions, all game de-
velopers remained in doubt about the causes of player deaths, whether
players collected items, and whether the MachineGun weapon hit
players. Due to this confusion, they answered some of these questions
incorrectly, either because of a lack of clarity or not being able to
observe the moment of the replay in which it happened. When they
used provenance graph data and visualization with replay information,
they could confirm their assumptions by filtering out all moments in
which these events happened during the game session and checking the
provenance relation. This allowed them to fix some of their responses
and update their conclusions. Consequently, they agreed that the graph
played a crucial role in enhancing their understanding of the context
and confirming their initial assumptions.

Finding 2: The possibility of filtering desired events in the prove-
nance graph and synchronizing the replay with the moment of
this event allowed Smoke Squadron developers to more efficiently
navigate the replay during analysis.

When game developers analyzed the second session in the fifth step,
two out of three developers started their analysis using the graph to
visualize the desired information and answer the questions directly.
In contrast, the other developer preferred to watch the entire replay
to understand how the session went. However, as soon as the game
developer started answering the questions, they also used the graph to
see the desired moments and analyze them again. Furthermore, their
answers confirmed that they all believe that the graph made it easier to
locate the desired events and provided a faster way to find the moments
that should be analyzed.

Finding 3: Smoke Squadron developers believe this kind of tool
would help them improve their games.

Developers mentioned that the tool is intuitive and practical, al-
though it requires practice to use it more efficiently. The developers
were optimistic, believing this kind of tool would help them improve

L. Thurler et al.

—— —_—

Fig. 12. Screenshots of Survivor Heroes game.

their games and apply them to different game productions. The devel-
opers use layout settings that change players’ node color, confirming
the layout module’s usefulness in helping the analysis. Also, two of
three developers mentioned that they believe the possibility of creating
presets will be greatly useful in the long term.

Furthermore, the developers expressed specific areas for improve-
ment, with a primary focus on the process of provenance collection.
This happens because a specialist, instead of the developers, instru-
mented the provenance collection. In an ideal scenario, the developers
should instrument this collection, making the analysis process even
easier. However, another important point to note is that the developers
were not aware of provenance in games, and even if they did not know
and did not participate in the collection instrumentation, they managed
to benefit from the tool even without having previous experience.
Other mentioned improvements were related to tool usability and
performance.

5.4. Case study II - Survivor Heroes

Survivor Heroes'? is an online multiplayer roguelike survival ad-
venture game under development by the indie game studio Double
Dash Studios,'® which provided access to game source code to capture
provenance data and realize experiments.

The game match consists of a team of 3 players fighting against huge
hordes of enemies. Players need to control the hero to defeat enemies,
level up, and choose skills to overcome upcoming hordes of enemies.
The match ends when all players die or when they survive for 8 min
and defeat the boss. Fig. 12 presents screenshots of the game.

5.4.1. PinGU and PinGU Replay integration

Like most games, Survivor Heroes presents several game objects
with different feature sets. In Survivor Heroes’ provenance graphs, we
focused on collecting information about players and Items. For the sake
of conciseness, we list below the overall features that a node from a
Survivor Heroes provenance graph might contain:

+ Common features: ObjectPosition_X, ObjectPosition_Y, ObjectPo-
sition_Z, ObjectName, ObjectTag, ObjectID

12 https://youtu.be/E7c0pTs2Zz8
13 https://www.doubledashstudios.com

10

Entertainment Computing 52 (2025) 100778

Table 2

Survivor Heroes’ provenance node and feature information.
Node label Node type Node feature set
Playerl Agent Common, Player, Player name
Player2 Agent Common, Player, Player name
Player3 Agent Common, Player, Player name
PlayerPosition Activity Common
PlayerHpDecrease Activity Common, Player healthy
TwoPlayersSeparated Activity Common, Player group
TwoPlayersTogether Activity Common, Player group
ThreePlayersSeparated Activity Common
ThreePlayersTogether Activity Common
PlayerDie Activity Common
PlayerResurrect Activity Common
PlayerResurrect Activity Common
Spawnltem Entity Common, Item
Collectltem Activity Common, Item
UpgradeAbilities Activity Common, Player abilities
UpdateObjectName Activity Common, Player name

Table 3

Survivor Heroes’ activities node influences.
Source Target Expire Influence
PlayerPosition PlayerPosition - 0
PlayerHpDecrease TwoPlayersSeparated 10 -1
PlayerHpDecrease ThreePlayersSeparated 10 -1
TwoPlayersTogether TwoPlayersSeparated 10 -1
TwoPlayersTogether ThreePlayersTogether 10 1
ThreePlayersTogether ThreePlayersSeparated 10 -1
PlayerDie TwoPlayersTogether 15 -1
PlayerDie ThreePlayersTogether 15 -1
Collectltem TwoPlayersSeparated 10 -1
Collectltem ThreePlayersTogether 10 -1
UpgradeAbilities UpgradeAbilities - 0

+ Player features: IsBot, DamageUpgrades, HealthUpgrades, De-
fUpgrades, PotUpgrades

+ Player healthy features: HpPercent

« Player group features: Players

» Player name features: OldName, NewName

« Player abilities features: Attacks, Passives

+ Item features: CollectableName

However, each node type draws a different subset of the above-
mentioned features. Table 2 presents an overview of Survivor Heroes’
node feature information.

Another important piece of information about provenance data
is the influences. This information is responsible for generating the
edges between provenance vertices. In our implementation for Survivor
Heroes, all influences are configured to be consumed after generating
one edge. However, some influences expire if they do not generate
a link after a configured expire seconds value (i.e., PlayerHpDecrease
generates an influence that expires after 10 s if TwoPlayersSeparated
activity does not happen). Furthermore, each influence has a con-
figured influence value (i.e., TwoPlayersTogether activity generates a
positive influence to ThreePlayersTogether and a negative influence
to TwoPlayersSeparated). Table 3 presents an overview of Survivor
Heroes’ activities node influences information.

To integrate PinGU Replay in Survivor Heroes, we configured the
replay object and replay transform component on the following game
elements: players’ heroes, enemies, buildings, weapons, and abilities.
These configurations collected all information about position, rotation,
and scale from game objects. Furthermore, we need to create replay
match time, replay player name, and replay player HP components to
allow the collection of domain-specific information since this informa-
tion is important for developers to understand the entire context of the
game. In the end, it was necessary to make these settings in 87 game
objects.

https://youtu.be/E7c0pTs2Zz8
https://www.doubledashstudios.com

L. Thurler et al.

Survivor Heroes - Players team matches percentage

Players 5, 8 and 9 Players 1,4and 7

Players 5,6 and 8 e
Players 4, 8 and 10
Players 2, 4and 7

Players 4, 8 and 9

Players 4, 6 and 9
Players 3, 8 and 10

Players 4, 5and 9
Players 4, 6 and 8

Fig. 13. Survivor Heroes played matches’ percentage of players team.

5.4.2. Playtest data collect and session select

We conducted a playtest with ten players, nine male and one female,
aged between 19 and 33 years old, with intermediate to advanced game
skills. The playtest session lasted 3 h and generated 16 game sessions.

During the playtest, the players only needed to play normally and
cooperate to win the match. Similar to the Smoke Squadron playtest, we
arranged for players to play with the same team during some matches,
allowing them to get used to the game with the aim of having matches
where players were learning how to play and others where they already
knew how to play. Fig. 13 presents the played matches percentage of
players team.

Finally, we selected two specific sessions that we considered to
contain distinct data to be analyzed by game developers. The first
selected session was 323 s long. This session was the team’s first match
with players 2, 4, and 7, so the players were still learning how to
play, and one did not have any experience with this kind of game. We
considered this session as a sample match between beginner players.
The resulting provenance graph has 1046 edges and 402 vertices. The
second session was 746 s long. This session was the team’s third match
with players 4, 6, and 8. At this point, all the players had already played
with other teams and with each other, so all players were already
more experienced in the game, and it was the first time they had
won the match. We considered this session as a sample match between
intermediate players. The resulting provenance graph has 2277 edges
and 837 vertices.

5.4.3. Specific analysis information

The primary roles of Survivor Heroes developers are Program-
mer/Producer, Game Designer, and Technical Artist. Just like Ops
Game Studio, the Double Dash Studios is a small studio, so all three
game developers have knowledge of game design and usually analyze
players’ behavior during playtest sessions. None of them have prior
experience using provenance or other tools to assist in this analysis.
Below are listed questions they answered during steps 2, 4, and 5 of
the analysis process.

1. What were the moments when players died?

2. What skills did players choose? And what are the levels of these
skills?

3. In your opinion, what were the most effective skills in this
session? Why?

4. In your opinion, why did the players fail? (only for game session
D

5. In your opinion, why did the players win? (only for game session
2)

6. Comment what you think of the skills and experience of each
player.

7. Describe any other types of information you were able to analyze
and how you arrived at it.

11

Entertainment Computing 52 (2025) 100778

5.4.4. Results

Finding 4: In accordance with Finding 1, Survivor Heroes de-
velopers become more confident in their analyses when using a
provenance graph combined with replay.

When using only the replay to analyze game sessions, all game
developers remained in doubt about the skills players choose, players
upgrade levels, and if they were letting some death information pass,
as the players were not always on the same screen and even being
able to alternate among the players it was complex to ensure that they
were seeing everything. Due to this confusion, they were unsure about
some answers, either because of a lack of clarity or an inability to
observe the moment of the replay in which it happened. Similar to
Smoke Squadron developers, when they used provenance graph data
and visualization with replay information, they could confirm their
assumptions. This allowed them to get safe with their responses and
conclusions. Consequently, they agreed that the graph was crucial in
enhancing their understanding of the context and confirming their
initial assumptions.

Finding 5: In agreement with Finding 2, Survivor Heroes devel-
opers filtered desired events in the provenance graph and syn-
chronized replay with these events to navigate in replay during
analysis.

When game developers analyzed the second session in the fifth step,
as soon as game developers started answering the questions, they all
used the graph to see the desired moments and updated the replay
to this specific moment to analyze. Furthermore, similar to Smoke
Squadron developers, their answers confirmed that they all believe that
the graph made it easier to locate the desired events and provided a
faster way to find the moments that should be analyzed, and it was
very useful to facilitate and accelerate the analysis process.

Finding 6: Survivor Heroes developers were optimistic about
using this tool in other projects.

Developers mentioned that they managed to see applications of this
tool in projects that are being developed, that they would like this tool
to be applied to other game engines, and that replay could be done
as a spectator mode rather than a classic replay as it would give more
information to the analysis.

Furthermore, the developers expressed specific areas for improve-
ment, primarily focusing on the tool’s usability. All developers men-
tioned that the analysis dashboard helped to identify information and
filter desired information in the game session. They also mentioned
that using the graph in conjunction with the replay improved the
analysis process. They also were optimistic, believing this kind of
analytics helped them improve their games and apply them to dif-
ferent game productions. However, they also mentioned that the tool
needs improvements in its usability to be accessible to less experienced
developers and help further in the analysis. Another important point
to note is that just like the Smoke Squadron developers, Survivor
Heroes developers were not aware of provenance in games, and even
not knowing and not participating in the collection instrumentation,
they managed to benefit from the tool even without having previous
experience.

6. Conclusion

In this paper, we extended our previous work by providing more de-
tail about Prov-Replay implementation through PinGU Replay, applied
our experiment methodology to a new under-development commer-
cial game, collected real game sessions, did an experiment where

L. Thurler et al.

game developers analyzed specific game sessions using PinGU Re-
play and validated our findings through results collected from two
under-development commercial games of different genres.

Later, we analyzed the results of six game developers’ experiments
to check our research hypotheses. Regarding RH 1, we claim that
our approach provides a better understanding of game sessions since
all developers reported that this tool provides access to significant
information to understand better what was happening in the game and
arrive at sounder answers and conclusions. About RH 2, our findings
confirm that the utilization of provenance graph data and visualization
facilitates the rapid identification of key points that contain significant
events since all developers reported that this tool provides an easy
way to find and access the exact desired event moment. In contrast to
seeking this information by watching replay repeatedly, they can visit
desired events without watching and making notes about the entire
session replay. After this analysis, our results reinforce that Prov-Replay
could improve both the efficiency and effectiveness of the qualitative
analysis process since it provides a means for a better understanding of
the whole game context information and easy identification of relevant
events. As a result, this significantly aids users’ analysis process. More-
over, we contribute within the field by making PinGU Replay available
on GitHub as open-source software with a sample project, providing
an example of how to configure PinGU to collect provenance data and
PinGU Replay to capture session data and reproduce replay synced
with provenance graph visualization. We made two videos available
showing PinGU Replay features and how to make an analysis using
their features. We believe these elements provide an efficient way for
other researchers and game developers to use and expand our work.

During development, we observed points of improvement that made
this framework inefficient in some scenarios. The first is quantitative
analysis. Our approach is based on providing detailed information
about a game session to perform a more in-depth analysis. Still, it has
no resource that facilitates its use in quantitative analysis. By creating
visualization presets and filters, it is possible to check whether some
behavior is reproduced in different game sessions, but this process is
still quite laborious. Another important issue is about performance. The
more information the provenance graph presents, the more costly it is
to process all the visualization rules and filters and synchronize them
with the replay. Therefore, depending on the amount of information
and the power of the computer used in the analysis, the process of
replay reproduction and visualization of the provenance graph may
be slow. We believe these limitations can be resolved in future work,
making this tool more complete.

Due to the limitations, we intend to improve visualization perfor-
mance and apply features to make this tool efficient in quantitative
analysis. To improve performance, we want to add features to auto-
matically collapse some graph information that could be irrelevant as
it presents little difference concerning previous or subsequent informa-
tion. And about quantitative analysis, we want to add features capable
of reproducing more than one replay and provenance graph simultane-
ously, allowing the user to show, hide, and compare the information of
different sessions or different moments of a session at once. Due to the
game developers’ feedback, we want to implement this tool in other
game engines, making it easier for more developers and researchers to
use. We intend to improve the tool’s usability so that it is accessible to
less experienced game developers and has more options to visualize and
navigate between the replay and graph visualization more practically.
Lastly, we want to implement all Prov-Replay features to be accessible
at game runtime, allowing players to analyze their performance in a
game session. This means that this tool could be used in the context of
a competitive game, not just trying to improve the game but allowing
players and professional teams to analyze their matches and their
opponents’ matches, seeking to improve their performance and win
matches.

12

Entertainment Computing 52 (2025) 100778

CRediT authorship contribution statement

Leonardo Thurler: Conceptualization, Formal analysis, Methodol-
ogy, Software, Writing — original draft, Writing — review & editing.
Sidney Melo: Conceptualization, Writing — review & editing. Leonardo
Murta: Writing — review & editing. Troy Kohwalter: Writing — review
& editing. Esteban Clua: Formal analysis, Methodology, Validation,
Writing — review & editing.

Declaration of competing interest
We have no financial or non-financial conflict of interest.
Data availability

We are sharing software code as open-source at github with a
sample project, we want share provenance and replay data files in the
future, but we do not have permission to share games source code.

Acknowledgments

We would like to thank Double Dash Studios and Ops Game Stu-
dio for providing access to games’ source codes so that we could
capture provenance data and realize experiments. We also want to
thank all players and developers who helped us in our case studies by
participating in playtests and analysis sessions.

References
[1] A. Drachen, M.S. El-Nasr, A. Canossa, Game Analytics: Maximizing the Value of

Player Data, Springer, 2013.

E. Andersen, Y.-E. Liu, R. Snider, R. Szeto, Z. Popovié¢, Placing a value on

aesthetics in online casual games, in: Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, 2011, pp. 1275-1278.

[2]

[3] A. Calvo-Morata, D.C. Rotaru, C. Alonso-Fernandez, M. Freire-Morén, I. Martinez-
Ortiz, B. Ferndndez-Manjon, Validation of a cyberbullying serious game using
game analytics, IEEE Trans. Learn. Technol. 13 (1) (2020) 186-197.

G. Andrade, G. Ramalho, H. Santana, V. Corruble, Extending reinforcement
learning to provide dynamic game balancing, in: Proceedings of the Workshop on
Reasoning, Representation, and Learning in Computer Games, 19th International
Joint Conference on Artificial Intelligence, IJCAI, 2005, pp. 7-12.

V. Volz, G. Rudolph, B. Naujoks, Demonstrating the feasibility of automatic
game balancing, in: Proceedings of the Genetic and Evolutionary Computation
Conference 2016, 2016, pp. 269-276.

C. Pedersen, J. Togelius, G. Yannakakis, Modeling player experience for content
creation, Comput. Intell. Al Games IEEE Trans. 2 (2010) 54-67.

A. Zook, B. Harrison, M.O. Riedl, Monte-Carlo tree search for simulation-based
strategy analysis, 2019, arXiv preprint arXiv:1908.01423.

P. Guardini, P. Maninetti, Better game experience through game metrics: A rally
videogame case study, in: Game Analytics: Maximizing the Value of Player Data,
Springer, 2013, pp. 325-361.

T. Mahlmann, A. Drachen, J. Togelius, A. Canossa, G.N. Yannakakis, Predicting
player behavior in Tomb raider: Underworld, in: Proceedings of the 2010 IEEE
Conference on Computational Intelligence and Games, 2010, pp. 178-185.

A. Tychsen, A. Canossa, Defining personas in games using metrics, in: Proceed-
ings of the 2008 Conference on Future Play: Research, Play, Share, 2008, pp.
73-80.

S.A. Melo, T.C. Kohwalter, E. Clua, A. Paes, L. Murta, Player behavior profiling
through provenance graphs and representation learning, in: Proceedings of the
15th International Conference on the Foundations of Digital Games, 2020, pp.
1-11.

E. Kleinman, S. Ahmad, Z. Teng, A. Bryant, T.-H.D. Nguyen, C. Harteveld, M.S.
El-Nasr, ”And then they died”: Using action sequences for data driven, context
aware gameplay analysis, in: Proceedings of the 15th International Conference
on the Foundations of Digital Games, 2020.

E. Kleinman, N. Preetham, Z. Teng, A. Bryant, M. Seif El-Nasr, "What hap-
pened here!?" a taxonomy for user interaction with spatio-temporal game data
visualization, Proc. ACM Hum.-Comput. Interact. 5 (CHI PLAY) (2021).

B. Medler, M. John, J. Lane, Data cracker: Developing a visual game analytic
tool for analyzing online gameplay, in: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’11, Association for Computing
Machinery, New York, NY, USA, 2011, pp. 2365-2374.

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

http://refhub.elsevier.com/S1875-9521(24)00146-0/sb1
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb1
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb1
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb2
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb2
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb2
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb2
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb2
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb3
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb3
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb3
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb3
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb3
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb4
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb4
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb4
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb4
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb4
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb4
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb4
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb5
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb5
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb5
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb5
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb5
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb6
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb6
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb6
http://arxiv.org/abs/1908.01423
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb8
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb8
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb8
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb8
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb8
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb9
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb9
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb9
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb9
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb9
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb10
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb10
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb10
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb10
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb10
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb11
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb11
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb11
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb11
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb11
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb11
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb11
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb12
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb12
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb12
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb12
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb12
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb12
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb12
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb13
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb13
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb13
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb13
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb13
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb14
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb14
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb14
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb14
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb14
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb14
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb14

L. Thurler et al.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

J.H. Kim, D.V. Gunn, E. Schuh, B. Phillips, R.J. Pagulayan, D. Wixon, Tracking
real-time user experience (TRUE): A comprehensive instrumentation solution for
complex systems, in: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’08, Association for Computing Machinery, New York,
NY, USA, 2008, pp. 443-452.

A. Drachen, A. Canossa, Analyzing spatial user behavior in computer games
using geographic information systems, in: Proceedings of the 13th International
MindTrek Conference: Everyday Life in the Ubiquitous Era, MindTrek ’09,
Association for Computing Machinery, New York, NY, USA, 2009, pp. 182-189.
M. Ashton, C. Verbrugge, Measuring cooperative gameplay pacing in world of
warcraft, in: Proceedings of the 6th International Conference on Foundations of
Digital Games, FDG ’11, Association for Computing Machinery, New York, NY,
USA, 2011, pp. 77-83.

N. Hoobler, G. Humphreys, M. Agrawala, Visualizing competitive behaviors in
multi-user virtual environments, in: IEEE Visualization 2004, 2004, pp. 163-170.
J.L. Miller, J. Crowcroft, Avatar movement in world of warcraft battlegrounds,
in: 2009 8th Annual Workshop on Network and Systems Support for Games,
NetGames, 2009, pp. 1-6.

A. Drachen, A. Canossa, G.N. Yannakakis, Player modeling using self-organization
in tomb raider: Underworld, in: 2009 IEEE Symposium on Computational
Intelligence and Games, 2009, pp. 1-8.

R. Thawonmas, M. Kurashige, K. lizuka, M. Kantardzic, Clustering of online
game users based on their trails using self-organizing map, in: R. Harper, M.
Rauterberg, M. Combetto (Eds.), Entertainment Computing - ICEC 2006, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 366-369.

E. Andersen, Y.-E. Liu, E. Apter, F. Boucher-Genesse, Z. Popovié, Gameplay
analysis through state projection, in: Proceedings of the Fifth International
Conference on the Foundations of Digital Games, FDG ’10, Association for
Computing Machinery, New York, NY, USA, 2010, pp. 1-8.

Y.-E. Liu, E. Andersen, R. Snider, S. Cooper, Z. Popovié, Feature-based projec-
tions for effective playtrace analysis, in: Proceedings of the 6th International
Conference on Foundations of Digital Games, FDG ’11, Association for Computing
Machinery, New York, NY, USA, 2011, pp. 69-76.

S. Ahmad, A. Bryant, E. Kleinman, Z. Teng, T.-H.D. Nguyen, M.S. El-Nasr,
Modeling individual and team behavior through spatio-temporal analysis, in:
Proceedings of the Annual Symposium on Computer-Human Interaction in Play,
2019.

G. Wallner, S. Kriglstein, A spatiotemporal visualization approach for the analysis
of gameplay data, in: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI "12, Association for Computing Machinery, New York,
NY, USA, 2012, pp. 1115-1124.

G. Wallner, S. Kriglstein, Visualizations for retrospective analysis of battles in
team-based combat games: A user study, in: Proceedings of the 2016 Annual
Symposium on Computer-Human Interaction in Play, 2016, pp. 22-32.

G. Wallner, S. Kriglstein, Multivariate visualization of game metrics: An
evaluation of hexbin maps, in: Proceedings of the Annual Symposium on
Computer-Human Interaction in Play, in: CHI PLAY ’20, Association for
Computing Machinery, New York, NY, USA, 2020, pp. 572-584.

W. van den Broek, G. Wallner, R. Bernhaupt, Modata — improving dota 2 expe-
rience and spectatorship through tangible gameplay visualization, in: Extended
Abstracts of the Annual Symposium on Computer-Human Interaction in Play
Companion Extended Abstracts, in: CHI PLAY ’19 Extended Abstracts, Association
for Computing Machinery, New York, NY, USA, 2019, pp. 723-730.

G. Wallner, N. Halabi, P. Mirza-Babaei, Aggregated visualization of playtesting
data, in: Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, CHI ’19, Association for Computing Machinery, New York,
NY, USA, 2019, pp. 1-12.

13

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Entertainment Computing 52 (2025) 100778

N. Halabi, G. Wallner, P. Mirza-Babaei, Assessing the impact of visual design on
the interpretation of aggregated playtesting data visualization, in: Proceedings
of the Annual Symposium on Computer-Human Interaction in Play, in: CHI
PLAY ’19, Association for Computing Machinery, New York, NY, USA, 2019,
pp. 639-650.

Y.-T. Kuan, Y.-S. Wang, J.-H. Chuang, Visualizing real-time strategy games: The
example of StarCraft II, in: 2017 IEEE Conference on Visual Analytics Science
and Technology, VAST, 2017, pp. 71-80.

A. Afonso, M. Carmo, T. Gongalves, P. Vieira, VisuaLeague: Player performance
analysis using spatial-temporal data, Multimedia Tools Appl. 78 (2019).

T. Kohwalter, E. Clua, L. Murta, Provenance in games, in: Braz. Symp. Games
Digit. Entertain. SBGAMES, 2012, pp. 162-171.

T. Costa Kohwalter, L. Gresta Paulino Murta, E. Walter Gonzalez Clua, Captur-
ing game telemetry with provenance, in: 2017 16th Brazilian Symposium on
Computer Games and Digital Entertainment, SBGames, 2017, pp. 66-75.

T. Kohwalter, F. Figueira, E. Serdeiro, J.R. Da Silva Junior, L. Murta, E. Clua,
Understanding game sessions through provenance, Entertain. Comput. 27 (2018).
S. Melo, A. Paes, E. Clua, T. Kohwalter, L. Murta, Detecting long-range cause-
effect relationships in game provenance graphs with graph-based representation
learning, Entertain. Comput. 32 (2019) 100318.

T.C. Kohwalter, L.G. Murta, E.W. Clua, Provchastic: Understanding and predicting
game events using provenance, in: International Conference on Entertainment
Computing, Springer, 2020, pp. 90-103.

L. Thurler, S. Melo, E. Clua, T. Kohwalter, Prov-replay: A qualitative analysis
framework for gameplay sessions using provenance and replay, in: P. Ciancarini,
A. Di lorio, H. Hlavacs, F. Poggi (Eds.), Entertainment Computing — ICEC 2023,
Springer Nature Singapore, Singapore, 2023, pp. 31-40.

G. Wallner, Play-graph: A methodology and visualization approach for the
analysis of gameplay data, in: FDG, 2013, pp. 253-260.

T.C. Kohwalter, E.G.W. Clua, L.G.P. Murta, Game flux analysis with prove-
nance, in: D. Reidsma, H. Katayose, A. Nijholt (Eds.), Advances in Computer
Entertainment, Springer International Publishing, Cham, 2013, pp. 320-331.

T. Kohwalter, T. Oliveira, J. Freire, E. Clua, L. Murta, Prov viewer: A graph-
based visualization tool for interactive exploration of provenance data, in:
Provenance and Annotation of Data and Processes: 6th International Provenance
and Annotation Workshop, IPAW 2016, McLean, VA, USA, June 7-8, 2016,
Proceedings 6, Springer, 2016, pp. 71-82.

L. Moreau, P. Missier, PROV-n: The provenance notation, 2012, URL https:
//www.w3.0rg/TR/prov-n/. (Last Accessed 17 Apr 2024).

Y. Gil, S. Miles, PROV model primer, 2010, URL https://www.w3.org/TR/prov-
primer/. (Last Accessed 17 Apr 2024).

L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska, S.
Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan, E. Stephan, J.V. den Bussche,
The open provenance model core specification (v1.1), Future Gener. Comput.
Syst. 27 (6) (2011) 743-756.

C. Wagner, Developing your own replay system, 2004, URL https:
//www.gamedeveloper.com/programming/developing-your-own-replay-system.

(Last Accessed 17 Apr 2024).

A. Montville, Implementing a replay system in unity and how i’d do it differently
next time, 2014, URL https://www.gamedeveloper.com/programming/
implementing-a-replay-system-in-unity-and-how-i-d-do-it-differently-next- time.
(Last Accessed 17 Apr 2024).

T. Engel, Creating a replay system in unity, 2020, URL https://www.kodeco.
com/7728186-creating-a-replay-system-in-unity. (Last Accessed 17 Apr 2024).

S.A. Melo, E. Clua, A. Paes, Heterogeneous graph dataset with feature
set intersection through game provenance, in: Workshop on Graph Learn-
ing Benchmarks, 2021, https://Graph-Learning-Benchmarks.Github.lo/Assets/
Papers/Heterogeneous-Graph-Dataset-Game-Provenance.Pdf.

http://refhub.elsevier.com/S1875-9521(24)00146-0/sb15
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb15
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb15
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb15
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb15
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb15
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb15
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb15
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb15
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb16
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb16
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb16
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb16
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb16
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb16
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb16
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb17
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb17
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb17
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb17
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb17
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb17
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb17
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb18
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb18
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb18
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb19
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb19
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb19
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb19
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb19
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb20
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb20
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb20
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb20
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb20
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb21
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb21
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb21
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb21
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb21
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb21
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb21
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb22
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb22
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb22
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb22
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb22
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb22
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb22
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb23
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb23
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb23
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb23
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb23
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb23
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb23
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb24
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb24
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb24
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb24
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb24
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb24
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb24
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb25
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb25
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb25
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb25
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb25
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb25
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb25
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb26
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb26
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb26
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb26
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb26
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb27
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb27
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb27
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb27
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb27
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb27
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb27
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb28
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb28
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb28
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb28
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb28
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb28
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb28
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb28
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb28
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb29
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb29
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb29
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb29
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb29
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb29
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb29
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb30
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb30
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb30
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb30
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb30
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb30
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb30
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb30
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb30
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb31
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb31
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb31
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb31
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb31
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb32
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb32
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb32
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb33
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb33
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb33
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb34
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb34
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb34
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb34
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb34
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb35
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb35
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb35
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb36
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb36
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb36
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb36
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb36
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb37
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb37
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb37
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb37
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb37
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb38
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb38
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb38
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb38
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb38
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb38
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb38
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb39
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb39
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb39
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb40
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb40
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb40
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb40
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb40
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb41
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb41
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb41
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb41
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb41
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb41
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb41
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb41
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb41
https://www.w3.org/TR/prov-n/
https://www.w3.org/TR/prov-n/
https://www.w3.org/TR/prov-n/
https://www.w3.org/TR/prov-primer/
https://www.w3.org/TR/prov-primer/
https://www.w3.org/TR/prov-primer/
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb44
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb44
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb44
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb44
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb44
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb44
http://refhub.elsevier.com/S1875-9521(24)00146-0/sb44
https://www.gamedeveloper.com/programming/developing-your-own-replay-system
https://www.gamedeveloper.com/programming/developing-your-own-replay-system
https://www.gamedeveloper.com/programming/developing-your-own-replay-system
https://www.gamedeveloper.com/programming/implementing-a-replay-system-in-unity-and-how-i-d-do-it-differently-next-time
https://www.gamedeveloper.com/programming/implementing-a-replay-system-in-unity-and-how-i-d-do-it-differently-next-time
https://www.gamedeveloper.com/programming/implementing-a-replay-system-in-unity-and-how-i-d-do-it-differently-next-time
https://www.kodeco.com/7728186-creating-a-replay-system-in-unity
https://www.kodeco.com/7728186-creating-a-replay-system-in-unity
https://www.kodeco.com/7728186-creating-a-replay-system-in-unity
https://Graph-Learning-Benchmarks.Github.Io/Assets/Papers/Heterogeneous-Graph-Dataset-Game-Provenance.Pdf
https://Graph-Learning-Benchmarks.Github.Io/Assets/Papers/Heterogeneous-Graph-Dataset-Game-Provenance.Pdf
https://Graph-Learning-Benchmarks.Github.Io/Assets/Papers/Heterogeneous-Graph-Dataset-Game-Provenance.Pdf

	Using provenance and replay for qualitative analysis of gameplay sessions
	Introduction
	Related Work
	Background
	PinGU Replay
	Replay module
	Integrating replay module into an existing game

	Provenance tracker module
	Provenance graph viewer controller
	Configure to show graph with session replay

	Analysis Dashboard
	Available as open-source software

	Case Studies
	Research hypotheses
	Game developers qualitative analysis methodology
	Case study I - Smoke Squadron
	PinGU and PinGU Replay integration
	Playtest data collect and session select
	Specific analysis information
	Results

	Case study II - Survivor Heroes
	PinGU and PinGU Replay integration
	Playtest data collect and session select
	Specific analysis information
	Results

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

