
Entertainment Computing 52 (2025) 100777

Available online 20 June 2024
1875-9521/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Prov-DIFF: Play traces analysis through provenance differences

Troy Costa Kohwalter *, Leonardo Gresta Paulino Murta , Esteban Walter Gonzalez Clua
Departamento de Ciência da Computação, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil

A R T I C L E I N F O

Keywords:
Provenance
Game analytics
Session debugging
Play traces

A B S T R A C T

A game session comprises a series of user decisions, inputs, and the execution of a strategy to reach specific goals.
Tracking generated data of a game session is important for game analytics for developers and players. Game
session data can be used for reproducibility, analysis of game traces, understanding player behavior, and
improving the outcome in future sessions by learning from mistakes. However, game telemetry can rapidly lead
to large amounts of data that can overwhelm the analyst’s ability to analyze it, and it can be difficult to identify
the reasons that might have caused a player to lose in that session. This paper proposes a provenance-based
automatic debugging approach for game analytics. It identifies possible reasons and discrepancies that might
have led a player to lose by contrasting their performance with other players. Our approach also proposes
possible insights on how to improve the player’s performance to reach the goal. We integrated our solution into
the existing provenance visualization tool Prov Viewer. We provided an experimental study to demonstrate that
our approach can identify probable causes that led the player to lose and propose changes to make it work in the
next execution.

1. Introduction

Succeeding or losing in a game is the final consequence of a series of
decisions, planning, and executing a strategy to overcome specific ob-
stacles and achieve the objectives. Thus, an important problem in game
analytics is understanding the reasons for certain outcomes and why
some players failed while others managed to succeed. This analysis can
also detect exploits and bugs in the game and discover winning strate-
gies to overcome each challenge present in the game.

As such, game analytics has become an emerging field that is
extremely popular and important for business intelligence in the game
industry [1]. It provides a wealth of information for game designers,
including feedback about design and gameplay mechanics, player
experience, production performance, and even market reaction. Thus,
the main goal of game analytics is to support the decision-making pro-
cess at the operational, tactical, and strategic levels for game
development.

However, game analytics still lacks standardization of key aspects
and strategies, and, currently, the game industry adopts, in most cases,
artisanal methods to understand the events of game sessions and
determine the aspects that could have led players to fail certain goals,
such as data crunching or game metrics [2], heat maps [3], and
spatiotemporal clustering [4]. This analysis uses tracked game session

data to identify factors or anomalies in the game that might have
contributed to the outcome. Furthermore, existing practices adopted by
the game industry for tracking game session data need to contain more
information to determine probable causes for the reached outcomes.

Kohwalter et al. [5] proposed a novel approach named PinGU for
capturing and storing provenance data from a game session based on the
Provenance in Games conceptual framework [6]. Incorporating the
PinGU framework in a game allows the developers to automatically
capture and generate the game session provenance graph for analysis. A
game provenance graph shows all actions, events, and agents and their
relationships from a game session in an annotated graph that illustrates
the temporal sequence of events and their causal relationships.

The provenance data collected during a game session is fundamental
for understanding the mistakes made and reproducing the same results
later. However, provenance data can be highly detailed and, depending
on the game, can result in a huge quantity of tracked information,
leading to provenance graphs that may have thousands of vertices. This
wealth of information can overwhelm the developer’s ability to analyze
and understand the data, making identifying the reasons that may have
caused a particular player to fail more complex and tedious when
compared with the results from other players. Thus, in a follow-up work,
Kohwalter et al. [7] proposed an approach for summarizing the prove-
nance data to enhance the identification of sections or vertices that are

* Corresponding author at: Rua Passo da Pátria, 156 - Instituto de Computação - Sala 455 São Domingos, Niterói, RJ CEP: 24210-346, Brazil.
E-mail address: troy@ic.uff.br (T. Costa Kohwalter).

Contents lists available at ScienceDirect

Entertainment Computing

journal homepage: www.elsevier.com/locate/entcom

https://doi.org/10.1016/j.entcom.2024.100777
Received 22 April 2024; Accepted 15 June 2024

mailto:troy@ic.uff.br
www.sciencedirect.com/science/journal/18759521
https://www.elsevier.com/locate/entcom
https://doi.org/10.1016/j.entcom.2024.100777
https://doi.org/10.1016/j.entcom.2024.100777
https://doi.org/10.1016/j.entcom.2024.100777

Entertainment Computing 52 (2025) 100777

2

different from their neighbors and might represent changes in the game
state. However, that work is still focused on analyzing a single prove-
nance graph at a time rather than comparing different game sessions to
understand why some paths players took led to failure while others
succeeded in reaching their goals. Therefore, Kohwalter et al. [8] also
proposed the Provchastic approach that merges multiple provenance
graphs into a single unified graph to statistically analyze the provenance
data from multiple game sessions to predict outcomes using Markov
Chains.

In this work, we propose a provenance graph comparison approach
for game analytics capable of identifying possible reasons and discrep-
ancies that might have led the player to lose a game session. Our pro-
posed approach is inspired by spectra-based fault localization debugging
[9], where we contrast the player’s performance (i.e., the failed trial)
with the performance of other players that succeeded in reaching the
desired goal (i.e., the successful trial). Unlike Provchastic, which is
focused on prediction, our approach, Prov-DIFF, provides the means for
comparing provenance graphs from multiple sessions to determine the
differences (diff) between graphs and understand the underlying reasons
for the outcomes. This diff allows the designer, developers, and players
to detect sections of the graph that differ from others. This can be used to
discover the dissimilarities and the possible reasons behind each
outcome by deriving the necessary actions or steps to reproduce the
desired result. Furthermore, our approach proposes changes that can be
made in the player’s actions to improve his results in a future session.

We integrated our solution into the open-source provenance visual-
ization tool Prov Viewer [10] and evaluated it through an experimental
study regarding a projectile motion simulation. The experiment shows
that the proposed approach can identify the reasons that could have led
to a failure in the game. Moreover, our approach was able to propose
changes to fix the failed trials in a subsequent execution by incorpo-
rating changes in the prospective provenance, reaching different levels
of success, such as preserving a third of the original prospective prove-
nance to reach 80 % accuracy in the projectile simulation or preserving
almost half of the original decisions to reach 54 % accuracy. The more
wrong decisions we make, the greater the chances of failing since all
decisions in this simulation contribute to the simulation’s goal of hitting
the target.

The rest of the paper is organized as follows: Section II presents the
related work in this area. Section III provides background knowledge
related to provenance. Section IV presents our approach, and Section V
presents the evaluation. Finally, Section VI provides final considerations
and highlights future work.

2. Related work

Some studies identify patterns from data to determine what occurred
or predict a game session’s outcome through data mining, machine
learning, and statistical analysis [11].

There are several approaches [12,13,14,15,16] that analyze game
telemetry data to identify patterns and player behavior to predict out-
comes, evaluating player performance during a match through pre-
dictions. Yang et al. [12] and Schubert et al. [13] approaches focus on
combat patterns, or encounters, to predict the outcome of the match.
Both approaches use captured game metrics to feed their predictive
models, generating high-level predictive rules that do not consider
contextual information, such as the sequence of executed actions. As
such, it cannot reveal the dynamics of each combat. Only high-level
factors tend to determine the game’s outcome, such as hero level,
gold, death, health, and damage during each encounter.

Similarly, Pobiedina et al. [14] also proposed an approach that uses
statistical analysis of DotA 2 game data to identify factors that can in-
crease a team’s chances of winning, such as player role distribution in
the team, friendship relations between players, leadership, and other
player background information from previous matches, such as the
amount of previously played and won matches, played time, and

information about performance metrics in previous matches. With a
similar focus on team effort, Eaton et al. [15] also proposed an approach
using statistical analysis of League of Legends game data to identify
impactful team members whose presence had a substantial effect on the
outcome of the game and was related to victory. They use game metrics
such as kill and assist count to determine the effectiveness of the players.
However, neither approach is based on what happened during the
match; only game metrics from player history and current match se-
lection preferences are used to determine his winning probabilities.

Kleinman et al. [16] proposed a new approach for data analysis
combining Sequence Analysis and Interactive Behavior Analytics [17] to
aid analysts in examining player behavior using context information
through the analysis of action sequences. Their approach adds behav-
ioral labels to identified patterns to be used as a guide for the analysts to
explore the game session data. However, this work focuses on under-
standing behavior rather than analyzing or inferring possible reasons for
failure. It transfers all analytical processes to the analysts and provides
no insights into player strategy.

Stafford et al. [18] also used an approach based on statistical analysis
to identify skill development and improved player performance for the
Destiny game through basic game metrics. They analyze historical
player data to determine the learning curve. While this approach can
determine if the player improved through the game sessions, it provides
no insights into what influenced their performance.

Drenikow et al. [19] developed a tool for tracking and displaying
player trajectories and in-game events to aid game designers in
exploring the tracked data and identifying problems in their area de-
signs. The Vixen tool provides the means for exploratory analysis.
However, no game data analysis is done in their tool, and it transfers all
the analysis responsibility to the cognitive ability of the end-user to
interpret the data and extract insights.

Teng et al. [20] proposed the INSPECT system that leverages the
player’s playthrough data to generate a map of the player’s behavior in
the game. There are some limitations, such as the tool being unable to
provide statistical analysis and determine the significance of the results.
It can also only compare up to three sessions simultaneously. Lastly, the
analysis is done visually by designers, developers, or players.

Green et al. [21] proposed a framework for analyzing game me-
chanics in terms of intrinsic and extrinsic rewards so it can be used as
input for automated tutorial generation systems. It analyzes player
behavior during the matches to determine his overall classification type
and which type of intrinsic and extrinsic rewards would be more
appropriate for that player. They aim to use these insights to customize
automated content generation systems better. Sadly, these insights do
not include strategies or actions the player needs to improve his
performance.

All those cited works identify elements or provide predictions that
might lead to successful (or winning the match) gameplay. However,
they fail to provide insights into how the player strategies must be
modified to improve performance. In other words, identify what went
wrong and what should be done differently for more positive results in
future sessions.

3. Provenance

Provenance is well understood in the context of art or digital li-
braries, where it refers to the documented history of an art object or the
documentation of processes in a digital object’s life cycle [22]. The Open
Provenance Model (OPM) [23] was created during the Provenance Chal-
lenge [24], which is a collocated event of IPAW. Shortly after, another
provenance model was developed, named PROV [25], which can be
viewed as the successor of OPM. Both models aim to bring provenance
concepts to digital data.

Provenance can be used for many purposes, including understanding
how the data was collected to use it, determining the object’s ownership,
and deciding if the information is trustworthy. Mainly, it is used to show

T. Costa Kohwalter et al.

Entertainment Computing 52 (2025) 100777

3

the necessary steps to reproduce the results using an annotated causality
graph, a directed acyclic graph enriched with annotations, also known
as the provenance graph. According to Moreau et al. [23], a provenance
graph is the “record of a past or current execution and not a description of
something that could happen in the future.” Similarly, the PROV model
defines provenance as the “information about entities, activities, and people
involved in producing a piece of data, which can be used to assess its quality,
reliability or trustworthiness” [26]. This type of provenance is categorized
as retrospective provenance.

€Three different vertices in the provenance graph, Agents, Activities,
and Entities, can represent the following provenance information in
PROV. The provenance graph uses shapes to distinguish the different
types of vertices. The circle represents an entity, the square represents an
activity, and the octagon represents an agent.

Entities represent physical or digital objects like items, equipment, or
interactable objects. Activities represent the events or actions taken to
change or interact with entities or agents. Lastly, an agent is a person,
system, or entity with responsibilities, such as the player, enemies, and
event managers. Furthermore, several agents can have responsibilities
over the same activity, and a single agent can have responsibilities over
several activities. Agents can also act on behalf of other agents, repre-
senting their interests when unavailable. These relations are some of the
existing provenance relationships and are represented by edges in the
graph.

Since the provenance graph captures causal dependencies between
elements, it can be summarized using transitive rules. In previous work,
we mapped these provenance concepts to the game’s domain [6] to
explore the advantages of registering a game session’s provenance
[27,28], showed how to capture game provenance data [5,29], sum-
marize the provenance graph [7], and how to analyze multiple game
sessions through unifying (merging) game provenance graphs [8]. The
graph summarization combines similar sequential vertices from a graph

to shrink it by removing redundant sequential data. Meanwhile, the
graph unification combines (merges) two different provenance graphs
into a single unified provenance graph.

Fig. 1 illustrates two examples of a provenance graph from two
battles between the player (mage) and an enemy (orc) in a turn-based
combat. The entity in the graph represents a healing potion that the
player used during the battle. We have two agents: a mage and an orc.
Each agent executes actions during their turn, such as attacking, casting
spells, or drinking a potion. The edges represent the causal relationships
between the activities, such as taking damage or an influence from a
previous action. The health color legend shows that the activity’s color is
based on the health percentage. In the upper graph, the orc made a
heavy attack and hit the mage, doing 20 health points of damage. Thus,
in the graph, we have the activity that represents the heavy attack from
the orc, connecting the orc agent, and an event “was hit” connected to
the mage to represent that the attack hit the mage. Furthermore, we
have an edge connecting the event with the attack, showing the activ-
ity’s influence on the event, which was doing 20 hp damage. Moreover,
the event is orange-colored, meaning that the mage’s health is now
between 30 % and 60 % after this attack, while the orc’s attack is green-
colored to represent that the orc is still in full health. In the mage’s turn,
he drank a healing potion to recover the damage he just took. Thus, he
has an activity of “drank potion,” connected to an entity “potion” to
represent that the mage used an item, followed by an event of “was
healed” with an edge connecting the two showing the amount of damage
healed (20 hp). The distinction between an action and an event is
encoded inside the vertex.

The combat continues until the orc kills the mage, so the mage loses
the battle. The lower graph is similar, mostly changing the order of the
mage’s actions, which results in winning the battle against the orc.

Fig. 1. Two game session provenance graph examples illustrate combat between the player (mage) and the enemy (orc). The player lost the battle in the upper graph
and won in the bottom graph.

T. Costa Kohwalter et al.

Entertainment Computing 52 (2025) 100777

4

4. Prov-DIFF

This section discusses our approach to comparing provenance graphs
generated by different game sessions. Our proposed approach is
composed of three major phases: (1) unified graph creation, (2) trial
debugging, and (3) trial repair, which are described in more detail in
the following sections.

A. Unified Graph Creation
The first major phase, the unified graph creation, is responsible for

creating the unified graph that is used by the second main phase to infer
the probable causes that led to failure. We use the process of creating a
unified graph proposed in a previous work [8] that requires four activ-
ities, as illustrated in Fig. 2: (1) a matching heuristic to match vertices
from different graphs, (2) the definition of vertex similarity, (3) vertex
merge, and (4) a graph merge. Note that the merge process is done by
merging two graphs at a time; consequently, the matching heuristic uses
only two graphs at a time.

The matching heuristic restricts the search space for vertex
matching and avoids making a Cartesian product between vertices from
both graphs. Furthermore, the heuristic decides how to compare vertices
from different graphs. It always chooses two vertices (one from each
graph) to pass them to the Vertex Similarity algorithm for comparison.

The vertex similarity algorithm, known as the distance metric
function, compares two vertices to establish their similarity. The simi-
larity value between two vertices ranges from 0 to 1, where 0 represents
total mismatch (0 %), and 1 represents a perfect match (100 %). After
establishing that two vertices are similar within an acceptable threshold,
the next step is to merge them (vertex merge) to create a new vertex
representing the two original vertices. This newly created vertex will
belong to the unified graph. The vertex merge process creates a new
vertex of the same type as the original vertices (i.e., agent, activity, or
entity), with all attributes from both vertices and their original values. In
addition, it will show the minimum value, the maximum value, and the
average value for each attribute. Furthermore, the merged vertex will
have a new attribute showing the graphs to which it was used in the
merger.

The graph merge activity is the last one to create a unified graph.
This occurs only after the Matching Heuristic finishes matching vertices
from both graphs. All the resulting merged vertices and vertices that
were not matched are added to the unified graph, and finally, the edges
are also added to the unified graph. However, the edges with an
endpoint to any old vertices used for generating the merged vertex are
updated to consider the newly merged vertex. Furthermore, the entire
unification process records the provenance data on the origin of all
vertices and edges in the newly created graph. This origin data is
important for the debugging process.

B. Trial Debugging.
After generating the unified graph, comparing the differences be-

tween two or more graphs becomes trivial since each vertex contains
information related to its origins (i.e., the original graph it belonged to).
Thus, we can filter vertices from a specific graph, highlight it inside the
unified graph, and know how that specific graph differs from the other
graphs. Furthermore, the original attribute values and their source are
preserved when merging similar vertices.

The trial debugging uses the unified graph to detect a problem’s
causes and infer possible solutions through graph diffs. The comparison
algorithm compares the fail graph (i.e., the graph that had negative

results or failed to achieve the goal) with all other graphs with positive
results to find the discrepancies that could have explained the failure.
Our algorithm searches in the unified graph for the success graph (i.e.,
graph with positive results) with the shortest diff to the fail graph. It uses
it as a baseline to determine the causes of the negative results through a
vertex-by-vertex comparison. The vertices that only belong to the fail
graph represent potential causes that might have led to the failure.
Meanwhile, the vertices that appear only in the success graph are the
suggested patch operation that contains the necessary knowledge to
derive the required changes in the prospective provenance to reach the
goal.

C. Trial Repair.
The fail graph might reach the desired goal if we replace the actions

that appear only in the fail graph with the suggested actions in the patch
operation, represented by the vertices that belong only to the success
graph. In other words, we recommend to the player which actions they
should stop doing and what actions they should start depending on the
situation while preserving their overall playing style instead of simply
mimicking someone else through granular suggestions. Nevertheless, it
is also possible to make the fail graph identical to the success graph
(mimic the behavior) by using a similarity function that considers
vertices similar if they are 100 % equal in attributes and values. This
could lead to an extremely large patch operation.

Fig. 3 illustrates a visual comparison between both graphs from
Fig. 1, coloring in grey everything similar in both graphs. The upper
graph is classified as a fail graph since the player died. The bottom graph
is the success graph since the player won the battle. Fig. 4 shows the
resulting unified graph from those two provenance graphs and colors the
information common in both graphs in gray. All actions, influences, and
events colored in grey were considered “correct” by the Prov-Diff al-
gorithm because they appear in both graphs. Red vertices represent ac-
tions and events that appeared in the fail graph but not in the success
graph. These vertices might encode the reason for not reaching the goal.
Green vertices represent actions and events that appear in the success
graph but do not appear in the fail graph. These vertices are used to
suggest the patch operation to make the failed graph reach the goal after
incorporating the respective changes in the prospective provenance.
Fig. 5 shows the actions that need to be replaced (in red) and the sug-
gested actions that need to be performed instead (in green) to improve
the result, which, in this example, is winning the battle. Notice that the
moment they are performed is important relative to other actions. This
sequence of actions relative to other actions is encoded in the graph
through the edges, while temporal information is inside the vertices.
White nodes represent events that are a consequence of the actions, not
the actions themselves.

5. Evaluation

In this section, we assess our proposed approach for provenance
graphs to detect the possible causes of failure by comparing the fail graph
with the success graph and suggesting a probable fix. We evaluate our
approach through the following research questions:

RQ1: Can the proposed approach correctly detect the causes of the
failure?

RQ2: Does preserving multiple segments of the fail graph impact the re-
sults from our algorithm?

We answer these research questions through three dependent vari-
ables: accuracy, retention, and harmonic mean. The accuracy metric tells
us how many times our algorithm correctly predicted the probable
causes that led to failing the goal. This is measured by applying the
patch operation on the prospective provenance from the resulting fail
graph and verifying if the included changes effectively reached the goal.
If the proposed changes proved successful in future runs, our algorithm
correctly predicted the causes of the failure. Therefore, the higher the
accuracy, the better.

The retention metric tells us how many vertices remained unaffected Fig. 2. Unified Graph Creation Process.

T. Costa Kohwalter et al.

Entertainment Computing 52 (2025) 100777

5

or unaltered by the patch operation. This metric measures how much of
the fail graph was preserved and allows us to compare the algorithm
accuracy based on the number of changes in the patch operation.
Reaching 100 % accuracy is easy if the retention rate is near zero since it
translates to changing the majority or all the necessary vertices from the
fail graph to be an exact clone of one of the success graphs. However, this
is only sometimes desirable or possible because sometimes we want to
preserve a good portion of the fail graph for a particular reason, such as
preserving the player’s overall behavior. For example, if we contrast a
casual player’s performance with a professional one, the algorithm
changes everything. The casual player would need to figure out where to
invest in improving his future performance. Therefore, the ideal would
be high accuracy and high retention values, representing the minimum
patch on the fail graph that transforms it into a success graph.

However, the increase of one metric normally tends to decrease the
others. Thus, the last metric we use is the harmonic mean, which tells us
the algorithm’s overall performance based on the compromise of accu-
racy and retention metrics.

A. Materials and Method.
This experiment was executed using a shooting competition game

simulation that uses projectile motion physics to hit a target. We eval-
uated the accuracy of Prov-DIFF in detecting the probable causes that
led to missing the target.

The game simulation has nine configurable parameters: (1) bullet
mass, (2) air density based on temperature, (3) air density based on
altitude, (4) air drag, (5) initial X position, (6) initial Y position, (7)
bullet speed on X-axis, (8) bullet speed on Y axis, and (9) target position.
Moreover, it also uses a constant for gravity. The physics behind this

Fig. 3. Side-by-side comparison diff. The upper graph is the fail graph (player died), and the lower graph is the success graph (player won).

Fig. 4. Comparison visualization using the unified graph.

T. Costa Kohwalter et al.

Entertainment Computing 52 (2025) 100777

6

simulation is described in Equation 1, where ρ is the air density, Cd is the
drag coefficient, and A is the cross-sectional area of the projectile. The
simulation goal is for the shooter to hit the target.

Equation 1: Projectile motion equations

ẍ = − β
˙

ẋ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ẋ2
+ ẏ2

√

ÿ = − g − β
˙

ẏ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ẋ2
+ ẏ2

√

β =
α
m

α =
ρCdA

2

We generated a computer simulation of a shooting competition with
15 participants. The competition comprises 20 rounds; in each round, all
participants have one shot to hit the target. The target position changes
after each round. Each shot generates a provenance graph with the pa-
rameters of the projectile motion simulation. The input parameters were
generated randomly using a Gaussian distribution to simulate different
players participating in the competition. We consulted real data values
to select the mean for the Gaussian function and generate the sigma for
the Gaussian distribution. As a result, all input variables were contin-
uous. Furthermore, for this experiment, we only consider the vertices
that represent decisions related to the nine input parameters since those
are the only decisions that can be made in the simulation by the player or
the match configuration (everything else is a consequence of those
decisions).

Lastly, the results from our comparison algorithm are related to the
unified graph, which requires a similarity threshold to determine if two
graphs are similar and calculate the diffs. All variables in this experi-
ment belong to the continuous space, meaning there will never be two
equal values in the entire dataset. Moreover, the similarity threshold is
directly related to the retention metric because a value from the fail graph
can be considered similar to its counterpart from the success graph even
though they are not equal, thus preserving the fail graph vertex. There-
fore, the patch operation will not change the vertex since it is equiv-
alent to the one from the success graph.

As such, the experiment execution plan was divided into five stages:
(1) generate the dataset, (2) create different similarity thresholds to
analyze the impact of the retention vs. accuracy, (3) generate the unified
graph for each similarity threshold from stage 2, (4) execute the
experiment using the unified graphs from stage 3, and (5) analyze the
results. The simulation resulted in 300 graphs in the first stage since it
had 15 participants and 20 rounds, totaling 300 shots. Of these 300
generated graphs, only 16 hit the target, equivalent to 5.33 % of the
shots. Prov-DIFF requires at least one success graph, similar to spectra-

based fault localization debugging, and this restriction was satisfied in
the generated dataset.

The second stage is responsible for generating the similarity threshold
for the experiment. Thus, to evaluate the impact of retaining multiple
elements from the fail graph, we created ten different similarity thresholds
that result in different retention rates. Each similarity threshold uses the
same factor of standard deviation (sigma) to define the similarity
threshold for each input variable. The difference between the similarity
thresholds is the factor used for the thresholds. The generated similarity
threshold is: (1) 0-Sigma, (2) 0.25-Sigma, (3) 0.5-Sigma, (4) 0.75-Sigma,
(5) 1.0-Sigma, (6) 1.25-Sigma, (7) 1.5-Sigma, (8) 1.75-Sigma, (9) 2.0-
Sigma, (10) 3.0-Sigma. Thus, the first metric (0-Sigma) will only
consider two vertices to be similar if their attributes’ values are within
zero standard deviations apart or, in other words, if their numeric values
are the same. We did not add more points between 2.0-Sigma and 3.0-
Sigma due to the rule “68–95-99.7”, which states that, for a normal
distribution, 68 % of the values fall between one Sigma around the
mean, 95 % fall between two Sigma around the mean, and 99.7 % fall
between three Sigma around the mean. Thus, the difference between the
zones for 2-Sigma and 3-Sigma is only 4.7 %, which is too small to
generate any significant impact on the result. Nevertheless, we kept 2-
sigma and 3-sigma in the experiment to evaluate whether the differ-
ence between these metrics is significant.

The third stage creates the unified graphs using the similarity
threshold from the second stage and the 300 graphs from the first stage.
Thus, at the end of this stage, we had ten different unified graphs that
represented different similarity thresholds when applied over the same
300 graphs. Table 1 shows data from those ten unified graphs related to
the total number of vertices, the number of vertices that only appeared
on success graphs, the number of vertices that only appeared on fail
graphs, and the number of vertices that appeared on both.

Finally, we executed the experiment using the unified graphs from
the third stage. We calculated each unified graph’s accuracy, retention,

Fig. 5. Patch suggestion to improve the result.

Table 1
Unified graph comparisons for different similarity thresholds.

Similarity
Threshold

Vertices

Success
Vertices

Fail
Vertices

Common
Vertices

0.00-Sigma 2420 128 2282 10
0.25-Sigma 142 0 78 64
0.50-Sigma 87 0 38 49
0.75-Sigma 66 0 27 39
1.00-Sigma 58 0 21 37
1.25-Sigma 54 0 17 37
1.50-Sigma 53 0 18 35
1.75-Sigma 50 0 11 39
2.00-Sigma 40 0 13 27
3.00-Sigma 18 0 2 16

T. Costa Kohwalter et al.

Entertainment Computing 52 (2025) 100777

7

and harmonic mean metrics. This process was done by applying the
patch operation in each graph that had yet to reach the goal for each
one of the unified graphs (284 graphs from 300). Then, we ran the
projectile motion simulation in each patched graph to determine if the
modifications were sufficient to allow the shot to hit the target. Accuracy
is calculated by dividing the number of graphs that succeeded after the
patch by the total number of graphs that needed to be corrected (i.e.,
284). Using the 0.5-Sigma example, we had 154 successful corrections
from 284, approximately 54 %. Retention is calculated using the average
retention of the 284 graphs, which is the minimum diff size for each
graph since the diff size reflects the number of suggested changes. In the
0.5-Sigma, the average number of changes in all 284 graphs was 3.8
from the nine configurable parameters, which is a 42 % retention rate.
The harmonic mean is calculated based on the accuracy and retention,
which in the 0.5-Sigma example results in 48 %.

B. Results and Discussion
Fig. 6 shows the results obtained from our evaluation for each sim-

ilarity threshold used to generate the unified graph. Regardless of
whether the patch worked, the retention rate was calculated for all
graphs.

These results show that our comparison algorithm can achieve a 100
% accuracy rate, answering RQ1. However, this only occurs when using
the 0-sigma similarity, which has the lowest retention rate of 5 %. This
means that the algorithm discarded all elements from the failed graph
that were not equal to the other graph and replaced them with elements
from the graph that reached the goal due to the zero-similarity threshold
in a continuous domain, resulting in a graph equal to the successful one.

The results from other similarity thresholds show that the accuracy and
retention metrics are inversely proportional, related to RQ2: accuracy
decreases as the retention rate increases. This also sounds natural since if
we preserve the failed graph, then the goal will not be reached.
Furthermore, the more elements we preserve from the failed graph, the
lower the chances are of identifying the reasons and fixing them since
the cause of the failure can be broader than what can be changed by the
algorithm. Moreover, in this game, all factors contribute to the projectile
trajectory. This allows the user to choose the desired retention rate of the
analyzed graph at the cost of losing the accuracy of the recommendation
based on the patch size. In other words, the user chooses how much the
algorithm will preserve his overall playing style at the cost of reducing
the accuracy of the recommendation.

Thus, it is up to the user to define whether accuracy or retention is
more important. However, looking at the obtained results, it is not
recommended to have a retention rate greater than 55 % because
otherwise, the average accuracy rate drops from 39 % to 18 %. The
Harmonic mean metric can be used in cases where the user is after the
algorithm’s overall performance based on the compromise of accuracy
and retention metrics. Looking at the Harmonic mean metric, the optimal

similarity threshold would be 0.5-Sigma, resulting in a 54 % accuracy and
a 42 % retention rate. However, we can reach a much higher accuracy
(80 %) by preserving 30 % of the original failed decisions with only a 12
% loss in retention rate. Moreover, although 54 % or even 80 % accuracy
can be considered low in some situations, it is important to point out that
in this simulation, from the observed data, the chances of scoring a hit in
the target, which translates into a successful shot, is only 5.33 %. Thus,
the 54 % accuracy of our approach when retaining 42 % of the original
decisions is still much higher (almost ten times higher) than simply
making another random shot. The player would need to follow the
recommended moves from our algorithm (i.e., the proposed changes in
the patch operation) to improve his odds in the next session.

Furthermore, the results show that our algorithm can work with a
flexible definition of similarity. However, this flexibility for similarity
definition directly impacts our algorithm’s accuracy, as demonstrated
by the experiment. This, from a logical point of view, makes sense since
we are broadening the definition of similar values and, as a result,
increasing the acceptable error margins in the interpretation of what is
considered similar objects, which, in turn, can lead to errors in cases
where two objects are similar even when they are completely different.

Lastly, our approach considers only the closest correct execution to
derive the answer. A possible improvement would be to compare the
faulty execution with multiple correct executions, instead of only the
closest one, to my successful patterns and derive an answer with fewer
changes. Another possibility would be to merge all correct executions
and use this merged graph as the success graph.

C. Threats to Validity.
We identified internal and external threats that may influence the

results. About internal validity, we had to generate all 300 provenance
graphs to run the experiment. We used a Gaussian distribution for each
configurable parameter to generate acceptable random values within
the parameter domain for all the 300 different graphs to minimize the
effect of using completely random values that might not reflect real
gameplay data. Regarding external validity, we mitigated sample bias by
randomly generating 300 different graphs and having a set with more
than one graph that reached the goal. However, we only did one case
study, which might threaten the generalization of our results.

6. Conclusion

An important problem is understanding the reasons for certain out-
comes and why some players failed to achieve the final goal while others
managed to reach it. Thus, we proposed a provenance approach to un-
derstand how an outcome was reached. We developed a provenance
graph merge and comparison approach in the context of digital game
sessions capable of identifying possible reasons and discrepancies in a
provenance graph that might have led a player to fail to reach the goal.

Fig. 6. Evaluation results showing Accuracy, Retention, and harmonic mean metrics for each similarity threshold used.

T. Costa Kohwalter et al.

Entertainment Computing 52 (2025) 100777

8

To do so, we contrast the provenance of the failed game session with the
combined provenance of all successful game sessions.

Our approach can detect the decisions or underlying issues that could
have led to failure by comparing them with another provenance graph
known to reach the goal, similar to spectra-based fault localization
debugging. The results over a specific shooting game showed that our
approach reached 80 % accuracy with a 30 % retention rate, meaning that
it could fix 80 % of the failed trials while preserving 30 % of the original
(fail) graph. However, the algorithm can reach 100 % accuracy with a
low retention rate (close to 5 %). Like the spectra-based fault localization
debugging technique, the size and diversity of the sample that contains
correct executions impact the algorithm results. Furthermore, the
chances of hitting the target with a random shot are only 5.33 %, and our
approach managed to increase this chance drastically (54 % accuracy
with a 42 % retention rate and 80 % accuracy with a 30 % retention rate),
as shown during the patch operation and the re-execution of the
simulation.

While the main application of provenance in this work is for games,
the concepts apply to other domains and might be useful to support
advanced forms of analysis. When used outside the games domain, our
proposed approach can help debug experimental trials to determine why
a specific trial failed while another had positive results and derive a
possible fix from that knowledge. Thus, the proposed concepts could be
applied to scientific experiments to debug the experiment to identify
issues and better understand the obtained results by exporting the
provenance graphs using the PROV-N notation or another compatible
with Prov Viewer. Different AI learning techniques can use the Ou
approach to learn from their mistakes and observations from other
players or previous session data to adapt their actions or mimic player
behavior. Furthermore, our model could also be used as a stepping stone
for applying different AI learning methods and techniques to make in-
ferences about the player’s actions and behavior, which could be used
for automatic game balancing, calibration, and content adaption.

A limitation of our comparison approach is that it requires at least
one graph to reach the goal. Otherwise, it would be unable to narrow
down the possible reasons for failure. Furthermore, the algorithm’s
effectiveness is linked to the unified graph and the definition of the
similarity threshold.

Future works related to comparing provenance graphs include
finding good patterns from graphs that reached their goals to improve
the chances of reaching the same goal in future iterations. Similarly,
another approach could be detecting bad patterns that should be avoi-
ded or using statistical analysis or artificial intelligence techniques using
data from previous executions to infer future outcomes based on an
ongoing session or hypothetical situations. We also plan to perform a
deeper evaluation using an open-source game. Lastly, this work can be
used with Provchastic to recommend traces with better chances of
success and improve the player’s performance even further.

CRediT authorship contribution statement

Troy Costa Kohwalter: Conceptualization, Data curation, Formal
analysis, Methodology, Project administration, Software, Validation,
Visualization, Writing – original draft. Leonardo Gresta Paulino
Murta: Funding acquisition, Supervision, Writing – review & editing.
Esteban Walter Gonzalez Clua: Funding acquisition, Supervision,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

We thank CNPq, FAPERJ, and CAPES for their financial support.

References

[1] M. El-Nasr, A. Drachen, and A. Canossa, Eds., Game Analytics - Maximizing the Value
of Player Data. In: Springer Science & Business Media, 2013. Accessed: Feb. 12,
2015. [Online]. Available: http://www.springer.com/computer/hci/book/978-1-
4471-4768-8.

[2] A. Drachen, A. Canossa, Towards Gameplay Analysis via Gameplay Metrics, Int.
Mindtrek Conf. Everyday Life Ubiquitous Era (2009) 202–209, https://doi.org/
10.1145/1621841.1621878.

[3] A. Drachen, A. Canossa, Analyzing spatial user behavior in computer games using
geographic information systems, MindTrek Conf. Everyday Life Ubiquitous Era
(2009) 182–189, https://doi.org/10.1145/1621841.1621875.

[4] C. Bauckhage, R. Sifa, A. Drachen, C. Thurau, F. Hadiji, “Beyond heatmaps: Spatio-
temporal clustering using behavior-based partitioning of game levels,” in IEEE
Conference on Computational Intelligence and Games, Aug. 2014, pp. 1–8. doi:
10.1109/CIG.2014.6932865.

[5] T.C. Kohwalter, L.G.P. Murta, E.W.G. Clua, Capturing Game Telemetry with
Provenance, Braz. Symp. Games Digit. Entertain, SBGAMES, 2017.

[6] T. Kohwalter, E. Clua, L. Murta, “Provenance in Games,” Braz. Symp. Games Digit.
Entertain. SBGAMES, pp. 162–171, 2012.

[7] T. Kohwalter, L. Murta, E. Clua, Filtering irrelevant sequential data out of game
session telemetry though similarity collapses, Future Gener. Comput. Syst. 84 (Jul.
2018) 108–122, https://doi.org/10.1016/j.future.2018.03.004.

[8] T. C. Kohwalter, L. G. P. Murta, and E. W. G. Clua, “Provchastic: Understanding and
Predicting Game Events Using Provenance,” in Entertainment Computing – ICEC
2020, N. J. Nunes, L. Ma, M. Wang, N. Correia, and Z. Pan, Eds., in Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2020, pp. 90–103.
doi: 10.1007/978-3-030-65736-9_7.

[9] M.J. Harrold, G. Rothermel, K. Sayre, R. Wu, L. Yi, An empirical investigation of
the relationship between spectra differences and regression faults, Softw. Test.
Verification Reliab. 10 (3) (2000) 171–194, https://doi.org/10.1002/1099-1689
(200009)10:3<171::AID-STVR209>3.0.CO;2-J.

[10] T. Kohwalter, T. Oliveira, J. Freire, E. Clua, L. Murta, “Prov Viewer: A Graph-Based
Visualization Tool for Interactive Exploration of Provenance Data,” in Proceedings
of the 6th International Provenance and Annotation Workshop on Provenance and
Annotation of Data and Processes - Volume 9672, in IPAW 2016. New York, NY,
USA: Springer-Verlag New York, Inc., 2016, pp. 71–82. doi: 10.1007/978-3-319-
40593-3_6.

[11] D. Hooshyar, M. Yousefi, H. Lim, Data-Driven Approaches to Game Player
Modeling: A Systematic Literature Review, ACM Comput. Surv. 5 (6) (2018) 90:
1–90:19, https://doi.org/10.1145/3145814.

[12] P. Yang, B. Harrison, D.L. Roberts, “Identifying Patterns in Combat that are
Predictive of Success in MOBA Games,” Found. Digit. Games FDG, p. 8, 2014.

[13] M. Schubert, A. Drachen, T. Mahlmann, “Esports Analytics Through Encounter
Detection,” presented at the MIT Sloan Sports Analytics Conference, MIT Sloan,
2016. Accessed: May 11, 2021. [Online]. Available: http://lup.lub.lu.se/record/
8569749.

[14] N. Pobiedina, J. Neidhardt, M. del C. Calatrava Moreno, L. Grad-Gyenge, and H.
Werthner, “On Successful Team Formation: Statistical Analysis of a Multiplayer
Online Game,” in 2013 IEEE 15th Conference on Business Informatics, Jul. 2013,
pp. 55–62. doi: 10.1109/CBI.2013.17.

[15] J.A. Eaton, D.J. Mendonça, M.-D.-D. Sangster, Attack, Damage and Carry: Role
Familiarity and Team Performance in League of Legends, Proc. Hum. Factors
Ergon. Soc. Annu. Meet. 62 (1) (Sep. 2018) 130–134, https://doi.org/10.1177/
1541931218621030.

[16] E. Kleinman et al., “‘And then they died’: Using Action Sequences for Data Driven,
Context Aware Gameplay Analysis,” in International Conference on the
Foundations of Digital Games, in FDG ’20. New York, NY, USA: Association for
Computing Machinery, Sep. 2020, pp. 1–12. doi: 10.1145/3402942.3402962.

[17] S. Ahmad, A. Bryant, E. Kleinman, Z. Teng, T.-H. D. Nguyen, M. Seif El-Nasr,
“Modeling Individual and Team Behavior through Spatio-temporal Analysis,” in
Proceedings of the Annual Symposium on Computer-Human Interaction in Play, in
CHI PLAY ’19. New York, NY, USA: Association for Computing Machinery, Oct.
2019, pp. 601–612. doi: 10.1145/3311350.3347188.

[18] T. Stafford, S. Devlin, R. Sifa, and A. Drachen, “Exploration and Skill Acquisition in
a Major Online Game,” The 39th Annual Meeting of the Cognitive Science Society
(CogSci). Accessed: May 11, 2021. [Online]. Available: http://eprints.whiterose.
ac.uk/118051/.

[19] B. Drenikow, P. Mirza-Babaei, “Vixen: interactive visualization of gameplay
experiences,” in Proceedings of the 12th International Conference on the
Foundations of Digital Games, in FDG ’17. New York, NY, USA: Association for
Computing Machinery, Aug. 2017, pp. 1–10. doi: 10.1145/3102071.3102089.

[20] Z. Teng, J. Pfau, S. S. Maram, M. Seif El-Nasr, “Player Segmentation with INSPECT:
Revealing Systematic Behavior Differences within MMORPG and Educational
Game Case Studies,” in Extended Abstracts of the 2022 Annual Symposium on

T. Costa Kohwalter et al.

https://doi.org/10.1145/1621841.1621878
https://doi.org/10.1145/1621841.1621878
https://doi.org/10.1145/1621841.1621875
http://refhub.elsevier.com/S1875-9521(24)00145-9/h0025
http://refhub.elsevier.com/S1875-9521(24)00145-9/h0025
https://doi.org/10.1016/j.future.2018.03.004
https://doi.org/10.1002/1099-1689(200009)10:3<171::AID-STVR209>3.0.CO;2-J
https://doi.org/10.1002/1099-1689(200009)10:3<171::AID-STVR209>3.0.CO;2-J
https://doi.org/10.1145/3145814
http://lup.lub.lu.se/record/8569749
http://lup.lub.lu.se/record/8569749
https://doi.org/10.1177/1541931218621030
https://doi.org/10.1177/1541931218621030
http://eprints.whiterose.ac.uk/118051/
http://eprints.whiterose.ac.uk/118051/

Entertainment Computing 52 (2025) 100777

9

Computer-Human Interaction in Play, in CHI PLAY ’22. New York, NY, USA:
Association for Computing Machinery, Nov. 2022, pp. 87–92. doi: 10.1145/
3505270.3558340.

[21] M. C. Green, A. Khalifa, R. Canaan, P. Bontrager, J. Togelius, “Game Mechanic
Alignment Theory,” in Proceedings of the 16th International Conference on the
Foundations of Digital Games, in FDG ’21. New York, NY, USA: Association for
Computing Machinery, Outubro 2021, pp. 1–11. doi: 10.1145/3472538.3472571.

[22] PREMIS Working Group, “Data Dictionary for Preservation Metadata”,
Implementation Strategies (PREMIS), OCLC Online Computer Library Center &
Research Libraries Group, Final report, 2005.

[23] L. Moreau, et al., The Open Provenance Model core specification (v1.1), Future
Gener. Comput. Syst. 27 (6) (2007) 743–756, https://doi.org/10.1016/j.
future.2010.07.005.

[24] S. Miles, J. Heasley, A. Szalay, L. Moreau, and P. Groth, “Provenance Challenge
WIKI.” Accessed: Mar. 26, 2013. [Online]. Available: http://twiki.ipaw.info/bin/
view/Challenge/.

[25] L. Moreau and P. Missier, “PROV-DM: The PROV Data Model.” Accessed: Mar. 21,
2013. [Online]. Available: http://www.w3.org/TR/prov-dm/.

[26] T. D. Nies, J. Cheney, P. Missier, L. Moreau, “Constraints of the PROV Data Model.”
Accessed: Mar. 21, 2013. [Online]. Available: http://www.w3.org/TR/prov-con
straints/.

[27] T. Kohwalter, E. Clua, L. Murta, Game Flux Analysis with Provenance, Adv.
Comput. Entertain. ACE (2013) 320–331.

[28] T. Kohwalter, E. Clua, and L. Murta, “Reinforcing Software Engineering Learning
through Provenance,” 2014 Braz. Symp. Softw. Eng. SBES, pp. 131–140, Sep. 2014,
doi: 10.1109/SBES.2014.16.

[29] T. Costa Kohwalter, F.M. de Azeredo Figueira, E.A. de Lima Serdeiro, J.R. da Silva
Junior, L. Gresta Paulino Murta, E. Walter Gonzalez Clua, Understanding game
sessions through provenance, Entertain. Comput. 27 (2018) 110–127, https://doi.
org/10.1016/j.entcom.2018.05.001.

T. Costa Kohwalter et al.

http://refhub.elsevier.com/S1875-9521(24)00145-9/h0110
http://refhub.elsevier.com/S1875-9521(24)00145-9/h0110
http://refhub.elsevier.com/S1875-9521(24)00145-9/h0110
https://doi.org/10.1016/j.future.2010.07.005
https://doi.org/10.1016/j.future.2010.07.005
http://twiki.ipaw.info/bin/view/Challenge/
http://twiki.ipaw.info/bin/view/Challenge/
http://www.w3.org/TR/prov-dm/
http://www.w3.org/TR/prov-constraints/
http://www.w3.org/TR/prov-constraints/
http://refhub.elsevier.com/S1875-9521(24)00145-9/h0135
http://refhub.elsevier.com/S1875-9521(24)00145-9/h0135
https://doi.org/10.1016/j.entcom.2018.05.001
https://doi.org/10.1016/j.entcom.2018.05.001

	Prov-DIFF: Play traces analysis through provenance differences
	1 Introduction
	2 Related work
	3 Provenance
	4 Prov-DIFF
	5 Evaluation
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References

