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A B S T R A C T   

A game session comprises a series of user decisions, inputs, and the execution of a strategy to reach specific goals. 
Tracking generated data of a game session is important for game analytics for developers and players. Game 
session data can be used for reproducibility, analysis of game traces, understanding player behavior, and 
improving the outcome in future sessions by learning from mistakes. However, game telemetry can rapidly lead 
to large amounts of data that can overwhelm the analyst’s ability to analyze it, and it can be difficult to identify 
the reasons that might have caused a player to lose in that session. This paper proposes a provenance-based 
automatic debugging approach for game analytics. It identifies possible reasons and discrepancies that might 
have led a player to lose by contrasting their performance with other players. Our approach also proposes 
possible insights on how to improve the player’s performance to reach the goal. We integrated our solution into 
the existing provenance visualization tool Prov Viewer. We provided an experimental study to demonstrate that 
our approach can identify probable causes that led the player to lose and propose changes to make it work in the 
next execution.   

1. Introduction 

Succeeding or losing in a game is the final consequence of a series of 
decisions, planning, and executing a strategy to overcome specific ob-
stacles and achieve the objectives. Thus, an important problem in game 
analytics is understanding the reasons for certain outcomes and why 
some players failed while others managed to succeed. This analysis can 
also detect exploits and bugs in the game and discover winning strate-
gies to overcome each challenge present in the game. 

As such, game analytics has become an emerging field that is 
extremely popular and important for business intelligence in the game 
industry [1]. It provides a wealth of information for game designers, 
including feedback about design and gameplay mechanics, player 
experience, production performance, and even market reaction. Thus, 
the main goal of game analytics is to support the decision-making pro-
cess at the operational, tactical, and strategic levels for game 
development. 

However, game analytics still lacks standardization of key aspects 
and strategies, and, currently, the game industry adopts, in most cases, 
artisanal methods to understand the events of game sessions and 
determine the aspects that could have led players to fail certain goals, 
such as data crunching or game metrics [2], heat maps [3], and 
spatiotemporal clustering [4]. This analysis uses tracked game session 

data to identify factors or anomalies in the game that might have 
contributed to the outcome. Furthermore, existing practices adopted by 
the game industry for tracking game session data need to contain more 
information to determine probable causes for the reached outcomes. 

Kohwalter et al. [5] proposed a novel approach named PinGU for 
capturing and storing provenance data from a game session based on the 
Provenance in Games conceptual framework [6]. Incorporating the 
PinGU framework in a game allows the developers to automatically 
capture and generate the game session provenance graph for analysis. A 
game provenance graph shows all actions, events, and agents and their 
relationships from a game session in an annotated graph that illustrates 
the temporal sequence of events and their causal relationships. 

The provenance data collected during a game session is fundamental 
for understanding the mistakes made and reproducing the same results 
later. However, provenance data can be highly detailed and, depending 
on the game, can result in a huge quantity of tracked information, 
leading to provenance graphs that may have thousands of vertices. This 
wealth of information can overwhelm the developer’s ability to analyze 
and understand the data, making identifying the reasons that may have 
caused a particular player to fail more complex and tedious when 
compared with the results from other players. Thus, in a follow-up work, 
Kohwalter et al. [7] proposed an approach for summarizing the prove-
nance data to enhance the identification of sections or vertices that are 
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different from their neighbors and might represent changes in the game 
state. However, that work is still focused on analyzing a single prove-
nance graph at a time rather than comparing different game sessions to 
understand why some paths players took led to failure while others 
succeeded in reaching their goals. Therefore, Kohwalter et al. [8] also 
proposed the Provchastic approach that merges multiple provenance 
graphs into a single unified graph to statistically analyze the provenance 
data from multiple game sessions to predict outcomes using Markov 
Chains. 

In this work, we propose a provenance graph comparison approach 
for game analytics capable of identifying possible reasons and discrep-
ancies that might have led the player to lose a game session. Our pro-
posed approach is inspired by spectra-based fault localization debugging 
[9], where we contrast the player’s performance (i.e., the failed trial) 
with the performance of other players that succeeded in reaching the 
desired goal (i.e., the successful trial). Unlike Provchastic, which is 
focused on prediction, our approach, Prov-DIFF, provides the means for 
comparing provenance graphs from multiple sessions to determine the 
differences (diff) between graphs and understand the underlying reasons 
for the outcomes. This diff allows the designer, developers, and players 
to detect sections of the graph that differ from others. This can be used to 
discover the dissimilarities and the possible reasons behind each 
outcome by deriving the necessary actions or steps to reproduce the 
desired result. Furthermore, our approach proposes changes that can be 
made in the player’s actions to improve his results in a future session. 

We integrated our solution into the open-source provenance visual-
ization tool Prov Viewer [10] and evaluated it through an experimental 
study regarding a projectile motion simulation. The experiment shows 
that the proposed approach can identify the reasons that could have led 
to a failure in the game. Moreover, our approach was able to propose 
changes to fix the failed trials in a subsequent execution by incorpo-
rating changes in the prospective provenance, reaching different levels 
of success, such as preserving a third of the original prospective prove-
nance to reach 80 % accuracy in the projectile simulation or preserving 
almost half of the original decisions to reach 54 % accuracy. The more 
wrong decisions we make, the greater the chances of failing since all 
decisions in this simulation contribute to the simulation’s goal of hitting 
the target. 

The rest of the paper is organized as follows: Section II presents the 
related work in this area. Section III provides background knowledge 
related to provenance. Section IV presents our approach, and Section V 
presents the evaluation. Finally, Section VI provides final considerations 
and highlights future work. 

2. Related work 

Some studies identify patterns from data to determine what occurred 
or predict a game session’s outcome through data mining, machine 
learning, and statistical analysis [11]. 

There are several approaches [12,13,14,15,16] that analyze game 
telemetry data to identify patterns and player behavior to predict out-
comes, evaluating player performance during a match through pre-
dictions. Yang et al. [12] and Schubert et al. [13] approaches focus on 
combat patterns, or encounters, to predict the outcome of the match. 
Both approaches use captured game metrics to feed their predictive 
models, generating high-level predictive rules that do not consider 
contextual information, such as the sequence of executed actions. As 
such, it cannot reveal the dynamics of each combat. Only high-level 
factors tend to determine the game’s outcome, such as hero level, 
gold, death, health, and damage during each encounter. 

Similarly, Pobiedina et al. [14] also proposed an approach that uses 
statistical analysis of DotA 2 game data to identify factors that can in-
crease a team’s chances of winning, such as player role distribution in 
the team, friendship relations between players, leadership, and other 
player background information from previous matches, such as the 
amount of previously played and won matches, played time, and 

information about performance metrics in previous matches. With a 
similar focus on team effort, Eaton et al. [15] also proposed an approach 
using statistical analysis of League of Legends game data to identify 
impactful team members whose presence had a substantial effect on the 
outcome of the game and was related to victory. They use game metrics 
such as kill and assist count to determine the effectiveness of the players. 
However, neither approach is based on what happened during the 
match; only game metrics from player history and current match se-
lection preferences are used to determine his winning probabilities. 

Kleinman et al. [16] proposed a new approach for data analysis 
combining Sequence Analysis and Interactive Behavior Analytics [17] to 
aid analysts in examining player behavior using context information 
through the analysis of action sequences. Their approach adds behav-
ioral labels to identified patterns to be used as a guide for the analysts to 
explore the game session data. However, this work focuses on under-
standing behavior rather than analyzing or inferring possible reasons for 
failure. It transfers all analytical processes to the analysts and provides 
no insights into player strategy. 

Stafford et al. [18] also used an approach based on statistical analysis 
to identify skill development and improved player performance for the 
Destiny game through basic game metrics. They analyze historical 
player data to determine the learning curve. While this approach can 
determine if the player improved through the game sessions, it provides 
no insights into what influenced their performance. 

Drenikow et al. [19] developed a tool for tracking and displaying 
player trajectories and in-game events to aid game designers in 
exploring the tracked data and identifying problems in their area de-
signs. The Vixen tool provides the means for exploratory analysis. 
However, no game data analysis is done in their tool, and it transfers all 
the analysis responsibility to the cognitive ability of the end-user to 
interpret the data and extract insights. 

Teng et al. [20] proposed the INSPECT system that leverages the 
player’s playthrough data to generate a map of the player’s behavior in 
the game. There are some limitations, such as the tool being unable to 
provide statistical analysis and determine the significance of the results. 
It can also only compare up to three sessions simultaneously. Lastly, the 
analysis is done visually by designers, developers, or players. 

Green et al. [21] proposed a framework for analyzing game me-
chanics in terms of intrinsic and extrinsic rewards so it can be used as 
input for automated tutorial generation systems. It analyzes player 
behavior during the matches to determine his overall classification type 
and which type of intrinsic and extrinsic rewards would be more 
appropriate for that player. They aim to use these insights to customize 
automated content generation systems better. Sadly, these insights do 
not include strategies or actions the player needs to improve his 
performance. 

All those cited works identify elements or provide predictions that 
might lead to successful (or winning the match) gameplay. However, 
they fail to provide insights into how the player strategies must be 
modified to improve performance. In other words, identify what went 
wrong and what should be done differently for more positive results in 
future sessions. 

3. Provenance 

Provenance is well understood in the context of art or digital li-
braries, where it refers to the documented history of an art object or the 
documentation of processes in a digital object’s life cycle [22]. The Open 
Provenance Model (OPM) [23] was created during the Provenance Chal-
lenge [24], which is a collocated event of IPAW. Shortly after, another 
provenance model was developed, named PROV [25], which can be 
viewed as the successor of OPM. Both models aim to bring provenance 
concepts to digital data. 

Provenance can be used for many purposes, including understanding 
how the data was collected to use it, determining the object’s ownership, 
and deciding if the information is trustworthy. Mainly, it is used to show 
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the necessary steps to reproduce the results using an annotated causality 
graph, a directed acyclic graph enriched with annotations, also known 
as the provenance graph. According to Moreau et al. [23], a provenance 
graph is the “record of a past or current execution and not a description of 
something that could happen in the future.” Similarly, the PROV model 
defines provenance as the “information about entities, activities, and people 
involved in producing a piece of data, which can be used to assess its quality, 
reliability or trustworthiness” [26]. This type of provenance is categorized 
as retrospective provenance. 

€Three different vertices in the provenance graph, Agents, Activities, 
and Entities, can represent the following provenance information in 
PROV. The provenance graph uses shapes to distinguish the different 
types of vertices. The circle represents an entity, the square represents an 
activity, and the octagon represents an agent. 

Entities represent physical or digital objects like items, equipment, or 
interactable objects. Activities represent the events or actions taken to 
change or interact with entities or agents. Lastly, an agent is a person, 
system, or entity with responsibilities, such as the player, enemies, and 
event managers. Furthermore, several agents can have responsibilities 
over the same activity, and a single agent can have responsibilities over 
several activities. Agents can also act on behalf of other agents, repre-
senting their interests when unavailable. These relations are some of the 
existing provenance relationships and are represented by edges in the 
graph. 

Since the provenance graph captures causal dependencies between 
elements, it can be summarized using transitive rules. In previous work, 
we mapped these provenance concepts to the game’s domain [6] to 
explore the advantages of registering a game session’s provenance 
[27,28], showed how to capture game provenance data [5,29], sum-
marize the provenance graph [7], and how to analyze multiple game 
sessions through unifying (merging) game provenance graphs [8]. The 
graph summarization combines similar sequential vertices from a graph 

to shrink it by removing redundant sequential data. Meanwhile, the 
graph unification combines (merges) two different provenance graphs 
into a single unified provenance graph. 

Fig. 1 illustrates two examples of a provenance graph from two 
battles between the player (mage) and an enemy (orc) in a turn-based 
combat. The entity in the graph represents a healing potion that the 
player used during the battle. We have two agents: a mage and an orc. 
Each agent executes actions during their turn, such as attacking, casting 
spells, or drinking a potion. The edges represent the causal relationships 
between the activities, such as taking damage or an influence from a 
previous action. The health color legend shows that the activity’s color is 
based on the health percentage. In the upper graph, the orc made a 
heavy attack and hit the mage, doing 20 health points of damage. Thus, 
in the graph, we have the activity that represents the heavy attack from 
the orc, connecting the orc agent, and an event “was hit” connected to 
the mage to represent that the attack hit the mage. Furthermore, we 
have an edge connecting the event with the attack, showing the activ-
ity’s influence on the event, which was doing 20 hp damage. Moreover, 
the event is orange-colored, meaning that the mage’s health is now 
between 30 % and 60 % after this attack, while the orc’s attack is green- 
colored to represent that the orc is still in full health. In the mage’s turn, 
he drank a healing potion to recover the damage he just took. Thus, he 
has an activity of “drank potion,” connected to an entity “potion” to 
represent that the mage used an item, followed by an event of “was 
healed” with an edge connecting the two showing the amount of damage 
healed (20 hp). The distinction between an action and an event is 
encoded inside the vertex. 

The combat continues until the orc kills the mage, so the mage loses 
the battle. The lower graph is similar, mostly changing the order of the 
mage’s actions, which results in winning the battle against the orc. 

Fig. 1. Two game session provenance graph examples illustrate combat between the player (mage) and the enemy (orc). The player lost the battle in the upper graph 
and won in the bottom graph. 
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4. Prov-DIFF 

This section discusses our approach to comparing provenance graphs 
generated by different game sessions. Our proposed approach is 
composed of three major phases: (1) unified graph creation, (2) trial 
debugging, and (3) trial repair, which are described in more detail in 
the following sections. 

A. Unified Graph Creation 
The first major phase, the unified graph creation, is responsible for 

creating the unified graph that is used by the second main phase to infer 
the probable causes that led to failure. We use the process of creating a 
unified graph proposed in a previous work [8] that requires four activ-
ities, as illustrated in Fig. 2: (1) a matching heuristic to match vertices 
from different graphs, (2) the definition of vertex similarity, (3) vertex 
merge, and (4) a graph merge. Note that the merge process is done by 
merging two graphs at a time; consequently, the matching heuristic uses 
only two graphs at a time. 

The matching heuristic restricts the search space for vertex 
matching and avoids making a Cartesian product between vertices from 
both graphs. Furthermore, the heuristic decides how to compare vertices 
from different graphs. It always chooses two vertices (one from each 
graph) to pass them to the Vertex Similarity algorithm for comparison. 

The vertex similarity algorithm, known as the distance metric 
function, compares two vertices to establish their similarity. The simi-
larity value between two vertices ranges from 0 to 1, where 0 represents 
total mismatch (0 %), and 1 represents a perfect match (100 %). After 
establishing that two vertices are similar within an acceptable threshold, 
the next step is to merge them (vertex merge) to create a new vertex 
representing the two original vertices. This newly created vertex will 
belong to the unified graph. The vertex merge process creates a new 
vertex of the same type as the original vertices (i.e., agent, activity, or 
entity), with all attributes from both vertices and their original values. In 
addition, it will show the minimum value, the maximum value, and the 
average value for each attribute. Furthermore, the merged vertex will 
have a new attribute showing the graphs to which it was used in the 
merger. 

The graph merge activity is the last one to create a unified graph. 
This occurs only after the Matching Heuristic finishes matching vertices 
from both graphs. All the resulting merged vertices and vertices that 
were not matched are added to the unified graph, and finally, the edges 
are also added to the unified graph. However, the edges with an 
endpoint to any old vertices used for generating the merged vertex are 
updated to consider the newly merged vertex. Furthermore, the entire 
unification process records the provenance data on the origin of all 
vertices and edges in the newly created graph. This origin data is 
important for the debugging process. 

B. Trial Debugging. 
After generating the unified graph, comparing the differences be-

tween two or more graphs becomes trivial since each vertex contains 
information related to its origins (i.e., the original graph it belonged to). 
Thus, we can filter vertices from a specific graph, highlight it inside the 
unified graph, and know how that specific graph differs from the other 
graphs. Furthermore, the original attribute values and their source are 
preserved when merging similar vertices. 

The trial debugging uses the unified graph to detect a problem’s 
causes and infer possible solutions through graph diffs. The comparison 
algorithm compares the fail graph (i.e., the graph that had negative 

results or failed to achieve the goal) with all other graphs with positive 
results to find the discrepancies that could have explained the failure. 
Our algorithm searches in the unified graph for the success graph (i.e., 
graph with positive results) with the shortest diff to the fail graph. It uses 
it as a baseline to determine the causes of the negative results through a 
vertex-by-vertex comparison. The vertices that only belong to the fail 
graph represent potential causes that might have led to the failure. 
Meanwhile, the vertices that appear only in the success graph are the 
suggested patch operation that contains the necessary knowledge to 
derive the required changes in the prospective provenance to reach the 
goal. 

C. Trial Repair. 
The fail graph might reach the desired goal if we replace the actions 

that appear only in the fail graph with the suggested actions in the patch 
operation, represented by the vertices that belong only to the success 
graph. In other words, we recommend to the player which actions they 
should stop doing and what actions they should start depending on the 
situation while preserving their overall playing style instead of simply 
mimicking someone else through granular suggestions. Nevertheless, it 
is also possible to make the fail graph identical to the success graph 
(mimic the behavior) by using a similarity function that considers 
vertices similar if they are 100 % equal in attributes and values. This 
could lead to an extremely large patch operation. 

Fig. 3 illustrates a visual comparison between both graphs from 
Fig. 1, coloring in grey everything similar in both graphs. The upper 
graph is classified as a fail graph since the player died. The bottom graph 
is the success graph since the player won the battle. Fig. 4 shows the 
resulting unified graph from those two provenance graphs and colors the 
information common in both graphs in gray. All actions, influences, and 
events colored in grey were considered “correct” by the Prov-Diff al-
gorithm because they appear in both graphs. Red vertices represent ac-
tions and events that appeared in the fail graph but not in the success 
graph. These vertices might encode the reason for not reaching the goal. 
Green vertices represent actions and events that appear in the success 
graph but do not appear in the fail graph. These vertices are used to 
suggest the patch operation to make the failed graph reach the goal after 
incorporating the respective changes in the prospective provenance. 
Fig. 5 shows the actions that need to be replaced (in red) and the sug-
gested actions that need to be performed instead (in green) to improve 
the result, which, in this example, is winning the battle. Notice that the 
moment they are performed is important relative to other actions. This 
sequence of actions relative to other actions is encoded in the graph 
through the edges, while temporal information is inside the vertices. 
White nodes represent events that are a consequence of the actions, not 
the actions themselves. 

5. Evaluation 

In this section, we assess our proposed approach for provenance 
graphs to detect the possible causes of failure by comparing the fail graph 
with the success graph and suggesting a probable fix. We evaluate our 
approach through the following research questions: 

RQ1: Can the proposed approach correctly detect the causes of the 
failure? 

RQ2: Does preserving multiple segments of the fail graph impact the re-
sults from our algorithm? 

We answer these research questions through three dependent vari-
ables: accuracy, retention, and harmonic mean. The accuracy metric tells 
us how many times our algorithm correctly predicted the probable 
causes that led to failing the goal. This is measured by applying the 
patch operation on the prospective provenance from the resulting fail 
graph and verifying if the included changes effectively reached the goal. 
If the proposed changes proved successful in future runs, our algorithm 
correctly predicted the causes of the failure. Therefore, the higher the 
accuracy, the better. 

The retention metric tells us how many vertices remained unaffected Fig. 2. Unified Graph Creation Process.  
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or unaltered by the patch operation. This metric measures how much of 
the fail graph was preserved and allows us to compare the algorithm 
accuracy based on the number of changes in the patch operation. 
Reaching 100 % accuracy is easy if the retention rate is near zero since it 
translates to changing the majority or all the necessary vertices from the 
fail graph to be an exact clone of one of the success graphs. However, this 
is only sometimes desirable or possible because sometimes we want to 
preserve a good portion of the fail graph for a particular reason, such as 
preserving the player’s overall behavior. For example, if we contrast a 
casual player’s performance with a professional one, the algorithm 
changes everything. The casual player would need to figure out where to 
invest in improving his future performance. Therefore, the ideal would 
be high accuracy and high retention values, representing the minimum 
patch on the fail graph that transforms it into a success graph. 

However, the increase of one metric normally tends to decrease the 
others. Thus, the last metric we use is the harmonic mean, which tells us 
the algorithm’s overall performance based on the compromise of accu-
racy and retention metrics. 

A. Materials and Method. 
This experiment was executed using a shooting competition game 

simulation that uses projectile motion physics to hit a target. We eval-
uated the accuracy of Prov-DIFF in detecting the probable causes that 
led to missing the target. 

The game simulation has nine configurable parameters: (1) bullet 
mass, (2) air density based on temperature, (3) air density based on 
altitude, (4) air drag, (5) initial X position, (6) initial Y position, (7) 
bullet speed on X-axis, (8) bullet speed on Y axis, and (9) target position. 
Moreover, it also uses a constant for gravity. The physics behind this 

Fig. 3. Side-by-side comparison diff. The upper graph is the fail graph (player died), and the lower graph is the success graph (player won).  

Fig. 4. Comparison visualization using the unified graph.  
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simulation is described in Equation 1, where ρ is the air density, Cd is the 
drag coefficient, and A is the cross-sectional area of the projectile. The 
simulation goal is for the shooter to hit the target. 

Equation 1: Projectile motion equations 

ẍ = − β
˙

ẋ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ẋ2
+ ẏ2

√

ÿ = − g − β
˙

ẏ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ẋ2
+ ẏ2

√

β =
α
m  

α =
ρCdA

2 

We generated a computer simulation of a shooting competition with 
15 participants. The competition comprises 20 rounds; in each round, all 
participants have one shot to hit the target. The target position changes 
after each round. Each shot generates a provenance graph with the pa-
rameters of the projectile motion simulation. The input parameters were 
generated randomly using a Gaussian distribution to simulate different 
players participating in the competition. We consulted real data values 
to select the mean for the Gaussian function and generate the sigma for 
the Gaussian distribution. As a result, all input variables were contin-
uous. Furthermore, for this experiment, we only consider the vertices 
that represent decisions related to the nine input parameters since those 
are the only decisions that can be made in the simulation by the player or 
the match configuration (everything else is a consequence of those 
decisions). 

Lastly, the results from our comparison algorithm are related to the 
unified graph, which requires a similarity threshold to determine if two 
graphs are similar and calculate the diffs. All variables in this experi-
ment belong to the continuous space, meaning there will never be two 
equal values in the entire dataset. Moreover, the similarity threshold is 
directly related to the retention metric because a value from the fail graph 
can be considered similar to its counterpart from the success graph even 
though they are not equal, thus preserving the fail graph vertex. There-
fore, the patch operation will not change the vertex since it is equiv-
alent to the one from the success graph. 

As such, the experiment execution plan was divided into five stages: 
(1) generate the dataset, (2) create different similarity thresholds to 
analyze the impact of the retention vs. accuracy, (3) generate the unified 
graph for each similarity threshold from stage 2, (4) execute the 
experiment using the unified graphs from stage 3, and (5) analyze the 
results. The simulation resulted in 300 graphs in the first stage since it 
had 15 participants and 20 rounds, totaling 300 shots. Of these 300 
generated graphs, only 16 hit the target, equivalent to 5.33 % of the 
shots. Prov-DIFF requires at least one success graph, similar to spectra- 

based fault localization debugging, and this restriction was satisfied in 
the generated dataset. 

The second stage is responsible for generating the similarity threshold 
for the experiment. Thus, to evaluate the impact of retaining multiple 
elements from the fail graph, we created ten different similarity thresholds 
that result in different retention rates. Each similarity threshold uses the 
same factor of standard deviation (sigma) to define the similarity 
threshold for each input variable. The difference between the similarity 
thresholds is the factor used for the thresholds. The generated similarity 
threshold is: (1) 0-Sigma, (2) 0.25-Sigma, (3) 0.5-Sigma, (4) 0.75-Sigma, 
(5) 1.0-Sigma, (6) 1.25-Sigma, (7) 1.5-Sigma, (8) 1.75-Sigma, (9) 2.0- 
Sigma, (10) 3.0-Sigma. Thus, the first metric (0-Sigma) will only 
consider two vertices to be similar if their attributes’ values are within 
zero standard deviations apart or, in other words, if their numeric values 
are the same. We did not add more points between 2.0-Sigma and 3.0- 
Sigma due to the rule “68–95-99.7”, which states that, for a normal 
distribution, 68 % of the values fall between one Sigma around the 
mean, 95 % fall between two Sigma around the mean, and 99.7 % fall 
between three Sigma around the mean. Thus, the difference between the 
zones for 2-Sigma and 3-Sigma is only 4.7 %, which is too small to 
generate any significant impact on the result. Nevertheless, we kept 2- 
sigma and 3-sigma in the experiment to evaluate whether the differ-
ence between these metrics is significant. 

The third stage creates the unified graphs using the similarity 
threshold from the second stage and the 300 graphs from the first stage. 
Thus, at the end of this stage, we had ten different unified graphs that 
represented different similarity thresholds when applied over the same 
300 graphs. Table 1 shows data from those ten unified graphs related to 
the total number of vertices, the number of vertices that only appeared 
on success graphs, the number of vertices that only appeared on fail 
graphs, and the number of vertices that appeared on both. 

Finally, we executed the experiment using the unified graphs from 
the third stage. We calculated each unified graph’s accuracy, retention, 

Fig. 5. Patch suggestion to improve the result.  

Table 1 
Unified graph comparisons for different similarity thresholds.  

Similarity 
Threshold 

# 
Vertices 

# Success 
Vertices 

# Fail 
Vertices 

# Common 
Vertices 

0.00-Sigma 2420 128 2282 10 
0.25-Sigma 142 0 78 64 
0.50-Sigma 87 0 38 49 
0.75-Sigma 66 0 27 39 
1.00-Sigma 58 0 21 37 
1.25-Sigma 54 0 17 37 
1.50-Sigma 53 0 18 35 
1.75-Sigma 50 0 11 39 
2.00-Sigma 40 0 13 27 
3.00-Sigma 18 0 2 16  
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and harmonic mean metrics. This process was done by applying the 
patch operation in each graph that had yet to reach the goal for each 
one of the unified graphs (284 graphs from 300). Then, we ran the 
projectile motion simulation in each patched graph to determine if the 
modifications were sufficient to allow the shot to hit the target. Accuracy 
is calculated by dividing the number of graphs that succeeded after the 
patch by the total number of graphs that needed to be corrected (i.e., 
284). Using the 0.5-Sigma example, we had 154 successful corrections 
from 284, approximately 54 %. Retention is calculated using the average 
retention of the 284 graphs, which is the minimum diff size for each 
graph since the diff size reflects the number of suggested changes. In the 
0.5-Sigma, the average number of changes in all 284 graphs was 3.8 
from the nine configurable parameters, which is a 42 % retention rate. 
The harmonic mean is calculated based on the accuracy and retention, 
which in the 0.5-Sigma example results in 48 %. 

B. Results and Discussion 
Fig. 6 shows the results obtained from our evaluation for each sim-

ilarity threshold used to generate the unified graph. Regardless of 
whether the patch worked, the retention rate was calculated for all 
graphs. 

These results show that our comparison algorithm can achieve a 100 
% accuracy rate, answering RQ1. However, this only occurs when using 
the 0-sigma similarity, which has the lowest retention rate of 5 %. This 
means that the algorithm discarded all elements from the failed graph 
that were not equal to the other graph and replaced them with elements 
from the graph that reached the goal due to the zero-similarity threshold 
in a continuous domain, resulting in a graph equal to the successful one. 

The results from other similarity thresholds show that the accuracy and 
retention metrics are inversely proportional, related to RQ2: accuracy 
decreases as the retention rate increases. This also sounds natural since if 
we preserve the failed graph, then the goal will not be reached. 
Furthermore, the more elements we preserve from the failed graph, the 
lower the chances are of identifying the reasons and fixing them since 
the cause of the failure can be broader than what can be changed by the 
algorithm. Moreover, in this game, all factors contribute to the projectile 
trajectory. This allows the user to choose the desired retention rate of the 
analyzed graph at the cost of losing the accuracy of the recommendation 
based on the patch size. In other words, the user chooses how much the 
algorithm will preserve his overall playing style at the cost of reducing 
the accuracy of the recommendation. 

Thus, it is up to the user to define whether accuracy or retention is 
more important. However, looking at the obtained results, it is not 
recommended to have a retention rate greater than 55 % because 
otherwise, the average accuracy rate drops from 39 % to 18 %. The 
Harmonic mean metric can be used in cases where the user is after the 
algorithm’s overall performance based on the compromise of accuracy 
and retention metrics. Looking at the Harmonic mean metric, the optimal 

similarity threshold would be 0.5-Sigma, resulting in a 54 % accuracy and 
a 42 % retention rate. However, we can reach a much higher accuracy 
(80 %) by preserving 30 % of the original failed decisions with only a 12 
% loss in retention rate. Moreover, although 54 % or even 80 % accuracy 
can be considered low in some situations, it is important to point out that 
in this simulation, from the observed data, the chances of scoring a hit in 
the target, which translates into a successful shot, is only 5.33 %. Thus, 
the 54 % accuracy of our approach when retaining 42 % of the original 
decisions is still much higher (almost ten times higher) than simply 
making another random shot. The player would need to follow the 
recommended moves from our algorithm (i.e., the proposed changes in 
the patch operation) to improve his odds in the next session. 

Furthermore, the results show that our algorithm can work with a 
flexible definition of similarity. However, this flexibility for similarity 
definition directly impacts our algorithm’s accuracy, as demonstrated 
by the experiment. This, from a logical point of view, makes sense since 
we are broadening the definition of similar values and, as a result, 
increasing the acceptable error margins in the interpretation of what is 
considered similar objects, which, in turn, can lead to errors in cases 
where two objects are similar even when they are completely different. 

Lastly, our approach considers only the closest correct execution to 
derive the answer. A possible improvement would be to compare the 
faulty execution with multiple correct executions, instead of only the 
closest one, to my successful patterns and derive an answer with fewer 
changes. Another possibility would be to merge all correct executions 
and use this merged graph as the success graph. 

C. Threats to Validity. 
We identified internal and external threats that may influence the 

results. About internal validity, we had to generate all 300 provenance 
graphs to run the experiment. We used a Gaussian distribution for each 
configurable parameter to generate acceptable random values within 
the parameter domain for all the 300 different graphs to minimize the 
effect of using completely random values that might not reflect real 
gameplay data. Regarding external validity, we mitigated sample bias by 
randomly generating 300 different graphs and having a set with more 
than one graph that reached the goal. However, we only did one case 
study, which might threaten the generalization of our results. 

6. Conclusion 

An important problem is understanding the reasons for certain out-
comes and why some players failed to achieve the final goal while others 
managed to reach it. Thus, we proposed a provenance approach to un-
derstand how an outcome was reached. We developed a provenance 
graph merge and comparison approach in the context of digital game 
sessions capable of identifying possible reasons and discrepancies in a 
provenance graph that might have led a player to fail to reach the goal. 

Fig. 6. Evaluation results showing Accuracy, Retention, and harmonic mean metrics for each similarity threshold used.  
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To do so, we contrast the provenance of the failed game session with the 
combined provenance of all successful game sessions. 

Our approach can detect the decisions or underlying issues that could 
have led to failure by comparing them with another provenance graph 
known to reach the goal, similar to spectra-based fault localization 
debugging. The results over a specific shooting game showed that our 
approach reached 80 % accuracy with a 30 % retention rate, meaning that 
it could fix 80 % of the failed trials while preserving 30 % of the original 
(fail) graph. However, the algorithm can reach 100 % accuracy with a 
low retention rate (close to 5 %). Like the spectra-based fault localization 
debugging technique, the size and diversity of the sample that contains 
correct executions impact the algorithm results. Furthermore, the 
chances of hitting the target with a random shot are only 5.33 %, and our 
approach managed to increase this chance drastically (54 % accuracy 
with a 42 % retention rate and 80 % accuracy with a 30 % retention rate), 
as shown during the patch operation and the re-execution of the 
simulation. 

While the main application of provenance in this work is for games, 
the concepts apply to other domains and might be useful to support 
advanced forms of analysis. When used outside the games domain, our 
proposed approach can help debug experimental trials to determine why 
a specific trial failed while another had positive results and derive a 
possible fix from that knowledge. Thus, the proposed concepts could be 
applied to scientific experiments to debug the experiment to identify 
issues and better understand the obtained results by exporting the 
provenance graphs using the PROV-N notation or another compatible 
with Prov Viewer. Different AI learning techniques can use the Ou 
approach to learn from their mistakes and observations from other 
players or previous session data to adapt their actions or mimic player 
behavior. Furthermore, our model could also be used as a stepping stone 
for applying different AI learning methods and techniques to make in-
ferences about the player’s actions and behavior, which could be used 
for automatic game balancing, calibration, and content adaption. 

A limitation of our comparison approach is that it requires at least 
one graph to reach the goal. Otherwise, it would be unable to narrow 
down the possible reasons for failure. Furthermore, the algorithm’s 
effectiveness is linked to the unified graph and the definition of the 
similarity threshold. 

Future works related to comparing provenance graphs include 
finding good patterns from graphs that reached their goals to improve 
the chances of reaching the same goal in future iterations. Similarly, 
another approach could be detecting bad patterns that should be avoi-
ded or using statistical analysis or artificial intelligence techniques using 
data from previous executions to infer future outcomes based on an 
ongoing session or hypothetical situations. We also plan to perform a 
deeper evaluation using an open-source game. Lastly, this work can be 
used with Provchastic to recommend traces with better chances of 
success and improve the player’s performance even further. 
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