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A B S T R A C T

Non-Player Characters (NPCs) play a crucial role in the immersive experience of a game world. When designed 
effectively, NPCs have unique personalities and react realistically to player actions. Meeting players’ expecta-
tions for NPCs to resemble real individuals has become a major focus for game developers striving to enhance 
immersion.

In this work, we propose the use of data collected via provenance to create a model for training an NPC to act 
similarly to a human player using Imitation Learning. The main goal of this work is to improve the training 
efficiency of the agent, while preserving the high level of believability achieved in previous work. To this end, 
provenance is employed not only as a form of logging, but also as a means to guide and optimize the learning 
process — a contribution not previously explored in the literature.

To validate our model, we used the DodgeBall game within the Unity ML-Agents Toolkit for the Unity Engine. 
We compared our trained agent with an agent from previous work that used provenance solely for logging. Using 
win rate as a proxy for training efficiency, agents trained with our new model outperformed those trained with 
the previous approach, when evaluated after the same number of training steps.

Additionally, we created scenarios in which players participated in matches against both the new and previous 
agents, rating their believability. The results were promising in terms of both perceived believability and the 
efficiency of the training process.

In this work we propose to use data collected via provenance to create a model for training an NPC to act 
similarly to a human player using Imitation Learning. We use provenance not only as a form of log, but also to 
improve training efficiency, something that has not been presented in the literature until now. To validate our 
model, we used the DodgeBall game within the Unity ML-Agents Toolkit for Unity Engine. We compared our 
trained agent with an agent trained in previous work, which use provenance as a form of logging. Through 
matches between the two agents, those that were trained with our new model demonstrated greater efficiency. 
Additionally, we created scenarios of players participating in games against our current agent and our previous 
solutions, rating the believability of each. The results were quite promising, both in terms of believability and 
training efficiency.

1. Introduction

Artificial Intelligence (AI) plays a crucial role in game development. 
It holds a significant position across all genres of games, enabling de-
velopers to craft immersive worlds. By analyzing player actions, AI helps 
uncover unique properties within the game environment. Moreover, it 
simplifies enhancing the intelligence of non-player characters (NPCs), 
whether they are friendly or antagonistic. In many games, AI-controlled 

characters dynamically respond to real players’ actions, often governed 
by intricate behavioral rules. The industry increasingly emphasizes 
creating NPCs that feel believable, enhancing player immersion and 
directly impacting enjoyment. Positive player reception translates to 
increased game sales, making AI an essential pillar for successful game 
design.

The advancement of AI research, along with the growth of the video 
game industry, has increasingly driven the development of believable 
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non-player characters (NPCs). In recent years, Imitation Learning (IL) 
has been explored as an efficient and intuitive approach to programming 
autonomous behavior. Foundational perspectives on IL include algo-
rithmic overviews and theoretical frameworks [1,2], as well as studies 
addressing challenges such as causal confusion in learning from dem-
onstrations [3]. Other works provide broad insights into robot learning 
by demonstration and learning from human behavior [4–6].

A variety of IL methods have been developed, establishing the field 
as a prominent area of research. In the context of video games, several 
approaches have aimed to produce believable NPCs across different 
genres. For instance, IL has been applied to generate human-like bots 
using provenance data [7], to imitate player styles in platform games 
such as Super Mario Bros. [8], and to adapt Monte Carlo Tree Search 
(MCTS) for more human-like decision making [9]. Efforts have also been 
made to personalize content generation based on player behavior [10]. 
Broadly, these works can be categorized into direct and indirect 
behavior imitation [10]. Direct imitation involves the use of supervised 
learning algorithms trained on human play traces. In contrast, indirect 
imitation seeks to optimize a fitness function that evaluates how human- 
like an NPC’s behavior appears.

In previous works [7,11], we proposed a method for training an NPC 
using imitation learning with the Generative Adversarial Imitation 
Learning (GAIL) framework to act similarly to a human player. We also 
changed the traditional method of rewarding the agent, which rewards 
correct actions and penalizes wrong actions, producing positive results. 
Some players competed against our agent and found that our NPC was 
believable by observing its actions and behaviors.

The use of provenance to improve agent training has not been 
explored in previous studies. In [7], we applied provenance strategies to 
manage data collected from gameplay sessions, but this information was 
not directly used in the learning process. We believe that provenance can 
offer valuable insights due to its ability to represent cause-and-effect 
relationships.

Based on this premise, the main objective of the present work is to 
improve the efficiency of NPC training by incorporating provenance 
data collected from previous gameplay. While training efficiency is the 
central focus of this work, we aim to preserve the level of believability 
already achieved in our earlier work. To support this approach, we also 
propose a new reward system that complements the use of provenance 
during the training phase.

We conducted a comparative analysis between two distinct models. 
Both models were used to train agents under identical conditions, 
employing the same neural network and an equal number of training 
steps. This approach ensures a fair comparison between the two models. 
The first model is the one developed in the current work, and the second 
is from our previous works [11]. To compare these two models we 
implemented one model interacting against the other through 30 
matches, in order to verify which was better trained and had more 
victories.

Moreover, we invited a group of human participants to play against 
the agent trained using the new model. Their feedback, gathered 
through an evaluation process, was used to assess the believability of our 
proposed model. Specifically, we sought to determine whether the 
believability level improved, remained consistent or declined compared 
to the agent trained with the previous model. This feedback is crucial for 
guiding our ongoing efforts to refine and enhance the model introduced 
in this work.

The evaluation was made through the DodgeBall1 game environ-
ment, which is part of the Unity ML-Agents Toolkit2 for the Unity3D 

game engine.3 Fig. 1 depicts the Dodgeball game, featuring a player’s 
avatar within an environment with walls and obstacles.

The remainder of the paper is structured as follows: The second 
section introduces the theoretical foundation, the third section discusses 
related work, and the fourth section outlines our proposed model. The 
fifth section presents the results, and the final section concludes the 
work, highlighting conclusions about the proposal and future directions.

2. Theoretical foundation

In this section, we outline the fundamental components that under-
pin our approach. Our methodology is built upon three key concepts: 
Imitation Learning, Provenance, and Augmented Rewards (AR). Imita-
tion Learning serves as the core training method for our agent, while 
provenance data is leveraged to enhance the agent’s realism and opti-
mize training efficiency. Provenance is increasingly recognized in Ma-
chine Learning (ML) systems for its ability to provide detailed workflow 
insights and support informed decision-making.

Provenance is a well-established concept in the domains of art and 
digital libraries, where it refers to the documented history of an artwork 
or the record of processes throughout a digital object’s lifecycle. In 
2006, during the International Provenance and Annotation Workshop, 
participants explored issues related to data provenance, documentation, 
derivation, and annotation. As a result, the Open Provenance Model 
(OPM) [12] emerged from the Provenance Challenge held at the work-
shop [13].

The OPM is a proposed framework for provenance designed to fulfill 
several key requirements [12]: 

• Enable the exchange of provenance information across different 
systems;

• Facilitate the development and sharing of tools that operate on the 
provenance model;

• Provide a precise and technology-agnostic definition of provenance;
• Support the digital representation of provenance;
• Allow multiple levels of description to coexist;
• Establish a core set of rules to define valid inferences within prove-

nance representations.

In OPM, it is assumed that the provenance of objects is represented 
by an annotated causality graph, which is a directed acyclic graph 
enriched with annotations capturing further information about its 
execution [13]. According to Moreau et al. [12], a provenance graph is a 
record of a past or current execution and not a description of something 
that could happen in the future.

The causality graph consists of nodes representing Artifacts, Pro-
cesses, and Agents. Artifacts are immutable states that may represent 
either physical objects or digital entities within a computer system. 
Processes refer to actions or sequences of actions performed on or trig-
gered by artifacts, leading to the creation of new artifacts. Agents are 
contextual entities that act as catalysts for processes, enabling, facili-
tating, controlling, or influencing their execution. The graph’s edges 
denote causal dependencies, where the source represents the effect and 
the destination represents the cause [13].

Belhajjame et al. [14] introduced a conceptual data model that 
serves as the foundation for the W3C provenance (PROV) family of 
specifications, formalizing and superseding the model presented in [12]. 
PROV-DM differentiates between core structures, which encapsulate the 
fundamental aspects of provenance information, and extended struc-
tures, which accommodate more specialized use cases.

The PROV data model distinguishes core structures from extended 
structures: core structures form the essence of provenance information. 
They are commonly found in various domain-specific vocabularies that 

1 https://blog.unity.com/technology/ml-agents-plays-dodgeball. Last 
accessed: 15 Feb 2024.

2 https://github.com/Unity-Technologies/ml-agents. Last accessed: 10 Jan 
2024.

3 https://unity.com. Last accessed: 18 Jan 2024.
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deal with provenance or similar kinds of information [Mappings]. 
Extended structures enhance and refine core structures with more 
expressive capabilities to cater more advanced uses of provenance [14].

Fig. 2 shows the PROV core structures. This specification presents the 
concepts of the PROV data model, and provenance types and relations, 
without specific concern for how they are applied. This makes possible 
to write useful provenance data and publish or embed it alongside the 
data it relates to [14].

Kohwalter et al. [13] introduced PinGU,4 a novel approach designed 
to capture and store provenance data from game sessions, based on the 
Provenance in Games conceptual framework. The rich provenance data 
collected during gameplay is crucial for analyzing mistakes and repro-
ducing results at a later stage.

In this approach, causal relationships between game elements are 
represented as edges connecting their respective nodes, forming a game 
provenance graph. Causality, in this context, describes the relationship 
between two events, where an earlier event influences a subsequent one. 
The provenance approach explicitly encodes these causal relationships 
as defined by the game developer. Each edge in the provenance graph 
denotes a specific type of relationship—typically causal—between the 
actions and/or states of game objects. The key advantages of provenance 
graphs include their ability to model causal dependencies, their struc-
tured representation of provenance elements as interconnected nodes, 

and their high level of detail, which provides valuable insights into game 
dynamics and player interactions.

Imitation Learning has emerged as a powerful technique for creating 
convincing NPCs in virtual environments. The ability of an NPC to act 
realistically and responsively enhances the player’s experience and ex-
pands the possibilities for game development and simulations. In video 
games, NPCs are autonomous agents that interact with the player and 
the environment, playing a crucial role in shaping the game’s narrative. 
They often drive the storyline by providing quests, sharing vital infor-
mation, or adding depth and context to the plot. Additionally, NPCs 
contribute to the gameplay by introducing elements of challenge and 
fun, serving as adversaries or allies to the player.

Traditionally, creating NPCs involves extensive domain expertise, 
knowledge engineering, scripting, intuition, and iterative testing. 
However, the scale and complexity of NPC requirements are continu-
ously increasing. Scale refers to the need for diverse and numerous 
characters to create the illusion of a densely populated virtual world. 
Depth, on the other hand, pertains to the intricacy and detail of the game 
world, mechanics, and narrative, which are further enriched through 
dynamic interactions between NPCs and players. For players, the game 
must feature many NPCs, each designed to be as believable, engaging, 
and human-like as possible [11].

In Imitation Learning (IL), an agent learns manipulation by 
observing expert demonstrations, enabling the generalization of skills to 
previously unseen scenarios. This process extracts information about the 
expert’s behavior and the surrounding environment and maps obser-
vations to corresponding actions. The robot manipulation task can be 
framed as a Markov Decision Process (MDP), where the expert’s action 
sequences are encoded into stateaction pairs that align with the 
demonstrated behavior [15]. In IL tasks, the agent aims to utilize a 
training set, composed of input–output pairs provided by an expert, to 
learn a policy replicating the expert’s actions as closely as possible [16].

Fig. 3 illustrates the classification process of IL. Currently, the 
methods of IL can be divided into Behavior Cloning (BC), Generative 
Adversarial Imitation Learning (GAIL) [17] and Inverse Reinforcement 
Learning (IRL).

BC uses supervised learning to map states directly to actions based on 
demonstrations, relying heavily on the quality and coverage of the 
demonstration data. However, GAIL learns a policy that generalizes 
better to states outside the distribution of the demonstrations. It ach-
ieves this by training the agent to fool a discriminator that distinguishes 
between the agent’s behavior and the expert’s, leading to a more robust 
alignment with the target behavior.

BC requires extensive, high-quality demonstrations that cover a wide 

Fig. 1. DodgeBall game.

Fig. 2. PROV Core Structures (Informative).

4 https://github.com/gems-uff/ping.
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range of states. When data is limited or fails to represent the full state 
space, BC struggles to generalize. In contrast, GAIL is more efficient in 
scenarios with limited data, as the discriminator guides the policy to 
explore and adjust its behavior, even with fewer demonstrations. 
Additionally, BC replicates only the behaviors explicitly present in the 
demonstrations, which means the agent may fail to act appropriately in 
unseen states or novel conditions. By incorporating reinforcement 
learning, GAIL encourages the agent to explore beyond the observed 
distribution, enabling a more adaptable and comprehensive behavior.

In IRL, the same policy can often be explained by multiple reward 
functions, creating the reward ambiguity problem, which makes infer-
ring the correct reward function inherently ill-defined. GAIL avoids this 
issue by focusing directly on aligning the agent’s behavior with the 
observed demonstrations, bypassing the need for explicit reward 
inference.

Furthermore, IRL requires solving an optimization problem in each 
iteration to infer the reward function, followed by training a policy to 
optimize it, making it computationally expensive. In contrast, GAIL, as 
an end-to- end framework, simultaneously trains the discriminator and 
the policy in an adversarial setup, offering greater computational 
efficiency.

Given our objective of efficiently training a believable NPC, we 
selected GAIL over both BC and IRL due to its strong generalization 
capabilities, effectiveness with limited data, and computational 
efficiency.

Another important aspect of our approach is the use of Augmentation 
Rewards (AR). AR introduces additional or modified rewards to com-
plement the original reward signal, enhancing the learning process. This 
technique is particularly effective in environments where rewards are 
sparse, as it provides the agent with more frequent feedback, helping to 
guide its actions more effectively [18]. By offering intermediate re-
wards, AR encourages the agent to explore paths that lead to the final 
goal, reducing the likelihood of becoming stuck in suboptimal states.

Moreover, AR proves beneficial in complex scenarios where the 
problem requires incremental behavior acquisition. By breaking down 
the learning process into smaller, manageable steps, AR enables the 
agent to develop its abilities gradually, improving both performance and 
adaptability. This incremental approach not only facilitates the agent’s 
learning but also ensures that it can handle increasingly challenging 
environments with greater efficiency.

The specific implementation of AR within our model and its impact 
on the training process will be discussed in detail later in this work.

3. Related work

This chapter provides a comparative analysis of existing approaches 

in IL and the methodology proposed in this work. Traditional IL 
methods, such as BC and IRL, have demonstrated success in replicating 
expert behavior. However, these techniques present critical limitations. 
BC is particularly susceptible to compounding errors when encountering 
unfamiliar states, while IRL often involves solving complex reinforce-
ment learning problems iteratively, resulting in high computational 
costs and instability.

To address these issues, Ho and Ermon [17] introduced the GAIL 
framework, which combines the advantages of BC and IRL. GAIL avoids 
the need for explicit reward modeling by employing a generator- 
discriminator architecture to learn expert trajectories. Although GAIL 
offers improved generalization and reduces reliance on hand-crafted 
reward functions, it still suffers from sample inefficiency, limited 
interpretability, and difficulty capturing contextual nuances of human 
behavior.

The present work builds upon GAIL by introducing two main con-
tributions: the integration of provenance data and the use of augmen-
tation rewards. Provenance offers structured and detailed information 
about player behavior obtained from gameplay sessions, while 
augmentation rewards help guide the learning process by encouraging 
goal-oriented actions. This combination enhances both the realism and 
efficiency of the learning process.

Previous research has explored the use of provenance in gaming 
primarily for post-hoc analysis and replay, rather than as a training 
mechanism. Thuler et al. [19] and Melo et al. [20] proposed systems that 
utilize provenance to record and replay gameplay for qualitative eval-
uation and game design improvement. Although valuable, these ap-
proaches do not incorporate provenance into the actual training of 
autonomous agents.

Karpov et al. [21] presented a controller that maps recorded human 
gameplay to bot actions. However, the approach depends entirely on 
finding exact matches in the database, leading to failure when encoun-
tering unfamiliar situations. In contrast, the approach presented in this 
work employs GAIL to generalize from the provenance data, allowing 
the agent to adapt and act in novel scenarios.

Pelling and Gardner [22] utilized supervised learning techniques, 
including support vector machines (SVMs) and probabilistic models, to 
develop believable non-player characters (NPCs). While their models 
performed well in controlled settings, they required manually labeled 
data and lacked scalability. The method proposed here leverages GAIL, 
which learns from unlabelled gameplay data and is more suitable for 
complex environments.

Cruz and Uresti [23] combined safe reinforcement learning with 
behavior modeling to develop adaptive bots. Their approach relied on 
real-time data and manually defined reward functions. By contrast, this 
work uses pre-recorded provenance logs and imitation learning, 

Fig. 3. Classification of Imitation Learning.
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eliminating the need for online exploration and manual reward 
engineering.

Yu et al. [24] introduced the Generative Intrinsic Reward-driven 
Imitation Learning (GIRIL) framework, which uses intrinsic rewards to 
encourage agents to outperform experts. Although effective, their 
objective differs from the present work, which focuses on replicating 
diverse and realistic human behavior to enhance believability rather 
than exceeding expert performance.

Iwasaki and Hasebe [25] proposed a method for generating varied 
playstyles by training agents with distinct reward functions and clus-
tering their behaviors. Although the goal was not human imitation, their 
use of gameplay logs to influence agent behavior is conceptually 
aligned. Unlike their method, the current approach uses real human 
gameplay, captured via provenance, and leverages GAIL to produce 
emergent behavior without the need for manually designed reward 
functions.

Hsieh and Sun [26] applied Case-Based Reasoning (CBR) to predict 
individual player strategies from replayed action sequences. Their sys-
tem required multiple sessions from the same player to extract consis-
tent behavior. In contrast, the present work aggregates data from 
multiple players, allowing for generalization across diverse strategies 
and skill levels through a unified GAIL framework.

Kale et al. [27] conducted a study emphasizing the importance of 
provenance documentation in the context of earth sciences. Their find-
ings indicate that provenance can improve the efficiency of AI systems 
when analyzing data, particularly when compared to traditional log- 
based approaches. However, the study focuses on provenance as a tool 
for enhancing data analysis workflows rather than as a component of 
training autonomous agents. Thus, it does not address the application of 
provenance in imitation learning scenarios, as proposed in the present 
work.

Ioffe and Szegedy [28] introduced batch normalization as a tech-
nique to enhance the training efficiency of deep learning models. By 
normalizing intermediate activations, their method allows for higher 
learning rates and reduces sensitivity to initialization, thereby acceler-
ating convergence. Additionally, batch normalization acts as a regular-
izer, often removing the need for dropout. When applied to image 
classification tasks, it enabled faster training and achieved state-of-the- 
art performance on ImageNet, even surpassing human-level accuracy. 
Although effective, this method targets optimization in supervised 
learning contexts and does not address learning from demonstration or 
imitation.

The most directly related research is a previously proposed frame-
work that used provenance data to recreate gameplay sessions and train 
an NPC using GAIL [11]. This model consists of four key phases, illus-
trated in Fig. 4: 

1. Selection of game parameters required to recreate the player actions;
2. Collection of provenance data from gameplay sessions;
3. Recreation of the players’ game sessions based on collected prove-

nance data;
4. Training of the NPC using the GAIL framework.

In the initial stage, the framework identifies and selects gameplay 
data and input variables necessary for accurately reproducing player 
actions. During the second phase, data is collected from real users 
playing against the game’s built-in AI. This data is structured into a 
provenance graph, with nodes representing actions and edges denoting 
relationships between actions, events, agents, and game state variables. 
The PinGU framework [13] is used to extract and organize this 
information.

In the third phase, the provenance file is read and interpreted 
sequentially. The data, originally in XML format, is converted into nu-
merical variables that control the agent’s behavior in the Unity Engine. 
This allows the system to accurately replay the player’s actions within 
the game environment.

Finally, in the fourth phase, the environment is prepared for training. 
The agent is initialized, and the system uses GAIL to train the policy 
based on the recreated gameplay. This approach enables the agent to 
generalize from the data, avoiding rigid behavior replication and 
improving its ability to respond to dynamic scenarios.

An important aspect of this framework is the reward system. In the 
previous version [11], the agent receives a reward for each action 
reproduced from the provenance data. While this approach fosters fi-
delity to player behavior, it does not account for the underlying objec-
tives of the game, often resulting in inefficient strategies.

To overcome this limitation, a refinement was proposed [11] by 
incorporating augmentation rewards (AR). These additional incentives 
guide the agent toward completing meaningful in-game tasks, 
enhancing its strategic behavior without compromising the realism 
derived from provenance-based imitation.

This adjustment was essential to ensure the NPC not only mimicked 
the player’s behavior but also demonstrated competitiveness by aligning 
its actions with the game’s overarching goals. Simultaneously, the use of 
Augmentation Rewards enabled the NPC to maintain its human-like 
characteristics, striking an effective balance between realism and 
gameplay efficiency.

Building on the foundations discussed in this chapter, the following 
section presents the proposed framework developed in this research. By 
lever-aging the strengths of GAIL, the structured richness of provenance 
data, and the strategic refinement introduced by augmentation rewards, 
this framework aims to train NPCs that exhibit both human-like 
behavior and goal-oriented performance. The next section details the 
architecture, components, and implementation stages of the proposed 
solution.

4. Framework for utilizing provenance data to enhance training

We propose an imitation learning approach based on provenance 
data from previous gameplay sessions to create NPCs with realistic be-
haviors. Our reward strategy deviates from traditional methods, which 
typically focus on enhancing correct NPC actions or penalizing failures. 

Fig. 4. Phases of the previous model.
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Instead, we reward the NPC when it executes a series of actions that, 
according to the provenance data, constitute a successful sequence 
within a winning round. Additionally, we provide small rewards when 
the NPC successfully completes tasks essential to achieving victory, 
thereby enhancing its competitiveness.

This reward system ensures a balance between replicating realistic 
player behavior and fostering strategic decision-making, making the 
NPC both believable and effective. The details of this reward system will 
be elaborated later in this section.

We train the NPC using provenance data gathered through the PinGU 
framework during multiple gameplay sessions. Provenance is critical to 
our approach, as it captures cause-and-effect relationships between ac-
tivities within the game. This structured representation enables the NPC 
to learn in a manner that surpasses the capabilities of regular logs, 
providing a richer and more insightful training process.

We selected the GAIL framework to train our models, as it directly 
extracts a policy from data. GAIL addresses a subset of imitation learning 
challenges: learning to perform a task solely from expert demonstra-
tions. In this setting, the learner can only access the expert’s demon-
strations and is neither allowed to query the expert for additional data 
during training nor provided with any reinforcement signal [17].

In our framework, we chose GAIL over BC due to the potentially vast 
state space in complex environments. When an agent trained with BC 
encounters a state it has not “seen” during training, it may fail to behave 
appropriately. In contrast, GAIL focuses on learning a policy that gen-
eralizes well across states, closely approximating the behavior observed 
by experts in similar contexts. This capability allows the agent to act 
effectively even when faced with unfamiliar states, ensuring robustness 
and reliability during gameplay.

Another important point is that, although we reward the groups of 
actions that the NPC performs, which are within a set of actions that led 
to victory within the round, not all actions in a victorious round can be 
considered correct, such as a ball throw that did not hit the enemy. This 
way, the agent will not be perfect, but it will mimic the mistakes that a 
real player could make.

To train the NPC using provenance data, thereby enhancing the 
learning process and enabling it to more effectively replicate human 
behavior within the same number of training steps as outlined in [11], 
we propose a final model structured into four distinct phases: 

1. Find the winning rounds in the provenance file.
2. Identify the actions taken on the nodes of winning rounds.
3. Form groups of actions that resulted in victory.
4. Reward the execution of a group of winning actions.

Our model begins just before recreating the gameplay session 
described in the model presented in [11]. During the training phase, the 
last component of the final model is introduced, which involves 
rewarding the agent when it executes a sequence of actions that led a 
player to victory during the provenance data collection. This model was 
designed to enable more efficient training of the NPC by leveraging data 
stored in a provenance file, previously gathered from gameplay sessions 
involving real players. Fig. 5 illustrates the implementation of the final 
model starting from the previous model.

This strategy enables more efficient training of the NPC by 
leveraging data collected from previous gameplay sessions with real 
players and stored in a provenance file. Therefore, as a first step, the data 
from some players who played the game against an NPC that had already 
been trained using MultiAgent POsthumous Credit Assignment (MA- 
POCA) [29] were obtained and saved in a provenance file.

We saved the actions of the players and opponents during each 
executed round, and these actions were divided into: Move, Throw a 
ball, Dash, Pick a ball, Being Hit, Win, and Lose. The actions were 
recorded in the provenance file using the PinGU framework [13]. During 
the game execution, each input is checked, and according to the action 
execution, when possible, data is performed and saved in the prove-
nance at that moment. An example of an action saved in the provenance 
is when the player has a ball in his hand and presses the input to throw 
the ball. Since he has the ball, the movement is executed in the game, 
and we save the action of throwing the ball in the provenance file. If he 

Fig. 5. The complete model.
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does not have a ball in his hand when pressing the button, the action is 
not executed and we do not save this input in the provenance.

4.1. Find the winning rounds in the provenance file

The first stage of our model is a preparatory phase conducted before 
the training process. During this stage, we methodically process each 
node from the provenance file, stored in XML format, using time-based 
navigation. We analyze the label associated with the event for every 
node, focusing specifically on nodes labeled as “Win.” When such a node 
is identified, we verify its relevance to the player. If the node is 
confirmed to be associated with the player, we save its identifier for later 
use in subsequent model stages.

It is important to note that a single provenance file can contain data 
from multiple matches. If we identify a node from the third match where 
the player won, we cannot assume that all preceding actions contributed 
to that victory, as earlier matches may include losses. Therefore, it is 
essential to establish a method for identifying the starting point of each 
new game match within the provenance file.

To achieve this, we create a node labeled “Respawn” whenever a new 
match begins. This allows us to determine the start time of each round. 
Additionally, we save the identifier of the node immediately following 
the Respawn event, as it represents the first action of that particular 
round. This approach ensures precise segmentation of matches within 
the provenance data, enabling accurate analysis and tracking of actions 
associated with each round.

4.2. Identify the actions taken on the nodes of winning rounds

The second stage is also conducted before the training process. In the 
provenance file, all events during the round are recorded, including 
player actions, opponent actions, and general round events. After 
identifying the node corresponding to the player’s victory in the previ-
ous stage, we search through the edge list for the node with the victory 
identifier, which is stored in the “targetID” attribute. Fig. 6 illustrates 
the attributes of an edge, specifying the starting vertex (sourceID) and 
the ending vertex (targetID) of the edge. This step establishes the con-
nections necessary to trace the sequence of actions leading to the 
victory.

With the identifier of the winning node and the start-of-round 
identifier, we traverse the edges to determine all events related to the 
player that occurred from the beginning of the round up to their victory. 
Starting from the edge containing the player’s victory identifier, we 
recursively trace backward, searching for edges with a sourceID equal to 
the targetID of the previous edge, continuing this process until reaching 
the edge associated with the round’s initial identifier.

The recursive function used for this process takes the following pa-
rameters: the index of the initial node, the index of the final node, and 
the sourceID of the current edge, which corresponds to the targetID 
being searched for. After finding the preceding event, the function saves 
the action’s identifier to a text file and then calls itself again, using the 
identifier of the newly discovered event as the parameter.

Algorithm 1 presents the pseudocode for tracing and recording past 
actions, demonstrating how the function systematically searches for 

sequences of events that led to victory.
Algorithm 1 Pseudocode for tracing and recording past actions.

1: procedure FINDPREVIOUSACTIONS(start, end, currentID)
2: while end > start do
3: if connectionType[end] =”WasInformedBy” then
4: if sourceID[end] = currentID then
5: Save sourceID[end] to the file
6: currentID ← targetID[end]
7: end if
8: end if
9: end ← end − 1
10: FINDPREVIOUSACTIONS(start, end, currentID)
11: end while
12: end procedure

In the recursive function, we navigate from node to node by verifying 
whether the sourceID matches the targetID. If they are equal, we confirm 
that the current node represents an event within the player’s sequence of 
activities.

The underlying idea is that when an activity is performed, it gener-
ates an entry in the provenance file, subsequently creating a vertex in the 
provenance graph. When another activity is performed later, it creates a 
new vertex and an edge connecting the two activities. This structure 
allows us to establish a temporal relationship between events.

For instance, as illustrated in Fig. 7, both activities are connected to 
the entity Player, with the activity”PickedBall” having its sourceID 
linked to the activity”Walking.” This means that, in the game context, 
the player first walked and then picked up a ball. Regarding edge nav-
igation, the edge connecting these two activities has a sourceID corre-
sponding to the vertex labeled”PickedBall” and a targetID corresponding 
to the vertex labeled”Walking.” This structure clearly represents the 
sequence and causality of events within the player’s activity timeline.

It is important to highlight that, in a regular log, temporal associa-
tions are limited to the chronological order of events within the nodes, 
without explicitly capturing the connections between nodes timelessly 
or causally. In contrast, a provenance file saves the nodes in chrono-
logical order and establishes links between them, enabling a deeper 
understanding of their relationships.

For example, in a provenance file, we may observe an event related 
to the player, followed by several other events associated with the 

Fig. 6. Example of two edges in the provenance file. Fig. 7. Snippet from provenance graph.
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opponent’s character, and then again another event linked to the player. 
This interconnected structure allows to trace the dependencies and re-
lationships between events, regardless of whether they are temporally 
sequential or interspersed with activities from other entities. This 
feature provides a more comprehensive and structured view of the in-
teractions within the system.

However, since the provenance file is represented as a graph where 
edges connect nodes, we can establish that the first node related to the 
player has a direct relationship with the next node associated with the 
player through the edge properties “sourceID” and “targetID.” These 
properties define the linkage and sequence of events within the graph.

Once the scan of a match is complete, we navigate the provenance 
file to locate the next winning node identified in the previous step. Upon 
finding it, we repeat the process of traversing the nodes back to the start 
of the current round, systematically saving the identifiers of the actions 
in the text file. This iterative approach ensures that all relevant se-
quences of player actions leading to victories are recorded and preserved 
for further analysis or training.

4.3. Forming groups of actions that resulted in victory

In the final stage before starting the training step, we scan the entire 
list of vertices in the provenance file and verify whether each vertex 
identifier matches an identifier stored in the text file from the previous 
step. If a vertex identifier is found in the text file containing the winning 
nodes, we replace the identifier in the file with the label associated with 
that vertex. This label specifies the action or event recorded at that node.

After completing the replacement, to identify the sequence of ac-
tivities that led the player to victory, we divided these activities into 
groups of three items. This grouping is essential to prevent the agent 
from receiving rewards for every single action, which would result in 
constant rewards. For instance, consider a match where the player lost. 
The player might have walked, dashed, or thrown a ball during that 
match. If we rewarded every action indiscriminately, the reward system 
would lack specificity and could reinforce ineffective behaviors.

To make the reward system more targeted, we only reward the agent 
when it performs a precise group of actions that matches a sequence 
found in the text file of victorious actions. To facilitate this, we separate 
every three sequential items in the text file by inserting a new line with 
the label”LineBreak” after each group. This formatting aids in the nav-
igation and processing of action sequences in the subsequent stages of 
the model, ensuring more accurate reinforcement of behaviors associ-
ated with success.

The decision to use three items per group was made after conducting 
various tests, as this number struck the optimal balance between chal-
lenge and feasibility. With a smaller number of items, players often 
repeated the sequence of actions, leading to overly generic behaviors 
and reducing the specificity of the reward system. On the other hand, 
increasing the number of items in each group made it significantly 
harder for players to replicate the exact sequence of actions, resulting in 
rewards becoming too infrequent.

By choosing groups of three items, the system ensures a level of 
complexity that discourages simplistic repetition while still allowing the 
sequence of actions to be achievable, thus maintaining an effective and 
meaningful reward mechanism. Fig. 8 shows a final snippet of the text 
file, with the winning action groups separated by lines containing the 
entry “LineBreak”.

4.4. Reward the execution of a group of winning actions

The previous steps resulted in creating a text document containing 
sets of three actions that led to victory in each recorded game session, 
which is stored in the provenance file. When initiating the training 
process, we load this text file into the code and read its contents line by 
line.

For each line, we add the action it contains to the same array until a 

line with the entry “LineBreak” is encountered. At this point, this array 
of actions is added to a list of arrays, ultimately storing all sets of actions. 
After processing the “LineBreak”, we continue reading the subsequent 
lines, adding them to a new array of actions and repeating the process.

As previously described, it is important to emphasize that each array 
will contain exactly three actions. By the end of this procedure, the list 
will include multiple sets of actions, capturing sequences from all game 
sessions recorded in the original provenance file. This structured format 
is essential for efficiently utilizing the data during training.

In the final stages of our previous model, the agent starts executing 
actions based on what was previously recorded in the provenance file 
generated during the gameplay sessions of real players. At this point, the 
step of our previous model is executed, which involves recreating the 
actions of real players read from the provenance file. This is done at the 
beginning of the final stage, the training phase using the GAIL 
framework.

Also at the very beginning of the training process, we create an 
initially empty vector, and for each action performed by the agent, we 
add the action to this vector. The action is named in the same way as in 
the text document containing the winning actions. We then check if the 
vector contains three actions to compare it with the groups of winning 

Fig. 8. A snippet of the text file showing the sequence of actions in a win-
ning round.
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actions in the list. When the vector reaches three actions, we verify if all 
the actions within this vector match any winning action group in the list. 
If an identical sequence of actions is found, the agent is rewarded, and 
the vector is cleared to begin checking the next group of actions the 
agent performs.

In our final model, in addition to this reward, a small reward is also 
given when the agent successfully achieves the game’s objective. This 
approach ensures that the agent is not only incentivized to replicate 
winning sequences but also motivated to accomplish the game’s main 
goal.

Algorithm 2 presents the pseudocode that details the process of 
validating and rewarding action sequences performed by the NPC. 
Initially, the algorithm verifies whether the number of recorded actions 
in the vector reaches the required threshold of three consecutive actions. 
Once this condition is satisfied, the collected sequence is compared 
against stored sequences of successful actions from previous gameplay 
sessions. If a match is found within the predefined list, a reward is 
assigned to reinforce the correct behavior, encouraging the NPC to learn 
and replicate effective strategies while maintaining human-like 
characteristics.

5. Results

This section presents and analyzes the results obtained through the 
evaluation of the proposed model. The effectiveness of the approach was 
assessed from two complementary perspectives: the agent’s training 
efficiency and its believability when interacting with human players. 
Each aspect was examined through distinct experimental setups, as 
detailed in the subsections below.

Algorithm 2 Pseudocode for validating and rewarding action sequences.

1: procedure PROCESSACTION

2: Add the Action done to the actions list
3: if size of actions list = 3 then
4: Set exist ← False
5: for all sequence in actionsList do
6: for each index from 0 to length of sequence − 2 do
7: if 3 consecutive actions in sequence match actions list then
8: Set exist ← True
9: break
10: end if
11: end for
12: end for
13: if exist is True then
14: Add a reward of 0.2
15: end if
16: Clear the actions list
17:end if
18: end procedure

5.1. Methodology and outcomes regarding training efficiency

For the evaluation of training efficiency, we performed a competitive 
comparison between the model presented in this work and our previous 
model, which employs a reward method based on all of the player’s 
recreated actions. We set both trained agents to compete in 30 matches. 
Both models were trained with the same number of steps to ensure 
similar conditions. The number of trained steps was 4,500,000.

The number of matches won by the model developed in this work 
was 23, while our model presented in our previous work had 7 matches 
won. This number indicates that our model achieved a winning per-
centage of 76.7 % compared to the 23.3 % win rate of our previously 
trained model. This result demonstrates that our model exhibited more 
efficient learning with the same number of training steps, as it signifi-
cantly outperformed the previous model in terms of victories.

To further validate these findings, a 95 % confidence interval was 
calculated for the winning percentages of both models. The confidence 

interval for our current model ranges from 61.5 % to 91.8 %, while for 
the previous model, it ranges from 8.2 % to 38.5 %. These intervals 
provide strong statistical support for the superiority of our model, as the 
intervals do not overlap, indicating a statistically significant difference 
in performance. The lower bound of our model’s interval remains well 
above the upper bound of the previous model’s interval, reinforcing the 
reliability of our results and confirming that the proposed model pro-
vides a substantial improvement in performance.

Table 1 displays the results after the confrontation of the two models, 
highlighting the winning percentages and their respective confidence 
intervals.

5.2. Methodology for assessing believability

Despite the efficiency in training regarding performance in the 
number of wins against another trained agent, we also validate its 
believability. For the evaluation of believability of this model we 
compare this model to our previous model developed in [11]. The 
findings from the previous work had already demonstrated that the 
previous model had already surpassed the traditional reward model in 
believability. The traditional reward model gives positive feedback to 
the agent when it performs a correct action, such as winning a match, 
and penalizes the agent when it performs an incorrect activity, such as 
colliding with a wall.

We divided the evaluation of believability into two aspects: move-
ment and ball throwing. We invited 9 players, aged 17–27, including 3 
females and 6 males, to play the DodgeBall game. Each participant 
played against both models for five rounds and was then asked to 
complete a questionnaire in which they rated the NPC’s movement and 
ball throwing on a scale from 1 to 10. A rating of 1 indicated behavior 
completely opposite to that of a player, while a rating of 10 indicated 
behavior close to real player behavior. Both models were evaluated 
using the same number of steps.

At no point did we indicate which model was the Previous or Final 
Model. Five participants began the test by playing against the NPC 
trained with the Previous Model, while four participants started by 
playing against the NPC trained with the Final Model.

To evaluate the NPC’s movements, we instructed participants to 
observe how the actors moved through the scenario, dodging obstacles, 
collecting balls from the ground, and approaching the player naturally 
and realistically. They also considered the movements’ fluidity and 
naturalness, considering whether the NPC seemed to be acting according 
to the game and environment logic. To evaluate the NPC’s ball throwing, 
participants were instructed to observe how the NPC collected the ball 
and executed the throws, including both hits and misses. Participants 
also had a section in the questionnaire where they were asked to write 
their perceptions of each model and were encouraged to compare them 
as well.

In this game the player must defeat the opponent’s avatar by 
throwing a ball at it, and the round finishes when one of them hits the 
other twice. The Dodgeball game offers players the flexibility to employ 
various strategies, such as playing aggressively or carefully launching 
balls from a distance.

Our goal is to create an agent that behaves like a player and can be 
perceived as a real human player, including making correct and incor-
rect actions. We considered all actions in a winning match during 
training to prevent our agent from being invincible and looking like a 

Table 1 
Competitive comparison with confidence intervals.

Model Matches 
Played

Matches 
Won

Winning 
Percentage (%)

95 % Confidence 
Interval

Our model 30 23 76.7 [61.5 %, 91.8 %]
7 23.3 [8.2 %, 38.5 %]Previous 

model
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machine. As a basis, we used a provenance file created from game ses-
sions as real players.

This means that some actions may have been incorrect during the 
winning matches, but the player won in the end.

5.3. Evaluation of NPC’s movement

To evaluate the movements of the NPC, players observed how the 
actors moved through the scenario, dodging obstacles, collecting balls 
from the ground, and approaching the player naturally and realistically. 
They also considered the movements’ fluidity and naturalness, consid-
ering whether the NPC seemed to be acting according to the game and 
environment logic.

According to the players on the questionnaire, the NPC trained using 
the proposed model moved well, colliding rarely, usually during back-
ward dashes or when passing between an obstacle and a wall. In the 
Dodgeball game, the character can carry one ball in its hand and up to 4 
balls at the same time. The NPC always sought to collect balls from the 
ground so that it always had the possibility of throwing the ball, which is 
why the NPC often had more than one ball available for throwing. The 
NPC also always used the dash as soon as it was available, remembering 
that in the Dodgeball game, the dash has a small cooldown, preventing 
the player from using it sequentially.

The players also noted that our agent’s movement was not “robotic 
style” being fluid and simulating a real player’s movement. Table 2
shows the ratings given by the players regarding the movement of our 
NPC and the NPC trained by the previous model.

The results showed that both models received good ratings for their 
movement, indicating that the players found the movement to be close 
to what a real player would do. The average rating for the movement of 
our trained agent was 9.11, while the average rating for the agent 
trained by the previous model was 8.77. This shows that our agent has a 
very realistic movement compared to a real player.

The statistical analysis presented in Table 3 provides valuable in-
sights into the performance and believability of the NPC models evalu-
ated. The standard deviation for both models is relatively low, with the 
final model showing a slightly smaller value (0.782) compared to the 
previous model (0.833). This indicates that the player ratings for the 
final model are slightly more consistent, suggesting a narrower variation 
in player perceptions of the NPC’s believability. The coefficient of 
variation (CV) further supports this observation, as the final model ex-
hibits a lower CV (8.58 %) compared to the previous model (9.49 %), 
demonstrating higher stability and reliability in player evaluations.

Although the Wilcoxon signed-rank test did not reveal a statistically 
significant difference between the two models (p = 0.313), the consis-
tency of the ratings provides important insights into player perception. 
The final model achieved slightly lower standard deviation and coeffi-
cient of variation values compared to the previous model, indicating a 
more stable and consistent evaluation among participants. These results 
suggest that, while both models were perceived as similarly believable in 
terms of movement, the refinements implemented in the final model 
contributed to a more uniform and reliable user experience. This con-
sistency, even in the absence of strong statistical significance, supports 
the robustness of the proposed approach.

5.4. Evaluation of NPC’s ball throw

Regarding ball throwing, our NPC demonstrated good accuracy, 
especially by making throws when the opponent was in a position to be 
hit. This was an area where the agent developed by our previous model 
struggled the most, often picking up the ball but throwing it without 
aiming at the opponent.

Our NPC would collect balls and wait for a clear, obstacle-free line of 
sight to make the throw, making it resemble a real player. The players 
supported this analysis, as the average score for throwing was 8.55, 
while the average score for the agent trained by the previous model was 
7.66. This difference is shown in Table 4, which displays the ratings 
given by the players related to the ball throw in both trained agents.

Some players noted that the throwing behavior has improved 
significantly, with the agent holding the ball and waiting for a good 
opportunity to hit the player. However, there were instances where the 
agent could have thrown the ball because it was in front of the player 
with a clear path but did not do so at that moment. According to a group 
of players, this behavior was observed but rarely occurred again. After 
achieving the scores, we asked other players if they had noticed this 
behavior, but they did not indicate any issues during their matches.

The results presented in Table 5 provide important insights into the 
statistical evaluation of the NPC ball-throwing performance for the 
previous and final models. The standard deviation of the final model 
(0.726) is notably lower than that of the previous model (1.000), indi-
cating that the ratings for the final model were more consistent among 
players. This suggests that the improvements made in the final model led 
to a more uniform perception of its believability.

The CV further supports this conclusion, with the final model 
exhibiting a CV of 8.49 %, compared to 13.04 % for the previous model. 
A lower CV for the final model highlights a reduced relative dispersion in 
player ratings, emphasizing its stability and reliability regarding player 
perception.

Given the small sample size and paired nature of the data, we applied 
the Wilcoxon signed-rank test. Although the calculated effect size was 
small, the statistically significant difference observed (p = 0.023) in-
dicates that participants consistently rated the final model’s ball- 
throwing behavior as more believable. This suggests that the improve-
ments introduced in the final model—such as more deliberate throwing 
decisions and enhanced spatial awareness—resulted in a perceptible 
enhancement of realism. The consistency of player evaluations, as 
shown by the reduced standard deviation and coefficient of variation, 
further supports the reliability of this perception. Therefore, despite the 
modest magnitude of change, the outcome highlights the success of the 
final model in refining the NPC’s behavior in a way that is meaningful to 
players.

Overall, the statistical analysis underscores the success of the final 
model in enhancing both the consistency and overall believability of the 
NPC’s ball-throwing behavior. These findings validate the effectiveness 

Table 2 
Ratings given by players on the believability of NPC movements.

Model Players Average 
Rating

A B C D E F G H I

Previous 
Model

9 8 9 8 8 10 9 10 8 8.77

Final Model 9 8 10 9 8 10 9 10 9 9.11

Table 3 
Statistical Analysis Results for NPC movements.

Statistic Previous Model Final Model

Standard Deviation 0.833 0.782
Coefficient of Variation (%) 9.49 8.58
Wilcoxon Signed-Rank Test (P-Value) 0.313
Effect Size (r) 0̃.00

Table 4 
Ratings given by players on the believability of NPC ball throws.

Model Players Average 
Rating

A B C D E F G H I

Previous Model 7 6 9 8 8 8 7 9 7 7.66
Final Model 8 8 9 8 8 9 9 10 8 8.55
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of the modifications implemented in the final model.

5.5. Which NPC appeared more human?

Players were asked in the questionnaire which of the two NPCs 
(trained with the previous or final model) they considered to be more 
human-like in behavior. This subjective question aimed to gather a 
direct impression of believability from the player’s perspective. The 
majority of participants (8 out of 9) identified the NPC trained with the 
final model as more human-like. This reinforces the quantitative find-
ings and highlights the effectiveness of our proposed approach in pre-
serving realistic behavior. Fig. 9 presents the detailed results of this 
survey.

6. Conclusion and future work

Immersion is one of the key experiences a player should have when 
playing a game and NPC behavior holds an important role in the field. 
Our proposal suggests using information from provenance obtained 
from game sessions with real players to increase learning efficiency 
through the Imitation Learning method. Within Imitation Learning, we 
use the GAIL framework, allowing the NPC to learn a policy and create 
actions that roughly approximate what a player would do.

One of the persistent challenges in training NPCs is the need for vast 
amounts of high-quality training data, which are often expensive and 
time-consuming to collect. In this context, data provenance presents 
itself as an innovative solution. Provenance offers an additional layer of 
information that can be used to enrich the training process. By inte-
grating provenance data collected from previous sessions, it is possible 
to accelerate training and provide NPCs with a deeper capacity for 
adaptation and learning.

We previously proposed using provenance with Imitation Learning, 
involving cause-and-effect links and providing more specific knowledge 
about the events that occur while a user play was used only as a logging 
record strategy. Using the cause-and-effect relationship provided by 
provenance to improve training by achieving better results with the 
same number of steps has not been studied in the literature until the 
present work.

In this work, the environment used for validating was the DodgeBall 
game from the Unity Engine ML-Agents package. Nine students were 
selected to participate in the game and played three different rounds. 
The NPC was rated from 1 to 10 by the players based on its movement 
and ball-throwing behavior in the game. A rating of 1 means the agent 
did not resemble a real player at all, while a rating of 10 means a real 
player can easily mistake it. The comparison was made between our 
novel model and our previous solution. Regarding movement, our model 
achieved an average rating of 9.11 with a standard deviation of 0.737 
compared to an average of 8.77 with a standard deviation of 0.746 from 
the previous model. For ball throwing, players gave our model an 
average rating of 8.55 with a standard deviation of 0.684, while the 
previous model received an average of 7.66 with a standard deviation of 
0.942.

The results demonstrated that our NPC improved in believability, 
which is significant given our objective to maintain or enhance believ-
ability even when employing more efficient training methods. A second 
validation was also conducted, in which both models were directly 
compared. A total of 30 matches were played, with our model winning 

23 of them (76.7 %), demonstrating clear superiority and supporting the 
hypothesis that incorporating provenance information during training 
can enhance efficiency within the same number of steps.

In the 95 % confidence interval tests, our model also demonstrated 
superiority over the previous model. All the results were quite satis-
factory and lead us to believe that this solution is very promising and has 
significance for future advances in using provenance in conjunction with 
AI, especially with Imitation Learning.

For future work, we want to test the framework in other games to 
verify how generic it is and if it works in different game genres. We also 
want to increase the tests by using more steps and a larger number of 
matches and players involved in the tests. Another future improvement 
could be the expansion of the comparison of the efficiency of our model 
against other training models.
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