
Enhancing imitation learning training for non-player characters based on
provenance data☆

Lauro V.R. Cavadas *, Esteban W.G. Clua , Troy C. Kohwalter , Sidney A. Melo
Universidade Federal Fluminense (UFF), Instituto de Computação, Rua Passo da Pátria, 156 - Bloco E, São Domingos, Niterói, RJ 24210-240, Brazil

A R T I C L E I N F O

Keywords:
Provenance
Non-Player Character
Imitation Learning
Games

A B S T R A C T

Non-Player Characters (NPCs) play a crucial role in the immersive experience of a game world. When designed
effectively, NPCs have unique personalities and react realistically to player actions. Meeting players’ expecta-
tions for NPCs to resemble real individuals has become a major focus for game developers striving to enhance
immersion.

In this work, we propose the use of data collected via provenance to create a model for training an NPC to act
similarly to a human player using Imitation Learning. The main goal of this work is to improve the training
efficiency of the agent, while preserving the high level of believability achieved in previous work. To this end,
provenance is employed not only as a form of logging, but also as a means to guide and optimize the learning
process — a contribution not previously explored in the literature.

To validate our model, we used the DodgeBall game within the Unity ML-Agents Toolkit for the Unity Engine.
We compared our trained agent with an agent from previous work that used provenance solely for logging. Using
win rate as a proxy for training efficiency, agents trained with our new model outperformed those trained with
the previous approach, when evaluated after the same number of training steps.

Additionally, we created scenarios in which players participated in matches against both the new and previous
agents, rating their believability. The results were promising in terms of both perceived believability and the
efficiency of the training process.

In this work we propose to use data collected via provenance to create a model for training an NPC to act
similarly to a human player using Imitation Learning. We use provenance not only as a form of log, but also to
improve training efficiency, something that has not been presented in the literature until now. To validate our
model, we used the DodgeBall game within the Unity ML-Agents Toolkit for Unity Engine. We compared our
trained agent with an agent trained in previous work, which use provenance as a form of logging. Through
matches between the two agents, those that were trained with our new model demonstrated greater efficiency.
Additionally, we created scenarios of players participating in games against our current agent and our previous
solutions, rating the believability of each. The results were quite promising, both in terms of believability and
training efficiency.

1. Introduction

Artificial Intelligence (AI) plays a crucial role in game development.
It holds a significant position across all genres of games, enabling de-
velopers to craft immersive worlds. By analyzing player actions, AI helps
uncover unique properties within the game environment. Moreover, it
simplifies enhancing the intelligence of non-player characters (NPCs),
whether they are friendly or antagonistic. In many games, AI-controlled

characters dynamically respond to real players’ actions, often governed
by intricate behavioral rules. The industry increasingly emphasizes
creating NPCs that feel believable, enhancing player immersion and
directly impacting enjoyment. Positive player reception translates to
increased game sales, making AI an essential pillar for successful game
design.

The advancement of AI research, along with the growth of the video
game industry, has increasingly driven the development of believable

☆ This article is part of a special issue entitled: ‘IFIP ICEC 2025’ published in Entertainment Computing.
* Corresponding author at: Rua Passo da Pátria, 156 - Instituto de Computação - Sala 455, São Domingos, Niterói, RJ 24210-346, Brazil.

E-mail address: laurovrc@id.uff.br (L.V.R. Cavadas).

Contents lists available at ScienceDirect

Entertainment Computing

journal homepage: www.elsevier.com/locate/entcom

https://doi.org/10.1016/j.entcom.2025.100987
Received 5 February 2025; Received in revised form 24 May 2025; Accepted 28 June 2025

Entertainment Computing 55 (2025) 100987

Available online 29 June 2025
1875-9521/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

mailto:laurovrc@id.uff.br
www.sciencedirect.com/science/journal/18759521
https://www.elsevier.com/locate/entcom
https://doi.org/10.1016/j.entcom.2025.100987
https://doi.org/10.1016/j.entcom.2025.100987

non-player characters (NPCs). In recent years, Imitation Learning (IL)
has been explored as an efficient and intuitive approach to programming
autonomous behavior. Foundational perspectives on IL include algo-
rithmic overviews and theoretical frameworks [1,2], as well as studies
addressing challenges such as causal confusion in learning from dem-
onstrations [3]. Other works provide broad insights into robot learning
by demonstration and learning from human behavior [4–6].

A variety of IL methods have been developed, establishing the field
as a prominent area of research. In the context of video games, several
approaches have aimed to produce believable NPCs across different
genres. For instance, IL has been applied to generate human-like bots
using provenance data [7], to imitate player styles in platform games
such as Super Mario Bros. [8], and to adapt Monte Carlo Tree Search
(MCTS) for more human-like decision making [9]. Efforts have also been
made to personalize content generation based on player behavior [10].
Broadly, these works can be categorized into direct and indirect
behavior imitation [10]. Direct imitation involves the use of supervised
learning algorithms trained on human play traces. In contrast, indirect
imitation seeks to optimize a fitness function that evaluates how human-
like an NPC’s behavior appears.

In previous works [7,11], we proposed a method for training an NPC
using imitation learning with the Generative Adversarial Imitation
Learning (GAIL) framework to act similarly to a human player. We also
changed the traditional method of rewarding the agent, which rewards
correct actions and penalizes wrong actions, producing positive results.
Some players competed against our agent and found that our NPC was
believable by observing its actions and behaviors.

The use of provenance to improve agent training has not been
explored in previous studies. In [7], we applied provenance strategies to
manage data collected from gameplay sessions, but this information was
not directly used in the learning process. We believe that provenance can
offer valuable insights due to its ability to represent cause-and-effect
relationships.

Based on this premise, the main objective of the present work is to
improve the efficiency of NPC training by incorporating provenance
data collected from previous gameplay. While training efficiency is the
central focus of this work, we aim to preserve the level of believability
already achieved in our earlier work. To support this approach, we also
propose a new reward system that complements the use of provenance
during the training phase.

We conducted a comparative analysis between two distinct models.
Both models were used to train agents under identical conditions,
employing the same neural network and an equal number of training
steps. This approach ensures a fair comparison between the two models.
The first model is the one developed in the current work, and the second
is from our previous works [11]. To compare these two models we
implemented one model interacting against the other through 30
matches, in order to verify which was better trained and had more
victories.

Moreover, we invited a group of human participants to play against
the agent trained using the new model. Their feedback, gathered
through an evaluation process, was used to assess the believability of our
proposed model. Specifically, we sought to determine whether the
believability level improved, remained consistent or declined compared
to the agent trained with the previous model. This feedback is crucial for
guiding our ongoing efforts to refine and enhance the model introduced
in this work.

The evaluation was made through the DodgeBall1 game environ-
ment, which is part of the Unity ML-Agents Toolkit2 for the Unity3D

game engine.3 Fig. 1 depicts the Dodgeball game, featuring a player’s
avatar within an environment with walls and obstacles.

The remainder of the paper is structured as follows: The second
section introduces the theoretical foundation, the third section discusses
related work, and the fourth section outlines our proposed model. The
fifth section presents the results, and the final section concludes the
work, highlighting conclusions about the proposal and future directions.

2. Theoretical foundation

In this section, we outline the fundamental components that under-
pin our approach. Our methodology is built upon three key concepts:
Imitation Learning, Provenance, and Augmented Rewards (AR). Imita-
tion Learning serves as the core training method for our agent, while
provenance data is leveraged to enhance the agent’s realism and opti-
mize training efficiency. Provenance is increasingly recognized in Ma-
chine Learning (ML) systems for its ability to provide detailed workflow
insights and support informed decision-making.

Provenance is a well-established concept in the domains of art and
digital libraries, where it refers to the documented history of an artwork
or the record of processes throughout a digital object’s lifecycle. In
2006, during the International Provenance and Annotation Workshop,
participants explored issues related to data provenance, documentation,
derivation, and annotation. As a result, the Open Provenance Model
(OPM) [12] emerged from the Provenance Challenge held at the work-
shop [13].

The OPM is a proposed framework for provenance designed to fulfill
several key requirements [12]:

• Enable the exchange of provenance information across different
systems;

• Facilitate the development and sharing of tools that operate on the
provenance model;

• Provide a precise and technology-agnostic definition of provenance;
• Support the digital representation of provenance;
• Allow multiple levels of description to coexist;
• Establish a core set of rules to define valid inferences within prove-

nance representations.

In OPM, it is assumed that the provenance of objects is represented
by an annotated causality graph, which is a directed acyclic graph
enriched with annotations capturing further information about its
execution [13]. According to Moreau et al. [12], a provenance graph is a
record of a past or current execution and not a description of something
that could happen in the future.

The causality graph consists of nodes representing Artifacts, Pro-
cesses, and Agents. Artifacts are immutable states that may represent
either physical objects or digital entities within a computer system.
Processes refer to actions or sequences of actions performed on or trig-
gered by artifacts, leading to the creation of new artifacts. Agents are
contextual entities that act as catalysts for processes, enabling, facili-
tating, controlling, or influencing their execution. The graph’s edges
denote causal dependencies, where the source represents the effect and
the destination represents the cause [13].

Belhajjame et al. [14] introduced a conceptual data model that
serves as the foundation for the W3C provenance (PROV) family of
specifications, formalizing and superseding the model presented in [12].
PROV-DM differentiates between core structures, which encapsulate the
fundamental aspects of provenance information, and extended struc-
tures, which accommodate more specialized use cases.

The PROV data model distinguishes core structures from extended
structures: core structures form the essence of provenance information.
They are commonly found in various domain-specific vocabularies that

1 https://blog.unity.com/technology/ml-agents-plays-dodgeball. Last
accessed: 15 Feb 2024.

2 https://github.com/Unity-Technologies/ml-agents. Last accessed: 10 Jan
2024.

3 https://unity.com. Last accessed: 18 Jan 2024.

L.V.R. Cavadas et al. Entertainment Computing 55 (2025) 100987

2

https://blog.unity.com/technology/ml-agents-plays-dodgeball
https://github.com/Unity-Technologies/ml-agents
https://unity.com

deal with provenance or similar kinds of information [Mappings].
Extended structures enhance and refine core structures with more
expressive capabilities to cater more advanced uses of provenance [14].

Fig. 2 shows the PROV core structures. This specification presents the
concepts of the PROV data model, and provenance types and relations,
without specific concern for how they are applied. This makes possible
to write useful provenance data and publish or embed it alongside the
data it relates to [14].

Kohwalter et al. [13] introduced PinGU,4 a novel approach designed
to capture and store provenance data from game sessions, based on the
Provenance in Games conceptual framework. The rich provenance data
collected during gameplay is crucial for analyzing mistakes and repro-
ducing results at a later stage.

In this approach, causal relationships between game elements are
represented as edges connecting their respective nodes, forming a game
provenance graph. Causality, in this context, describes the relationship
between two events, where an earlier event influences a subsequent one.
The provenance approach explicitly encodes these causal relationships
as defined by the game developer. Each edge in the provenance graph
denotes a specific type of relationship—typically causal—between the
actions and/or states of game objects. The key advantages of provenance
graphs include their ability to model causal dependencies, their struc-
tured representation of provenance elements as interconnected nodes,

and their high level of detail, which provides valuable insights into game
dynamics and player interactions.

Imitation Learning has emerged as a powerful technique for creating
convincing NPCs in virtual environments. The ability of an NPC to act
realistically and responsively enhances the player’s experience and ex-
pands the possibilities for game development and simulations. In video
games, NPCs are autonomous agents that interact with the player and
the environment, playing a crucial role in shaping the game’s narrative.
They often drive the storyline by providing quests, sharing vital infor-
mation, or adding depth and context to the plot. Additionally, NPCs
contribute to the gameplay by introducing elements of challenge and
fun, serving as adversaries or allies to the player.

Traditionally, creating NPCs involves extensive domain expertise,
knowledge engineering, scripting, intuition, and iterative testing.
However, the scale and complexity of NPC requirements are continu-
ously increasing. Scale refers to the need for diverse and numerous
characters to create the illusion of a densely populated virtual world.
Depth, on the other hand, pertains to the intricacy and detail of the game
world, mechanics, and narrative, which are further enriched through
dynamic interactions between NPCs and players. For players, the game
must feature many NPCs, each designed to be as believable, engaging,
and human-like as possible [11].

In Imitation Learning (IL), an agent learns manipulation by
observing expert demonstrations, enabling the generalization of skills to
previously unseen scenarios. This process extracts information about the
expert’s behavior and the surrounding environment and maps obser-
vations to corresponding actions. The robot manipulation task can be
framed as a Markov Decision Process (MDP), where the expert’s action
sequences are encoded into stateaction pairs that align with the
demonstrated behavior [15]. In IL tasks, the agent aims to utilize a
training set, composed of input–output pairs provided by an expert, to
learn a policy replicating the expert’s actions as closely as possible [16].

Fig. 3 illustrates the classification process of IL. Currently, the
methods of IL can be divided into Behavior Cloning (BC), Generative
Adversarial Imitation Learning (GAIL) [17] and Inverse Reinforcement
Learning (IRL).

BC uses supervised learning to map states directly to actions based on
demonstrations, relying heavily on the quality and coverage of the
demonstration data. However, GAIL learns a policy that generalizes
better to states outside the distribution of the demonstrations. It ach-
ieves this by training the agent to fool a discriminator that distinguishes
between the agent’s behavior and the expert’s, leading to a more robust
alignment with the target behavior.

BC requires extensive, high-quality demonstrations that cover a wide

Fig. 1. DodgeBall game.

Fig. 2. PROV Core Structures (Informative).

4 https://github.com/gems-uff/ping.

L.V.R. Cavadas et al. Entertainment Computing 55 (2025) 100987

3

https://github.com/gems-uff/ping

range of states. When data is limited or fails to represent the full state
space, BC struggles to generalize. In contrast, GAIL is more efficient in
scenarios with limited data, as the discriminator guides the policy to
explore and adjust its behavior, even with fewer demonstrations.
Additionally, BC replicates only the behaviors explicitly present in the
demonstrations, which means the agent may fail to act appropriately in
unseen states or novel conditions. By incorporating reinforcement
learning, GAIL encourages the agent to explore beyond the observed
distribution, enabling a more adaptable and comprehensive behavior.

In IRL, the same policy can often be explained by multiple reward
functions, creating the reward ambiguity problem, which makes infer-
ring the correct reward function inherently ill-defined. GAIL avoids this
issue by focusing directly on aligning the agent’s behavior with the
observed demonstrations, bypassing the need for explicit reward
inference.

Furthermore, IRL requires solving an optimization problem in each
iteration to infer the reward function, followed by training a policy to
optimize it, making it computationally expensive. In contrast, GAIL, as
an end-to- end framework, simultaneously trains the discriminator and
the policy in an adversarial setup, offering greater computational
efficiency.

Given our objective of efficiently training a believable NPC, we
selected GAIL over both BC and IRL due to its strong generalization
capabilities, effectiveness with limited data, and computational
efficiency.

Another important aspect of our approach is the use of Augmentation
Rewards (AR). AR introduces additional or modified rewards to com-
plement the original reward signal, enhancing the learning process. This
technique is particularly effective in environments where rewards are
sparse, as it provides the agent with more frequent feedback, helping to
guide its actions more effectively [18]. By offering intermediate re-
wards, AR encourages the agent to explore paths that lead to the final
goal, reducing the likelihood of becoming stuck in suboptimal states.

Moreover, AR proves beneficial in complex scenarios where the
problem requires incremental behavior acquisition. By breaking down
the learning process into smaller, manageable steps, AR enables the
agent to develop its abilities gradually, improving both performance and
adaptability. This incremental approach not only facilitates the agent’s
learning but also ensures that it can handle increasingly challenging
environments with greater efficiency.

The specific implementation of AR within our model and its impact
on the training process will be discussed in detail later in this work.

3. Related work

This chapter provides a comparative analysis of existing approaches

in IL and the methodology proposed in this work. Traditional IL
methods, such as BC and IRL, have demonstrated success in replicating
expert behavior. However, these techniques present critical limitations.
BC is particularly susceptible to compounding errors when encountering
unfamiliar states, while IRL often involves solving complex reinforce-
ment learning problems iteratively, resulting in high computational
costs and instability.

To address these issues, Ho and Ermon [17] introduced the GAIL
framework, which combines the advantages of BC and IRL. GAIL avoids
the need for explicit reward modeling by employing a generator-
discriminator architecture to learn expert trajectories. Although GAIL
offers improved generalization and reduces reliance on hand-crafted
reward functions, it still suffers from sample inefficiency, limited
interpretability, and difficulty capturing contextual nuances of human
behavior.

The present work builds upon GAIL by introducing two main con-
tributions: the integration of provenance data and the use of augmen-
tation rewards. Provenance offers structured and detailed information
about player behavior obtained from gameplay sessions, while
augmentation rewards help guide the learning process by encouraging
goal-oriented actions. This combination enhances both the realism and
efficiency of the learning process.

Previous research has explored the use of provenance in gaming
primarily for post-hoc analysis and replay, rather than as a training
mechanism. Thuler et al. [19] and Melo et al. [20] proposed systems that
utilize provenance to record and replay gameplay for qualitative eval-
uation and game design improvement. Although valuable, these ap-
proaches do not incorporate provenance into the actual training of
autonomous agents.

Karpov et al. [21] presented a controller that maps recorded human
gameplay to bot actions. However, the approach depends entirely on
finding exact matches in the database, leading to failure when encoun-
tering unfamiliar situations. In contrast, the approach presented in this
work employs GAIL to generalize from the provenance data, allowing
the agent to adapt and act in novel scenarios.

Pelling and Gardner [22] utilized supervised learning techniques,
including support vector machines (SVMs) and probabilistic models, to
develop believable non-player characters (NPCs). While their models
performed well in controlled settings, they required manually labeled
data and lacked scalability. The method proposed here leverages GAIL,
which learns from unlabelled gameplay data and is more suitable for
complex environments.

Cruz and Uresti [23] combined safe reinforcement learning with
behavior modeling to develop adaptive bots. Their approach relied on
real-time data and manually defined reward functions. By contrast, this
work uses pre-recorded provenance logs and imitation learning,

Fig. 3. Classification of Imitation Learning.

L.V.R. Cavadas et al. Entertainment Computing 55 (2025) 100987

4

eliminating the need for online exploration and manual reward
engineering.

Yu et al. [24] introduced the Generative Intrinsic Reward-driven
Imitation Learning (GIRIL) framework, which uses intrinsic rewards to
encourage agents to outperform experts. Although effective, their
objective differs from the present work, which focuses on replicating
diverse and realistic human behavior to enhance believability rather
than exceeding expert performance.

Iwasaki and Hasebe [25] proposed a method for generating varied
playstyles by training agents with distinct reward functions and clus-
tering their behaviors. Although the goal was not human imitation, their
use of gameplay logs to influence agent behavior is conceptually
aligned. Unlike their method, the current approach uses real human
gameplay, captured via provenance, and leverages GAIL to produce
emergent behavior without the need for manually designed reward
functions.

Hsieh and Sun [26] applied Case-Based Reasoning (CBR) to predict
individual player strategies from replayed action sequences. Their sys-
tem required multiple sessions from the same player to extract consis-
tent behavior. In contrast, the present work aggregates data from
multiple players, allowing for generalization across diverse strategies
and skill levels through a unified GAIL framework.

Kale et al. [27] conducted a study emphasizing the importance of
provenance documentation in the context of earth sciences. Their find-
ings indicate that provenance can improve the efficiency of AI systems
when analyzing data, particularly when compared to traditional log-
based approaches. However, the study focuses on provenance as a tool
for enhancing data analysis workflows rather than as a component of
training autonomous agents. Thus, it does not address the application of
provenance in imitation learning scenarios, as proposed in the present
work.

Ioffe and Szegedy [28] introduced batch normalization as a tech-
nique to enhance the training efficiency of deep learning models. By
normalizing intermediate activations, their method allows for higher
learning rates and reduces sensitivity to initialization, thereby acceler-
ating convergence. Additionally, batch normalization acts as a regular-
izer, often removing the need for dropout. When applied to image
classification tasks, it enabled faster training and achieved state-of-the-
art performance on ImageNet, even surpassing human-level accuracy.
Although effective, this method targets optimization in supervised
learning contexts and does not address learning from demonstration or
imitation.

The most directly related research is a previously proposed frame-
work that used provenance data to recreate gameplay sessions and train
an NPC using GAIL [11]. This model consists of four key phases, illus-
trated in Fig. 4:

1. Selection of game parameters required to recreate the player actions;
2. Collection of provenance data from gameplay sessions;
3. Recreation of the players’ game sessions based on collected prove-

nance data;
4. Training of the NPC using the GAIL framework.

In the initial stage, the framework identifies and selects gameplay
data and input variables necessary for accurately reproducing player
actions. During the second phase, data is collected from real users
playing against the game’s built-in AI. This data is structured into a
provenance graph, with nodes representing actions and edges denoting
relationships between actions, events, agents, and game state variables.
The PinGU framework [13] is used to extract and organize this
information.

In the third phase, the provenance file is read and interpreted
sequentially. The data, originally in XML format, is converted into nu-
merical variables that control the agent’s behavior in the Unity Engine.
This allows the system to accurately replay the player’s actions within
the game environment.

Finally, in the fourth phase, the environment is prepared for training.
The agent is initialized, and the system uses GAIL to train the policy
based on the recreated gameplay. This approach enables the agent to
generalize from the data, avoiding rigid behavior replication and
improving its ability to respond to dynamic scenarios.

An important aspect of this framework is the reward system. In the
previous version [11], the agent receives a reward for each action
reproduced from the provenance data. While this approach fosters fi-
delity to player behavior, it does not account for the underlying objec-
tives of the game, often resulting in inefficient strategies.

To overcome this limitation, a refinement was proposed [11] by
incorporating augmentation rewards (AR). These additional incentives
guide the agent toward completing meaningful in-game tasks,
enhancing its strategic behavior without compromising the realism
derived from provenance-based imitation.

This adjustment was essential to ensure the NPC not only mimicked
the player’s behavior but also demonstrated competitiveness by aligning
its actions with the game’s overarching goals. Simultaneously, the use of
Augmentation Rewards enabled the NPC to maintain its human-like
characteristics, striking an effective balance between realism and
gameplay efficiency.

Building on the foundations discussed in this chapter, the following
section presents the proposed framework developed in this research. By
lever-aging the strengths of GAIL, the structured richness of provenance
data, and the strategic refinement introduced by augmentation rewards,
this framework aims to train NPCs that exhibit both human-like
behavior and goal-oriented performance. The next section details the
architecture, components, and implementation stages of the proposed
solution.

4. Framework for utilizing provenance data to enhance training

We propose an imitation learning approach based on provenance
data from previous gameplay sessions to create NPCs with realistic be-
haviors. Our reward strategy deviates from traditional methods, which
typically focus on enhancing correct NPC actions or penalizing failures.

Fig. 4. Phases of the previous model.

L.V.R. Cavadas et al. Entertainment Computing 55 (2025) 100987

5

Instead, we reward the NPC when it executes a series of actions that,
according to the provenance data, constitute a successful sequence
within a winning round. Additionally, we provide small rewards when
the NPC successfully completes tasks essential to achieving victory,
thereby enhancing its competitiveness.

This reward system ensures a balance between replicating realistic
player behavior and fostering strategic decision-making, making the
NPC both believable and effective. The details of this reward system will
be elaborated later in this section.

We train the NPC using provenance data gathered through the PinGU
framework during multiple gameplay sessions. Provenance is critical to
our approach, as it captures cause-and-effect relationships between ac-
tivities within the game. This structured representation enables the NPC
to learn in a manner that surpasses the capabilities of regular logs,
providing a richer and more insightful training process.

We selected the GAIL framework to train our models, as it directly
extracts a policy from data. GAIL addresses a subset of imitation learning
challenges: learning to perform a task solely from expert demonstra-
tions. In this setting, the learner can only access the expert’s demon-
strations and is neither allowed to query the expert for additional data
during training nor provided with any reinforcement signal [17].

In our framework, we chose GAIL over BC due to the potentially vast
state space in complex environments. When an agent trained with BC
encounters a state it has not “seen” during training, it may fail to behave
appropriately. In contrast, GAIL focuses on learning a policy that gen-
eralizes well across states, closely approximating the behavior observed
by experts in similar contexts. This capability allows the agent to act
effectively even when faced with unfamiliar states, ensuring robustness
and reliability during gameplay.

Another important point is that, although we reward the groups of
actions that the NPC performs, which are within a set of actions that led
to victory within the round, not all actions in a victorious round can be
considered correct, such as a ball throw that did not hit the enemy. This
way, the agent will not be perfect, but it will mimic the mistakes that a
real player could make.

To train the NPC using provenance data, thereby enhancing the
learning process and enabling it to more effectively replicate human
behavior within the same number of training steps as outlined in [11],
we propose a final model structured into four distinct phases:

1. Find the winning rounds in the provenance file.
2. Identify the actions taken on the nodes of winning rounds.
3. Form groups of actions that resulted in victory.
4. Reward the execution of a group of winning actions.

Our model begins just before recreating the gameplay session
described in the model presented in [11]. During the training phase, the
last component of the final model is introduced, which involves
rewarding the agent when it executes a sequence of actions that led a
player to victory during the provenance data collection. This model was
designed to enable more efficient training of the NPC by leveraging data
stored in a provenance file, previously gathered from gameplay sessions
involving real players. Fig. 5 illustrates the implementation of the final
model starting from the previous model.

This strategy enables more efficient training of the NPC by
leveraging data collected from previous gameplay sessions with real
players and stored in a provenance file. Therefore, as a first step, the data
from some players who played the game against an NPC that had already
been trained using MultiAgent POsthumous Credit Assignment (MA-
POCA) [29] were obtained and saved in a provenance file.

We saved the actions of the players and opponents during each
executed round, and these actions were divided into: Move, Throw a
ball, Dash, Pick a ball, Being Hit, Win, and Lose. The actions were
recorded in the provenance file using the PinGU framework [13]. During
the game execution, each input is checked, and according to the action
execution, when possible, data is performed and saved in the prove-
nance at that moment. An example of an action saved in the provenance
is when the player has a ball in his hand and presses the input to throw
the ball. Since he has the ball, the movement is executed in the game,
and we save the action of throwing the ball in the provenance file. If he

Fig. 5. The complete model.

L.V.R. Cavadas et al. Entertainment Computing 55 (2025) 100987

6

does not have a ball in his hand when pressing the button, the action is
not executed and we do not save this input in the provenance.

4.1. Find the winning rounds in the provenance file

The first stage of our model is a preparatory phase conducted before
the training process. During this stage, we methodically process each
node from the provenance file, stored in XML format, using time-based
navigation. We analyze the label associated with the event for every
node, focusing specifically on nodes labeled as “Win.” When such a node
is identified, we verify its relevance to the player. If the node is
confirmed to be associated with the player, we save its identifier for later
use in subsequent model stages.

It is important to note that a single provenance file can contain data
from multiple matches. If we identify a node from the third match where
the player won, we cannot assume that all preceding actions contributed
to that victory, as earlier matches may include losses. Therefore, it is
essential to establish a method for identifying the starting point of each
new game match within the provenance file.

To achieve this, we create a node labeled “Respawn” whenever a new
match begins. This allows us to determine the start time of each round.
Additionally, we save the identifier of the node immediately following
the Respawn event, as it represents the first action of that particular
round. This approach ensures precise segmentation of matches within
the provenance data, enabling accurate analysis and tracking of actions
associated with each round.

4.2. Identify the actions taken on the nodes of winning rounds

The second stage is also conducted before the training process. In the
provenance file, all events during the round are recorded, including
player actions, opponent actions, and general round events. After
identifying the node corresponding to the player’s victory in the previ-
ous stage, we search through the edge list for the node with the victory
identifier, which is stored in the “targetID” attribute. Fig. 6 illustrates
the attributes of an edge, specifying the starting vertex (sourceID) and
the ending vertex (targetID) of the edge. This step establishes the con-
nections necessary to trace the sequence of actions leading to the
victory.

With the identifier of the winning node and the start-of-round
identifier, we traverse the edges to determine all events related to the
player that occurred from the beginning of the round up to their victory.
Starting from the edge containing the player’s victory identifier, we
recursively trace backward, searching for edges with a sourceID equal to
the targetID of the previous edge, continuing this process until reaching
the edge associated with the round’s initial identifier.

The recursive function used for this process takes the following pa-
rameters: the index of the initial node, the index of the final node, and
the sourceID of the current edge, which corresponds to the targetID
being searched for. After finding the preceding event, the function saves
the action’s identifier to a text file and then calls itself again, using the
identifier of the newly discovered event as the parameter.

Algorithm 1 presents the pseudocode for tracing and recording past
actions, demonstrating how the function systematically searches for

sequences of events that led to victory.
Algorithm 1 Pseudocode for tracing and recording past actions.

1: procedure FINDPREVIOUSACTIONS(start, end, currentID)
2: while end > start do
3: if connectionType[end] =”WasInformedBy” then
4: if sourceID[end] = currentID then
5: Save sourceID[end] to the file
6: currentID ← targetID[end]
7: end if
8: end if
9: end ← end − 1
10: FINDPREVIOUSACTIONS(start, end, currentID)
11: end while
12: end procedure

In the recursive function, we navigate from node to node by verifying
whether the sourceID matches the targetID. If they are equal, we confirm
that the current node represents an event within the player’s sequence of
activities.

The underlying idea is that when an activity is performed, it gener-
ates an entry in the provenance file, subsequently creating a vertex in the
provenance graph. When another activity is performed later, it creates a
new vertex and an edge connecting the two activities. This structure
allows us to establish a temporal relationship between events.

For instance, as illustrated in Fig. 7, both activities are connected to
the entity Player, with the activity”PickedBall” having its sourceID
linked to the activity”Walking.” This means that, in the game context,
the player first walked and then picked up a ball. Regarding edge nav-
igation, the edge connecting these two activities has a sourceID corre-
sponding to the vertex labeled”PickedBall” and a targetID corresponding
to the vertex labeled”Walking.” This structure clearly represents the
sequence and causality of events within the player’s activity timeline.

It is important to highlight that, in a regular log, temporal associa-
tions are limited to the chronological order of events within the nodes,
without explicitly capturing the connections between nodes timelessly
or causally. In contrast, a provenance file saves the nodes in chrono-
logical order and establishes links between them, enabling a deeper
understanding of their relationships.

For example, in a provenance file, we may observe an event related
to the player, followed by several other events associated with the

Fig. 6. Example of two edges in the provenance file. Fig. 7. Snippet from provenance graph.

L.V.R. Cavadas et al. Entertainment Computing 55 (2025) 100987

7

opponent’s character, and then again another event linked to the player.
This interconnected structure allows to trace the dependencies and re-
lationships between events, regardless of whether they are temporally
sequential or interspersed with activities from other entities. This
feature provides a more comprehensive and structured view of the in-
teractions within the system.

However, since the provenance file is represented as a graph where
edges connect nodes, we can establish that the first node related to the
player has a direct relationship with the next node associated with the
player through the edge properties “sourceID” and “targetID.” These
properties define the linkage and sequence of events within the graph.

Once the scan of a match is complete, we navigate the provenance
file to locate the next winning node identified in the previous step. Upon
finding it, we repeat the process of traversing the nodes back to the start
of the current round, systematically saving the identifiers of the actions
in the text file. This iterative approach ensures that all relevant se-
quences of player actions leading to victories are recorded and preserved
for further analysis or training.

4.3. Forming groups of actions that resulted in victory

In the final stage before starting the training step, we scan the entire
list of vertices in the provenance file and verify whether each vertex
identifier matches an identifier stored in the text file from the previous
step. If a vertex identifier is found in the text file containing the winning
nodes, we replace the identifier in the file with the label associated with
that vertex. This label specifies the action or event recorded at that node.

After completing the replacement, to identify the sequence of ac-
tivities that led the player to victory, we divided these activities into
groups of three items. This grouping is essential to prevent the agent
from receiving rewards for every single action, which would result in
constant rewards. For instance, consider a match where the player lost.
The player might have walked, dashed, or thrown a ball during that
match. If we rewarded every action indiscriminately, the reward system
would lack specificity and could reinforce ineffective behaviors.

To make the reward system more targeted, we only reward the agent
when it performs a precise group of actions that matches a sequence
found in the text file of victorious actions. To facilitate this, we separate
every three sequential items in the text file by inserting a new line with
the label”LineBreak” after each group. This formatting aids in the nav-
igation and processing of action sequences in the subsequent stages of
the model, ensuring more accurate reinforcement of behaviors associ-
ated with success.

The decision to use three items per group was made after conducting
various tests, as this number struck the optimal balance between chal-
lenge and feasibility. With a smaller number of items, players often
repeated the sequence of actions, leading to overly generic behaviors
and reducing the specificity of the reward system. On the other hand,
increasing the number of items in each group made it significantly
harder for players to replicate the exact sequence of actions, resulting in
rewards becoming too infrequent.

By choosing groups of three items, the system ensures a level of
complexity that discourages simplistic repetition while still allowing the
sequence of actions to be achievable, thus maintaining an effective and
meaningful reward mechanism. Fig. 8 shows a final snippet of the text
file, with the winning action groups separated by lines containing the
entry “LineBreak”.

4.4. Reward the execution of a group of winning actions

The previous steps resulted in creating a text document containing
sets of three actions that led to victory in each recorded game session,
which is stored in the provenance file. When initiating the training
process, we load this text file into the code and read its contents line by
line.

For each line, we add the action it contains to the same array until a

line with the entry “LineBreak” is encountered. At this point, this array
of actions is added to a list of arrays, ultimately storing all sets of actions.
After processing the “LineBreak”, we continue reading the subsequent
lines, adding them to a new array of actions and repeating the process.

As previously described, it is important to emphasize that each array
will contain exactly three actions. By the end of this procedure, the list
will include multiple sets of actions, capturing sequences from all game
sessions recorded in the original provenance file. This structured format
is essential for efficiently utilizing the data during training.

In the final stages of our previous model, the agent starts executing
actions based on what was previously recorded in the provenance file
generated during the gameplay sessions of real players. At this point, the
step of our previous model is executed, which involves recreating the
actions of real players read from the provenance file. This is done at the
beginning of the final stage, the training phase using the GAIL
framework.

Also at the very beginning of the training process, we create an
initially empty vector, and for each action performed by the agent, we
add the action to this vector. The action is named in the same way as in
the text document containing the winning actions. We then check if the
vector contains three actions to compare it with the groups of winning

Fig. 8. A snippet of the text file showing the sequence of actions in a win-
ning round.

L.V.R. Cavadas et al. Entertainment Computing 55 (2025) 100987

8

actions in the list. When the vector reaches three actions, we verify if all
the actions within this vector match any winning action group in the list.
If an identical sequence of actions is found, the agent is rewarded, and
the vector is cleared to begin checking the next group of actions the
agent performs.

In our final model, in addition to this reward, a small reward is also
given when the agent successfully achieves the game’s objective. This
approach ensures that the agent is not only incentivized to replicate
winning sequences but also motivated to accomplish the game’s main
goal.

Algorithm 2 presents the pseudocode that details the process of
validating and rewarding action sequences performed by the NPC.
Initially, the algorithm verifies whether the number of recorded actions
in the vector reaches the required threshold of three consecutive actions.
Once this condition is satisfied, the collected sequence is compared
against stored sequences of successful actions from previous gameplay
sessions. If a match is found within the predefined list, a reward is
assigned to reinforce the correct behavior, encouraging the NPC to learn
and replicate effective strategies while maintaining human-like
characteristics.

5. Results

This section presents and analyzes the results obtained through the
evaluation of the proposed model. The effectiveness of the approach was
assessed from two complementary perspectives: the agent’s training
efficiency and its believability when interacting with human players.
Each aspect was examined through distinct experimental setups, as
detailed in the subsections below.

Algorithm 2 Pseudocode for validating and rewarding action sequences.

1: procedure PROCESSACTION

2: Add the Action done to the actions list
3: if size of actions list = 3 then
4: Set exist ← False
5: for all sequence in actionsList do
6: for each index from 0 to length of sequence − 2 do
7: if 3 consecutive actions in sequence match actions list then
8: Set exist ← True
9: break
10: end if
11: end for
12: end for
13: if exist is True then
14: Add a reward of 0.2
15: end if
16: Clear the actions list
17:end if
18: end procedure

5.1. Methodology and outcomes regarding training efficiency

For the evaluation of training efficiency, we performed a competitive
comparison between the model presented in this work and our previous
model, which employs a reward method based on all of the player’s
recreated actions. We set both trained agents to compete in 30 matches.
Both models were trained with the same number of steps to ensure
similar conditions. The number of trained steps was 4,500,000.

The number of matches won by the model developed in this work
was 23, while our model presented in our previous work had 7 matches
won. This number indicates that our model achieved a winning per-
centage of 76.7 % compared to the 23.3 % win rate of our previously
trained model. This result demonstrates that our model exhibited more
efficient learning with the same number of training steps, as it signifi-
cantly outperformed the previous model in terms of victories.

To further validate these findings, a 95 % confidence interval was
calculated for the winning percentages of both models. The confidence

interval for our current model ranges from 61.5 % to 91.8 %, while for
the previous model, it ranges from 8.2 % to 38.5 %. These intervals
provide strong statistical support for the superiority of our model, as the
intervals do not overlap, indicating a statistically significant difference
in performance. The lower bound of our model’s interval remains well
above the upper bound of the previous model’s interval, reinforcing the
reliability of our results and confirming that the proposed model pro-
vides a substantial improvement in performance.

Table 1 displays the results after the confrontation of the two models,
highlighting the winning percentages and their respective confidence
intervals.

5.2. Methodology for assessing believability

Despite the efficiency in training regarding performance in the
number of wins against another trained agent, we also validate its
believability. For the evaluation of believability of this model we
compare this model to our previous model developed in [11]. The
findings from the previous work had already demonstrated that the
previous model had already surpassed the traditional reward model in
believability. The traditional reward model gives positive feedback to
the agent when it performs a correct action, such as winning a match,
and penalizes the agent when it performs an incorrect activity, such as
colliding with a wall.

We divided the evaluation of believability into two aspects: move-
ment and ball throwing. We invited 9 players, aged 17–27, including 3
females and 6 males, to play the DodgeBall game. Each participant
played against both models for five rounds and was then asked to
complete a questionnaire in which they rated the NPC’s movement and
ball throwing on a scale from 1 to 10. A rating of 1 indicated behavior
completely opposite to that of a player, while a rating of 10 indicated
behavior close to real player behavior. Both models were evaluated
using the same number of steps.

At no point did we indicate which model was the Previous or Final
Model. Five participants began the test by playing against the NPC
trained with the Previous Model, while four participants started by
playing against the NPC trained with the Final Model.

To evaluate the NPC’s movements, we instructed participants to
observe how the actors moved through the scenario, dodging obstacles,
collecting balls from the ground, and approaching the player naturally
and realistically. They also considered the movements’ fluidity and
naturalness, considering whether the NPC seemed to be acting according
to the game and environment logic. To evaluate the NPC’s ball throwing,
participants were instructed to observe how the NPC collected the ball
and executed the throws, including both hits and misses. Participants
also had a section in the questionnaire where they were asked to write
their perceptions of each model and were encouraged to compare them
as well.

In this game the player must defeat the opponent’s avatar by
throwing a ball at it, and the round finishes when one of them hits the
other twice. The Dodgeball game offers players the flexibility to employ
various strategies, such as playing aggressively or carefully launching
balls from a distance.

Our goal is to create an agent that behaves like a player and can be
perceived as a real human player, including making correct and incor-
rect actions. We considered all actions in a winning match during
training to prevent our agent from being invincible and looking like a

Table 1
Competitive comparison with confidence intervals.

Model Matches
Played

Matches
Won

Winning
Percentage (%)

95 % Confidence
Interval

Our model 30 23 76.7 [61.5 %, 91.8 %]
7 23.3 [8.2 %, 38.5 %]Previous

model

L.V.R. Cavadas et al. Entertainment Computing 55 (2025) 100987

9

machine. As a basis, we used a provenance file created from game ses-
sions as real players.

This means that some actions may have been incorrect during the
winning matches, but the player won in the end.

5.3. Evaluation of NPC’s movement

To evaluate the movements of the NPC, players observed how the
actors moved through the scenario, dodging obstacles, collecting balls
from the ground, and approaching the player naturally and realistically.
They also considered the movements’ fluidity and naturalness, consid-
ering whether the NPC seemed to be acting according to the game and
environment logic.

According to the players on the questionnaire, the NPC trained using
the proposed model moved well, colliding rarely, usually during back-
ward dashes or when passing between an obstacle and a wall. In the
Dodgeball game, the character can carry one ball in its hand and up to 4
balls at the same time. The NPC always sought to collect balls from the
ground so that it always had the possibility of throwing the ball, which is
why the NPC often had more than one ball available for throwing. The
NPC also always used the dash as soon as it was available, remembering
that in the Dodgeball game, the dash has a small cooldown, preventing
the player from using it sequentially.

The players also noted that our agent’s movement was not “robotic
style” being fluid and simulating a real player’s movement. Table 2
shows the ratings given by the players regarding the movement of our
NPC and the NPC trained by the previous model.

The results showed that both models received good ratings for their
movement, indicating that the players found the movement to be close
to what a real player would do. The average rating for the movement of
our trained agent was 9.11, while the average rating for the agent
trained by the previous model was 8.77. This shows that our agent has a
very realistic movement compared to a real player.

The statistical analysis presented in Table 3 provides valuable in-
sights into the performance and believability of the NPC models evalu-
ated. The standard deviation for both models is relatively low, with the
final model showing a slightly smaller value (0.782) compared to the
previous model (0.833). This indicates that the player ratings for the
final model are slightly more consistent, suggesting a narrower variation
in player perceptions of the NPC’s believability. The coefficient of
variation (CV) further supports this observation, as the final model ex-
hibits a lower CV (8.58 %) compared to the previous model (9.49 %),
demonstrating higher stability and reliability in player evaluations.

Although the Wilcoxon signed-rank test did not reveal a statistically
significant difference between the two models (p = 0.313), the consis-
tency of the ratings provides important insights into player perception.
The final model achieved slightly lower standard deviation and coeffi-
cient of variation values compared to the previous model, indicating a
more stable and consistent evaluation among participants. These results
suggest that, while both models were perceived as similarly believable in
terms of movement, the refinements implemented in the final model
contributed to a more uniform and reliable user experience. This con-
sistency, even in the absence of strong statistical significance, supports
the robustness of the proposed approach.

5.4. Evaluation of NPC’s ball throw

Regarding ball throwing, our NPC demonstrated good accuracy,
especially by making throws when the opponent was in a position to be
hit. This was an area where the agent developed by our previous model
struggled the most, often picking up the ball but throwing it without
aiming at the opponent.

Our NPC would collect balls and wait for a clear, obstacle-free line of
sight to make the throw, making it resemble a real player. The players
supported this analysis, as the average score for throwing was 8.55,
while the average score for the agent trained by the previous model was
7.66. This difference is shown in Table 4, which displays the ratings
given by the players related to the ball throw in both trained agents.

Some players noted that the throwing behavior has improved
significantly, with the agent holding the ball and waiting for a good
opportunity to hit the player. However, there were instances where the
agent could have thrown the ball because it was in front of the player
with a clear path but did not do so at that moment. According to a group
of players, this behavior was observed but rarely occurred again. After
achieving the scores, we asked other players if they had noticed this
behavior, but they did not indicate any issues during their matches.

The results presented in Table 5 provide important insights into the
statistical evaluation of the NPC ball-throwing performance for the
previous and final models. The standard deviation of the final model
(0.726) is notably lower than that of the previous model (1.000), indi-
cating that the ratings for the final model were more consistent among
players. This suggests that the improvements made in the final model led
to a more uniform perception of its believability.

The CV further supports this conclusion, with the final model
exhibiting a CV of 8.49 %, compared to 13.04 % for the previous model.
A lower CV for the final model highlights a reduced relative dispersion in
player ratings, emphasizing its stability and reliability regarding player
perception.

Given the small sample size and paired nature of the data, we applied
the Wilcoxon signed-rank test. Although the calculated effect size was
small, the statistically significant difference observed (p = 0.023) in-
dicates that participants consistently rated the final model’s ball-
throwing behavior as more believable. This suggests that the improve-
ments introduced in the final model—such as more deliberate throwing
decisions and enhanced spatial awareness—resulted in a perceptible
enhancement of realism. The consistency of player evaluations, as
shown by the reduced standard deviation and coefficient of variation,
further supports the reliability of this perception. Therefore, despite the
modest magnitude of change, the outcome highlights the success of the
final model in refining the NPC’s behavior in a way that is meaningful to
players.

Overall, the statistical analysis underscores the success of the final
model in enhancing both the consistency and overall believability of the
NPC’s ball-throwing behavior. These findings validate the effectiveness

Table 2
Ratings given by players on the believability of NPC movements.

Model Players Average
Rating

A B C D E F G H I

Previous
Model

9 8 9 8 8 10 9 10 8 8.77

Final Model 9 8 10 9 8 10 9 10 9 9.11

Table 3
Statistical Analysis Results for NPC movements.

Statistic Previous Model Final Model

Standard Deviation 0.833 0.782
Coefficient of Variation (%) 9.49 8.58
Wilcoxon Signed-Rank Test (P-Value) 0.313
Effect Size (r) 0̃.00

Table 4
Ratings given by players on the believability of NPC ball throws.

Model Players Average
Rating

A B C D E F G H I

Previous Model 7 6 9 8 8 8 7 9 7 7.66
Final Model 8 8 9 8 8 9 9 10 8 8.55

L.V.R. Cavadas et al. Entertainment Computing 55 (2025) 100987

10

of the modifications implemented in the final model.

5.5. Which NPC appeared more human?

Players were asked in the questionnaire which of the two NPCs
(trained with the previous or final model) they considered to be more
human-like in behavior. This subjective question aimed to gather a
direct impression of believability from the player’s perspective. The
majority of participants (8 out of 9) identified the NPC trained with the
final model as more human-like. This reinforces the quantitative find-
ings and highlights the effectiveness of our proposed approach in pre-
serving realistic behavior. Fig. 9 presents the detailed results of this
survey.

6. Conclusion and future work

Immersion is one of the key experiences a player should have when
playing a game and NPC behavior holds an important role in the field.
Our proposal suggests using information from provenance obtained
from game sessions with real players to increase learning efficiency
through the Imitation Learning method. Within Imitation Learning, we
use the GAIL framework, allowing the NPC to learn a policy and create
actions that roughly approximate what a player would do.

One of the persistent challenges in training NPCs is the need for vast
amounts of high-quality training data, which are often expensive and
time-consuming to collect. In this context, data provenance presents
itself as an innovative solution. Provenance offers an additional layer of
information that can be used to enrich the training process. By inte-
grating provenance data collected from previous sessions, it is possible
to accelerate training and provide NPCs with a deeper capacity for
adaptation and learning.

We previously proposed using provenance with Imitation Learning,
involving cause-and-effect links and providing more specific knowledge
about the events that occur while a user play was used only as a logging
record strategy. Using the cause-and-effect relationship provided by
provenance to improve training by achieving better results with the
same number of steps has not been studied in the literature until the
present work.

In this work, the environment used for validating was the DodgeBall
game from the Unity Engine ML-Agents package. Nine students were
selected to participate in the game and played three different rounds.
The NPC was rated from 1 to 10 by the players based on its movement
and ball-throwing behavior in the game. A rating of 1 means the agent
did not resemble a real player at all, while a rating of 10 means a real
player can easily mistake it. The comparison was made between our
novel model and our previous solution. Regarding movement, our model
achieved an average rating of 9.11 with a standard deviation of 0.737
compared to an average of 8.77 with a standard deviation of 0.746 from
the previous model. For ball throwing, players gave our model an
average rating of 8.55 with a standard deviation of 0.684, while the
previous model received an average of 7.66 with a standard deviation of
0.942.

The results demonstrated that our NPC improved in believability,
which is significant given our objective to maintain or enhance believ-
ability even when employing more efficient training methods. A second
validation was also conducted, in which both models were directly
compared. A total of 30 matches were played, with our model winning

23 of them (76.7 %), demonstrating clear superiority and supporting the
hypothesis that incorporating provenance information during training
can enhance efficiency within the same number of steps.

In the 95 % confidence interval tests, our model also demonstrated
superiority over the previous model. All the results were quite satis-
factory and lead us to believe that this solution is very promising and has
significance for future advances in using provenance in conjunction with
AI, especially with Imitation Learning.

For future work, we want to test the framework in other games to
verify how generic it is and if it works in different game genres. We also
want to increase the tests by using more steps and a larger number of
matches and players involved in the tests. Another future improvement
could be the expansion of the comparison of the efficiency of our model
against other training models.

CRediT authorship contribution statement

Lauro V.R. Cavadas: Writing – original draft, Visualization, Vali-
dation, Software, Methodology, Investigation, Formal analysis, Data
curation, Conceptualization. Esteban W.G. Clua: Writing – review &
editing, Supervision, Project administration, Conceptualization. Troy C.
Kohwalter: Writing – review & editing, Supervision, Project adminis-
tration, Conceptualization. Sidney A. Melo: Software, Methodology,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] T. Osa, J. Pajarinen, G. Neumann, J.A. Bagnell, P. Abbeel, J. Peters, et al., An
algorithmic perspective on imitation learning, foundations and trends®, Robotics 7
(1–2) (2018) 1–179.

[2] S.K.S. Ghasemipour, R. Zemel, S. Gu, A divergence minimization perspective on
imitation learning methods, in: Conference on Robot Learning, PMLR, 2020,
pp. 1259–1277.

[3] P. De Haan, D. Jayaraman, S. Levine, Causal confusion in imitation learning, Adv.
Neural Inf. Proces. Syst. 32 (2019).

[4] A. Billard, D. Grollman, Robot learning by demonstration, Scholarpedia 8 (12)
(2013) 3824.

[5] A.G. Billard, S. Calinon, R. Dillmann, Learning from humans, in: Springer
Handbook of Robotics, 2016, pp. 1995–2014.

[6] J.A. Bagnell, An invitation to imitation, Tech. rep., Carnegie-Mellon Univ
Pittsburgh Pa Robotics Inst, 2015.

Table 5
Statistical Analysis of NPC Ball Throws.

Statistic Previous Model Final Model

Standard Deviation 1.000 0.726
Coefficient of Variation (%) 13.04 8.49
Wilcoxon Signed-Rank Test (P-Value) 0.023
Effect Size (r) ~0.00

Fig. 9. Players’ responses on the model perceived as most similar to
human behavior.

L.V.R. Cavadas et al. Entertainment Computing 55 (2025) 100987

11

http://refhub.elsevier.com/S1875-9521(25)00067-9/h0005
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0005
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0005
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0010
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0010
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0010
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0015
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0015
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0020
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0020
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0025
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0025

[7] L.V.R. Cavadas, E. Clua, T.C. Kohwalter, S.A. Melo, Training human-like bots with
imitation learning based on provenance data, in: 2022 21st Brazilian Symposium
on Computer Games and Digital Entertainment (SBGames), IEEE, 2022, pp. 1–6.

[8] J. Ortega, N. Shaker, J. Togelius, G.N. Yannakakis, Imitating human playing styles
in super Mario bros, Entertain. Comput. 4 (2) (2013) 93–104.

[9] A. Khalifa, A. Isaksen, J. Togelius, A. Nealen, Modifying mcts for human-like
general video game playing, 2016.

[10] J. Togelius, R. De Nardi, S.M. Lucas, Towards automatic personalised content
creation for racing games, in: 2007 IEEE Symposium on Computational Intelligence
and Games, IEEE, 2007, pp. 252–259.

[11] L.V.R. Cavadas, E. Clua, T.C. Kohwalter, S. Melo, Using provenance data and
imitation learning to train human-like bots, Entertain. Comput. 48 (2024) 100603.

[12] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska,
S. Miles, P. Missier, J. Myers, et al., The open provenance model core specification
(v1. 1), Fut. Gener. Comput. Syst. 27 (6) (2011) 743–756.

[13] T. Kohwalter, E. Clua, L. Murta, Provenance in games, in: Braz. Symp. Games Digit.
Entertain. SBGAMES, 2012, pp. 162–171.

[14] K. Belhajjame, R. B’Far, J. Cheney, S. Coppens, S. Cresswell, Y. Gil, P. Groth,
G. Klyne, T. Lebo, J. McCusker, et al., Prov-dm: the prov data model, W3C
Recommendation 14 (2013) 15–16.

[15] J. Hua, L. Zeng, G. Li, Z. Ju, Learning for a robot: deep reinforcement learning,
imitation learning, transfer learning, Sensors 21 (4) (2021) 1278.

[16] A. Attia, S. Dayan, Global overview of imitation learning, arXiv preprint arXiv:
1801.06503 (2018).

[17] J. Ho, S. Ermon, Generative adversarial imitation learning, Adv. Neural Inf. Proces.
Syst. 29 (2016).

[18] r. t. p. Author names (if known, Goal exploration augmentation via pre-trained
skills for sparse-reward reinforcement learning, Mach. Learn. (2023), URL
https://link.springer.com/article/10.1007/s10994-023-06503-w.

[19] L. Thurler, S. Melo, L. Murta, T. Kohwalter, E. Clua, Using provenance and replay
for qualitative analysis of gameplay sessions, Entertain. Comput. 52 (2025)
100778.

[20] S. Melo, L. Thurler, A. Paes, E. Clua, Game provenance graph-based representation
learning vs metrics-based machine learning: an empirical comparison on predictive
game analytics tasks, Entertain. Comput. 52 (2025) 100755.

[21] I.V. Karpov, J. Schrum, R. Miikkulainen, Believable bot navigation via playback of
human traces, in: Believable Bots, Springer, 2013, pp. 151–170.

[22] C. Pelling, H. Gardner, Two human-like imitation-learning bots with probabilistic
behaviors, in: 2019 IEEE Conference on Games (CoG), 2019, pp. 1–7.

[23] C. Arzate Cruz, J.A. Ramirez Uresti, Hrlb 2: a reinforcement learning based
framework for believable bots, Appl. Sci. 8 (12) (2018) 2453.

[24] X. Yu, Y. Lyu, I. Tsang, Intrinsic reward driven imitation learning via generative
model, in: International Conference on Machine Learning, 2020, pp. 10925–10935.

[25] Y. Iwasaki, K. Hasebe, A framework for generating playstyles of game ai with
clustering of play logs, in: ICAART, vol. 3, 2022, pp. 605–612.

[26] J.-L. Hsieh, C.-T. Sun, Building a player strategy model by analyzing replays of real-
time strategy games, in: 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), IEEE, 2008, pp.
3106–3111.

[27] A. Kale, X. Ma, Provenance in earth ai, artificial intelligence in Earth, Science
(2023) 357–378.

[28] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by
reducing internal covariate shift, in: International Conference on Machine
Learning, 2015, pp. 448–456.

[29] A. Cohen, E. Teng, V.-P. Berges, R.-P. Dong, H. Henry, M. Mattar, A. Zook, S.
Ganguly, On the use and misuse of absorbing states in multi-agent reinforcement
learning, arXiv preprint arXiv:2111.05992 (2021).

L.V.R. Cavadas et al. Entertainment Computing 55 (2025) 100987

12

http://refhub.elsevier.com/S1875-9521(25)00067-9/h0035
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0035
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0035
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0040
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0040
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0050
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0050
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0050
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0055
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0055
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0060
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0060
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0060
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0070
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0070
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0070
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0075
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0075
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0085
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0085
https://link.springer.com/article/10.1007/s10994-023-06503-w
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0095
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0095
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0095
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0100
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0100
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0100
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0105
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0105
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0110
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0110
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0115
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0115
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0120
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0120
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0135
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0135
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0140
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0140
http://refhub.elsevier.com/S1875-9521(25)00067-9/h0140

	Enhancing imitation learning training for non-player characters based on provenance data
	1 Introduction
	2 Theoretical foundation
	3 Related work
	4 Framework for utilizing provenance data to enhance training
	4.1 Find the winning rounds in the provenance file
	4.2 Identify the actions taken on the nodes of winning rounds
	4.3 Forming groups of actions that resulted in victory
	4.4 Reward the execution of a group of winning actions

	5 Results
	5.1 Methodology and outcomes regarding training efficiency
	5.2 Methodology for assessing believability
	5.3 Evaluation of NPC’s movement
	5.4 Evaluation of NPC’s ball throw
	5.5 Which NPC appeared more human?

	6 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

