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ABSTRACT
Arguably, player behavior profiling is one of the most relevant
tasks of Game Analytics. However, to fulfill the needs of this task,
gameplay data should be handled so that the player behavior can
be profiled and even understood. Usually, gameplay data is stored
as raw log-like files, from which gameplay metrics are computed.
However, gameplay metrics have been commonly used as input
to classify player behavior with two drawbacks: (1) gameplay met-
rics are mostly handcrafted and (2) they might not be adequate
for fine-grain analysis as they are just computed after key events,
such as stage or game completion. In this paper, we present a novel
approach for player profiling based on provenance graphs, an al-
ternative to log-like files that model causal relationships between
entities in game. Our approach leverages recent advances in deep
learning over graph representation of player states and its neigh-
boring contexts, requiring no handcrafted features. We perform
clustering on learned nodes representations to profile at a fine-grain
the player behavior in provenance data collected from a multiplayer
battle game and assess the obtained profiles through statistical anal-
ysis and data visualization.
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•Applied computing→Computer games; •Computingmethod-
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1 INTRODUCTION
Game Analytics has become a relevant area in recent years due
to its impact on both the game industry and game research en-
vironment [13]. In [10], the authors remark that Game Analytics
has emerged as an umbrella term for the various data scientific
endeavors in industry and academia. They also stand that shared
definitions and terminologies must be better formalized due to the
recent establishment of the field. For them, Game Analytics funda-
mentally deals with the use of data analysis for game production,
game performance, and—crucially—player behavior understanding
[10]. The outcomes of Game Analytics tasks, such as game bal-
ancing [2][37], player profiling [28][35], and detection of failures
during game design [40][16], are employed to enhance the game
development process or the game experience itself. In this context,
Hooshyar et al.[20] points out that profiling and predicting player
behavior is of the utmost importance when developing games.

A necessary condition for any Game Analytics task is the ex-
istence of recorded game session data. Through telemetry, it has
become trivial to track and remotely gather game session data
from players. There are different strategies for gathering and stor-
ing data collected from games, ranging from raw log-like files to
more structured formats, such as game provenance graphs and the
PlayGraph. Regardless of format or structure employed in these
gameplay recordings, it is possible to extract several metrics of
various types, including gameplay metrics, which are important
to evaluate game design, user experience[13], and player behavior
profiling.

Hooshyar et al.[20] present an overview of methods employed
in player profiling, especially in an unsupervised learning setting,
where the player behavior is profiled from a set of features without
a “ground truth” label or previous expert annotation. However, to
the best of our knowledge, the literature so far has relied on clus-
tering gameplay metrics [20]. This characteristic might lead to two
main limitations: (1) gameplay metrics are handcrafted features1,
input features that are manually designed towards a task, such as
completion time or the number of enemies killed in the case of

1Handcrafted features is a term, also known as resource engineering, for situations
where the designer need to manually define the features to be used in machine learning.

https://doi.org/10.1145/3402942.3402961
https://doi.org/10.1145/3402942.3402961


FDG ’20, September 15–18, 2020, Bugibba, Malta Melo, et al.

player behavior profiling; (2) since gameplay metrics are computed
after key events, such as level or game completion, the player profile
might not be suitable for fine-grain analysis. We tackle these limi-
tations by combining representation learning[14], a set of machine
learning techniques capable of learning features, with game prove-
nance graphs, a data structure for recorded game session data that
models causal relationships between game elements and events.

Thus, we present in this paper a novel approach for player pro-
filing combining structured game session data, recorded as game
provenance graphs, and representation learning techniques. We
do that in such a way that all recorded game session data can be
used, instead only the resulting gameplay metrics. In a nutshell, we
use game provenance graphs as input to a graph representation
learning algorithm that learns vector representations for each game
element and submit player’s vector representations to clustering
algorithms. Resulting clusters are interpreted and labeled according
to their underlying subgraph patterns.

By using a structured and/or relational representation, one can
naturally handle objects, entities, characters, their properties, and
their relationships in a game. With that in mind, provenance graph
techniques were successfully adapted to record into a Game Prove-
nance Graph the game session history, composed by the elements
of the game and the causal relationships among them [24][26][25].

Recently, machine learning applied to graph-structured data has
gained much attention due to advancements in deep learning, and
several algorithms and frameworks that have been developed to
deal with this structure [32][31][15][8][17]. In [29], a framework
for edge detection in Game Provenance Graphs has been proposed
using graph-based representation learning techniques. Graph rep-
resentation learning methods induce a mapping that embeds nodes,
edges, or the entire (sub)graphs, taking into consideration the un-
derlying graph structure, as points in a low-dimensional vector
space[18] called embeddings, which can, therefore, be used as in-
put to a downstream machine learning method for tasks such as
classification, regression, or clustering[1].

In our approach, we use the PingUMiL framework to learn rep-
resentations in an unsupervised setting so that each player node
representation embeds the player state and its neighboring context
jointly. After that, we feed the learned representation to cluster-
ing algorithms in order to obtain player node clusters. We rely on
the previous literature to choose suitable clustering algorithms for
player node representations. Based on the characteristics of each
technique combined in our approach, we believe that the result-
ing clusters are, essentially, similar subgraphs across game session
that correspond not only to similar player behavior (actions and
states) but also similar contexts, so that they could provide insights
about player behavior at a fine-grain level. Our approach also con-
tributes with a visualization of graph-based relationships between
provenance nodes as an aid to analysis of player behavior.

We evaluate our approach with an experiment devised to ob-
serve and discuss actual player behavior profiles obtained through
our proposal’s application. We conducted this experiment by apply-
ing the provenance gathering to a multiplayer flight battle game
called “Smoke Squadron”, using the PingUMiL framework in order
to achieve node representations for all recorded game sessions. For
a better comparison, we submitted the learned representations to
two clustering algorithms: K-means and spectral clustering. Both

methods are well-established clustering algorithms and leverage
different aspects of the data distribution, which lead to different
insights over the data. Then, we interpret the resulting clusters by
performing a thorough analysis of the game provenance graphs
using descriptive statistics on player nodes attributes and graph
visualization tools. Finally, we compare and discuss obtained pro-
files through K-means and spectral clustering. Results show that
our approach is capable of generating relevant player behavioral
profiles in a strategy or tactical level by leveraging node attributes
related to game mechanics and the context in which the player uses
this mechanics.

The remaining of the paper is organized as follows: Section 2
presents background about Provenance in Games, Representation
Learning on graphs, and clustering algorithms. Section 3 formalizes
our methodological proposal. Section 4 presents the experimental
setup and is further divided into two subsections: Smoke Squadron
and Dataset. Section 5 presents, analyzes, and discusses our experi-
mental results. Section 7 briefly discusses and compares our work
with previous works on player behavior profiling in the literature.
Finally, Section 8 concludes this work and discuss possible future
works.

2 BACKGROUND
Here we briefly present the main areas that we rely on to build our
proposal, namely, an overview of game provenance graphs, graph
representation learning, the PingUMiL framework for representa-
tion learning on game provenance graphs, and, finally, clustering
algorithms.

2.1 Provenance in games

Figure 1: Subgraph from a racing game.

The adoption of data provenance in the context of gameswas first
proposed by Kohwalter et al.[23] through the PinG (Provenance in
Games) framework. Following the Open ProvenanceModel [30], the
authors defined a mapping between game elements and each type
of node of a provenance graph. Players, enemies, and NPCs (Non-
playable characters) are mapped as Agent nodes; items, weapons,
potions, static obstacles, or any other object used in the game are
mapped as Entity nodes; and actions and events are mapped as
Activity nodes. Causal relationships between game elements are
mapped as edges connecting their respective nodes, resulting in a
game provenance graph. Causality indicates a relationship between
two events, where the former event affects the later. The provenance
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approach capture causal relationships explicitly defined by the game
developer. Each edge captured through the provenance approach
represents a type of relationship (that can also be causal) between
game objects’ actions and/or states. Note that provenance allows
that edges represent interactions between different game elements.
An implementation of PinG is available for the Unity game engine
as a plugin called PinGU[26] (Provenance in Games for Unity).

The most important advantages of provenance graphs are the
modeling of causal relationships, which structures the provenance
elements into a graph, and its richness of detail, i.e., the data col-
lected at fine-grain. Figures 1 and 2 present examples of a racing
game provenance graphs and their components. The graph is plot-
ted using the player node’s coordinates X and Z within the game
space so that it is possible to have a general view of the race course
and, for that specific scenario, follow the player trajectory and other
events by traversing the graph.

Figure 2: Racing game provenance graph example.

Figure 1 shows all the attributes of a car controlled by the player
during the Flying, Landing, ChangedGear, and LostControl activities.
While PinGU implements several methods to facilitate provenance
capture, game developers must write domain-specific provenance
tracking functions and attach them to each entity in the game [25].
Therefore, the amount of data gathered in a single node depends
on the developer’s design and his analytic choices.

In summary, the implementation of the data extraction algo-
rithms and the events happening within a game session directly
influence the amount of generated data[25]. Also, this rich and raw
provenance data can be used in machine learning tasks in order to
describe hidden patterns, aid the game maintenance, and help in
future developments. This is one of the main assumptions of this
research, which relies on recent advances in graph representation
learning techniques.

2.2 Representation Learning on Graphs
Recently, a large amount of work has been produced to automati-
cally learn representations (roughly speaking, feature vectors) di-
rectly from graph-structured datawithmachine learning [15][8][17].
Most methods in this area seek to make predictions, discover pat-
terns, or classify nodes by transforming graph-structured data
into feature information [27][36][18]. For example, by representing
molecules as graphs and learning vector representations suitable
for a classification task. For so, these graph representation learning

Figure 3: Visual illustration of the GraphSAGE
sample and aggregate approach[17]. Source:
http://snap.stanford.edu/graphsage

methods incorporate information related to the structure of the
graph to yield latent features that represent some properties of the
data[32][38][22][17]. The idea behind these representation learn-
ing approaches is to learn a mapping that embeds nodes, or entire
(sub)graphs, as points in a low-dimensional vector space, Rd . The
goal is to optimize this mapping so that geometric relationships in
this learned space reflect the structure of the original graph [18].
Vector representations resulting from mapping nodes into such a
learned space are called node embeddings.

In order to properly represent the nodes of a provenance graph, it
is essential that we select a method able to represent node attributes.
Thus, we focus on the convolutional-based approaches that are able
to tackle this issue. In general, these approaches generate a node
embedding iteratively. As the first step, the node embedding is
initialized with the values of the node’s features. At each iteration,
the node’s embeddings aggregate their neighbors’ embeddings,
generating new embeddings. These approaches determine the node
embedding according to its surrounding neighborhood attributes.
Therefore, they are also called neighborhood aggregation methods.
Examples of these methods are Graph Convolutional Networks
(GCN) [22], Column Networks [33], and GraphSAGE [17].

Figure 3 illustrates the approach implemented by GraphSAGE.
Its main goal is to learn useful representations by aggregating fea-
tures from a node’s local neighborhood iteratively and then use
graph-based loss function to fine-tune weight matrices and aggrega-
tion functions’ parameters. This graph-based loss function depends
on the chosen setting. In the unsupervised setting, GraphSAGE
enforces similarities on representations of nearby nodes, i.e., the
unsupervised setting generates generic representations based on
nodes’ connectivity. In the supervised setting, GraphSAGE enforces
similarities on nodes representations according to a ground truth,
i.e., the supervised setting generates more task-specific represen-
tations. Finally, it provides multiple aggregator architectures, i.e.,
functions defined for aggregating node embeddings according to
its sample neighborhood. GraphSAGE is used as representation
learning technique in PingUMiL [29], a game provenance graph
framework for machine learning.

2.3 PingUMiL
In this subsection, we present PingUMiL, a framework for game
provenance graphs driven by machine learning tasks, using Graph-
SAGE as a representation learning technique. The idea behind
PingUMiL is to provide preprocessing routines for provenance
graphs, submit graphs to a graph representation learning algorithm,
and output one of the following:
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Figure 4: Overview of the PingUMiL framework.

• generic node embeddings suitable for downstream machine
learning tasks, using GraphSAGE’s unsupervised learning
setting;

• a classification model and its input task-oriented node em-
beddings, using GraphSAGE’s supervised learning settings;

An overview of PingUMiL is shown in figure 4. A set of prove-
nance graphs is the input to the whole framework. These graphs
must be preprocessed due to node heterogeneity, and, according to
the intended machine learning task, example nodes must be defined.
Particularly, example nodes are necessary for classification-based
tasks; thus, it is out of the scope of this work.

As mentioned, embedding generation is realized through Graph-
SAGE [17], which takes as input graphs with homogeneous nodes,
i.e., nodes with the same set of features. Provenance graphs with
heterogeneous nodes must, therefore, be mapped into homoge-
neous nodes. We illustrate that process in Figure 4, where the input
graph (blue) contains seven nodes of two types: (A,B,C) and (A,B,D).
The output graph (pink), on the other hand, contains only one type
of node: (A,B,C,D). In this case, the homogeneous node five receives
all values from its heterogeneous version and a default value for
the attribute D.

In a real-world scenario, a default value for an attribute should be
determined by the game designer or analyst. For example, a possible
default value for the Speed attribute is 0 if a game object does not
possess a Speed attribute, and consequently, it does not move. Once
all the nodes are homogeneous, any non-numeric attribute must be
mapped into one-hot-vector representations, i.e., a k-dimensional

binary vector with a single ‘1’ value, where k is the number of
possible values of the non-numeric attribute and the position of
the ‘1’ value represents the attribute value.

Algorithms for this step has been developed and requires only
configurations depending on the game and its provenance graph
structure [29].

Embedding generation (dark green) is made using the Graph-
SAGE framework, which is based on neighborhood aggregation
techniques and includes several aggregation techniques based on
functions and neural network architectures. GraphSAGE imple-
ments mean, LSTM, max-pooling, mean-pooling, and GCN as ag-
gregation functions.

By applying GraphSAGE with any of the provided aggregation
architectures in a supervised setting, representations are learned by
trying to minimize a cross-entropy loss function, consequently
trying to minimize the difference between predictions and the
ground-truth. In the unsupervised setting, the algorithm mini-
mizes a proximity function between randomly sampled neighboring
nodes, where GraphSAGE tries to learn node embeddings that en-
force node co-occurrences in similar contexts.

Finally, node embedding generated with GraphSAGE can be
provided to a machine learning algorithm suitable for the intended
task. For example, [29] performs a link detection task by encoding
edges as a function of their connecting edges and training a classifier
with a set of resulting encoded edges, represented in the Classifier
Training step (purple). For a clustering task, however, resulting node
embeddings are already suitable for clustering unless the intended
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clustering algorithm itself demands or suggests any preprocessing.
The Classifier Training step (purple), as well as the Supervised
Classification (light green) are out of the scope of this work.

3 CLUSTERING NODES EMBEDDINGS FOR
PLAYER BEHAVIOR PROFILING

Cluster analysis or simply clustering is the process of partitioning a
set of data objects (or observations) into subsets[19]. Each subset is
a cluster, such that objects in a cluster are similar to one another, yet
dissimilar to objects in other clusters[19]. To achieve that, clustering
algorithms are defined by a membership function, which defines the
structure of the clusters in relation to the data samples, and a search
procedure, which is a strategy to cluster data given a membership
function[39]. For example, according to its strategy, a clustering
algorithm can be agglomerative (beginning with individual objects
and merging them) or divisive (beginning with the whole set of
objects and partitioning it)[4].

Clustering is useful in several exploratory pattern-analysis, group-
ing, decision-making, and machine-learning situations, including
data mining, document retrieval, image segmentation, and pattern
classification[21]. Also, clustering has been essential to player be-
havior profiling and, therefore, abundantly employed in several
previous works[11][6][9][7].

Our proposed approach is for clustering node embeddings for
player behavior profiling. In this context, we define player behav-
ior profiling as the task of, given data that describe player states
throughout gameplay sessions, extract a sub-set of this data that
represent relevant patterns of player behavior, such as a trend of
how the player reacts in the face of a particular threat. By using
deep learning in graph representation techniques on game prove-
nance graphs to generate node embeddings, we avoid the need for
handcrafted features, such as gameplay metrics. In other words,
by using graph representation techniques allows for building an
end-to-end workflow for the clustering of gameplay data. As for
granularity, we expect node embeddings clusters to provide insights
on strategies adopted by players during the game session, such as
tendencies on using a particular weapon in similar contexts, such
as low life and during a boss fight.

For better understanding, we compare our approach with the
one proposed by Drachen et al. [11]. The authors identify 4 cluster
behaviors (Veterans, Solvers, Pacifists, and Runners) for the game
Tomb Raider: Underworld based on cluster interpretations regarding
gameplay metrics, such as causes of death, number of deaths, and
completion time. In our approach, all recorded player states can be
used, not only the resulting gameplay metrics. This particular work
presents these four generic behaviors that characterize a player
in the coarse-grain, i.e., how the player played the whole game,
since gameplay metrics derive from complete playthroughs. In our
approach, we would expect player behavior profiles to be more
oriented to immediate strategies and playstyle.

As aforementioned, our approach is tailored towards player pro-
filing using a structured graph related to the gameplay log, which
in our case, is a provenance graph. Figure 5 presents an overview
of our approach. Given a dataset of game provenance graphs, we
use PingUMiL to generate node embeddings for all the nodes in
the dataset. Even though we are interested in player nodes, it is

necessary to embed nodes from all game objects since they also
compose the context of the player state. In this context, deep learn-
ing techniques are responsible for learning node representations
enforcing that player states in similar contexts must have similar
node embeddings. Previous works have achieved better results by
using the LSTM aggregator among all aggregators provided by
GraphSAGE[17][29]. Therefore, we also adopted this approach for
our representation learning stage.

After generating the node embeddings, we select the player node
embeddings, since they are related to the intended profile. The fol-
lowing step is to cluster these nodes using an adequate clustering
algorithm from a plethora of available ones. This choice is not triv-
ial and demands knowledge over the algorithms and the data. In
[4], the authors present a set of good practices when employing
clustering techniques to mine behavioral game data. The authors
overview hierarchical, distribution-based, and density-based algo-
rithms and discuss in detail the K-means (and variants), Archetypal
Analysis (AA), Non-negative Matrix Factorization (NMF), and Spec-
tral Clustering algorithms. Finally, they also state five questions to
define the adequate clustering algorithms according to the analyzed
data, which are:

(1) Are the data high-dimensional and/or sparse? If so, consider
models tailored to sparse data (AA or NMF).

(2) What is the overall goal? To build general models of player
behavior or to detect extreme behaviors (e.g., cheating, gold-
farming)? For the former, consider centroid-seeking models
(K-means, k-medoids); for the latter, consider models such
as AA.

(3) Are the data numerical or relational? For the latter, use spec-
tral clustering or kernel methods.

(4) Are the players tightly grouped in variance space, so that
K-means might have difficulties distinguishing them? If so,
consider density-based approaches that do not operate on
Euclidean distances.

(5) Are the data noisy? If so, density-based methods might be
appropriate as they are better adjustable.

In this work, we used these five items as a framework for se-
lecting the appropriate algorithms for our proposal: K-means and
Spectral Clustering. We use K-means as a baseline clustering algo-
rithm and also due to its general modeling capability[4]. We opt
for Spectral Clustering due to its capacity for dealing with non-
convex structures and the relational structure embedded in the
node representation. The authors also suggest preprocessing steps
for the discussed algorithms, such as dimensionality reduction for
K-means[4]. After choosing a suitable clustering algorithm, we feed
the node embeddings to it in order to achieve clusters.

Finally, we analyze the resulting clusters using descriptive statis-
tics on nodes’ attributes per cluster and game provenance graphs
visualization tools. In the descriptive statistics step, we first ana-
lyze categorical attributes particular to the game provenance graph:
type (Agent, Activity, and Entity), label (name of the Agent, Activ-
ity of Entity), ObjectTag (the name of the game entity responsible
for that node). The ObjectTag is used to determine the Agent or
Entity that performs an Activity. This approach gives an overview
of the profile, for example, the most common activities performed
in this cluster. Then, we analyze the remaining attributes in order
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Figure 5: Overview of our approach.

to profile player behavior further; for example, how are these most
common activities performed regarding attributes such as Health
Points, Speed, or Position. Then, we use game provenance graphs
visualization tools to examine the clusters as subgraphs. This last
step is essential for our analysis since we can observe not only the
nodes belonging to a given cluster but also how in which context
that node occurs. This context could be the presence of a specific
enemy, which also generated nodes present in the graph but not in
the clustering.

Once the cluster analysis is complete, we condense the insights
about the player behavior observed in each cluster and label player
behavior profiles according to them.

In the following section, we propose an experiment to observe
and discuss the player behavior profiles obtained using the de-
scribed approach and assess whether the approach is capable of
profiling players in a finer-grain level such as gameplay style or
strategies.

4 EXPERIMENTAL SETUP
Our experiment intends to generate player behavior profiles from
actual game sessions using our proposed approach and discuss
its results. Our final goal is to observe the adequacy of the player
behavior profiles for identifying trends on gameplay style and strat-
egy. In order to assess our proposal, we coupled the PinGU plugin to
a whole game for capturing the provenance and recording detailed
information from different game sessions.

The game selected here is Smoke Squadron. It is a local mul-
tiplayer arcade flight battle game, in which the player controls a
small remote airplane and battles using machine guns, missiles,
and a solid smoke trail that kills at touch (Gas BTM) to create new
obstacles, making every match unique, and highly dynamic [34].
Figure 6 presents a screenshot of the game.

Figure 6: Screenshot of the game Smoke Squadron.

In Smoke Squadron, every player controls an airplane armed
with a machine gun and three missiles: a regular missile, a smoke
trail missile, and a fireworksmissile, i.e., a missile that explodes after
a time delay or a collision and creates smoke around its explosion
point. Machine gun shots damage airplanes and solid smoke, which

are destroyed if their health value goes below zero. Missiles and
smoke destroy the player instantly. In order to use smoke trail
and fireworks missiles, players use a smoke resource that can be
recharged by picking power-ups randomly spawned in the game
scenario. Beyond that, each airplane spawns a colored smoke trail,
to which the spawner is invulnerable, i.e., the red smoke does not
affect the red airplane. Finally, sometime after the beginning of the
match, smoke clouds are randomly spawned in the environment.
Player movement controls are rotation in all axes, speed boost, and
air brake.

The game is planned to have three match types: 1v1, team battle
(2v2), and deathmatch (all vs. all) with up to 4 players. Currently,
the game has the 1v1 battle mode implemented. Also, there are two
types of airplanes, differed only by their aesthetics.

The game is under development by the indie game studio Ops!
Game Studio, which provided us access to the game source code,
in order to generate a build version with provenance data capture
and realize experiments with the captured data.

4.1 Dataset
Preliminary steps are required for creating the dataset of prove-
nance graphs with Smoke Squadron game sessions’ data. First, the
provenance capture plugin PinGU must be instantiated into the
source code of Smoke Squadron. Instantiating the PinGU in a game
involves adding the provenance hooks (i.e., telemetry hooks) for
capturing game objects, their actions, states and attributes, and
creating relationships for these actions and states.

After instantiating the PinGU plugin into the game, game ses-
sionsmust be played and recorded as provenance graphs to compose
the dataset. Our dataset is composed of the game sessions produced
by four participants, all male, with ages between 20 and 28, with no
prior knowledge of the game. The players were recruited locally to
take part in the capture process and the experiment was explained
in details before the game sessions. All game provenance graphs
are anonymous since they contain no identification attributes and,
therefore, preserve the privacy of the players. The gameplay capture
lasted three hours and generated 37 provenance graphs, totaling
168 thousand nodes and 239 thousand edges. The average number
of nodes per graph is 4,427, and the average match duration is 185
seconds.

For the sake of conciseness, we list below the attributes that a
node from a Smoke Squadron provenance graph might contain:

• Type attribute: Provenance node type, i.e., Agent, Activity,
or Entity.

• ObjectTag attribute: determines the game element responsi-
ble for instantiating that node. The possible values are:
– Player01, Player02: refers to a Player’s Agent and Activity
nodes.

– Smoke: refers to Smoke’s Activity and Entity nodes.
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– Rocket: refers to Rocket’s Activity and Entity nodes.
– SmokeItem: refers to SmokeItem’s Entity nodes.
– SmokeItemHalf: refers to SmokeItemHalf’s Entity nodes.
– SmokeSpawner: refers to ItemBox Agent node.

• Label attribute: determines a label for the node. The possi-
ble values depend on the Type and ObjectTag values. For
example, the label value of a node with ObjectTag Missile
and Type Entity is the type of the missile; on the other hand,
the label value of a node with the same ObjectTag but with
Type Activity is the action performed by that missile.

• Health related attributes: health points and the number of
lives.

• Movement related attributes: position, direction and rotation
in axis X, Y and Z, and Speed.

• Input related attributes: Input on angle rotation, acceleration
and braking triggers.

• Physics related attributes: Throttle, Engine Power, Rotation
effect ratios.

• Weapon related attributes: Weapons and Smoke’s counters,
cooldowns and explosion timers.

5 RESULTS AND DISCUSSION
In this section, we present and discuss the results of our experiment.
First, we seize the opportunity to show how the node embeddings
were distributed in the learned vector space. Then, we present the
clusters obtained by the previously chosen clustering algorithms,
namely K-means and spectral clustering, and label them according
to the node attributes statistics and the subgraph visualization. Fi-
nally, we compare the obtained profiles and discuss them regarding
the main assumptions and threats to the validity of this work.

5.1 Node Embeddings and Learned Vector
Space

As aforementioned, we use PingUMiL to embed nodes into vector
representations called node embeddings. One of the main assump-
tions of our work is that node embeddings learned by PingUMiL
reinforces contextual similarity among nodes by learning a vector
space. Therefore, we expect that player and other game elements’
node embeddings occupy different subspaces in the learned vector
space.

In our experiment, we feed the Smoke Squadron dataset to PingU-
MiL.LSTM and retrieve node embeddings for each node, including
the player nodes, which are the ones we are most interested in
this work. Embedding generation step for this experiment took on
average 40 seconds, using a GeForce 940MX GPU. In order to assess
the previously mentioned assumption, we apply dimensionality
reduction on the node embeddings using PCA, as shown at the
scatter plot in Figure 7(a). We observed that player nodes were
densely grouped into the rightmost section of the learned vector
space while the other game elements (Smoke, Missiles, Items) are
widely distributed in the leftmost section of the space.

Notice that an intersection between the two groups of points
exists. This intersection shows GraphSAGE’s strategy of reinforcing
similarities between nodes in similar contexts. Examples of this
phenomenon are the Player and Smoke objects. Even though these
objects are different, they receive damage from the same type of

weapons. For this reason, it is expected that some Smoke nodes’
embeddings are closer to Player nodes’ embeddings.

We understand that result as strong evidence of node embed-
ding’s representational power, especially in terms of contextual
similarity. The next step is to cluster the Player nodes, i.e., the
Player points in the learned vector space, obtaining the player
profiles based on the node attributes and their contexts.

5.2 K-means
By submitting the player nodes to the K-means clustering algorithm
with k = 5, we obtain five player node clusters that can be observed
in Figure 7(b). The choice for the k parameter in the algorithm
is arbitrary. In this experiment, we found that five clusters could
represent five generic and differentiated behaviors manifested by
the players along game sessions, even though a higher number of
clusters would add more specificity in the cluster semantics.

The interpretation process of the clusters followed two steps:
statistical analysis of the attributes per cluster and graph visual-
ization. In the statistical analysis, we first analyzed the categorical
attributes, followed by the numerical attributes. This analysis gives
insights on the main actions taken and how the player performed
them for that cluster. In the graph visualization step, we colored
player nodes on the game sessions graphs using the same colors
in Figure 7(b). Besides, the non-player activity nodes (a missile
spawning smoke or a smoke cloud taking damage, for example)
are colored in black, and smoke nodes entities are colored in grey
(nodes representing the moment these clouds have spawned). By
visualizing the graph, we can directly observe both the player status
and the context to which that cluster refers. Finally, we label each
cluster with a single word that we believe that characterize the
behavior represented in that cluster.

Using the insights provided by this interpretation process al-
lowed us to label the five clusters as five behaviors: (0) Hasty, (1)
Rogue, (2) Killer, (3) Average, (4) Fighter.

Cluster 0 represents the “Hasty” behavior. This cluster contains
31.92% of all damage nodes, which leads us to a conflict-driven
behavior. Damage nodes represent that the current player was dam-
aged. Nodes with offensive behavior such as shooting or firing mis-
siles are observed in the cluster, but not as much as in the “Killer” be-
havior. On the other hand, all the nodes representing collision with
Smoke elements belong in this cluster, as well as 36.62% of all the
nodes representing collision with the wall. These collisions could be
the result of both offensive and defensive hasty maneuvers during
conflicts. Since Smoke is a central resource for attacks, we observed
that attributes SmokeCapacityCounter and SmokeCooldownCounter
present the least skewed distributions among all clusters, which
implies that nodes from this cluster are distributed along several
values of this resource consumption. The resource is consumed,
for example, by using an attack such a Fireworks Missile. Also,
nodes from this clusters have Cooldown values above 0 seconds,
which corroborates that a weapon was fired. These observations
point out that this behavior frequently occurs during or after a
conflict. The cluster also contained 73.39% of all nodes regarding
Item collection, i.e., the player recharged their Smoke resources.
Through visualization, we noticed that this behavior is related to
bad choices on strategies that might end up on defeat. In 8(d), the
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Figure 7: Scatter plots of node embeddings. (a) Scatter plot of all node embeddings generated with PingUMiL.LSTM. (b) Scatter
plot of player node clusters with K-means (k=5). (c) Scatter plot of player node clusters with Spectral Clustering (k=5).

Hasty behavior was attributed to the bottom player when he or she
fired a Smoke Missile and stayed in its neutral Smoke cloud trail,
leading the player to a death node.

Cluster 1 represents the “Rogue” behavior. This cluster is charac-
terized by the high speeds (using the acceleration trigger) and low
positions on the Y-axis taken by the player. By flying close to the
ground, the player makes it harder for the adversary to shoot effec-
tively due to the Smoke elements that tend to spawn and float in
the middle section of the scenario. Since the lowest section contains
less floating Smoke clouds, it is safer to fly at higher speeds. In 8(e),
both players fly freely for most of their subgraphs. It is possible to
notice that the bottom player flies around the map at high velocity
due to the small increase of sparsity in his nodes.

Cluster 2 represents the “Killer” behavior. This cluster contains
85.94% of all Respawning nodes and 77,11% of all Death nodes, i.e.,
these clusters contain effective conflict-related nodes. Respawning
and Death nodes represent that the current player respawned or
died, respectivelly. With 74.08% of all FiredMissile nodes and 75.78%
of all nodes registering the use of the air brake trigger, i.e., this
behavior indicates lower speed for better aim and, consequently,
effectiveness in the conflict. Also, this cluster presented a trend of
higher positions on the Y-axis compared to the others, reinforcing
that conflicts tend to occur on higher sections of the scenario. In
Figures 8(a), 8(b), and 8(c), we have a sequence of subgraphs from
the same game session. First, both players maneuver to face each
other, as can be seen in Figure 8(a), which suggests being attributed
as Killer behavior. Next, the bottom player slows down, using the
Air Brakes triggers. Notice that in the same period, the bottom
player traveled less than the top player. Finally, the bottom player
fires a Smoke trail missile in the trajectory of the adversary, which
collides with the trail and dies. We believe that the concentration
of Death nodes in this cluster drives the algorithm towards finding
the most lethal behaviors. However, we observed that some single
Killer nodes are scattered throughout the graphs due to Death
nodes, such as in Figure 8(d). We understand that Death nodes are
very similar, hence the concentration on these clusters, but the
actions performed by the player that trigger the Death nodes differ,
hence not every offensive action belongs to the Killer behavior.

Cluster 3 represents the “Average” behavior. This cluster contains
54.93% of all collisions with walls and 43.44% of all machine gun

shooting. Positions on the Y-axis are similarly distributed to cluster
2, and SmokeCapacityCounter is at its highest value, i.e., the player
is completely loaded for shooting missiles. However, observing the
generated visualization, this behavior seems to relate to maneuvers
before and after a conflict. In Figures 8(b) and 8(c), the top player
changes its directionwhen the bottom player slows down. In Figures
8(d) and 8(e), this behavior precedes Hasty and Fighter behaviors.

Cluster 4 represents the “Fighter” behavior, which is very similar
to the “Hasty” behavior. The difference lies in the existence of
22.89% of all Death nodes in this cluster, resulting from Missiles
and Shootings and not from collisions with Smoke or Walls. In
Figure 8(e), the player with the rightmost subgraph is attributed
to the Fighter behavior just before engaging the Rogue adversary.
In Figures 8(b) and 8(d), it is also possible to notice that nodes
attributed with the Fighter behavior are usually close to Average
and Killers, especially if the player is offensively successful in the
latter.

Figure 8(f) allows seeing a number of small behavior subgraphs.
This phenomenon seems to be more frequent in conflicts where
the players do not interact with other game elements, especially
with each other. It is possible that such nodes do not contain useful
information for profile interpretation; however, due to the K-means
algorithm and its parameters on this experiment, these nodes ended
up assigned to clusters. This phenomenon is expected and is the
reason why we take these results as a baseline for our approach and
intend to compare it with a more powerful clustering algorithm,
namely, Spectral Clustering.

5.3 Spectral Clustering
After generating five profiles using K-means, we developed a new
clustering using Spectral Clustering method. Similarly, we gener-
ate five clusters in order to compare the resulting profiles. The
interpretation process is the same as presented in the K-means
experiment. We list below the resulting five behaviors using the
identification number from Figure 7(c), which we label to the best
of our interpretation: (0) Bird, (1) Sniper, (2) Hasty, (3) Victim and
(4) Stalker.
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Figure 8: Visualization of Smoke Squadron’s game provenance graphs, where the nodes get the colors of their clusters. All
figures represent different situations along game sessions.

Cluster 0 represents the “Bird” behavior. This cluster occupies
the same region as the Rogue behavior; therefore, they have char-
acteristics in common: high speeds (using the acceleration trigger)
and low positions on the Y-axis. However, the Bird behavior con-
tains fewer nodes than the Rogue, especially conflict-related nodes.
In Figure 8(h), we see a long subgraph of Bird behavior by the
bottom player. It is also possible to compare this result to the Rogue
behavior in 8(e) and notice that this clustering performed more
consistently in this example.

Cluster 1 represents the “Sniper” behavior and occupies the
same region as the Killer behavior. Similar to the Bird, the Sniper
is smaller than its K-means counterpart. Different from the Killer,
the Sniper contains almost no Respawning nodes and Death nodes.
The similarity between Killer and Sniper lies in the 41.09% of all
Fired Missile nodes and 56.45% of all nodes registering the use of
the air brake trigger and the trend of higher positions on the Y-axis.

However, the ratios of the aforementioned nodes are at least 30%
smaller than in Killers. In Figure 8(g), the leftmost player is a Sniper,
which is characterized for slowing down his movement to turn
around and fire a missile towards his adversary.

Cluster 2 represents a broader “Hasty” behavior. Different from
Bird and Sniper, this behavior cluster is more extensive than its K-
means counterpart. This cluster contains 60% of all damage nodes,
all nodes representing collision with Smoke elements, 38.73% of all
nodes representing collision with the wall, attributes SmokeCapac-
ityCounter and SmokeCooldownCounter present the most uniform
distribution of all Spectral clusters, 86.72% of all nodes regarding
Item collection, i.e., the same characteristics from K-means’ Hasty
Behavior. Also, the ratio of nodes containing active acceleration
triggers is 10% larger than K-means’ Hasty. In 8(g), the player with
the leftmost subgraph has the Hasty behavior just before colliding
with a Smoke cloud, similar to its K-means counterpart 8(d).
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Cluster 3 represents the “Victim” behavior. This cluster contains
90.36% of all Death nodes and 29.63% of all Fired Missiles nodes.
In this particular case, we observe in Figure 7(c) that cluster 3 is
distributed sparsely across cluster 2. We believe that this effect is
a consequence of a grouping focused on the Death nodes. At first
sight, this cluster, even though separating a very relevant group of
nodes, does not seem to provide insights on player behavior and
mostly fills the gaps between other profiles, as observed in Figures
8(g), 8(h), and 8(i).

Cluster 4 represents a broader “Stalker” behavior. This cluster
contains 61.27% of all collisions with walls and 52.88% of all machine
gun shooting, which are higher ratios than in its K-means coun-
terpart. Similarly, positions on the Y-axis are equally distributed to
the Sniper, and SmokeCapacityCounter is at its highest value, i.e.,
the player is completely loaded for shooting missiles. In Figures
8(g) and 8(h), the Stalker player engages in a conflict against his
adversary.

Due to its ability to deal with non-convex structures, Spectral
Clustering provided a more consistent cluster than K-means, pre-
senting less single node subgraphs in visualizations. However, both
clustering algorithms were capable of generating representative
node clusters for player behavior profiling. These clusters could
be used to infer non-observed player behavior into profiles, al-
lowing the developer to know profiles of the players and how the
player plays, reinforcing or reviewing game mechanics for specific
audiences.

6 THREADS TO VALIDITY
It is important to address threats to the validity of this experiment.
First, as construction threats to validity, the node homogeniza-
tion step in the PingUMiL framework inserts default values for
nonexistent attributes to a given node. These default values are
chosen arbitrarily and might bias the embedding process. Also,
the choice for the number of clusters is arbitrary and might not
reflect the optimal clustering for profile interpretation. Regarding
clustering techniques, it is possible that a density-based approach
could generate interesting profiles as well, since they are capable
of distinguishing relevant date from noisy data.

As external threats to validity, the presented experiment’s dataset
is composed by matches of four players that belong to a very re-
strict demographics. This could also bias the results. Furthermore, a
dataset withmore playerwith different playstyles could also provide
more generic profiles than the ones observed in the experiment.

7 RELATEDWORK
In this section, we compare and discuss our approach with similar
works in the literature around three key points: input data for
each method, use of representation learning, or any other data
transformation method and clustering algorithms.

In [11], [12], [3], authors use gameplay metrics such as kill/death
ratio, character level, and scores as input data. [3] also combines
metrics with geographical positioning to generate spatio-temporal
profiles. [7] uses sequences of behavioral events that were translated
into behavioral metrics. On our approach, we use as input data
the raw provenance graphs with the whole game session history,

without feature engineering or metrics computation. Finally, we
employed K-means and Spectral Clustering.

In [11], the authors use Emergent Self-Organizing Maps (ESOM),
a type of neural network. The ESOM learns a mapping from input
data to another dimensional space, usually in 2D. To the best of our
knowledge, ESOM has been the only unsupervised neural network
method applied for player behavior profiling. Our approach em-
ploys a graph-based representation learning method using LSTM
to generate node embeddings followed by a clustering stage.

Finally, several clustering algorithms have been used for player
behavioral profiling: K-means[5][12], Archetypal Analysis and vari-
ations [12], ESOM visualization maps[11], DEDICOM[5][3], Spec-
tral Clustering[5]. We opted for K-means and Spectral Clustering
following guidelines from [4].

8 CONCLUSION
In this paper, we propose a novel approach for player behavior pro-
filing based on graph representation learning and clustering. Our
method uses raw game provenance graphs as input data and learns
embeddings for each node leveraging not only their attributes but
also their neighboring context. Finally, the induced embeddings are
submitted to adequate clustering algorithms following the guide-
lines defined in [4]. One of the main objectives of the approach is to
propose an alternative for player profiling that requires no feature
engineering or gameplay metrics, which was achieved using graph
representation learning. We also wanted to observe whether the
profiles could define player behavior throughout the game session.
With that goal, we relied on visualizations tools on profiles obtained
by K-means and Spectral Clustering and observed, notably for Spec-
tral Clustering, a potential tool for understanding and classifying
player behavior through its subgraphs.

As a future work, we intend to use behavioral profiles gener-
ated by our approach as classes for player behavior prediction in
gameplay time. That could be achieved by generating node embed-
dings during the gameplay session and inferring its profile using
a classifier previously trained. However, to achieve more repre-
sentative profiles and better classify player, a broader and more
generic dataset is needed. We also intend to explore other clustering
algorithms, such as density-based and hierarchical ones.

It is also crucial to state that replications of the presented ap-
proach, specially using game provenance graphs, should follow
ethical practices that preserve player privacy. For our experiments,
captured graphs contain no personal information of the player and,
therefore, are anonymous since such information was not available.
This was possible due to the local multiplayer setting of the game.
However, in online games, where sensitive information such as user-
name is available and could be associated with captured graphs,
it is important to enforce privacy and anonymity. Another future
work is to analyze and discuss issues concerning game provenance
graph based approaches, and propose solutions for guaranteeing
privacy, anonymity, and other ethical concerns.

Although we present results for a specific game, our approach
can be adapted and applied to any game that collects provenance
data. Finally, our approach could be used for other graph-structured
problems outside digital games as well, e.g., scientific workflow or
traffic simulation.
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