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a b s t r a c t

A multitude of game sessions is started every day, generating a huge amount of data that may be useful
in many different situations. For this reason, game telemetry is an important trend and feature in modern
games, especially for tuning games, quality assurance, testing, and finding game aspects that need to be
calibrated. The wealth of tracked information is fundamental for analysis and understanding of events,
mistakes, and fluxes of a concrete game session. However, due to game dynamics, the resulting telemetry
data may be overwhelming in size, making it difficult to identify sections of interest in the game session.
The existing telemetry approaches normally use density clustering techniques for visual analysis, losing
the temporal relationship in the process. In order to solve this problem, in this paper we propose three
different similarity collapse algorithms based on the classic DBSCAN algorithm, collapsing sequential
information of the graph that has similar values or represents the same states. These algorithms allow
the game designer to quickly identify relevant information or state transitions without compromising
the temporal sequence of events. We implemented this solution over tracked provenance data, which is
graph-based, and provide two experimental studies of these algorithms using automatic experimentation
and human judges to evaluate each of the proposed algorithms. These experiments show that one of
the proposed algorithms is superior to DBSCAN when applied to graphs by better preserving the data
semantics when collapsing provenance data. We believe that this kind of approaches will become a trend
in the future process of game development.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Methods for automatic telemetry of game session data have
become an important component of game design and production
in the last few years [1]. The collected data can be used for dif-
ferent purposes, such as behavior understanding and analysis [2],
detecting bugs [3,4], balancing the game experience [5], classifying
users [6], understanding common behaviors [7], and even improv-
ing the monetization process [1]. In this sense, using computing
techniques within these collected data may increase not only the
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game value but also the ARM (Acquisition, Retention, and Mone-
tization), a valuable aspect of the nowadays digital entertainment
business model.

However, depending on the usage context, the amount of
tracked game data can reach huge sizes that affect negatively the
capability of analyzing game data. Furthermore, telemetry data
analysis often requires processing the collected game session data
and generating a visual representation of the data in order to be
used for analysis. Depending on the game style, a single game
session might take several hours or days to be completed. This
makes the quantity of displayed data overwhelming, making it
difficult for the developer to analyze the game’s data due to the
large volume of tracked information.
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The existing approaches for game telemetry use information
clustering as a reducing technique to deal with visualizations of
large quantities of tracked game data. Common clustering tech-
niques involve density clustering [8], which create clusters based
on the information distribution in a region, and hierarchy clus-
tering [9], which uses the notion of proximity through a distance
metric and a distance function to create clusters. However, both
methods consider spatial information for clustering, ignoring tem-
poral relationships when summarizing data. Thus, the sequence of
events is lost in theprocess, favoring theperspective of information
distribution in the game scene.

Therefore, in this paper we propose three collapse algorithms
based on DBSCAN [10], a popular density clustering algorithm, to
summarize tracked telemetry data that considers the sequence of
events instead of their spatial information. This helps to manage
the volume of data and let the users focus on events that may be
more important than others. These collapses reduce the volume
of displayed information by hiding part of the data that were
not significant enough to produce a meaningful impact on the
game and did not offer any useful information for analysis. As the
proposed collapses preserve the sequence of events and consider
temporal information instead of using spatial information to group
nearby vertices, designers can still track the player’s progress in the
game and easily identify noteworthy regions that had ameaningful
impact in the game. While our approach focuses on game analysis,
we believe that our solution may be useful to many other systems
that collect big data and relationships among them.

The overall goal of this research is to answer the following
research question in relation to the three proposed algorithms
and the existing DBSCAN algorithm: RQ: Which type of similarity
summarization is an effective method for reducing the information to
be analyzed?

We implemented our approach in the open-source tool Prov
Viewer [11], which displays game telemetry data collected with
the PinG [12] framework. Prov Viewer shows the collected teleme-
try data as a provenance graph [13], where vertices represent the
events and edges represent the chronological order in which these
events were executed. We evaluated our algorithms within two
experiments: (1) an automatic experiment to obtain quantitative
results and (2) a manual experiment involving human judges to
obtain qualitative results. The rest of the paper is organized as fol-
lows: Second section presents a brief overview of the provenance
concept and an overview of the Provenance in Games concept. The
third section presents our approaches for hiding irrelevant infor-
mation through collapses and the evaluation of our approaches
are presented in the fourth section. The fifth section presents the
related work in the area of game session analysis, along with their
clustering techniques. Finally, the last section concludes this work
and points out future works.

2. Provenance

Provenance is well understood in the context of art or digital
libraries, where it respectively refers to the documented history of
an art object, or the documentation of processes in a digital object’s
life cycle [14]. At the International Provenance andAnnotationWork-
shop (IPAW) [15], the participants were interested in the issues
of data provenance, documentation, derivation, and annotation.
As a result, the Open Provenance Model (OPM) [16] was created
and later improved during the Provenance Challenge [17], which
is a collocated event of IPAW. More recently, another provenance
model was developed, named PROV [13], which can be viewed as
the successor of OPM and tries to deal with some of the OPM’s
shortcomings. Both models intend to apply provenance concepts
to digital data.

Both provenance models assume that provenance of objects
is represented by an annotated causality graph, which is a di-
rected acyclic graph enriched with annotations. These annotations
capture further information related to its execution. According
to Moreau et al. [16], a provenance graph is a record of a past
or current execution, and not a description of something that
could happen in the future. The provenance graph captures causal
dependencies between elements and can be summarized bymeans
of transitive rules. Because of this, sets of completion rules and
inferences can be used in the graph in order to summarize the
information.

2.1. Provenance in games

A typical digital game architecture is mainly composed of game
objects and the game loop. All objects present in a game, from
environment objects to characters, are inherently defined as game
objects. Game objects by themselves do not add characteristics
to the game. Instead, they are containers that hold components
that implement actual functionality, such as scripts (i.e., artificial
intelligence, player controller, etc.),meshes (the object structure or
‘‘body’’), physics, textures, animations, and audio. Meanwhile, the
game loop is responsible for the sequence of events that occur in a
game, allowing the game to keep running regardless of the user’s
input. The game loop keeps the game alive, updating its scene
graph states and executing their actions and behaviors. Each script
in a game object has a function update, which is called by the game
loop in order to execute the specific game object functionalities.
Every time the game loop is ticked, it executes the update func-
tion of the scripts that belong to the game objects present in the
scene.

In a simulation or serious game, some facts might not be clear
or transparent enough for the player to understandwhy something
went wrong. While in a traditional game this can be solved with a
new game session, in a serious games or simulation it is important
to give the opportunity to the player to find what caused this
situation in an analytical way. Thus, in a previous work [12], we
proposed anovel usage for provenance in the game field. In order to
adopt provenance for the context of games, we mapped each type
of vertices of a provenance graph into elements typically found in
games.

The PROV provenance model assumes that provenance of ob-
jects is represented by an annotated causality graph, which is a
directed acyclic graph enriched with annotations. These annota-
tions capture further information belonging to the system execu-
tion. Using the PROV notations, an entity was mapped to static
game objects present in a game, such as weapons, equipment,
and furniture. Agentswere mapped to dynamic game objects, such
as characters, event controllers, and plot triggers. Lastly, activities
were mapped to actions or events executed throughout the game,
such as interactions with other agents and entities. The causal rela-
tions, which are the edges of a provenance graph, were mapped to
influences occurred during the game. Fig. 1 illustrates thismapping
of provenance concepts into the game context, outlining important
information of each element type to be collected during game
execution for provenance analysis.

The information collected during the game session is used for
the generation of the provenance graph. Thus, all relevant data
should be registered, preferentially at a fine grain. The way of
measuring relevance varies from game to game, but ideally, it
is any information deemed relevant by the game designer that
can be used to aid the analysis process. However, this fine grain
data gathering results in an exponential increase of the graph,
containing multiple events that can act as noise to certain types
of analysis and could be hidden or summarized.
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Fig. 1. Mapping of provenance and game domains. Gray classes belong to the
provenance domain. Yellow classes belong to the game domain.

3. Similarity collapse

As previously discussed, game sessions may generate large
quantities of data, making it difficult for designers to visually
explore their telemetry results. However, as multiple consecutive
telemetry data actually represent subtle variations of the game
state, they can be collapsed, keeping only the most relevant data.
These remaining telemetry data actually represent relevant varia-
tions in the game state according to specified game attribute.

Our approach intends to reduce the volume of displayed infor-
mation by summarizing the tracked data. In order to accomplish
the summarization and to respect the sequence of events, the raw
data must be structured as a graph, with vertices representing the
events and edges representing the chronological order in which
these events were executed.

Fig. 2 illustrates an example where the player experienced two
distinct battles against different enemies, with each battle being
represented by a yellow box. The blue edges represent the chrono-
logical order of events, while the red edges represent moments
when an enemy hit the player. Vertex positioning also represents
the timeframe (from left to right) and vertices within the same
columnmean that they occurred at the same time slice (e.g., within
the same one second period). Each vertex in the graph represents
the execution of an action. The vertex color is proportional to
health value, which ranges from green (high health) to red (low
health). In the first battle, there are zero red edges connecting the
player’s vertices. Therefore, the player managed to dispatch the
enemies without taking any hit. However, in the second battle, the
player struggled to overcome his enemy and lost a large amount of
health, which is reflected by the vertices colors.

Ifwe are interested in analyzing theplayer’s challenges, thenwe
should focus on sections where the player struggled to overcome
or had significant changes in the game state. As such, all instances
that the player’s hit point did not change or barely fluctuated are
not relevant to the analysis, which happens to be the case of the
player’s first battle. Therefore, we can omit all vertices in the graph
that have similar values with their neighbors by doing a collapse
based on similarity. In the example from Fig. 2, it would mean
collapsing the first fight entirely and grouping some of the vertices
from the second fight that shares the same color, resulting in a
graph similar to the one illustrated by Fig. 3.

In order to achieve the graph from Fig. 3, it is necessary to
compare each vertex with its neighbor, which is connected by an
edge, to omit similar states. If the vertices’ values are similar for
the specific game attribute being analyzed, they can be collapsed
into a single vertex. Since the objective is to omit all similar states,

Fig. 2. Two combat examples, each marked by a yellow box. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

Fig. 3. Graph from Fig. 2 after the similarity collapse.

it is necessary to go beyond the vertex first neighbor. If any of the
vertices in the collapse group have an edge to a vertex outside of
the collapse group and that vertex has a similar attribute value to
those in the group, then it is added to the collapse group. Thus, the
collapse group will keep growing until a significant change of state
is detected.

We initially considered using Dimension Reduction algorithms
[18,19] to achieve this type of information reduction. However,
Dimension Reduction works by removing the data and can lead to
information loss if not handled with care, which results in a loss of
flexibilitywhenmanipulating and examining the gamedata during
visual exploratory analyses. Thereby, we decided to use density
clustering algorithms to achieve this information reduction while
at the same time maintaining the flexibility to manipulate and
handle the data since the information is only clustered and not
removed. Thus, the analyst can easily expand a cluster to explore
the collapsed data. Furthermore, clustering algorithms can be used
to create different levels of detail through successive clustering of
the game data, enabling different overviews of the tracked data.

Similarly, we also considered using spatio-temporal clustering
algorithms as a basis of our heuristics. However, there is no signif-
icant difference between density-clustering algorithms to spatio-
temporal clustering algorithms since the spatial and temporal vari-
ables can be easily inserted in the distance function. This is basi-
cally what the ST-DBSCAN [20] and other similar spatio-temporal
algorithms do.

We propose the usage of DBSCAN clustering algorithm as a
basis to achieve this type of collapse, using the distance function
to determine the similarity between vertices. Since provenance
graphs are predominantly composed of vertices with two or three
neighbors, we had to discard the density parameter in order to use
this type of clustering algorithm. In the DBSCAN algorithm, the
similarity between values is then defined by the epsilon (ε) pa-
rameter, which is used by the distance function (e.g., Euclidian dis-
tance). This epsilon must be related to the attribute (or attributes)
being used for analysis and be an absolute value. Furthermore, the
DBSCAN algorithmdecides if neighboring vertices should belong to
the same collapse group by comparing their distances (e.g., values)
with the epsilon. Note that a vertex is only a neighbor of the collapse
group if it has an edge connecting it to the group. As such, the
collapse group only expands through the edges that connect the
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vertices in the graph and, therefore, the temporal sequence of
events is always preserved because a collapse group can never be
a disconnected sub-graph.

When taking out the density parameter fromDBSCAN, the clus-
tering algorithm could face situations where it would collapse the
entire graph in a single node when vertices had small and gradual
variations in their values (e.g., crescent graphs, monotonic graphs).
To mitigate this problem, we propose an adaption for the DBSCAN,
named as IC (inter-cluster verification), to extend the heuristic
that defines the collapse groups. Instead of comparing only with
the closest neighbor (in the case of graphs, the direct neighbor),
the comparison would also be made with the entire group due to
small variations that each vertex canhave in its valuewithout caus-
ing a change of state. Thus, the epsilon must be checked against
the group’s minimum and maximum values before adding new
vertices. If adding new neighbor results in a difference between
values greater than the epsilon, then it is marked as a change of
state and the vertex is not added to the group, possibly implying
in the creation of a new group with this new vertex and the
similar ones. This modification limits the cluster growth through
a distance restriction, imposing a variance limitation on the range
of possible values by always comparing with the farthest member
of the cluster instead of only the direct neighbor. Therefore, this
heuristic avoids creating a single cluster when the data contains
monotonic behavior.

To better formalize this process, consider G = (V , E) as a
directed graph where V = {v1, v2, . . ., vn} | vi, 1 ≤ i ≤ n, represents
an event related to an element of the game (e.g., player or enemy)
and E = {e1, e2, . . ., em} | ej = (u, v), 1 ≤ j ≤ m, u ∈ V , and
v ∈ V , represents the influence of an event into another, which
indirectly indicates the chronological order of events in the game.
Furthermore, consider that A = {a1, a2, . . . , ak} | al, 1 ≤ l ≤ k,
represents a numeric attribute used for analysis of each vertex.
Moreover, consider S to be a similarity collapse set of connected
vertices for a specific attribute and min (S, a) and max (S, a) as the
minimum andmaximum values for the attribute a ∈ A considering
all vertices in the collapse group S . A new vertex x ∈ V is added
to a collapse group S if and only if abs (max (S ∪ {x}, a ) − min (S
∪ {x}, a)) < ε. This change is made only in the distance function
inside the neighborhood query, which is responsible for returning
all reachable points within the epsilon restriction, according to the
DBSCAN algorithm. Thus, instead of comparing the distance with
only the direct neighbor, the IC variant of the DBSCAN algorithm
considers all the vertices already in the collapse group.

For example, consider G = (V , E) where V = {v1, v2, v3, v4, v5}
and E = {(v5, v4), (v4, v3), (v3, v2), (v2, v1)}. All vertices have only
one attribute with the same value, but v3 that has the double of
the value of the other vertices. Let us define the epsilon to be one
standard deviation of the vi values. By running the IC variant, it
would return three disjoint sets: S1 = {v1, v2}, S2 = {v3} and S3 =

{v4, v5}. The reasoning for this is: first, it adds v1 then v2 to S1.When
trying to add v3 to S1, the difference between values is greater than
the established threshold. Thus, v3 is not added to S1. Since v2 has
no incoming neighbor beside v3, no other vertex is added to S1.
The same happens when evaluating v3 against v4 and thus only v3
belongs to S2. When starting with v4, the algorithm inserts v4 in S3
and evaluates v5. Because the difference between v5 and v4 is lesser
than the epsilon, v5 is added to S3. Since v5 has no other neighbor,
the algorithm ends and returns S1, S2, and S3. By using the proposed
modification, nearby vertices in the graph that have similar values
are collapsed into a single vertex, reducing the graph’s overall size
by creating clusters of similar information.

We also propose the VE (Variable Epsilon) adaptation to be
incorporated in the DBSCAN: instead of using a single universal
epsilon to define the collapse sets, each set defines its own epsilon
and then adapt it as the set grows in size. Thus, each set initially

uses the universal epsilon until it reaches a certain size. After
reaching the size threshold, each set computes its own epsilon
based on the current members of the set. This set epsilon is then
used for further insertions in its respective set and each set have
their own epsilon based on their members. If a new element is
inserted in the set, then that set’s epsilon is recalculated based in its
members, including the newest one. This allows for each set to only
have members that orbit around the cluster’s defined epsilon and
allow each cluster to have its own defining characteristic that can
be completely different from another cluster. This might be useful
when the data distribution is more erratic but controlled in some
sort, containing sections of very close vertices (e.g., 1.01, 1.0095,
1.015, 1.02) and others that are more distant from each other but
still orbit around some value (e.g., 20, 24, 19, 22). However, since
the epsilon can change as the set grows, then in a way it would
be adapting accordingly to its surroundings, providing a controlled
variation of its own epsilon. For the first prototype, we based the
epsilon on standards deviations of the values from all members of
the collapse set, including the new additions, which will provoke
slight variations in the epsilon. However, the bigger the set, the
lesser impact the new additions will have in the set’s epsilon.

These two new variants described above (IC and VE) can also
be incorporated together in theDBSCAN, generating three different
variants: (1) inter-cluster verification with a fixed epsilon (IC),
(2) no inter-cluster verification with a variable epsilon (VE), and
the combination of both, resulting in (3) inter-cluster verification
with a variable epsilon (ICVE). The ICVE (Inter-Cluster verification
with a Variable Epsilon) provides, even more, cluster growth
control since new members need to be within epsilon distance of
the farthestmember of the cluster. However, it also allows for each
cluster to have its own characteristic, creating a more knit group
of likeness. Furthermore, we defined the initial epsilon to be based
on the standard deviation of the attribute values from the graph
being analyzed. Similarly, the algorithmswith variable epsilon also
updated their epsilon values based on the standard deviation of the
cluster.

3.1. Implementation

We implemented the DBSCAN algorithm and all its three vari-
ations presented in the previous section in Java using the graph
data format from Prov Viewer [11]. Prov Viewer1 is a provenance
visualization tool that uses the JUNG framework for rendering
game telemetry data. Prov Viewer uses vertices to represent actions
and events that occurred during the game along with the actors
(i.e., characters) that executed these actions. The edges of the graph
represent the causal relationships between vertices, including the
chronological order of events and other influences that occurred.

Prov Viewer can execute the similarity collapse when visu-
alizing the graph by calling one of its collapse algorithms with
the desired attribute or a distance metric that involves multiple
attributes. The selected collapse algorithm returns the collapse sets
to Prov Viewer, which in turn updates the graph visualization by
executing the collapse for each set, creating a cluster vertex that
assembles together all vertices of the set.

4. Evaluation

In this section, we assess the proposed clustering algorithms for
provenance graphs and determine which is the most appropriate
algorithm to meet our goals. The algorithms try to detect similar
sequences and summarize them into a single collapse, shrinking
the graph to showonly vertices that are semantically different from

1 https://github.com/gems-uff/prov-viewer.

https://github.com/gems-uff/prov-viewer
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each other. Each adaptation proposed in this paper accomplish this
feat in different ways.

We elaborated two distinct experiments in order to answer our
research question (RQ: Which type of similarity summarization is
an effectivemethod for reducing the information to be analyzed?):
(1) an automated experiment and (2) an experiment with human
judges. The experiment with human judges uses graphs from the
automatic experiment and real provenance data from a single
game session. These two experiments assess the usage of the DB-
SCAN algorithm and its three variations to summarize provenance
data. In both experiments, we are evaluating the effectiveness of all
three clustering algorithms in termsof graph reduction and seman-
tic preservationusing theDBSCANalgorithmas a baseline.Weused
a synthetic oracle in the first experiment to automatically evaluate
each algorithm through precision, recall, and F-measure metrics. A
synthetic oracle is an artificially created oracle for generic graph
clustering. This allows us to measure the effectiveness of each
algorithm in a broader aspect, using thousands of graphs for the
evaluation.

However, due to the synthetic nature of the experiment and
the very individual nature of the definition of ‘‘what is the best
summarization’’, we also devised a second experiment that uses
a smaller set of graphs to evaluate the four algorithms. Unlike
the first experiment, which uses a synthetic oracle, the second
experiment uses human judges to decide which algorithm is the
most appropriate for each situation. However, we need to use a
smaller set of graphs due to time constraints and to avoid burnout
of the judges. Nonetheless, in both experiments, we evaluated
different types of provenance graphs and two different numeric
behaviors: (1) random noise and (2) monotonic noise.

In a brief study, we narrowed down the types of graphs that
provenance information can be produced based on different game
genres into three categories: (1) Directed Acyclic Graphs (DAG), (2)
Tree Graphs and (3) Linear Graphs. DAG is the most common form
of provenance graph. Role-playing games, action, racing, sports
games, and any other game with multiple actors will generate a
DAG graph. However, provenance graphs can also result in a tree-
graph under special occasions. For example, a provenance graph
can be a tree when the information is still being gathered or when
analyzing the provenance data frommultiple sessions at the same
time to know how and where each player experience diverged.
Lastly, the provenance graph can be a linear-graph when only
one agent/actor is involved and past actions have no influence
on the current action, besides the most recent one. Games that
might generate a linear-graph are puzzle games. Linear graphs can
also be generated when there are multiple agents but they do not
interact with other agents. When this occurs, the resulting graph
will contain multiple disconnected linear graphs. Lastly, analyzing
gamedata strictly froma single actormight generate a linear graph.

Each graph category was based on a template (a graph of the
clustering result) and different graphs were generated through the
addition of noises in order to verify if the algorithmwould correctly
omit these added elements through collapses. These templates
were based on already known graphs for each category being eval-
uated in this experiment and represent the most common graph
structures that can be resulted from real tracked provenance data.
The template vertex values were randomized, following a uniform
distribution with integer values ranging from negative to positive
values, thus simplifyingmathematical calculations andminimizing
numerical precision errors. Moreover, each template vertex also
represents a collapse resulting from the ideal clustering and its
value could be seen as themedian of the cluster. The inserted noise
vertex act as a reverse engineering of the collapse, where each
inserted noise would represent an element that belonged to the
same collapse as the template vertex.

The noise insertion in the graph is made through insertions of
new vertices (and edges connecting these vertices) with values

between two existing vertices of the template graph. This type of
insertion preserves the original graph layout since new vertices
will always be between two existing vertices. Considering that
each template vertex is used as the oracle for the summarization
and represent a collapse group, then the added noise is required
to have a compatible value to belong to the collapse group. Other-
wise, the original premise that each template vertex represents a
collapse of similar vertices would be invalid.

As mentioned before, we divided the experiment graphs to
include two different numeric behaviors for the graphs. For the
random noise values, the insertion of new noise vertex in the
graph was accomplished by five steps: (1) define n, which is the
number vertex to be added as noise; (2) for each noise vertex to
be added, randomly pick a template vertex; (3) calculate the min-
imum distance to the closest template vertex neighbor from the
selected template vertex and define this distance as three-sigma;
(4) generate the randomvalue for the noise vertex using aGaussian
distribution, where the median is the selected template vertex
value and three-sigma is the minimum distance; and (5) create
the noise vertex with the generated value and randomly insert it
between the selected template vertex and one of its neighbors,
inserting new edges accordingly.

We choose the Gaussian distribution because it allows generat-
ing values that are considered similar to the template vertex due to
the probabilistic nature of the distribution. The minimal distance
from the template vertex to another template vertex is the limiter
in the Gaussian distribution (or the three-sigma), ensuring that
99.7% of the generated values will orbit around the median (tem-
plate vertex value) with the maximum distance of three-sigma,
according to the 3-sigma rule. Furthermore, the minimal distance
also ensures that the initial premise is valid, which has a sequence
of similar values. If we use a value higher than the minimum
distance, then its value would be closer to another template vertex
neighbor than the selected template vertex. This would either
result in a splitting point or encapsulate the other template vertex
inside the same collapse group if there aremanymore noise vertices
with values higher than theminimumdistance.We can impose this
restriction because we are simulating an expansion of a collapsed
group to try to reverse engineer the original members that led to
that collapsed (template) vertex. Nonetheless, outliers are possible
to be generated, since the 3-sigma rule only guarantees 99.7% of
the generated values to be lower than the minimum distance.
However, they will be few in numbers and sparse in the graph,
which basically describes the meaning of an outlier.

The monotonic noise behavior is slightly different and was
accomplished by only four steps: (1) randomly select a template
vertex; (2) randomly select an edge that connects the selected
template vertex; (3) generate a random value that is between the
vertices’ values from the edge; and (4) insert the noise vertex
with the generated value between the vertices that belongs to
the selected edge, replacing the edge with new edges to correctly
connect the three vertices. The generated noise values will always
follow the original behavior of the two original template vertices:
if the second template vertex value is higher than the first, then
all noise values between those two template vertices will follow
an increasing function, otherwise, they will follow a decreasing
function. The resulting graphs have smoother value transitions due
to the monotonic nature of the noise value generation.

4.1. Automatic experiment execution

In order to answer the proposed research question, wemust an-
alyze the reduction of the graph size after applying the automatic
collapse of the graph and verify if the non-collapsed vertices repre-
sent events that have had great variations in the state. This analysis
is done through the precision, recall, and F-measure metrics to
evaluate the effectiveness of automatic collapse by comparingwith
the synthetic oracle that was used to generate the graphs.
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4.1.1. Materials and method
This experiment was executed through the use of synthetically

generated provenance graphs as described in the previous section.
We evaluated the three different categories of graphs to know
which situations the proposed algorithms were more effective,
considering that different domains can lead to graphs of different
types. With this experiment, we can map which domains are most
appropriate for each heuristic. Thus, we calculated the dependent
variables (precision, recall, and F-measure) when applying the
algorithm in each graph category (Direct Acyclic Graph, tree, and
linear). Moreover, we also analyzed the results with two different
numeric behaviors for the noise insertion (random and mono-
tonic). This results in six different categories to be analyzed: (1)
randomized DAG; (2) randomized tree; (3) randomized linear; (4)
monotonic DAG; (5) monotonic tree; and (6) monotonic linear.
In this experiment, we compare the collapse suggested by each
algorithmwith the template graph (i.e., the synthetic oracle, which
is an artificially created oracle), which represents the collapse
baseline. We measured the dependent variables (precision, recall,
F-measure) for each of the six different categories. The precision
metric tells us how many of the generated collapse groups were
correct in relation to theOracle. The recallmetric tells us howmany
of the correct collapse groups were generated by the algorithm.
Finally, the F-measure tells us the overall performance of the
algorithmbased on the compromise of precision and recallmetrics.

We defined a cluster to be correct based on the oracle if the
proposed collapse group had only one oracle (i.e., template) vertex
in it. For example, if we used a template graph with ten template
vertices to generate the noise graph and the algorithm collapsed all
vertices from the noise graph into a single group, then therewill be
a 0% precision since it had zero correct collapse groups out of ten,
and its recall would also be 0%.

We ran seven different iterations for each one of the six cate-
gories. Each iteration had forty template graphs that each spawned
five noise graphs, totaling in 200 noise graphs to be analyzed
for each iteration. The size of the noise graph grew by a factor
of two with an initial size of ten times the number of vertices
in the template graph (i.e., 10×, 20×, 40×, 80×, 160×, 320×,
640× the size of the template graph). All four algorithms analyzed
the same graph, in parallel, before generating the next graph of the
experiment. This allows us to better measure their effectiveness
since all algorithm result was based on the same graph used by the
other three algorithms.

The experiment execution plan was divided into three stages:
(1) Train the algorithms through parameter tuning in order to find
the optimal configurable parameter values for each category, (2)
execute the experiment using the resulting parameter values from
stage 1, and (3) analyze the results. We trained all algorithms for
each category in order to find the best values for their configurable
parameters to maximize their F-measure result. Each training ses-
sion used a smaller sample of randomized graphs. Nevertheless,
the training session also used multiple template graphs to spawn
different noise graphs during each iteration. The number of it-
erations was also reduced, removing some of the intermediate
iterations for the training session.

During the second stage,we analyzed200different noise graphs
in each one of the seven iterations, generating a total of 1400
graphs for each category. Thus, for the randomized behavior, we
analyzed the results from all four algorithms from 4200 different
graphs (i.e., 1400 DAG, 1400 trees, 1400 linear). Analogously, we
also analyzed other 4200 different graphs for the partially mono-
tonic behavior, using the same structure of seven iterations, where
each iteration had forty different template graphs and five noise
graphs spawned from each template graph. Table 1 describes the
graph size used during each one of the seven iterations of the ex-
periment for both randomized and partially monotonic behaviors.

Table 1
Graph size for each iteration of the automatic experiment.

Graph size (vertices)

Random noise Monotonic noise

DAG Tree Linear DAG Tree Linear

Ite
ra
tio

n

1 50 90 100 50 90 100
2 100 180 200 100 180 200
3 200 360 400 200 360 400
4 400 720 800 400 720 800
5 800 1440 1600 800 1440 1600
6 1600 2880 3200 1600 2880 3200
7 3200 5760 6400 3200 5760 6400

The results of each algorithm were compared with the synthetic
oracle, which is the template graph used to generate the noise
graph that was given to the algorithms, to calculate their precision,
recall and F-measure values.We then used F-measure to define the
most qualified algorithm for each analyzed situation.

4.1.2. Results and discussion
First, we ran a normality test to verify if the data followed a

normal distribution. According to the results of the Shapiro–Wilk
test [21], the normality assumption was violated for all obtained
results from the experiment since each dataset had a p-value <
2.2 × 10−16. Therefore, non-parametric tests were adopted for
statistical analysis. The non-parametric test used to compare the
means was Wilcoxon Matched-Pairs Signed-Rank test. Although
there are other non-parametric tests, such as Chi-2 and Kruskal–
Wallis, Wilcoxon Matched-Pairs Signed-Rank was chosen because
it compares two means from two different samples against the
same alternative hypothesis over the same (paired) observation
(i.e., graph), which fits our experiment design.

Considering we have four different algorithms to compare and
we decided to useWilcoxon test, it is necessary to run six analyses:
(1) DBSCAN vs. IC; (2) DBSCAN vs. VE; (3) DBSCAN vs. ICVE; (4)
IC vs. VE; (5) IC vs. ICVE; and (6) VE vs. ICVE. We decided to
use the Bonferroni correction in the alpha-value to compensate,
which translates to α = 0.00833, since we have six comparisons.
We adopted the following format for the hypothesis in our tests,
naming alg1 as the first algorithm used in the comparison and alg2
the second algorithm used in the comparison:

H0 : µalg1 = µalg2
H1 : µalg1 ̸= µalg2

It is possible to assert that there is a difference in mean if the
null hypothesis is rejected. The null hypothesis is not rejected if
the p-value is greater than the significance level α. In other words,
therewould not be enough evidence to assert a difference between
results. When the null hypothesis is rejected (p-value < α), we
can use the box plots to determine the superior method. All tests
in this section were made using R, which is an open-source tool
commonly used for statistical analysis.

The box plots of Fig. 4 summarize the distributions of all four
approaches for the 8400 analyzed graphs. In these graphics, the
boxes represent part of the central distribution, which contains
50% of data. Thus, the data scattering is proportional to the box’s
height. A black line inside the box represents themedian. This way,
25% of the data is between the box’s edges and the median. The
median location indicates if the distributions are symmetrical in
the experiments. Lastly, circles indicate outliers. The box plots for
each algorithm measures the precision, recall, and F-measure of
the algorithms.

The box plots show the VE algorithm having the lowest median
(0.288) and IC with the highest median (0.414) for F-measure.
However, all algorithms have high F-measure amplitudes. Looking
at the precision box plot, we can see that IC has the highest median
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Fig. 4. Box plot of the automatic results for each algorithm.

Table 2
F-measure results from Wilcoxon test and Cliff’s Delta effect size for the automatic experiment. The sign between parenthesis represents if the CI is positive or negative
when comparing the algorithms.

F-measure DBSCAN vs. IC DBSCAN vs. VE DBSCAN vs. ICVE IC vs. VE IC vs. ICVE VE vs. ICVE

p-value 2.2 × 10−16 (−) 1.291 × 10−16 (+) 2.2 × 10−16 (−) 2.2 × 10−16 (+) 2.2 × 10−16 (+) 2.2 × 10−16 (−)
Effect size −0.2587116

(small)
0.08436762
(negligible)

−0.1062623
(negligible)

0.3150409
(small)

0.1450793
(negligible)

−0.1806847
(small)

as well. However, IC has the lowest recall, while VE and ICVE
have the highest recall of all algorithms, with ICVE winning due
to his higher median at the maximum value. By analyzing the p-
values from Table 2, the IC algorithm provided higher F-measure
results than the other three algorithms (p-value < α), even after
applying the Bonferroni correction. This is also supported by the
effect size calculated using Cliff’s Delta method, where IC has a
small difference from DBSCAN and VE.

Considering the high amplitude of all algorithms, we decided
to split the analysis into two groups: one considering only random
noise graphs and another for using the monotonic noise graphs.
Fig. 5 illustrates the box plots of both groups for each algorithm.
The box plots show that each algorithm had considerable different
results for each group, especially the DBSCAN algorithm, showing
worst results when using random noise and a much better result
when dealing with monotonic noise. These observations can be
confirmed by looking at Table 3, showing that DBSCAN indeed
had worse results with random noise graphs and better results
than VE and ICVE algorithms with monotonic noise. However, the
ICVE algorithm proved to be better with random noise due to its
higher recall and above average precision, while the IC algorithm
proved to be better with monotonic noise since it got a higher
precision in comparison with the rest. This is supported by the
effect size between the algorithms shown in Table 3. The high
amplitude of the algorithms, even after dividing into two groups
(random and monotonic noise) is due to the seven iterations used
in the experiment, which increases the graph sizes by doubling the
graph’s size from the previous iteration.

These results indicate that the IC and ICVE algorithms pro-
vide overall better collapses than the other algorithms, includ-
ing the DBSCAN, in both random and monotonic noise graphs,
independently of the graph size. Thus, we can conclude that the
inter-cluster verification does indeed provide better clusters when
considering DAG, Linear, or Tree graphs due to its nature — it
better adapts to the neighborhood by shaping the cluster through
distance checks to the farthest existing member already inside the
cluster instead of checking only the direct nearest member of the
candidate neighbor. This results in a behavior that creates close-
knit clusters and consequently avoids overgrowing the cluster to
encompass the majority of the graph when nodes have small and
progressive variations in relation to neighbors. Meanwhile, the
DBSCAN compares the candidate neighbor only with the nearest

member of a cluster and therefore tries to compensate this defi-
ciency by reducing the distance threshold in order to create correct
clusters according to the oracle. This results in an increased recall
at the cost of precision, since it will create many clusters and only
a few of these are equivalent to the ones in the oracle. On the other
hand, the ICVE stayed behind the IC algorithm because it refined
too much in the cluster construction, resulting in more close-
knit clusters than necessary and, consequentially, farther from the
oracle than IC. This is even more apparent in the monotonic noise
graphs by looking at the effect size metric, where the IC algorithm
provided the best results in comparison to all the other algorithms
with a good margin. However, the variable epsilon approach (VE),
when used alone, proved to be detrimental and achieved only bet-
ter results than the DBSCAN when dealing with monotonic noise,
which would correlate to a graph with smooth value transitions.

4.1.3. Threats to validity
We identified internal and external factors that may influence

the results. In relation to internal validity, the graph generation al-
gorithm and noise insertion can affect the results because they are
all synthetic in nature. Another threat is related to the automatic
evaluation of the generated clusters from each algorithm with the
template graph. We are not aware of other work that proposed
such method of automatic analysis, which synthetically expand
graphs with noise insertion and then use clustering algorithms in
order to omit thenoise vertex, trying to return to the original graph,
using precision, recall, and F-measure to evaluate each algorithm
in order to determine the best solution. Lastly, another threat is
related to the training sessions of the algorithms. All algorithms
were trained for each category with varying graph sizes, selecting
the best overall parameters values for it depending on the graph
type and noise insertion (i.e., random or monotonic). We did not
split the training sessions to find the best configurations for each
different graph sizes used by the iterations of each category. This
can change the results of the algorithms when the graph size
differs too much between iterations, especially when comparing
the initial iterations with the two last iterations, where the graphs
have thousands ofmore vertices than the previous iterations. Thus,
the training session selected the parameters that provided the best
overall quality for clustering the graph independently of its size,
which could have clusters differing from a few dozen vertices in
small graphs to hundreds of vertices in larger graphs since only the
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Fig. 5. Divided box plots of the automatic experiment for the random and monotonic noise.

Table 3
F-measure results from Wilcoxon test and Cliff’s Delta effect size for the automatic experiment divided into two groups: Random and Monotonic noise.

F-measure DBSCAN vs. IC DBSCAN vs. VE DBSCAN vs. ICVE IC vs. VE IC vs. ICVE VE vs. ICVE

Random noise p-value 2.2 × 10−16 (−) 2.2 × 10−16 (−) 2.2 × 10−16 (−) 2.2 × 10−16 (+) 2.2 × 10−16 (−) 2.2 × 10−16 (−)
Effect size −0.3997387

(medium)
−0.1289706
(negligible)

−0.4000328
(medium)

0.2138566
(small)

−0.08052234
(negligible)

−0.2605855
(small)

Monotonic noise p-value 2.2 × 10−16 (−) 2.2 × 10−16 (+) 2.2 × 10−16 (+) 2.2 × 10−16 (+) 2.2 × 10−16 (+) 2.2 × 10−16 (−)
Effect size −0.3449252

(medium)
0.2465062
(small)

0.1366312
(negligible)

0.5193248
(large)

0.4567062
(medium)

−0.1076311
(negligible)

noise varied in each iteration, while the number of correct clusters
in the Oraclemaintained the same independently of the graph size.
This behavior is reflected in the high amplitude in all algorithms
and resulted in having similar precision and recall in all algorithms,
even after splitting the experiment results between the two noise
groups (random and monotonic). However, it might be possible to
achieve better tuning for each algorithm by changing some of the
factors used during the training session. For example, we aimed at
maximizing the overall F-Measure for each algorithm and graph
type, independently of the graph size. Furthermore, since training
is an exhaustive and time-consuming operation, we also limited
the training sample size to only 5 iterations, with 20 oracle graphs
in each iteration and each oracle graph generating only three noise
graphs to be used for training. Itmight be possible to achieve better
tuning by increasing the training sample size and specializing each
training session to a specific graph size category.

Regarding external validity, we mitigated sample bias by ran-
domly generating multiple different template graphs for each it-
eration of the experiment. Each template graph was also used to
spawn multiple noise graphs, where each one was used by all
four clustering algorithms, mitigating any bias in the algorithm
evaluation since all four algorithms were using the same noise
graphs during each step of the experiment.

4.2. Experts experiment execution

Our research question aims at identifying the most effective
similarity summarization algorithm for reducing the informa-
tion to be analyzed, while still preserving the graph semantics.

To do so, we also executed experiments with human judges to
evaluate each one of the four algorithms in order to select the
most appropriate, based on their opinion, for each category of
graph.

4.2.1. Materials and method
In this experiment, due to the nature of using human beings as

an oracle, we had to use a smaller set of graphs with a hundred
vertices instead of using thousands of graphs with thousands of
vertices like in the previous experiment. We used the same types
of graphs from the automatic experiment: three graph types (DAG,
tree, linear) and two graph characteristics (random andmonotonic
noise). The combination results in six different categories to be
analyzed by each subject: (1) randomized DAG; (2) randomized
tree; (3) randomized linear; (4) monotonic DAG; (5) monotonic
tree; and (6) monotonic linear. Furthermore, we used the same
graph generation technique described in the previous section to
generate all synthetic graphs, with only one numeric attribute for
the vertex value. Thus, the similarity between neighbor vertices
would be based only on this numeric value.

We decided to use two different samples for each one of the
six categories to reduce bias, resulting in having the judge to
look and analyze 48 graphs in total, since each sample consists of
the original graph and other four collapsed graphs, one for each
algorithm. However, at the same time, we could not increase this
number to three samples since each new sample would result in
an additional 24 graphs to be analyzed by the judge. Then, the
subject selects one of the four collapsed graphs that represents, in
his opinion, a good collapse for that specific case.
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Fig. 6. Example of a sheet given to the judge for his analysis of the algorithms. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

In order to reduce the length of the experiment, we previ-
ously trained all algorithms using the same principle from the
automatic experiment since we were also using synthetic graphs
and also considering the graph sizes that were going to be used
in this experiment. Thus, the judge does not need to fine-tune
each algorithm for each graph and only need to select the al-
gorithm that generated the best result according to his opinion.
We also used gradient colors instead of numbers to represent
the vertex’s value in the graph, in order to make easier for the
subjects, resembling what a tool such as Prov Viewer would show.
Red gradient represents negative values, green gradient repre-
sents positive values, and white gradient represent values close to
zero.

We presented all the graphs in a comprised way, with the
original graph at the top left. Fig. 6 illustrates the format used in
the experiment, where the top left graph (mostly using only green,
red, and white gradients) is the original graph and the other four
colored graphs are the summarization results from each algorithm.
Note that each output section of the sheet has two graphs: a graph
with colored borders, showing the composition of each collapse
group, and a summarized graph, which is the result after following
the proposed collapses. Sequential vertices that had the same
border color belong to the same collapse group. For example, in the
output ‘‘C’’ from Fig. 6, we can see a chain of blue-colored vertices
near themiddle of the graph. All these blue-colored vertices belong
to the same collapse group since they all share the same border
color. Thus, each colored chain of vertices represents a different
collapse group. Vertices with colored borders that appear in the
smaller summarized graph represent outliers, which are collapse
groups comprised of only a single vertex. Moreover, the size of the
vertex in the summarized graph is proportional to the number of
vertices in the collapse group that generated it. Thus, we can see
in the same example that the blue chain of vertices from letter
‘‘C’’ generated a big green vertex in the summarized graph due
to the high quantity of vertices in the chain and their predomi-
nant color in the original graph is a bright green. We decided to
use these printed versions of the graph to expedite the analysis
process, allowing the judge to compare side-by-side the different
outputs.

For this experiment, we decided to use a simple vote process:
each subject should point which category represents the most
appropriate algorithm in his opinion. Thus, the experiment execu-
tion was divided into two stages: (1) a pilot experiment to detect
any issues that needed to be addressed and (2) the experiment
itself. During the pilot, volunteers were required to analyze each
graph and select one of the four algorithms, picking the one that
proposed the most appropriate collapse group s in his/her opinion.
The pilot experiment was applied to three volunteers from the
university.

In order to avoid biased answers,we randomized the algorithms
order, forcing the subject to analyze all the four algorithms’ out-
put. We also adopted a speak-aloud approach in order to identify
how each volunteer reached their final decision. Their recorded
decision-making process can also be used to fine-tune the algo-
rithms in the future. We incorporated this approach because the
volunteers were not giving any feedback to back up their selection
during the pilot.

Considering that all twelve graphs were synthetic, we decided
to add two new graphs in the experiment. These graphs were real
provenance graphs generated from a gameplay session of a racing
game using the PinG approach. Both provenance graphs belonged
to the same game session, and thus had the same vertices. They
differentiated only in the displayed graph layout. The first graph
used a simple graph layout (the same used for all the previous
graphs) where we omit all the domain information, displaying it
as another synthetic domain-less graph, with each vertex having
a single numeric value without any semantics. The second graph
used a spatio-reference layout, placing all vertices in their spatial
location when the action represented by the vertex was executed.
Moreover, we explained to the volunteer the semantics of this
graph, as well as the domain it belongings. By asking the volunteer
to analyze the same provenance graph twice, but having a different
perception from each, we were able to discern if the graph domain
and spatio-referencing of the data generated a significant impact
in the summarization process.

Lastly, wemade a final change in the experiment by introducing
a post-experiment questionnaire,2 designed to be answered at the

2 All questionnaires are available at: https://github.com/gems-uff/prov-viewer/
tree/master/Documents.

https://github.com/gems-uff/prov-viewer/tree/master/Documents
https://github.com/gems-uff/prov-viewer/tree/master/Documents
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Fig. 7. Volunteers’ characterization chart.

Table 4
Volunteers’ characterization table.

Subject Academic education Conclusion year Graph knowledge

P1 Master’s program 2017 No formal knowledge
P2 Ph.D. 2010 Studied
P3 Master’s degree 2017 No formal knowledge
P4 Ph.D. 2012 Studied
P5 Master’s degree 2019 Studied
P6 Ph.D. 2011 Studied
P7 Master’s degree 2016 Studied
P8 Ph.D. 1998 Expert
P9 Master’s program 2017 Studied
P10 Ph.D. 2014 Expert
P11 Master’s degree 2017 Read about
P12 Ph.D. 2003 Read about
P13 Ph.D. 1998 Expert
P14 Master’s degree 2017 Studied
P15 Master’s program 2017 Read about

end of the session and allowing us to gather additional feedback
and further insights from the subject that were not captured by
the talk-aloud strategy. This questionnaire included two questions
related to the final two real provenance graphs, allowing us to
verify if the domain information had any impact on the analysis.

After changing the original experiment structure used during
the pilot, the resulting experiment plan was divided into three
stages: (1) Generating the graphs, (2) running the experiment with
judges, and (3) analyzing the results. We executed the first stage
before running the experiment. In this stage, we trained all the
algorithms for each category. Then, we generated two graphs for
each category and ran the algorithms for each graph, creating their
corresponding paper sheets with the original graph and the four
different outputs.

The next stage was the experiment execution with the judges.
We applied the experiment with fifteen volunteers closely related
to computer science. Fig. 7 illustrates the characterization of the
judges by their degree. It is important to note that three of the Ph.D.
volunteers were considered specialists in graphs. As we can see by
looking at this figure, 47% of the volunteers had a Ph.D. degree and
were professors in the university. The remaining volunteers were
divided in 33% having the Master’s Degree and currently working
on their Ph.D. degree and the remaining 20% being students under
the master’s program. Table 4 shows in more detail the character-
ization of each volunteer.

Each experiment had an average duration of one hour and a half
andwas conducted individually due to the talk-aloud strategy. The
volunteers analyzed 14 paper sheets, where each contained one of
the fourteen graphs and the resulting outputs from each algorithm
(as illustrated in Fig. 6), marking their answers in a spreadsheet.
The post-experiment questionnaire was handed to the volunteers
after they finished analyzing the 14 sheets.

The last stage of the experiment was the result analysis. We
performed a statistical analysis over the results by means of hy-
pothesis test in order to compare the obtained results of each

Fig. 8. Box plot of the judge’s results for each algorithm.

collapse algorithm. An important factor for the design of the exper-
iment concerns the definition of the significance level used during
statistical analysis. We used a confidence interval of 95%, which
translates to α = 0.05, where α is the probability of rejecting the
null hypothesis given that it is true (Type I error) [22].

4.2.2. Results and discussion
Fig. 8 summarizes the results of the experiment for all four

algorithms considering all twelve synthetic graphs analyzed by the
fifteen judges. By analyzing the box plot, we can visually see that
the IC algorithm had better results than any of the other three
algorithms, confirming the results from the automatic experiment.
The DBSCAN algorithm was ranked in the second position with
some situations almost reaching the median of IC. However, it is
only possible to assert this assumption by running statistical tests.

Similar to the automatic experiment,we ran a normality test us-
ing Shapiro–Wilk test [21] and noticed that the collected data does
not follow a normal distribution. Therefore, we once again used
theWilcoxonMatched-Pairs Signed-Rank test because it compares
two means from two different samples over the same observation
(e.g., graph), which fits our experiment design.

Again, we run six analyses to compare the algorithms: (1) DB-
SCAN vs. IC; (2) DBSCAN vs. VE; (3) DBSCAN vs. ICVE; (4) IC vs. VE;
(5) IC vs. ICVE; and (6) VE vs. ICVE. Considering thatwe are using six
comparisons, we also decided to use the Bonferroni correction in
this experiment, which translates to α = 0.00833.We adopted the
same format from the automatic experiment for the hypothesis in
our tests, naming alg1 as the first algorithmused in the comparison
and alg2 the second algorithm used in the comparison:

H0 : µalg1 = µalg2
H1 : µalg1 ̸= µalg2.

By analyzing the p-values, CI, and the effect size from Table 5,
we can see that the IC algorithm provided better results using α
= 5%, even after applying the Bonferroni correction. Therefore, the
null hypothesis was rejected in all comparisons involving the IC
algorithm. However, there is not enough evidence (p-value > α) to
assert the difference between results when comparing the other
algorithms to provide a ranking, only enough to know which of
all four is the best. This finding matches with our initial visual
analysis of the box plot from this experiment (Fig. 8), where we
could clearly see that algorithm IC had better results than all other
analyzed algorithms. Furthermore, this result also coincides with
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Table 5
Results from Wilcoxon test for the judge experiment. The sign between brackets represents if the CI is positive or negative when comparing the algorithms.

F-measure DBSCAN vs. IC DBSCAN vs. VE DBSCAN vs. ICVE IC vs. VE IC vs. ICVE VE vs. ICVE

p-value 0.008062 (−) 0.6741 (−) 0.1434 (−) 0.004673 (+) 0.002328 (+) 0.4568 (+)
Effect size −0.8611111

(large)
0.1666667
(small)

0.2291667
(small)

0.9236111
(large)

1
(large)

0.05555556
(negligible)

Fig. 9. Experiment results from each one of the categories in the experiment.

the initial findings from the automatic experiment, where the IC
algorithmwas also the one that had a highest F-measure. Thus, the
initial findings from both experiments are in tune.

However, if we examine the box plot closely,we can see that the
DBSCAN amplitude almost reaches the ICmedian. Thismightmean
that in some cases the DBSCAN can be at least equal to IC. If we
break down the results for each category, as illustrated by Fig. 9, we
can see a large difference between random and monotonic noise
results. The IC algorithm dominates inmonotonic noise graphs and
is adequate in random graphs, thus making it an ideal general-
purpose algorithm for summarizing provenance graphs. Mean-
while, the ICVE algorithm appears to be always inappropriate. The
judges did not like this algorithm because in most cases, as the
majority of the judges summarized, it is ‘‘too sensitive to changes
and creates too many different clusters, not summarizing much the
data’’ (P8).

Considering the random categories, the DBSCAN appears to be
only inappropriate when dealing with linear graphs. This occurred
because it overextended the reach of a cluster, grouping almost
half of the graph in a single cluster because it failed to detect the
slope variations (both increasing and decreasing), stopping only
when encountered an extremely sharp slope. As one of the experts
said (P13): ‘‘by identifying this entire region, I remove it from the
dispute’’ when he/she was referring to half the graph that the algo-
rithm failed to divide that was composed of a light green segment
followed by a dark green, then another light green segment and
ending with a whitish red segment. Despite VE showing to be
inappropriate with tree-graphs, the resulting clusters were very
similar to those from DBSCAN, showing small differences that led
them to not be chosen when in doubt between DBSCAN and VE.

Table 6 illustrates the statistical analysis of the Random Noise
graphs used in this experiment. We omitted the analysis of the
Monotonic Noise since the IC algorithm dominated in this situa-
tion. The results show that the IC algorithm is indeed better than
VE and ICVE algorithms. However, there is not enough statistical
evidence to make clains with the DBSCAN since the null hypoth-
esis was not rejected (p-value = 0.0855 > 0.00833). Overall, this
finding also matches with the ones from the previous experiment,
where IC algorithm proved to be better in both monotonic and
random noise.

Fig. 10. Expert’s results.

Fig. 10 illustrates the results only from the experts’ point of view
and Fig. 11 provides a summary of these results in the form of box
plots. None of the expert judges selected the ICVE algorithm in any
of the categories, corroborating that it is the least favorable algo-
rithm among the judges. This figure also shows that IC is generally
the most appropriate algorithm, with the exception when dealing
with the random tree category, where the DBSCAN showed better
results. Nonetheless, these results are similar to those presented
in Fig. 9, where the random tree was the only case when IC lost to
another algorithm, which was also the DBSCAN. However, despite
these observations for the random graphs, there are not enough
statistical data to determine the most appropriate algorithm for
each type of graph since each category only had two graph samples
and 15 human judges. Thus, having an external threat to validity
against generalization of the results and few data samples for each
graph type (i.e., only 30 and the ideal is at least 50 samples). Table 7
shows the statistical analysis, which corroborates our assumptions
of not having enough data for analyzing each graph type since
almost no one had the null hypothesis violated.

As mentioned before, all those 12 graphs were synthetic in na-
ture, although based on structures frequently found on provenance
generated from games. However, in the same experiment, we had
one real provenance graphwith two different visualizations,which
was based on a car game. We added this graph to have an initial
analysis of how the algorithmswould behave in a real scenario. The
first time it appeared in the experiment, the judges treated it like
any of the other synthetic graphs since the real game data looked
exactly like any other of the artificially generated graphs from
the templates and no additional information was given to them
regarding the origin of the graph. However, unlike the previous
graphs, the car’s provenance graph only contained green colored
vertices due to the nature of the game since the value represented
the car’s speed. Furthermore, since only the player was present,
the resulting provenance graph was from the linear type. Fig. 12
illustrates the results before and after revealing the details about
the graph, where ‘‘Linear-Car’’ represents the judges’ first interac-
tion with the graph, thinking it was a synthetic graph, and ‘‘Geo-
Car’’ represents their second interaction, where they had domain
information and the graph’s vertices were displayed over the race
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Table 6
F-measure results from Wilcoxon test and Cliff’s Delta effect size for the random noise of the expert experiment. Used Bonferroni correction (0.00833).

F-measure DBSCAN vs. IC DBSCAN vs. VE DBSCAN vs. ICVE IC vs. VE IC vs. ICVE VE vs. ICVE

Random noise p-value 0.0855 (−) 0.1721 (+) 0.0009764 (+) 0.002351 (+) 1.529 × 10−6 (+) 0.04288 (+)
Effect size −0.1555556

(small)
0.1
(negligible)

0.2111111
(small)

0.2555556
(small)

0.3666667
(medium)

0.1111111
(negligible)

Table 7
F-measure results from Wilcoxon test and Cliff’s Delta effect size for the random noise of the expert experiment divided into three groups: DAG, Tree, and Linear Graphs.
Used Bonferroni correction (0.00833).

F-measure DBSCAN vs. IC DBSCAN vs. VE DBSCAN vs. ICVE IC vs. VE IC vs. ICVE VE vs. ICVE

Dag p-value 0.3053 (−) 0.3014 (+) 0.03937 (+) 0.04117 (+) 0.002972 (+) 0.2986 (+)
Effect size −0.1666667 (small) 0.1333333 (negligible) 0.2333333

(small)
0.3
(small)

0.4
(medium)

0.1
(negligible)

Tree p-value 0.4413 (+) Error 0.005053 (+) Error 0.03551 (+) Error
Effect size 0.1333333

(negligible)
0.4666667
(medium)

0.4
(medium)

0.3333333
(medium)

0.2666667
(small)

−0.06666667
(negligible)

Linear p-value 0.001772 (−) 0.01403 (−) 1 (+) 0.4413 (+) 0.001772 (+) 0.01403 (+)
Effect size −0.4333333

(medium)
−0.3
(small)

1.853986 × 10−18

(negligible)
0.1333333
(negligible)

0.4333333
(medium)

0.3
(small)

Fig. 11. Box plot of only the three experts for each algorithm.

Fig. 12. Results from the real provenance graph.

track map, showing their exact locations. Fig. 13 also provides a
summary of these results in the form of box plots.

Surprisingly, almost half of the judges picked the ICVE algo-
rithm on the ‘‘Linear-Car’’ graph. However, all of them reported
difficulties when analyzing the graph due to the higher number
of vertices and also because all vertices were green-colored. After

Fig. 13. Box plot of both Linear and Geo car provenance graphs.

knowing the graph origins and what it represented, thirteen of
the judges selected another algorithm when analyzing the ‘‘Geo-
Car’’ graph, with the majority choosing the IC algorithm. As the
majority of the judges said, knowing additional data information,
such as domain, changed their perception because ‘‘the contexts
made me (judge P2) think about the causes of variation’’. Moreover,
the judges also agreed that, in this specific case, geo-referencing
the data helped them in their decision-making process because
‘‘the relative position of the vertices in relation to their neighbors
helps’’ (P8) when they were trying to see the speed difference be-
tween vertices due to their distance. Moreover, some judges were
also in agreement that ‘‘the context of the game shows that position
matters to analyze the number of curves (from the race track),which
impacts in the performance analysis (of the player)’’ (P1). However,
one of the experts (P10) said that he ‘‘abstracted the application’’
and ‘‘the additional information didn’t impact in my (his) analysis’’.
Nevertheless, that same specialist selected the IC algorithm in both
graphs (Linear-Car and Geo-Car). Fig. 14 shows the ‘‘linear-car’’
graph superimposed in the race track, which was shown to the
judges when explaining the graph’s domain and Fig. 15 show both
graphs presented to the judges for their evaluation. Notice that we
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Fig. 14. Provenance Graph from the racing game used in the experiment. Figure
(a) illustrates the ‘‘linear-car’’ graph superimposed in the race track, generating the
‘‘Geo-Car’’ visualization and (b) illustrates an example of one of the outputs from
the IC algorithms. Vertices color represent the car’s speed. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 15. Linear-Car and Geo-Car graphs presented to the judges. Both graphs are the
same as the only difference being in the vertex positioning. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

removed the background from Geo-Car after presenting it to the
judges so they could easily detect and contrast the vertices to select
one of the four collapses. However, they could consult the original
Geo-Cal graph (with the race track background) anytime.

These results point out that the IC algorithm provides overall
better collapses than the other algorithms in both random and, in
particular, monotonic noise graphs. However, when considering
only Random Noise graphs, the DBSCAN tied with the IC algorithm
and there were not enough data to determine which is the best
solution. These results match with the ones from the automatic
experiment, where the IC algorithm also proved to be the better
algorithm. Therefore, with the findings of both experiments, we
can assume that the new IC algorithm for clustering DAG, Tree, and
Linear graphs ismore adequate than the other algorithms. Further-
more, since the results from the automatic experiment matched
with the one using human judges, then we can also conclude that
this automatic validation is also a viable method for measuring
clustering effectiveness of the algorithms.

4.2.3. Threats to validity
Despite the care in reducing the threats to the validity of the

experiment, there are factors that can influence the results. In
relation to internal validity, the selection of participants can affect
the results because of the natural variation in human preference in
picking the answers, since there are no right or wrong answers in
this experiment. Furthermore, the experiment was executed with
volunteers, since they generally are more motivated for executing
tasks. Any volunteer could choose to be dismissed from the experi-
ment and be released earlier. One possible threat is related to each
individual perception of different colors and their shades in the
graph. Tominimize this problem,we also printed different versions
of the material for color-blind individuals. Nonetheless, one of the

experts in Visual Computing correctly remarked that the different
shades used (i.e., red, green, and white) could also be a threat due
to their different chromatic distance when analyzing the graphs.
Another threat is related to graph sizes used. Unlike the automatic
experiment, we used graphs that could be considered small, with
around a hundred vertices, in order to not confuse the volunteer
during the analysis.

5. Related work

Our related works were selected from those used by the game
industry for clustering and summarizing gameplay telemetry data
and other graph-based research for visualization of gameplay
data that uses some kind of clustering technique to group graph
nodes. We are only interested in this moment in using summa-
rization for noise reduction and aiding the visual exploration of the
graph.

Play-Graph [23] is a graph-based approach to formally describe
and visualize game session data by using a graph visualization.
It has multiple variables and their interrelations along with the
temporal progression of players. It uses spatial information to
render the graph in a game scene and cluster nearby nodes to form
a single node that provides statistical information in the scene’s
region (e.g., player race distribution at that location). However, its
clusteringmethod disregards temporal information and indiscrim-
inately cluster similar states that are spatially close, losing the real
sequence of events.

Another approach is Playtracer [24], which is a visual tool de-
signed to illustrate how groups of players move through the game
space. Thus, Playtracer aids the designer by showing commonpath-
ways and alternatives that players used to succeed or fail in their
tasks, identifying pitfalls and anomalies in the scene. However,
Playtracer does not take into consideration temporal information
or the actual game map. The temporal information would allow
stating the order of events in the game, shedding more light in
the player’s behavior, while the map of the scene would show
exactly where these pathways, pitfalls, and game anomalies were
in the game. Moreover, in order to solve problems related to the
number of visible states, Playtracer uses an aggressive technique
to cluster nearby states together to make a cleaner visualization,
disregarding sequence of events and thus forming cycles in the
graph.

Both Play-graph and Playtracer approaches are focused on
state-changes analysis and therefore deal with a different type
of game data, which is much coarser grained than event-based
approaches. Furthermore, due to the different type of telemetry
tracking (i.e., states instead of events), the tracked data possess
much less variance since the tracking is limited to visited states
instead of tracking the sequence of executed actions. Nevertheless,
those approaches use Quality Threshold clustering technique that
is very similar to the DBSCAN clustering algorithm, which we used
to compare our algorithms.

Other related works include common approaches adopted by
the game industry and game research, such as heat maps [25] or
trajectory analysis [26,27], which display paths in a map. These
approaches use visualizations based on the evaluation of one or
two variables from the game data, providing an easy to read and
intuitive interpretation of the data distribution. However, heat
maps only aggregate variables that follow specified restrictions
(i.e., death locations) to show density distribution over the scene.
Similarly, trajectory maps also aggregate equivalent paths. Never-
theless, they do not provide any insight on the executed actions,
hindering influences between events. However, we did not com-
pare themwith our proposed algorithms because they are used for
a different type of data analysis. The heat map is commonly used
to aggregate data within the same 2D spatial region to analyze the
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most visited sections of the map by players or can also be used for
specific occurrences such as places where players died the most.
Similarly, trajectory analysis is used tomap the player’s navigation
in the game scenario.

6. Conclusion

This paper introduced new perspectives on game session anal-
ysis through graphs, leveraging the current state of the art based
on game session analysis along with some common techniques to
deal with information overload. Furthermore, we proposed new
graph algorithms based on the DBSCAN that take into considera-
tion the temporal sequence of information of a provenance graph
to summarize tracked data to a more manageable size through
the usage of collapses strategies. None of the existing approaches
considered using temporal information in their collapse strategies.
These collapses intend to reduce the overall graph size by hiding
sections in the graph that alone were not significant enough to
produce a meaningful impact on the game and did not offer any
useful information for analysis.

Our proposal enhances the identification of sections or vertices
that are different from its neighbors or the expected behavior. In a
game context, vertices that were not collapsed represent drastic
changes in the game state and are worth for displaying at the
analysis, while all collapsed ones fluctuate around the same state
for a given attribute. Therefore, the resulting collapsed graph is
useful to confirm the initial hypothesis of sections that the player
had difficulties in the game by identifying sections with multiple
nearby vertices because each vertex in the collapsed graph rep-
resents a major variation in the game state. However, as shown
by the judge experiment, this type of collapse can also work on
graphs that are outside of the game domain since the majority of
the analyzed graphs were not related to any domain.

The experimental results show that the inter-cluster verifi-
cation variant (IC) provides better results than the DBSCAN for
collapsing similar segments in the graph. The statistical analysis of
both experiments shows that this is true in all the studied cases,
including random and monotonic behavior and different graph
types. The variable epsilon variant (VE), which is responsible for
generating a customized epsilon for each cluster, is inferior to the
IC variant when used alone. However, in the automatic exper-
iments, the combination of both variants, resulting in the ICVE
algorithm, provided better results when dealing with more ran-
domized values. Unfortunately, the judges disliked the algorithm
due to its sensitivity and thus it requiresmore refining before being
used. Answering our research question, the IC variant showed to
be themost effective algorithm for reducing the information while
also preserving its overall semantics in all instances according to
the judges and the automatic experiments.

Future work includes further refinement of the variants and
resulting algorithms especially the VE variant. Another futurework
is related to the novel approach of the automatic experiment for
evaluating graph summarization, further improving it and run-
ning more experiments to validate it. However, the initial result
from both experiments shows an alignment of algorithm selection,
which can be an indication of its possible effectiveness when
dealing with graphs with similar behavior of those we used, which
can be very common across multiple domains.
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