Prov Viewer: A Graph-Based Visualization
Tool for Interactive Exploration
of Provenance Data

Troy Kohwalterl(@), Thiago Oliveiral, Juliana Freirez, Esteban Clual,
and Leonardo Murta'

! Instituto de Computagdo, Universidade Federal Fluminense, Niter6i, RJ, Brazil
tkohwalter@ic.uff. br
2 New York University, New York, NY, USA

Abstract. The analysis of provenance data for an experiment is often crucial to
understand the achieved results. For long-running experiments or when prove-
nance is captured at a low granularity, this analysis process can be over-
whelming to the user due to the large volume of provenance data. In this paper
we introduce, Prov Viewer, a provenance visualization tool that enables users to
interactively explore provenance data. Among the visualization and exploratory
features, we can cite zooming, filtering, and coloring. Moreover, we use of other
properties such as shape and size to distinguish visual elements. These
exploratory features are linked to the provenance semantics to ease the com-
prehension process. We also introduce collapsing and filtering strategies,
allowing different levels of granularity exploration and analysis. We describe
case studies that show how Prov Viewer has been successfully used to explore
provenance in different domains, including games and urban data.

Keywords: Provenance * Visualization * Graph - Analysis * Tool

1 Introduction

Displaying provenance is an issue in present times. While there are many tools that
capture data provenance, most of them offers basic visualizations or requires exporting
the data to a format compatible with existing visualization tools. Ideally, provenance
data are captured and stored for each task of the scientific workflow in terms of basic
relationships among individual tasks. More complex relationships are inferred during
an analysis process [5] by using visualization techniques to facilitate the understanding
of the captured data, especially when dealing with complex workflows.

However, a provenance graph might contain data that did not cause any significant
change or provides information that might not be related to the desired analysis.
Another problem occurs when analyzing provenance data that is segregated into dif-
ferent trials (workflow executions), which results in analyzing multiple individual
graphs to extract meaningful knowledge since each trial is normally represented by a
separate graph. Moreover, a common representation of the provenance graph is based
on traditional node-link diagrams. These diagrams may impair the analysis process
depending on the size and domain peculiarities of the graph. Using simple node-link

© Springer International Publishing Switzerland 2016
M. Mattoso and B. Glavic (Eds.): IPAW 2016, LNCS 9672, pp. 71-82, 2016.
DOI: 10.1007/978-3-319-40593-3_6

72 T. Kohwalter et al.

diagrams to represent provenance data can also harden the graph understanding when
dealing with the wealth of information that can be contained in a single provenance
node, even when using the different shapes to distinguish the information.

Although there are some tools in the literature for provenance analysis [2, 8, 18,
19], they are based on these simple node-link diagrams with only basic visualization
features, such as labels and colors to distinguish edges and vertices, neighbor detection,
and size for different intensities. Moreover, they are not directly compatible with the
PROV model [17], requiring additional steps to convert the data.

In this paper, we introduce Prov Viewer, a novel graph-based visualization tool for
interactive exploration of provenance data that is compatible with the PROV, and
consequently, with any other application that exports provenance using the PROV
model. Prov Viewer processes the collected provenance data to generate an interactive
provenance graph to provide advanced visualization features for identifying steps and
contributors to a given result.

The PROV model has proved to be useful for other domains besides scientific
workflows, such as electronic games or urban data. Thus, in a previous work [13], we
introduced the usage of digital provenance in games and proposed a conceptual
framework (PinG) for collecting information during a game session, mapping them to
provenance terms, and providing the means for a post-game analysis. We experimented
with rudimentary ways to visualize provenance in the context of games [12]. We
developed an initial prototype for provenance visualization and used it on the SDM
[15] game to assess whether provenance data visualization can be helpful in the
understanding of game events [14]. This prototype was also used in another application
that extracts game provenance through image processing mechanisms [11]. More
recently, it is being used to visualize provenance from urban data.

The tool we present in this paper is the result of several extensions and new
techniques we developed to address issues encountered in different scenarios. We have
designed new visual representations and interaction mechanisms that address many of
the aforementioned challenges: (1) collapsing, highlighting the relevant information in
the graph; (2) filtering, removing information that is not relevant for a given analysis;
(3) graph merge, integrating the analysis of multiple trials; (4) specialized layouts,
organizing the graph in a more understandable way; (5) domain configuration, cus-
tomizing the visualization for specific needs; (6) shapes, sizes, and colors, supporting a
clear distinction of information types, and (7) interoperability, supporting PROV-N for
importing provenance data.

This paper is organized as follows: Sect. 2 presents some of the related work in the
area of provenance visualization. Section 3 details our provenance visualization tool,
Prov Viewer. Section 4 presents two different case studies using our tool. Section 5
concludes this work by listing some future work.

2 Related Work

Our related work can be grouped into two categories: workflow management systems
that have built-in provenance visualizations and standalone provenance visualization
tools. The workflow management systems that have build-in provenance visualizations

Prov Viewer: A Graph-Based Visualization Tool 73

[1, 4, 10] allow easy integration between provenance collection and analysis. However,
they have a shortcoming of not supporting provenance data generated by other workflow
management systems or standalone provenance gathering tools, even when they are
compatible with well known provenance models. Furthermore, workflow management
systems normally lack graph manipulation features for viewing provenance graphs.

On the other hand, there are some standalone provenance visualization tools that
resemble our work. Provenance Explorer [5] takes RDF-based provenance outputs
from capture systems and dynamically generates customized views of provenance trail.
However, it focuses on provenance data and inference rules associated with processing
events in a laboratory or manufacturing plant, lacking the support for data processing
activities in the digital domain. Furthermore, their provenance model is based on the
ABC ontology model. Lastly, their collapse feature only supports one expansion level,
instead of multiple levels of detail.

The ZOOM [3] prototype provide users with an interface to query provenance
information generated by a workflow system through SQL queries. An interesting
aspect is that it allows the user to dynamically modify the graph by hiding irrelevant
information, updating the provenance graph for the new view. Another existing tool is
the PROV Toolbox, which converts W3C PROV data model representations. However
it lacks a built-in visualization and requires the use of a generic graph tool (Graphviz)
to visualize the provenance data. Another similar tool is PROV Translator, which
validates PROV representations and translates them to other representations. It also
provides graph visualizations based on their previous work [7], which displays a
provenance graph using PROV’s vertex shape and color to identity the vertex type. The
PROV-0O-Viz [9] tool is a web-based visualization tool for provenance based on PROV
that uses Sankey Diagrams for visualization. Sankey Diagrams are used to visualize
flow magnitude between nodes in a network and in PROV-0O-Viz the activity or entity
width is based on the information flow.

Some related work is limited to specific domains (i.e., Provenance Explorer),
require additional knowledge (i.e., ZOOM, PROV-O-VIZ), or they are not compatible
with provenance data from other tools (i.e., Kepler, VisTrails, Taverna). Furthermore,
they individually provide some interesting features, such as interactive graphs, level of
detail, summary nodes, merges, and filters. However, these approaches do not provide
these features in an integrated way, hindering the analysis due to visualization and
manipulation restrictions, which sometimes require additional external procedures to
analyze the data. Moreover, they lack any means of overlaying provenance information
onto a spatial structure for analysis.

3 Prov Viewer

In this paper we present a provenance visualization tool named Prov Viewer (Prove-
nance Viewer'). Our tool is compatible with the PROV-N notation, allowing its
adoption in different domains and applications. The provenance data, which contains

! Prov Viewer is available at https://github.com/gems-uff/prov-viewer.

74 T. Kohwalter et al.

the provenance information among entities and their relationships, is processed to
generate a provenance graph. This graph is a visual representation of the provenance
data and supports user interaction, which is a key feature for understanding how each
action influenced in the outcome and how they influenced each other. It is also possible
to manipulate the graph by omitting facts and collapsing chains of actions for a better
understanding and visualization experience. No information is lost in this process, so
that the user can undo any changes made during analysis.

Prov Viewer uses the PROV notation, where square vertices represent activities,
circles represent entities, and pentagons represent agents. Furthermore, each vertex is
composed of multiple attributes that describe the vertex. Each attribute contains a name
and a value that is associated with it (e.g., startTime: 2012-05-25T11:15:00, endTime:
2012-05-25T12:00:00). The edges in the provenance graph represent the relationships
between vertices. As such, activity vertex can be positively or negatively influenced by
other vertex and have relationships with entities and agents.

Before using Prov Viewer, it is necessary to configure it to understand the domain
peculiarities and customize the visualization features. This is accomplished by creating
a config.xml file based on the configuration schema of Prov Viewer. This configuration
file allows the user customize the graph visualization. Prov Viewer also has a feature
for automatic detection and configuration for each edge type and color scheme, which
represents most of the configuration effort of the tool, according to the graph being
used. Note that the user will need to manually input specific parameters in the con-
figuration xml in order to use some of our tool layouts. However, this task is done only
once for a new domain.

Figure 1 shows the high-level architecture of our tool, illustrating some of its
features available that allow users to interact with the provenance data to identify
relevant actions that impacted in the results. The following sub-sections describe the
most relevant features, including shapes and colors to distinguish information, manual
collapses, graph merges, layouts, and an automatic collapse feature.

Tool Configuration Provenance Visualization

- o e

Ie ™\ reads,”
:ll . E::l_> Shapesand Colors
Domain

4

1 Pecularities; Collapsesand Filters

N
\
[shapesanacaors
1 1
1 1
a :
‘: __________ ==’ f =]
H H f Graph Merge I
| ? 1
:. 1 reads ! Provenance GraphLayouts :
‘\ER_O_V_'T, N Graph Automatic Collapse ,'
’

ProvenanceData e s i

Fig. 1. Prov Viewer’s high-level architecture (Color figure online)

3.1 Shapes and Colors

Prov Viewer builds its visualization strategy based on shapes and colors, for both
vertices and edges. Shapes are used to map semantic concepts from the provenance and
colors are used to map scalar values, such as intensity or orientation. The vertex shape

Prov Viewer: A Graph-Based Visualization Tool 75

is directly related to provenance semantics (i.e., agent, activity, entity), while the vertex
color is used for mapping scalar values through the usage of a color scheme. When
selecting the desired attribute, all vertices with the specified status have their colors
changed according to their respective values. We adopt the traffic light scale [6], which
indicates the status of the variable using gradients from three colors: red, yellow, and
green. The resulting color is automatically inferred from minimum and maximum
values for that attribute or using boundaries manually specified by the user in the
configuration xml. Enabling this type of feature allows the user to easily identify
situations where the desired attribute value fluctuates throughout the data.

Both the edge shape (i.e., thickness) and its color are used to show the intensity of
the relationship. The intensity is the value associated with the edge, if any, and is more
common on influences (i.e., waslnfluencedBy). A thin edge with a darker color rep-
resents a low influence relationship (i.e., the assigned value to the edge is low). On the
other hand, thicker and brighter edges represent a strong or intense relationship.
Figure 2a shows an example of edges with different colors and thickness and Fig. 2b
shows the vertex color based on their time values (also represented by columns). This
feature can be used to quickly identify strong influences in the graph just by looking at
the edge’s thickness and brightness. The edge’s color is also used to represent any
additional numeric information contained in the relationship (e.g., influences that has
numeric data), which can be any of these three types: positive, which is represented as
green and indicates an increase in the numeric value (i.e., when the edge has an
associated positive value); negative, which is represented as red and indicates a
decrease; and neutral, which is represented as blue and indicates no numeric chances.

o o (a)]® e (b)]? (c)
Foe @ Foo o e @
! o o o
5 5 i R N Y | 5 6 R 1 [o @
S0 @ e @ e
/D m 55> i D | I = R = R =
&] o o Q
e [- el e ole &

Fig. 2. (a) Original graph; (b) graph with a color schema; (c¢) collapse of two activities;
(d) collapsing of the agent’s activities; (e) graph c after another collapse; and (f) temporal filter
(Color figure online)

3.2 Collapses and Filters

Our tool provides a vertex collapse feature to aid in the analysis of the graph and allows
a manual collapse of selected vertices in order to compact the graph size, grouping the
selected vertices together in a single summarized vertex. No information is lost in this
process and it can be reverted by the user. Figure 2¢ shows an example of collapsing
activity vertices. The grey markings represent vertices before the collapse and the grey

76 T. Kohwalter et al.

arrow represents where they were collapsed to. Another usage of the collapse feature is
to group activities related to the same agent, allowing the user to see all the influences
and changes that the agent did throughout his tasks. Figure 2d shows such an example.
The size of the collapsed vertex is bigger than the rest due to the number of vertices in
the collapse group (and is proportional to the number of vertices). Furthermore, the
shape is the same as that of an agent vertex because there is an agent vertex in the
collapse group.

The summarized information is displayed as follows: For String values, it shows
all different values separated by a comma (e.g., String_Valuel, String_Value2,
String_Value3). For attributes with numeric values in a collapse group composed of
two vertices, the tool shows the average value for that attribute followed by the min-
imum and maximum values. Otherwise (collapse group containing more than two
vertices), the tool displays the average value followed by the five-number summary
(minimum value, 1st quartile, median, 3rd quartile, maximum value).

Similar edges (i.e., same type) that have the same target and type are also grouped
together when collapsing vertices. The collapsed edge’s information (i.e., color,
thickness, and value) is computed by summing or averaging the values of the partic-
ipating edges, depending on their type. For example, Prov Viewer can use the sum
function for edges representing expenses and the average function for edges repre-
senting percentage. However, the user needs to parameterize each edge. Otherwise the
tool will always use the default sum function. Figure 2e shows an example of col-
lapsing edges that occurred when collapsing another group of vertices after collapsing
the vertices in Fig. 2c. Note that the colors for each edge changed after the collapse due
to the new maximum value (from the sum of the collapsed edges).

The tool also offers another simple vertex filter based on temporal information. The
user defines the desired temporal range (e.g., start time and end time) for visualization
and the tool hides all vertices that are outside the selected range. Figure 2f shows an
example of the temporal filter, hiding vertices from Fig. 2a with time (which can be
seen by the rows) greater than four and less than two. Prov Viewer also has an edge
filter, which filters edges by context (i.e., label) or by the type of relationship.

3.3 Graph Merge

Our provenance visualization tool also proposes a feature based on [16] to merge two
provenance graphs in order to generate a single unified provenance graph. The merge
process combines the current displayed graph with another graph (chosen by the user)
to generate a single unified graph for visualization. The merge process is composed of
four steps: (1) vertex matching, which selects pairs of vertices from the graphs;
(2) similarity verification between vertices, which receives two vertices from the first
step and informs if they are similar. Vertices are considered similar if they belong to the
same vertex type and have the same properties with similar numeric values within a
configurable margin of error; (3) merge vertices that were considered similar in the
previous step; and (4) creation of the unified graph for visualization, which only occurs
after the matching process is over. The resulting graph can be exported using the
PROV-N notation for future usage.

Prov Viewer: A Graph-Based Visualization Tool 77

Figure 3 illustrates the graph merge of two distinct graphs from the same domain.
Red vertices in the merged graph (Fig. 3c) belong exclusively to the first graph
(Fig. 3a), while grey vertices represent common vertices (i.e., merged vertices) from
both graphs, and green vertices belong exclusively to the second graph (Fig. 3b). This
graph merge feature is useful when analyzing multiple sessions or trials by detecting
common sections. Merged vertices from this feature also provide similar summarized
information using the five-number summary.

i (@) * (b) A (c) - (d)

O (=] O 3. 0 O B _e
(] o [m]] O m O =
a o m = [

Fig. 3. Two graphs (a and b) merged into a single graph (¢) and with a temporal layout
(d) (Color figure online)

3.4 Graph Layouts

Our visualization tool allows the user to interactively change the graph layout to better
visualize the result. We created two provenance graph visualization layouts: temporal
and spatial.

The temporal layout organizes the graph in a chronological order similar to a
timeline (or spreadsheet) for each agent. Thus, each timeline (or line) of the graph
groups activities of the same agent and each column in the graph represents the passage
of time. This makes easier to know the entity or agent responsible for executing each
activity by just looking at the agent responsible for that line. Invalid temporal values
are considered as zero for the purpose of positioning them in the graph. Thus, the graph
positions the vertices in the x axis according to the chosen scale. Figure 3d illustrates
an example of our temporal layout, displaying the graph similarly to a spreadsheet and
organizing the vertices by their chronological order. Note that now it is much easier to
identify the agent responsible for each activity as the leftmost nodes and their
chronological order by looking at the activity’s placement in the graph. The horizontal
position represents the time axis (passage of time) and the vertical position represents
the agent axis (the responsible for the activity).

The spatial layout organizes the vertices in the graph by their spatial coordinates
and can be used for spatial or georeferencing the data. The layout also supports the
usage of an orthographic image or maps taken from Google Maps and OpenStreetMaps
as background for the graph. This is particularly useful for corresponding elements
with other graphical representations, such as a map of a city or a game scene. When
dealing with real world maps, Prov Viewer automatically transform the latitude and
longitude to pixel coordinates. This automatic process requires only three input values
to correctly align the image with the graph and is described in the tool’s documentation.
When using the spatial layout in conjunction with a background image, the user sees
where each event occurred just by looking at the graph’s placement in the image.

78 T. Kohwalter et al.

3.5 Automatic Collapse

Prov Viewer offers an automatic collapse feature to highlight the relevant information
in the provenance graph by summarizing the tracked data. This automatic collapse
groups sequential information that has similar values or represents the same state,
allowing the user to quickly identify relevant information or state transitions. This
process is similar to data deduplication, which hides duplicate copies of repeating data.
Currently, this form of collapse uses only one vertex attribute to define similarity.
However, unlike normal deduplication, the process in Prov Viewer is reversible without
any kind of information loss since it occurs only in the visualization process.

The collapse process compares each vertex with its neighbor to omit similar states.
If the vertices’ values are similar for the specific attribute being analyzed, then they can
be collapsed into a single vertex. Vertices are considered similar if they are neighbors
and their values for the specified attribute are within one standard deviation difference.
Since the goal is to combine all similar states, it is necessary to go beyond the vertex
direct neighbor. If any of the vertices in the collapse group have an edge to a vertex
outside of the collapse group and that vertex has a similar attribute value to those in the
group, then it is added to the collapse group. Thus, the collapse group will keep
growing until a significant change of state is detected. Figure 4 illustrates an example
of our similarity collapse for the gathered provenance data from a racing car doing
multiple laps in a racing-track. Sequential vertices that had similar speeds were col-
lapsed into a single vertex. Note that the collapse preserves the notion of different laps
(differently from the merge feature) and that the collapsed vertices (with varying sizes
according to the number of collapsed vertices) have similar speeds. This allows the
analyst to detect behavior patterns and locations where the driver had more difficulties.

Fig. 4. Similarity collapse (right) according to the speed of the car from the original graph (left)
(Color figure online)

Prov Viewer: A Graph-Based Visualization Tool 79

4 Case Studies

As discussed in the introduction section, we adopted Prov Viewer in two different
provenance domains: digital games and urban data. In the game domain, our visual-
ization tool was used for the analysis of game sessions of five different games (SDM,
Super Mario World, Unity’s Tower Defense, Unity’s Angry Bots, and Unity’s Car
Tutorial) and for the urban data domain our tool was used to analyze bus traffic data
from the city of Rio de Janeiro. More than thirty people, including researchers and
students, used Prov Viewer to analyze provenance data, where 29 were students ana-
lyzing data gathered from a serious game [14]. In the following sub-sections we present
two case studies of our visualization tool.

4.1 Game Session Provenance

The first case study is the Angry Bots game, an open-source demo from Unity asset
store. The provenance graph used in this example contains 1275 vertices and 2976
edges. Figure 5 illustrates one of the possible visualizations of the provenance graph
from the game using our visualization tool, which was captured using the PinG
approach. The tool was configured to include the background rendering from the scene.

Fig. 5. Provenance graph (left) rendered with Prov Viewer from the Angry Bots game using
spatial layout. The second graph (right) is a zoomed section rotated by 90°. (Color figure online)

The displayed graph is using the vertex visualization schema for the player’s health
attribute values (vertex color using traffic light schema: green, yellow, and red). The
green and red edges respectively represent the influences that changed the player’s
experience points (awarded when defeating an enemy) and moments when the player
died (red vertex from the edge) and was moved to the restoration unit to be revived
(green vertex from the edge). Blue vertices represent activities executed by other
characters in the game (i.e., enemies) and blue edges represent chronological order of
events or state change in scene objects (e.g., terminals, doors). By analyzing the

80 T. Kohwalter et al.

visualization from Fig. 5, we can see the chronology of events, regions visited by the
player, sections where more action happened, where the player engaged in battle, when
he/she suffered heavy health loss (vertex color change), and the player’s health during
each section. For instance, we can infer that the cause of the player death in the middle
of the map (near the circle-shaped object that represent a storage cylinder) was because
he rushed through the level without waiting to recover health from his small health
regeneration trait (sequence of orange followed by red vertices) after most engage-
ments. Other three deaths (three “respawn” red edges in the bottom, leaving the second
graph of Fig. 5) were caused by three different engagements (red circles) with the same
enemy (blue vertices) in close quarters, leaving the player without enough room to
maneuver to dodge the explosive attacks. In this game, we used a screenshot of the
scenario with the dimensions of 4,280 X 3,208 for the background, which precisely
matches the locations where the events (i.e., activities). This high resolution allows for
a higher detail of the game scene when zooming the graph during analysis.

4.2 Bus Traffic Provenance

The second case study is based on bus traffic data analysis in the city of Rio de Janeiro.
The data used in this research, which includes geographic location tracked from the
buses’ GPS, is obtained from DataRio®. Prov Viewer is being used in this context to
render the data for analysis, allowing the research team to understand the wealth of
tracked information. Our tool allows for filtering the data to focus on specific buses or
relate the bus delays with ongoing events in the city through their geographic location,
speed in the region, and timestamp.

Figure 6 illustrates one of the possible visualizations of the provenance data using
Prov Viewer. The graph contains 601 vertices and 600 edges. The displayed graph is
using a color schema based on the bus speed. Therefore the vertices, which represent
on-line GPS information tracked from buses at every minute interval, are colored from
red to green according to their (instantaneous) speed at that specific moment, while the
blue edges link these vertices in a chronological order. Note that the displayed graph is
showing bus data from nine different busses from the same route within a period of two
hours.

In the graph from Fig. 6, we can see the buses routes through the city and their
respective speeds along the way. Furthermore, we can see that the traffic is better in the
region near “Botafogo” due to the high concentration of green vertices than “Urca” and
“Copacabana”. This type of graph visualization allows the user to quickly indentify the
streets where the buses moved slower due to traffic by finding regions in the graph with
reddish vertices by looking at the vertex location in the map. Moreover, it is also
possible to better understand the extension of the traffic jam and the affected areas by
crossing the displayed graph with a graph from another route (e.g., merge the graphs)
that also use segments of the same street.

2 DataRio: http://data.rio/dataset.

Prov Viewer: A Graph-Based Visualization Tool 81

ITA

LEME

ﬂq% elmond

Copacabana Palace
COPAﬁﬁﬁNA
wf,
o

Er

Fig. 6. Provenance Graph rendered on Prov Viewer from collected bus traffic data (Color figure
online)

5 Conclusions

Graph visualization strategies bring problems related to scalability when dealing with
provenance datasets beyond a few hundred nodes. Traditional node-link diagrams can
easily become too visually cluttered when dealing with huge provenance data, limiting
the user’s ability to thoroughly analyze and explore the data. To deal with this problem,
Prov Viewer offers collapse options that can generate different levels of detail and
graph layouts to sort the data and reduce node clustering. Prov Viewer also has some
basic automatic collapses based on vertex similarity and graph merges, allowing users
to omit data and combine different graphs for analysis. Other contributions include the
merging of PROV-N data from different files and georeferencing capabilities for
provenance information.

Our tool can be configured and used by different provenance applications as a
general-purpose provenance visualization tool as it supports graphs that use the
PROV-N notation. Prov Viewer also supports pre-processing steps, which can be done
outside the tool, as long as the final data format is compatible with the PROV-N
notation. We showed two case studies from different domains: analysis of digital game
sessions and bus traffic data. In both cases, the graph had more than one thousand
artifacts (vertices and edges combined). However, the performance starts to degrade
after rendering graphs with more than two thousand visible artifacts (i.e., long loading
times). Future work includes more complex algorithms to analyze the provenance data
and suggest which information can be omitted to reduce the graph to acceptable sizes;
more types of graph visualization techniques; summarization techniques; and more
graph layouts, including a support for dynamically loading new layouts, or handcrafted
ones, in the tool at run-time. We are also working on optimizing the tool to be able to
handle rendering huge graphs more smoothly and reducing loading time.

Acknowledgment. The authors thank CAPES, CNPq, and FAPERI for the financial support.

82

T. Kohwalter et al.

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

. Altintas, I., et al.: Kepler: an extensible system for design and execution of scientific

workflows. In: Proceedings of 16th International Conference on Scientific and Statistical
Database Management, 2004, pp. 423-424 (2004)

Bastian, M., et al.: Gephi: an open source software for exploring and manipulating networks.
In: Third International AAAI Conference on Weblogs and Social Media (2009)

Biton, O., et al.: Querying and managing provenance through user views in scientific
workflows. In: IEEE 24th International Conference on Data Engineering, ICDE 2008,
pp. 1072-1081 (2008)

Callahan, S.P., et al.: VisTrails: visualization meets data management. In: Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data, pp. 745-747.
ACM, New York (2006)

Cheung, K., Hunter, J.: Provenance explorer — customized provenance views using semantic
inferencing. In: Cruz, 1., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, LM. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 215-227. Springer,
Heidelberg (2006)

Diehl, S.: Software Visualization: Visualizing the Structure, Behaviour, and Evolution of
Software. Springer, Heidelberg (2007)

Ebden, M., Huynh, T.D., Moreau, L., Ramchurn, S., Roberts, S.: Network analysis on
provenance graphs from a crowdsourcing application. In: Groth, P., Frew, J. (eds.) IPAW
2012. LNCS, vol. 7525, pp. 168-182. Springer, Heidelberg (2012)

Ellson, J., et al.: Graphviz and dynagraph — static and dynamic graph drawing tools. In:
Jinger, M., Mutzel, P. (eds.) Graph Drawing Software, pp. 127-148. Springer, Berlin
Heidelberg (2004)

Hoekstra, R., Groth, P.: PROV-0-Viz - understanding the role of activities in provenance.
In: Ludaescher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol. 8628, pp. 215-220. Springer,
Heidelberg (2015)

Hull, D., et al.: Taverna: a tool for building and running workflows of services. Nucleic
Acids Res. 34(suppl 2), W729-W732 (2006)

Jacob, L., et al.: A non-intrusive approach for 2D platform game design analysis based on
provenance data extracted from game streaming. In: 2014 Brazilian Symposium on
Computer Games and Digital Entertainment, pp. 41-50 (2014)

Kohwalter, T.C., Clua, E.G., Murta, L.G.: Game Flux analysis with provenance. In:
Reidsma, D., Katayose, H., Nijholt, A. (eds.) ACE 2013. LNCS, vol. 8253, pp. 320-331.
Springer, Heidelberg (2013)

Kohwalter, T., et al.: Provenance in Games. In: Brazilian Symposium on Computer Games
and Digital Entertainment, SBGAMES, pp. 162-171 (2012)

Kohwalter, T., et al.: Reinforcing software engineering learning through provenance. In:
2014 Brazilian Symposium on Software Engineering, SBES, pp. 131-140 (2014)
Kohwalter, T., et al.: SDM - an educational game for software engineering. In: Brazilian
Symposium on Games and Digital Entertainment, SBGAMES, pp. 222-231 (2011)

Koop, D., et al.: Visual summaries for graph collections. In: IEEE Pacific Visualization
Symposium (Pacific Vis 2013), pp. 57-64. IEEE (2013)

Moreau, L., Missier, P.: PROV-DM: The PROV Data Model. http://www.w3.org/TR/prov-dm/
Del Rio, N., da Silva, P.P.: Probe-It! Visualization support for provenance. In: Bebis, G.,
et al. (eds.) ISVC 2007, Part II. LNCS, vol. 4842, pp. 732-741. Springer, Heidelberg (2007)
Seltzer, M.I.,, Macko, P.: Provenance map orbiter: interactive exploration of large
provenance graphs. In: TaPP (2011)

