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CONNECTIVITY

G, is a tree, a minimal connected graph; deleting any edge disconnects it.
G. cannot be disconnected by the deletion of a single edge, but can be
disconnected by the deletion of one vertex, its cut vertex. There are no cut
edges or cut vertices in Gs, but even so Gs is clearly not as well connected as
G., the complete graph on five vertices. Thus, intuitively, each successive
graph is more strongly connected than the previous one. We shall now
define two parameters of a graph, its connectivity and edge connectivity,
which measure the extent to which it is connected.
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A vertex cut of G is a subset V' of V such that G — V' is disconnected.

A k-vertex cut is a vertex cut of k elements.

A complete graph has no vertex

cut; in fact, the only graphs which do not have vertex cuts are those that
contain complete graphs as spanning subgraphs.

If G has at least one pair of distinct nonadjacent vertices
the connectivity k(G) of G is the minimum k
for which G has a k-vertex cut; otherwise, we define k(G) to be v—1.



Conectividade: x(G)

- Minimum number of vertices necessary to
disconnect G

- If G is complete, we define k(G)=n-1
= If G is trivial or disconnected, «(G)=0

G is k-connected if k(G)= k
All nontrivial connected graphs are 1-connected



Recall that an edge cut of G is a subset of E of the form [S, S], where S is
a nonempty proper subset of V. A k-edge cut is an edge cut of k elements.
If G is nontrivial and E’ is an edge cut of G, then G — E' is disconnected; we
then define the edge connectivity k'(G) of G to be the minimum k for which
G has a k-edge cut. If G is trivial, k'(G) is defined to be zero.



Recall that an edge cut of G is a subset of E of the form [S, S], where S is
a nonempty proper subset of V. A k-edge cut is an edge cut of k elements.
If G is nontrivial and E’ is an edge cut of G, then G — E' is disconnected; we
then define the edge connectivity k'(G) of G to be the minimum k for which
G has a k-edge cut. If G is trivial, k'(G) is defined to be zero.

Edge connectivity: x'(G)

- If G is trivial or disconnected, «'(G)=0
- G is said to be k-edge connected if «'(G) =k

All nontrivial connected gréphs are l-edge-connec;ted.



Fioure 312

Theorem 3.1 k=<k'<3§$.

- If G is trivial, k'=0 < 8.

« Otherwise, the set of links incidents to the
vertex of degree 0 constitute a 0—edge-cut
of G



- We prove that k < x’ by induction on «’
- If x'=0, the result is true, since in this case
G is trivial or disconnected

= Suppose the result is true for all graphs
with edge connectivity less than k

- Let G be a graph with x'(G) =k > 0
- Let e be an edge in a k-edge cut of G.

- Setting, H=G-¢,
. k'(H)=k-1

=

K(H) < k-1



- |If H contains a complete graph as a
spanning subgraph

G does also contain

and k(G) = x(H) < k-1

Ohterwise
S: vertes cut of H with x(H) elements

= Since H-S is disconnected,
- G-S is disconnected: k(G) < x(H) < k-1
- G-S eh conexo

=

e is a cut edge of G-S



G-S is connected and e is a cut edge:
n(G-S)=2

g K(G) =n(G)-1 =x(H)+1 <k

» G-S has a 1-vertex cut {v}, implying that S U{v} is
a vertex cut of G and

K(G) < xk(H)+1 < k

T'hus in each case we have k(G)=<k =«'(G). Th
. ° - - ¢ e lt f ]l
principle of induction [J ) result lollows by, the



BLOCKS

A connected graph that has no cut vertices is called a block. Every block
with at least three vertices is 2-connected. A block of a graph is a subgraph
that is a block and is maximal with respect to this property. Every graph is
the union of its blocks; this is illustrated in figure 3.3.
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Fioure 3.3. (a) Gi: (b) the blocks of G



A family of paths in G is said to be internally-disjoint if no vertex of G is
an internal vertex of more than one path of the family. The following
theorem is due to Whitney (1932).

Theorem 3.2 A graph G with v=3 is 2-connected if and only if any two
vertices of G are connected by at least two internally-disjoint paths.

Figure 3.4



Proof If any two vertices of G are connected by at least two internally-
disjoint paths then, clearly, G is connected and has no 1-vertex cut. Hence
G is 2-connected.

Conversely, let G be a 2-connected graph. We shall prove, by induction
on the distance d(u, v) between u and v, that any two vertices u and v are
connected by at least two internally-disjoint paths.

Suppose, first, that d(u, v) = 1. Then, since G is 2-connected, the edge uv
is not a cut edge and therefore, by theorem 2.3, it is contained in a cycle. It
follows that u and v are connected by two internally-disjoint paths in G.

Now assume that the theorem holds for any two vertices at distance less
than k, and let d(u, v) =k =2. Consider a (u, v)-path of length k, and let w
be the vertex that precedes v on this path. Since d(u, w) =k —1, it follows
from the induction hypothesis that there are two internally-disjoint (u, w)-
paths P and Q in G. Also, since G is 2-connected, G —w is connected and
so contains a (u, v)-path P'. Let x be the last vertex of P’ that is also in
PU Q (see figure 3.4). Since u is in PUQ, there is such an x; we do not
exclude the possibility that x = v. |

We may assume, without loss of generality, that x is in P. Then G has two
internally-disjoint (u, v)-paths, one composed of the section of P from u to
x together with the section of P’ from x to v, and the other composed of Q
together with the path wo [



