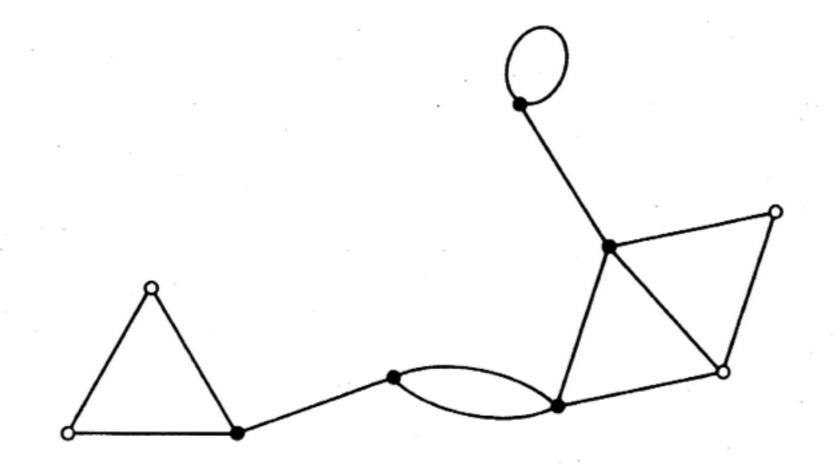
Graph Theory

Loana Tito Nogueira

CUT VERTICES

A vertex v of G is a *cut vertex* if E can be partitioned into two nonempty subsets E_1 and E_2 such that $G[E_1]$ and $G[E_2]$ have just the vertex v in common. If G is loopless and nontrivial, then v is a cut vertex of G if and only if $\omega(G-v) > \omega(G)$. The graph of figure 2.5 has the five cut vertices indicated.



Theorem 2.7 A vertex v of a tree G is a cut vertex of G if and only if d(v) > 1.

Theorem 2.7 A vertex v of a tree G is a cut vertex of G if and only if d(v) > 1.

Proof If d(v) = 0, $G \cong K_1$ and, clearly, v is not a cut vertex.

Theorem 2.7 A vertex v of a tree G is a cut vertex of G if and only if d(v) > 1.

Proof If d(v) = 0, $G \cong K_1$ and, clearly, v is not a cut vertex.

If d(v) = 1, G - v is an acyclic graph with v(G - v) - 1 edges, and thus (exercise 2.1.5) a tree. Hence $\omega(G - v) = 1 = \omega(G)$, and v is not a cut vertex of G.

Proof Let G be a nontrivial loopless connected graph. By corollary 2.4.1, G contains a spanning tree T. By corollary 2.2 and theorem 2.7, T has at least two vertices that are not cut vertices. Let v be any such vertex.

Proof Let G be a nontrivial loopless connected graph. By corollary 2.4.1, G contains a spanning tree T. By corollary 2.2 and theorem 2.7, T has at least two vertices that are not cut vertices. Let v be any such vertex. Then

$$\omega(T-v)=1$$

Since T is a spanning subgraph of G, T-v is a spanning subgraph of G-v and therefore

$$\omega(G-v) \leq \omega(T-v)$$

Proof Let G be a nontrivial loopless connected graph. By corollary 2.4.1, G contains a spanning tree T. By corollary 2.2 and theorem 2.7, T has at least two vertices that are not cut vertices. Let v be any such vertex. Then

$$\omega(T-v)=1$$

Since T is a spanning subgraph of G, T-v is a spanning subgraph of G-v and therefore

$$\omega(G-v) \leq \omega(T-v)$$

It follows that $\omega(G-v) = 1$, and hence that v is not a cut vertex of G. Since there are at least two such vertices v, the proof is complete \Box

Exercises

- **2.3.1** Let G be connected with $\nu \ge 3$. Show that
 - (a) if G has a cut edge, then G has a vertex v such that $\omega(G-v) > \omega(G)$;
 - (b) the converse of (a) is not necessarily true.