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CUT EDGES AND BONDS

A cut edge of G is an edge e such that w(G —e) > w(G). The graph of figure
2.2 has the three cut edges indicated.
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Theorem 2.3 An edge e of G is a cut edge of G if and only if e is
contained in no cycle of G.

=» Proof Let e be a cut edge of G. Since w(G—e)>w(G), there exist
vertices u and v of G that are connected in G but not in G —e. There is
therefore some (u, v)-path P in G which, necessarily, traverses e. Suppose
that x and y are the ends of e, and that x precedes y on P. In G—e, u is
connected to x by a section of P and y is connected to v by a section of P. If
e were in a cycle C, x and y would be connected in G —e by the path C—e.
Thus, u and v would be connected in G —e, a contradiction.



Conversely, suppose that e = xy is not a cut edge of G; thus, w(G—e) =
w(G). Since there is an (x, y)-path (namely xy) in G, x and y are in the
same component of G. It follows that x and y are in the same component of

G —e, and hence that there is an (x, y)-path P in G —e. But then e is in the
cycle P+e of G [



Theorem 2.4 A connected graph is a tree if and only if every edge is a cut
edge.

Proof Let G be a tree and let e be an edge of G. Since G is acyclic, e is
contained in no cycle of G and is therefore, by theorem 2.3, a cut edge of G.

Conversely, suppose that G is connected but is not a tree. Then G
contains a cycle C. By theorem 2.3, no edge of C can be a cut edge of G [
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Proof Let G be a tree and let e be an edge of G. Since G is acyclic, e is
contained in no cycle of G and is therefore, by theorem 2.3, a cut edge of G.

Conversely, suppose that G is connected but is not a tree. Then G
contains a cycle C. By theorem 2.3, no edge of C can be a cut edge of G [

A spanning tree of G is a spanning subgraph of G that is a tree.
Corollary 2.4.1 Every connected graph contains a spanning tree.

Proof Let G be connected and let T be a minimal connected spanning
subgraph of G. By definition w(T) =1 and (T —¢)>1 for each edge e of T.
It follows that each edge of T is a cut edge and therefore, by theorem 2.4,
that T, being connected, is a tree [J -



Figure 2.3 depicts a connected graph and one of its spanning trees.

Figure 2.3. A spanning tree in a connected graph



Corollary 2.4.2 1If G is connected, then e =v—1.



Corollary 2.4.2 1If G is connected, then e =v—1.

Proof Let G be connected. By corollary 2.4.1, G contains a spanning
tree T. Therefore

e(G)=¢e(T) = v(T)—1=v(G)—-1 0O
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Theorem 2.5 Let T be a spanning tree of a connected graph G and let e be
an edge of G not in T. Then T+ e contains a unique cycle.



Corollary 2.4.2 1If G is connected, then e =v—1.

Proof Let G be connected. By corollary 2.4.1, G contains a spanning
tree T. Therefore |

e(G)Ze(T)# v(T)—1=v(G)—-1 0O

Theorem 2.5 Let T be a spanning tree of a connected graph G and let e be
an edge of G not in T. Then T+ e contains a unique cycle.

Proof Since T is acyclic, each cycle of T + e contains e. Moreover, C is a
cycle of T+e if and only if C—e is a path in T connecting the ends of e. By
theorem 2.1, T has a unique such path; therefore T +e contains a unique

cycle [



For subsets S and S’ of V, we denote by [S, S’] the set of edges with one
end in S and the other in S’. An edge cut of G is a subset of E of the form
[S, S], where S is a nonempty proper subset of V and S = V\S. A minimal
nonempty edge cut of G is called a bond; each cut edge e, for instance, gives
rise to a bond {e}. If G is connected, then a bond B of G is a minimal subset
of E such that G —B is disconnected. Figure 2.4 indicates an edge cut and a
bond in a graph.
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For subsets S and S’ of V, we denote by [S, S’] the set of edges with one
end in S and the other in S’. An edge cut of G is a subset of E of the form
[S, S], where S is a nonempty proper subset of V and S = V\S. A minimal
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CUT VERTICES

A vertex v of G is a cut vertex if E can be partitioned into two nonempty
subsets E; and E, such that G[E,;] and G[E.] have just the vertex v in
common. If G is loopless and nontrivial, then v is a cut vertex of G if and
only if (G —v)>w(G). The graph of figure 2.5 has the five cut vertices
indicated.

Figure 2.5. The cut vertices of a graph



