Graph Theory

Loana T. Nogueira

CUT EDGES AND BONDS

A cut edge of G is an edge e such that $\omega(G-e)>\omega(G)$. The graph of figure 2.2 has the three cut edges indicated.

CUT EDGES AND BONDS

A cut edge of G is an edge e such that $\omega(G-e)>\omega(G)$. The graph of figure 2.2 has the three cut edges indicated.

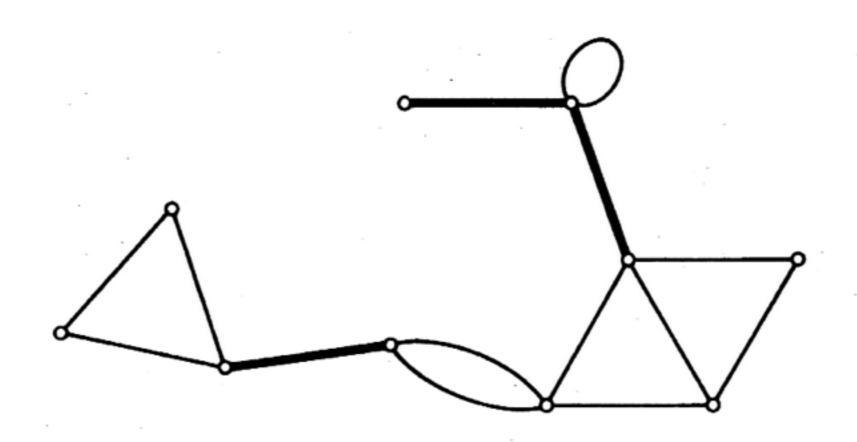


Figure 2.2. The cut edges of a graph

CUT EDGES AND BONDS

A cut edge of G is an edge e such that $\omega(G-e)>\omega(G)$. The graph of figure 2.2 has the three cut edges indicated.

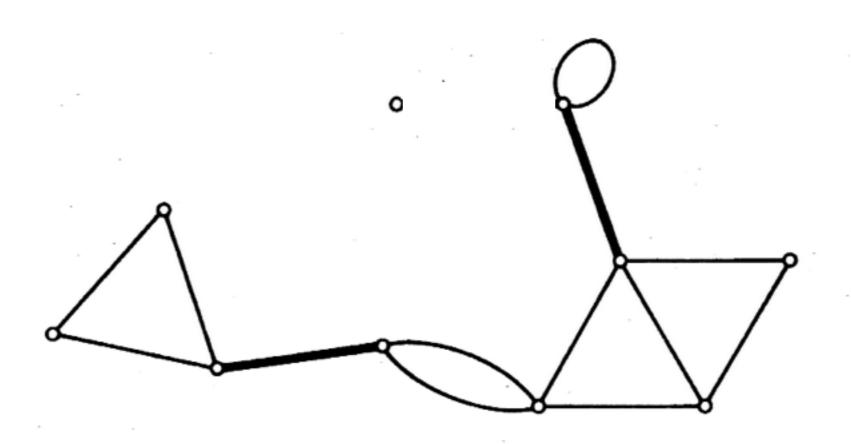


Figure 2.2. The cut edges of a graph

Theorem 2.3 An edge e of G is a cut edge of G if and only if e is contained in no cycle of G.

Proof Let e be a cut edge of G. Since $\omega(G-e)>\omega(G)$, there exist vertices u and v of G that are connected in G but not in G-e. There is therefore some (u, v)-path P in G which, necessarily, traverses e. Suppose that x and y are the ends of e, and that x precedes y on P. In G-e, u is connected to x by a section of P and y is connected to v by a section of P. If e were in a cycle C, x and y would be connected in G-e by the path C-e. Thus, u and v would be connected in G-e, a contradiction.

Conversely, suppose that e = xy is not a cut edge of G; thus, $\omega(G - e) = \omega(G)$. Since there is an (x, y)-path (namely xy) in G, x and y are in the same component of G. It follows that x and y are in the same component of G - e, and hence that there is an (x, y)-path P in G - e. But then e is in the cycle P + e of G

Theorem 2.4 A connected graph is a tree if and only if every edge is a cut edge.

Proof Let G be a tree and let e be an edge of G. Since G is acyclic, e is contained in no cycle of G and is therefore, by theorem 2.3, a cut edge of G. Conversely, suppose that G is connected but is not a tree. Then G contains a cycle C. By theorem 2.3, no edge of C can be a cut edge of G

Theorem 2.4 A connected graph is a tree if and only if every edge is a cut edge.

Proof Let G be a tree and let e be an edge of G. Since G is acyclic, e is contained in no cycle of G and is therefore, by theorem 2.3, a cut edge of G. Conversely, suppose that G is connected but is not a tree. Then G contains a cycle C. By theorem 2.3, no edge of C can be a cut edge of G

A spanning tree of G is a spanning subgraph of G that is a tree.

Theorem 2.4 A connected graph is a tree if and only if every edge is a cut edge.

Proof Let G be a tree and let e be an edge of G. Since G is acyclic, e is contained in no cycle of G and is therefore, by theorem 2.3, a cut edge of G. Conversely, suppose that G is connected but is not a tree. Then G contains a cycle C. By theorem 2.3, no edge of C can be a cut edge of G

A spanning tree of G is a spanning subgraph of G that is a tree.

Corollary 2.4.1 Every connected graph contains a spanning tree.

Proof Let G be connected and let T be a minimal connected spanning subgraph of G. By definition $\omega(T) = 1$ and $\omega(T - e) > 1$ for each edge e of T. It follows that each edge of T is a cut edge and therefore, by theorem 2.4, that T, being connected, is a tree \square

Figure 2.3 depicts a connected graph and one of its spanning trees.

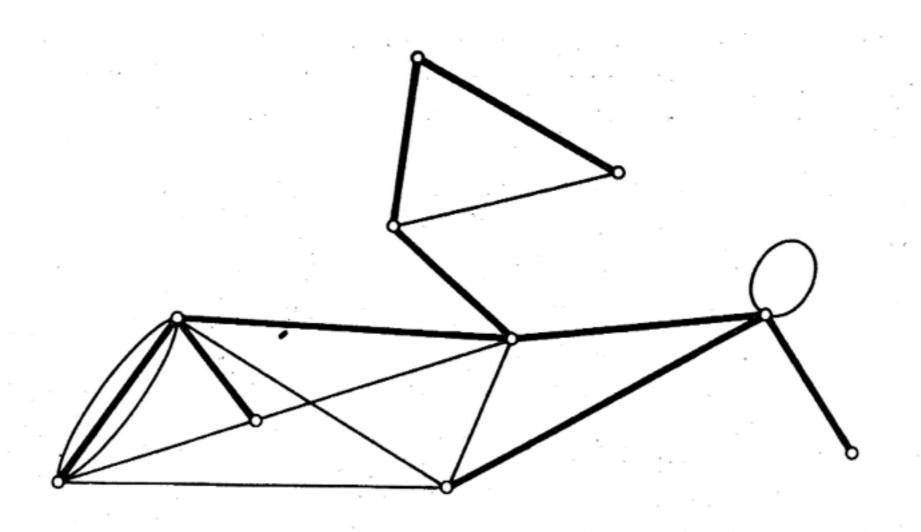


Figure 2.3. A spanning tree in a connected graph

Proof Let G be connected. By corollary 2.4.1, G contains a spanning tree T. Therefore

$$\varepsilon(G) \ge \varepsilon(T) = \nu(T) - 1 = \nu(G) - 1$$

Proof Let G be connected. By corollary 2.4.1, G contains a spanning tree T. Therefore

$$\varepsilon(G) \ge \varepsilon(T) = \nu(T) - 1 = \nu(G) - 1$$

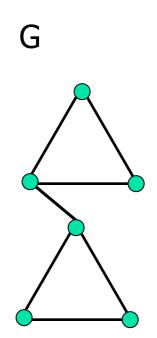
Theorem 2.5 Let T be a spanning tree of a connected graph G and let e be an edge of G not in T. Then T+e contains a unique cycle.

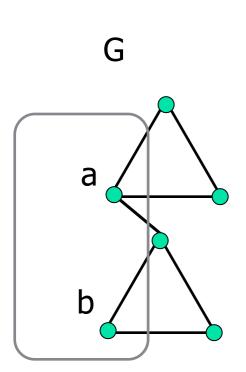
Proof Let G be connected. By corollary 2.4.1, G contains a spanning tree T. Therefore

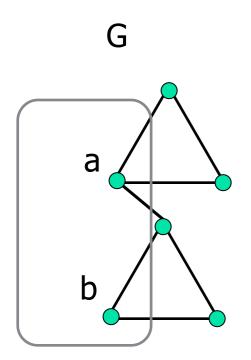
$$\varepsilon(G) \ge \varepsilon(T) = \nu(T) - 1 = \nu(G) - 1$$

Theorem 2.5 Let T be a spanning tree of a connected graph G and let e be an edge of G not in T. Then T + e contains a unique cycle.

Proof Since T is acyclic, each cycle of T+e contains e. Moreover, C is a cycle of T+e if and only if C-e is a path in T connecting the ends of e. By theorem 2.1, T has a unique such path; therefore T+e contains a unique cycle \Box



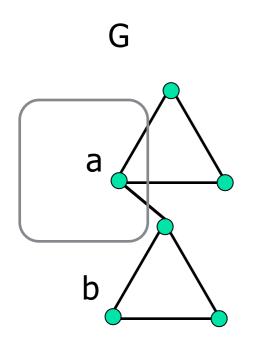




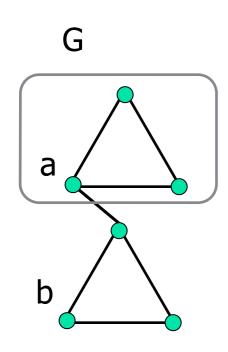
An edge cut

G a b

An edge cut, but not a bond (not minimal)



(not minimal)



A bond!! (minimal)

CUT VERTICES

A vertex v of G is a cut vertex if E can be partitioned into two nonempty subsets E_1 and E_2 such that $G[E_1]$ and $G[E_2]$ have just the vertex v in common. If G is loopless and nontrivial, then v is a cut vertex of G if and only if $\omega(G-v)>\omega(G)$. The graph of figure 2.5 has the five cut vertices indicated.

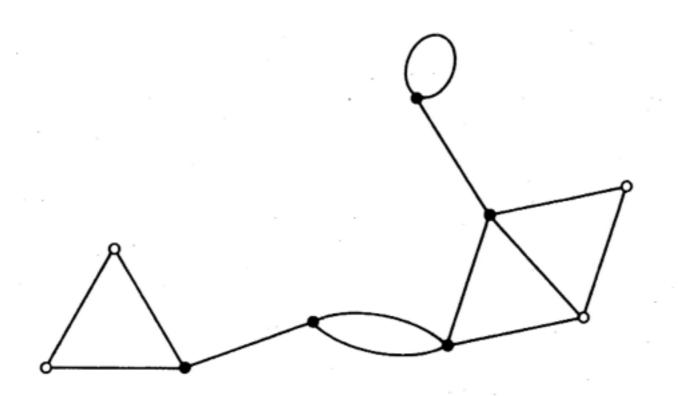


Figure 2.5. The cut vertices of a graph