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Trees

An acyclic graph is one that contains no cycles. A tree is a connected acyclic
graph. The trees on six vertices are shown in figure 2.1.
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Theorem 2.1 In a tree, any two vertices are connected by a unique path.
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= By contradiction!!!

- G is a tree

- P; and P,: two distinct (u,v)-paths
. There exists e= (x,y) € P, such that (x,y) &P,
- The graph (P, U P,)-e is connected

It contains an (x,y)-path
Then, P+e is a cycle in G!!
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The converse of this theorem holds for graphs without loops (exercise



Observe that all the trees on six vertices (figure 2.1) have five edges. In
general we have:

Theorem 2.2 1If G is a tree, then e =v—1.
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Proof By induction on v. When v=1, G=K, and e =0=v-1.

Suppose the theorem true for all trees on fewer than v vertices, and let G
be a tree on v =2 vertices. Let uv € E. Then G — uv contains no (u, v)-path,
since uv is the unique (u, v)-path in G. Thus G —uv is disconnected and so
(exercise 1,6.8a) w(G —uv)=2. The components G; and G, of G — uv,
being acyclic, are trees. Moreover, each has fewer than v vertices. Therefore,
by the induction hypothesis

e(G)=v(G)—-1 for i=1,2
Thus
8(G)=8(Gl)+€(Gz)+1=V(Gx)+V(Gz)—1=V(G)"'l O



Corollary 2.2  Every nontrivial tree has at least two vertices of degree one.
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Proof Let G be a nontrivial tree. Then
dlv)=1 for all veV
Also, by theorems 1.1 and 2.2, we have

Z{d(v) =2eg=2v—2

It now follows that d(v) =1 for at least two vertices v [



Exercises

1

2

Show that if any two vertices of a loopless graph G are connected
by a unique path, then G is a tree.

Prove corollary 2.2 by showing that the origin and terminus of a
longest path in a nontrivial tree both have degree one.

Show that every tree with exactly two vertices of degree one is a
path.

Let G be a graph with »—1 edges. Show that the following three
statements are equivalent:

(a) G is connected;

- (b) G is acyclic;

(c) G is a tree.

Show that if G is a tree with A=k, then G has at least k vertices of
degree one.
An acyclic graph is also called a forest. Show that

(a) each component of a forest is a tree;
(b) G is a forest if and only if ¢ = v — .



