Graph Theory

Loana Tito Nogueira

The degree $d_G(v)$ of a vertex v in G is the number of edges of G incident with v, each loop counting as two edges. We denote by $\delta(G)$ and $\Delta(G)$ the minimum and maximum degrees, respectively, of vertices of G.

The degree $d_G(v)$ of a vertex v in G is the number of edges of G incident with v, each loop counting as two edges. We denote by $\delta(G)$ and $\Delta(G)$ the minimum and maximum degrees, respectively, of vertices of G.

Theorem 1.1

$$\sum_{\mathbf{v}\in\mathbf{V}}d(\mathbf{v})=2\varepsilon$$

The degree $d_G(v)$ of a vertex v in G is the number of edges of G incident with v, each loop counting as two edges. We denote by $\delta(G)$ and $\Delta(G)$ the minimum and maximum degrees, respectively, of vertices of G.

Theorem 1.1

$$\sum_{\mathbf{v}\in\mathbf{V}}d(\mathbf{v})=2\varepsilon$$

Proof Consider the incidence matrix **M**. The sum of the entries in the row corresponding to vertex v is precisely d(v), and therefore $\sum_{v \in V} d(v)$ is just the sum of all entries in **M**. But this sum is also 2ε , since (exercise 1.3.1a) each of the ε column sums of **M** is 2

Corollary 1.1 In any graph, the number of vertices of odd degree is even.

Corollary 1.1 In any graph, the number of vertices of odd degree is even.

Proof Let V_1 and V_2 be the sets of vertices of odd and even degree in G, respectively. Then

$$\sum_{\mathbf{v} \in \mathbf{V}_1} d(\mathbf{v}) + \sum_{\mathbf{v} \in \mathbf{V}_2} d(\mathbf{v}) = \sum_{\mathbf{v} \in \mathbf{V}} d(\mathbf{v})$$

is even, by theorem 1.1. Since $\sum_{v \in V_2} d(v)$ is also even, it follows that $\sum_{v \in V_1} d(v)$ is even. Thus $|V_1|$ is even \square

Corollary 1.1 In any graph, the number of vertices of odd degree is even.

Proof Let V_1 and V_2 be the sets of vertices of odd and even degree in G, respectively. Then

$$\sum_{\mathbf{v} \in \mathbf{V}_1} d(\mathbf{v}) + \sum_{\mathbf{v} \in \mathbf{V}_2} d(\mathbf{v}) = \sum_{\mathbf{v} \in \mathbf{V}} d(\mathbf{v})$$

is even, by theorem 1.1. Since $\sum_{v \in V_2} d(v)$ is also even, it follows that $\sum_{v \in V_1} d(v)$ is even. Thus $|V_1|$ is even \square

A graph G is k-regular if d(v) = k for all $v \in V$; a regular graph is one that is k-regular for some k. Complete graphs and complete bipartite graphs $K_{n,n}$ are regular; so, also, are the k-cubes.

Exercises

- .1 Show that $\delta \leq 2\varepsilon/\nu \leq \Delta$.
- Show that if G is simple, the entries on the diagonals of both MM' and A^2 are the degrees of the vertices of G.
- Show that if a k-regular bipartite graph with k>0 has bipartition (X, Y), then |X|=|Y|.
- 4 Show that, in any group of two or more people, there are always two with exactly the same number of friends inside the group.
- If G has vertices $v_1, v_2, \ldots, v_{\nu}$, the sequence $(d(v_1), d(v_2), \ldots, d(v_{\nu}))$ is called a degree sequence of G. Show that a sequence (d_1, d_2, \ldots, d_n) of non-negative integers is a degree sequence of some graph if and only if $\sum_{i=1}^{n} d_i$ is even.

- A sequence $\mathbf{d} = (d_1, d_2, \dots, d_n)$ is graphic if there is a simple graph with degree sequence \mathbf{d} . Show that
 - (a) the sequences (7, 6, 5, 4, 3, 3, 2) and (6, 6, 5, 4, 3, 3, 1) are not graphic;
 - (b) if **d** is graphic and $d_1 \ge d_2 \ge ... \ge d_n$, then $\sum_{i=1}^n d_i$ is even and $\sum_{i=1}^k d_i \le k(k-1) + \sum_{i=k+1}^n \min\{k, d_i\} \text{ for } 1 \le k \le n$

(Erdös and Gallai, 1960 have shown that this necessary condition is also sufficient for **d** to be graphic.)

- Let $\mathbf{d} = (d_1, d_2, \dots, d_n)$ be a nonincreasing sequence of non-negative integers, and denote the sequence $(d_2-1, d_3-1, \dots, d_{d_1+1}-1, d_{d_1+2}, \dots, d_n)$ by \mathbf{d}' .
 - (a)* Show that d is graphic if and only if d' is graphic.
 - (b) Using (a), describe an algorithm for constructing a simple graph with degree sequence d, if such a graph exists.

(V. Havel, S. Hakimi)

- 8 The edge graph of a graph G is the graph with vertex set E(G) in which two vertices are joined if and only if they are adjacent edges in
 - G. Show that, if G is simple
 - (a) the edge graph of G has $\varepsilon(G)$ vertices and $\sum_{v \in V(G)} {d_G(v) \choose 2}$ edges

PATHS AND CONNECTION

A walk in G is a finite non-null sequence $W = v_0 e_1 v_1 e_2 v_2 \dots e_k v_k$, whose terms are alternately vertices and edges, such that, for $1 \le i \le k$, the ends of e_i are v_{i-1} and v_i . We say that W is a walk from v_0 to v_k , or a (v_0, v_k) -walk. The vertices v_0 and v_k are called the origin and terminus of W, respectively, and v_1, v_2, \dots, v_{k-1} its internal vertices. The integer k is the length of W.

If $W = v_0 e_1 v_1 \dots e_k v_k$ and $W' = v_k e_{k+1} v_{k+1} \dots e_l v_l$ are walks, the walk $v_k e_k v_{k-1} \dots e_1 v_0$, obtained by reversing W, is denoted by W^{-1} and the walk $v_0 e_1 v_1 \dots e_l v_l$, obtained by concatenating W and W' at v_k , is denoted by WW'. A section of a walk $W = v_0 e_1 v_1 \dots e_k v_k$ is a walk that is a subsequence $v_i e_{i+1} v_{i+1} \dots e_j v_j$ of consecutive terms of W; we refer to this subsequence as the (v_i, v_j) -section of W.

PATHS AND CONNECTION

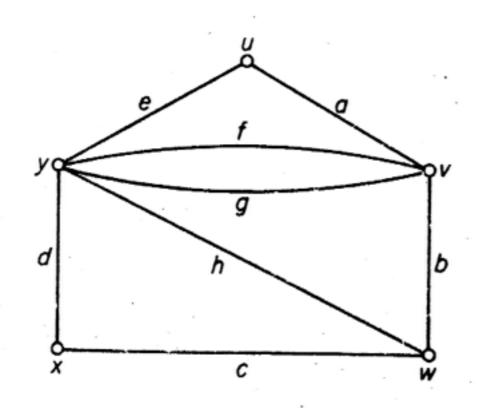
A walk in G is a finite non-null sequence $W = v_0 e_1 v_1 e_2 v_2 \dots e_k v_k$, whose terms are alternately vertices and edges, such that, for $1 \le i \le k$, the ends of e_i are v_{i-1} and v_i . We say that W is a walk from v_0 to v_k , or a (v_0, v_k) -walk. The vertices v_0 and v_k are called the origin and terminus of W, respectively, and v_1, v_2, \dots, v_{k-1} its internal vertices. The integer k is the length of W.

If $W = v_0 e_1 v_1 \dots e_k v_k$ and $W' = v_k e_{k+1} v_{k+1} \dots e_l v_l$ are walks, the walk $v_k e_k v_{k-1} \dots e_l v_0$, obtained by reversing W, is denoted by W^{-1} and the walk $v_0 e_1 v_1 \dots e_l v_l$, obtained by concatenating W and W' at v_k , is denoted by WW'. A section of a walk $W = v_0 e_1 v_1 \dots e_k v_k$ is a walk that is a subsequence $v_i e_{i+1} v_{i+1} \dots e_j v_j$ of consecutive terms of W; we refer to this subsequence as the (v_i, v_j) -section of W.

In a simple graph, a walk $v_0e_1v_1 ldots e_kv_k$ is determined by the sequence $v_0v_1 ldots v_k$ of its vertices; hence a walk in a simple graph can be specified simply by its vertex sequence. Moreover, even in graphs that are not simple,

If the edges e_1, e_2, \ldots, e_k of a walk W are distinct, W is called a trail; in this case the length of W is just $\varepsilon(W)$. If, in addition, the vertices v_0, v_1, \ldots, v_k are distinct, W is called a path. Figure 1.8 illustrates a walk, a trail and a path in a graph. We shall also use the word 'path' to denote a graph or subgraph whose vertices and edges are the terms of a path.

If the edges e_1, e_2, \ldots, e_k of a walk W are distinct, W is called a trail; in this case the length of W is just $\varepsilon(W)$. If, in addition, the vertices v_0, v_1, \ldots, v_k are distinct, W is called a path. Figure 1.8 illustrates a walk, a trail and a path in a graph. We shall also use the word 'path' to denote a graph or subgraph whose vertices and edges are the terms of a path.



Walk: uavfyfvgyhwbv

Trail: wcxdyhwbvgy

Path: xcwhyeuav

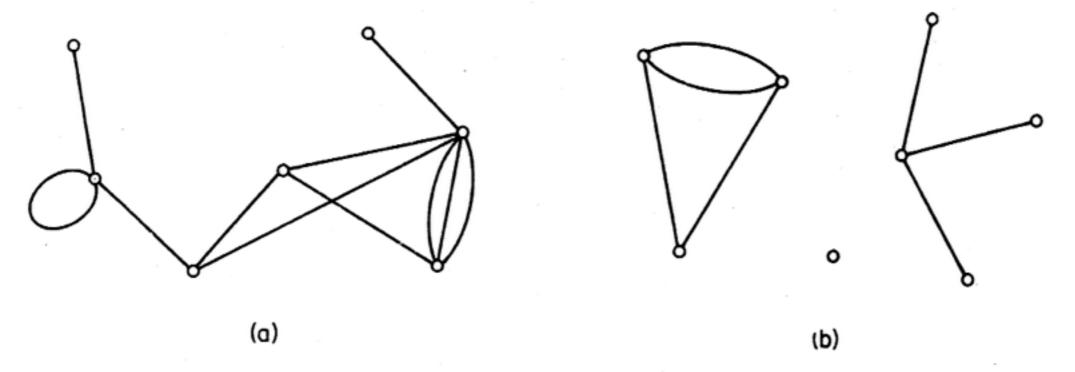


Figure 1.9. (a) A connected graph; (b) a disconnected graph with three components

Two vertices u and v of G are said to be connected if there is a (u, v)-path in G.

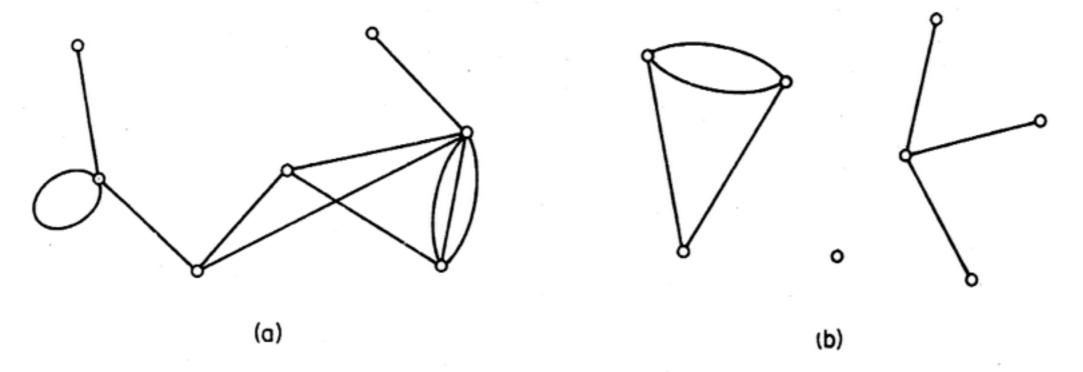


Figure 1.9. (a) A connected graph; (b) a disconnected graph with three components

Two vertices u and v of G are said to be connected if there is a (u, v)-path in G. Connection is an equivalence relation on the vertex set V. Thus there is a partition of V into nonempty subsets $V_1, V_2, \ldots, V_{\omega}$ such that two vertices u and v are connected if and only if both u and v belong to the same set V_i .

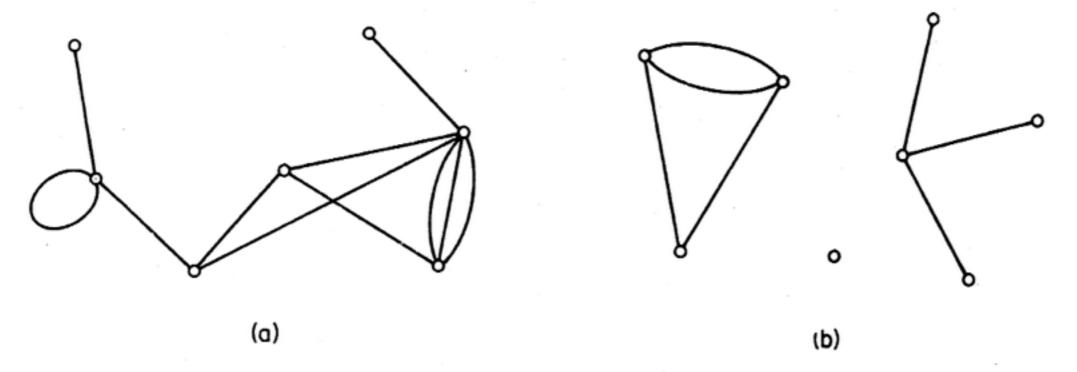


Figure 1.9. (a) A connected graph; (b) a disconnected graph with three components

Two vertices u and v of G are said to be connected if there is a (u, v)-path in G. Connection is an equivalence relation on the vertex set V. Thus there is a partition of V into nonempty subsets $V_1, V_2, \ldots, V_{\omega}$ such that two vertices u and v are connected if and only if both u and v belong to the same set V_i . The subgraphs $G[V_1], G[V_2], \ldots, G[V_{\omega}]$ are called the components of G. If G has exactly one component. G is connected: otherwise G is disconnected.

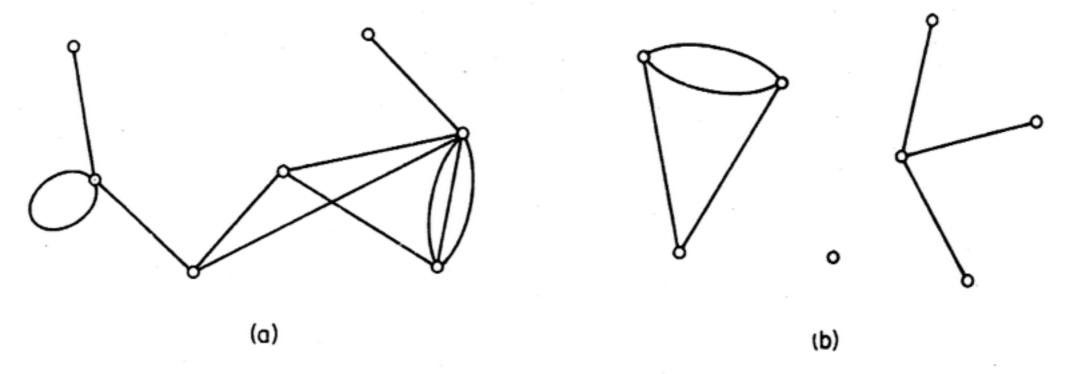


Figure 1.9. (a) A connected graph; (b) a disconnected graph with three components

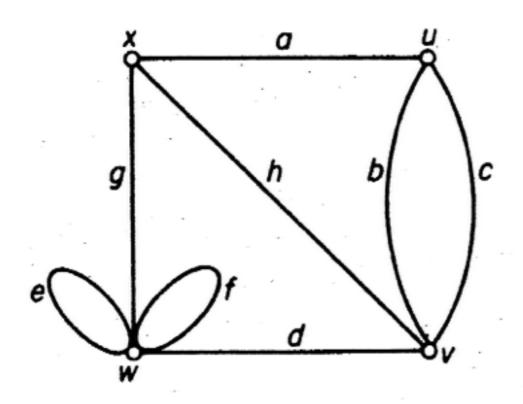
Two vertices u and v of G are said to be connected if there is a (u, v)-path in G. Connection is an equivalence relation on the vertex set V. Thus there is a partition of V into nonempty subsets $V_1, V_2, \ldots, V_{\omega}$ such that two vertices u and v are connected if and only if both u and v belong to the same set V_i . The subgraphs $G[V_1], G[V_2], \ldots, G[V_{\omega}]$ are called the components of G. If G has exactly one component, G is connected; otherwise G is disconnected. We denote the number of components of G by $\omega(G)$.

- Show that if there is a (u, v)-walk in G, then there is also a (u, v)-path in G.
- Show that the number of (v_i, v_j) -walks of length k in G is the (i, j)th entry of A^k .
- Show that if G is simple and $\delta \ge k$, then G has a path of length k.
- Show that G is connected if and only if, for every partition of V into two nonempty sets V₁ and V₂, there is an edge with one end in V₁ and one end in V₂.
- 5 (a) Show that if G is simple and $\varepsilon > {\nu-1 \choose 2}$, then G is connected.
 - (b) For $\nu > 1$, find a disconnected simple graph G with $\varepsilon = {\binom{\nu-1}{2}}$.
- 6 (a) Show that if G is simple and $\delta > [\nu/2] 1$, then G is connected.
 - (b) Find a disconnected ($\lfloor \nu/2 \rfloor 1$)-regular simple graph for ν even.
- 7 Show that if G is disconnected, then G^{c} is connected.
- 8 (a) Show that if $e \in E$, then $\omega(G) \le \omega(G e) \le \omega(G) + 1$.
 - (b) Let $v \in V$. Show that G e cannot, in general, be replaced by G v in the above inequality.
- Show that if G is connected and each degree in G is even, then, for any $v \in V$, $\omega(G-v) \leq \frac{1}{2}d(v)$.

- 10 Show that any two longest paths in a connected graph have a vertex in common.
- If vertices u and v are connected in G, the distance between u and v in G, denoted by $d_G(u, v)$, is the length of a shortest (u, v)-path in G; if there is no path connecting u and v we define $d_G(u, v)$ to be infinite. Show that, for any three vertices u, v and w, $d(u, v) + d(v, w) \ge d(u, w)$.
- 12 The diameter of G is the maximum distance between two vertices of G. Show that if G has diameter greater than three, then G^c has diameter less than three.
- 13 Show that if G is simple with diameter two and $\Delta = \nu 2$, then $\varepsilon \ge 2\nu 4$.
- .14 Show that if G is simple and connected but not complete, then G has three vertices u, v and w such that $uv, vw \in E$ and $uw \notin E$.

CYCLES

A walk is closed if it has positive length and its origin and terminus are the same. A closed trail whose origin and internal vertices are distinct is a cycle. Just as with paths we sometimes use the term 'cycle' to denote a graph corresponding to a cycle. A cycle of length k is called a k-cycle; a k-cycle is odd or even according as k is odd or even. A 3-cycle is often called a triangle. Examples of a closed trail and a cycle are given in figure 1.10.



Closed trail: ucvhxgwfwdvbu

Cycle: xaubvhx

CYCLES

A walk is closed if it has positive length and its origin and terminus are the same. A closed trail whose origin and internal vertices are distinct is a cycle. Just as with paths we sometimes use the term 'cycle' to denote a graph corresponding to a cycle. A cycle of length k is called a k-cycle; a k-cycle is odd or even according as k is odd or even. A 3-cycle is often called a triangle. Examples of a closed trail and a cycle are given in figure 1.10.

Using the concept of a cycle, we can now present a characterisation of bipartite graphs.

Theorem 1.2 A graph is bipartite if and only if it contains no odd cycle.

Proof Suppose that G is bipartite with bipartition (X, Y), and let $C = v_0 v_1 \dots v_k v_0$ be a cycle of G. Without loss of generality we may assume that $v_0 \in X$. Then, since $v_0 v_1 \in E$ and G is bipartite, $v_1 \in Y$. Similarly $v_2 \in X \not= 1$, in general, $v_{2i} \in X$ and $v_{2i+1} \in Y$. Since $v_0 \in X$, $v_k \in Y$. Thus k = 2i + 1, for some i, and it follows that C is even.

It clearly suffices to prove the converse for connected graphs. Let G be a connected graph that contains no odd cycles. We choose an arbitrary vertex u and define a partition (X, Y) of V by setting

$$X = \{x \in V \mid d(u, x) \text{ is even}\}$$

$$Y = \{y \in V \mid d(u, y) \text{ is odd}\}$$

We shall show that (X, Y) is a bipartition of G. Suppose that v and w are two vertices of X. Let P be a shortest (u, v)-path and Q be a shortest (u, w)-path. Denote by u_1 the last vertex common to P and Q. Since P and Q are shortest paths, the (u, u_1) -sections of both P and Q are shortest (u, u_1) -paths and, therefore, have the same length. Now, since the lengths of both P and Q are even, the lengths of the (u_1, v) -section P_1 of P and the (u_1, w) -section Q_1 of Q must have the same parity. It follows that the (v, w)-path $P_1^{-1}Q_1$ is of even length. If v were joined to w, $P_1^{-1}Q_1wv$ would be a cycle of odd length, contrary to the hypothesis. Therefore no two vertices in X are adjacent; similarly, no two vertices in Y are adjacent \square