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The degree ds(v) of a vertex v in G is the number of edges of G incident

with v, each loop counting as two edges. We denote by §(G) and A(G) the
minimum and maximum degrees, respectively, of vertices of G.
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Proof Consider the incidence matrix M. The sum of the entries in the
row corresponding to vertex v is precisely d(v), and therefore Z'd(v) is just

the sum of all entries in M. But this sum is also 2¢, since (exercise 1.3.1a)
each of the € column sums of Mis 2 0
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Proof Let V, and V, be the sets of vertices of odd and even degree in G,
respectively. Then

v.;ld(v) + ) d(v)= v;d(v)

veV;

is even, by theorem 1.1. Since 2; d(v) is also even, it follows that 2; d(v) is

even. Thus |V,| is even 0
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Corollary 1.1 In any graph, the number of vertices of odd degree is even.

Proof Let V, and V, be the sets of vertices of odd and even degree in G,
respectively. Then

L d)+ ¥ d(v) = ¥ d(v)

ve Vz

is even, by theorem 1.1. Since f; d(v) is also even, it follows that }; d(v) is

even. Thus |V,| is even 0

A graph G is k-regular if d(v)=k forallve V; a regular graph is one that
is k-regular for some k. Complete graphs and complete bipartite graphs K, ,
are regular; so, also, are the k-cubes.



Exercises

[

Show that 8 <2¢/v <A,

Show that if G is simple, the entries on the diagonals of both MM’
and A” are the degrees of the vertices of G.

Show that if a k-regular bipartite graph with k>0 has bipartition
(X, Y), then |X|=]Y].

Show that, in any group of two or more people, there are always two
with exactly the same number of friends inside the group.

If G has vertices vy, v,, ..., v, the sequence (d(v:), d(v,), ..., d(v.))
1s called a degree sequence of G. Show that a sequence
(di, d, . .., d.,) of non-negative integers is a degree sequence of some

graph if and only if Z d; is even.



i=1
6 A sequence d=(d,, d,,...,d,) is graphic if there is a simple graph
with degree sequence d. Show that

(a) the sequences (7, 6, 5, 4, 3, 3, 2) and (6, 6, 5, 4, 3, 3, 1) are not
graphic; el

(b) if d is graphic and d;=d,>...=d,, then Y d; is even and
i=1

k n
Y di=sk(k—1)+ 2: min{k, d} for 1<k=n
T TS

i=]
(Erdés and Gallai, 1960 have shown that this necessary condition is
also sufficient for d to be graphic.)
7 Letd=(di, d,,...,d,) be a nonincreasing sequence of non-negative

integers, and denote the sequence (d2—1, ds—1,...,da1—1,
dd,+2, « v ey dﬂ) by d’. '

(a)* Show that d is graphic if and only if d' is graphic.

(b) Using (a), describe an algorithm for constructing a simple graph

with degree sequence d, if such a graph exists.
(V. Havel, S. Hakimi)
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8 The edge graph of a graph G is the gfaﬁh with vertex set E(G) in
which two vertices are joined if and only if they are adjacent edges in

" G. Show that, if G is simple

(a) the edge graph of G has £(G) vertices and Z{G)(dcz(v) ) edges
vEV



PATHS AND CONNECTION

A walk in G is a finite non-null sequence W = v,e,v,¢,0; . .. e,v,, whose
terms are alternately vertices and edges, such that, for 1 <i < k, the ends of
e; are vi-; and v;. We say that W is a walk from v, to vy, or a (v,, U )-walk.
The vertices v, and v, are called the origin and terminus of W, respectively,
and vy, V2, . . ., Uk its internal vertices. The integer k 1s the length of W.
If W=uvee,0,...e,00 and W’'=v,e,,0cs:... €0 are walks, the walk
Uk€xlk-1 - . . €100, Obtained by reversing W, is denoted by W' and the walk
Loe1V: ... &y, obtained by concatenating W and W' at v,, is denoted by
WW'. A section of a walk W = vee,v; ... e v, is a walk that is a subsequence

Vi€is1livs . . . €;0; Of consecutive terms of W; we refer to this subsequence as
the (vi, v;)-section of W.
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e; are vi-; and v;. We say that W is a walk from v, to vy, or a (v,, U )-walk.
The vertices v, and v, are called the origin and terminus of W, respectively,
and vy, V2, . . ., Uk its internal vertices. The integer k 1s the length of W.
If W=uvee,0,...e,00 and W’'=v,e,,0cs:... €0 are walks, the walk
Uk€xlk-1 - . . €100, Obtained by reversing W, is denoted by W' and the walk
Loe1V: ... &y, obtained by concatenating W and W' at v,, is denoted by
WW'. A section of a walk W = vee,v; ... e v, is a walk that is a subsequence

Vi€is1livs . . . €;0; Of consecutive terms of W; we refer to this subsequence as
the (vi, v;)-section of W.

In a simple graph, a walk vee,v; ... e, is determined by the sequence
Lo:. .. U« Of its vertices; hence a walk in a simple graph can be specified
simply by its vertex sequence. Moreover, even in graphs that are not simple,



If the edges e, ez, ..., e, of a walk W are distinct, W is called a trail; in
this case the length of W is just €(W). If, in addition, the vertices
Vo, U1, . . ., Uk are distinct, W is called a path. Figure 1.8 illustrates a walk, a
trail and a path in a graph. We shall also use the word ‘path’ to denote a
graph or subgraph whose vertices and edges are the terms of a path.



If the edges e, ez, ..., e, of a walk W are distinct, W is called a trail; in
this case the length of W is just €(W). If, in addition, the vertices
Vo, U1, . . ., Uk are distinct, W is called a path. Figure 1.8 illustrates a walk, a
trail and a path in a graph. We shall also use the word ‘path’ to denote a
graph or subgraph whose vertices and edges are the terms of a path.

Walk: vavfyfvgyhwby
Trail: wexdyhwbvgy
Path: xcwhyeuav
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Figure 1.9. (a) A connected graph; (b) a disconnected graph with three components

Two vertices u and v of G are said to be connected if there is a (u, v)-path
in G.
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vertices u and v are connected if and only if both u and v belong to the
same set V..
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is disconnected.
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Figure 1.9. (a) A connected graph; (b) a disconnected graph with three components

Two vertices u and v of G are said to be connected if there is a (u, v)-path
in G. Connection is an equivalence relation on the vertex set V. Thus there
1Is a partition of V into nonempty subsets V,, Vs, ..., V, such that two
vertices u and v are connected if and only if both u and v belong to the
same set V.. The subgraphs G[V,], G[V.],..., G[V.] are called the com-
ponents of G. If G has exactly one component, G is connected; otherwise G
is disconnected. We denote the number of components of G by w(G).
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Show that if there is a (u, v)-walk in G, then there is also a
(u, v)-path in G.

Show that the number of (v;, v;)- walks of length k in G is the (i, j)th
entry of A*.

Show that if G is simple and § = k then G has a path of length k.
Show that G is connected if and only if, for every partition of V

Into two nonempty sets V, and V,, there is an edge with one end in
Vi and one end in V5.

(a) Show that if G is simple and & > ( V2

(b) For v>1, find a disconnected simple graph G with ¢ = (V; 1).

(a) Show that if G is simple and 8§ >[v/2]—1, then G is connected.

(b) Find a disconnected ([v/2]— 1)-regular simple graph for v even.

Show that if G is disconnected, then G° is connected.

(a) Show that if e € E, then w(G)=w(G-¢e)=w(G)+1.

(b) Let ve V. Show that G —e cannot, in general, be replaced by
G —v in the above inequality.

Show that if G is connected and each degree in G is even, then, for
any ve V, w(G—-v)=3d(v).

1), then G is connected.
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Show that any two longest paths in a connected graph have a vertex
in common. |

If vertices u and v are connected in G, the distance between u and
v in G, denoted by dg(u, v), is the length of a shortest (u, v)-path in
G; if there is no path connecting u and v we define do(u, v) to be
infinite. Show that, for any three vertices u, v and w, d(u, v)+
d(v, w)=d(u, w).

The diameter of G is the maximum distance between two vertices
of G. Show that if G has diameter greater than three, then G has

diameter less than three.

Show that if G is simple with diameter two and A=v—2, then
e=2v—4. | |

Show that if G is simple and connected but not complete, then G
has three vertices u, v and w such that uv, vw € E and uwgE.



CYCLES

A walk is closed if it has positive length and its origin and terminus are the
same. A closed trail whose origin and internal vertices are distinct is a cycle.
Just as with paths we sometimes use the term ‘cycle’ to denote a graph
corresponding to a cycle. A cycle of length k is called a k-cycle; a k-cycle is
odd or even according as k is odd or even. A 3-cycle is often called a
triangle. Examples of a closed trail and a cycle are given in figure 1.10.

Closed trail: ucvhxgwfwdvbu
Cycle: xaubvhx




CYCLES

A walk is closed if it has positive length and its origin and terminus are the
same. A closed trail whose origin and internal vertices are distinct is a cycle.
Just as with paths we sometimes use the term ‘cycle’ to denote a graph
corresponding to a cycle. A cycle of length k is called a k-cycle; a k-cycle is
odd or even according as k is odd or even. A 3-cycle is often called a
triangle. Examples of a closed trail and a cycle are given in figure 1.10.
Using the concept of a cycle, we can now present a characterisation of
bipartite graphs. |

Theorem 1.2 A graph is bipartite if and only if it contains no odd cycle.

Proof Suppose that G is bipartite with bipartition (X, Y), and let C=
Vols . . . Uxlo be a cycle of G. Without loss of generality we may assume that
vo € X. Then, since vov, € E and G is bipartite, v, € Y. Similarly v,e X # J,
in general, v;€X and vy. €Y. Since voe X, vye Y. Thus k=2i+1, for
some i, and it follows that C is even.



It clearly suffices to prove the converse for connected graphs. Let G be a
connected graph that contains no odd cycles. We choose an arbitrary vertex
u and define a partition (X, Y) of V by setting

X={xeV|d(u x) iseven)
Y={yeV|d(uy) isodd)

We shall show that (X, Y) is a bipartition of G. Suppose that v and w are
two vertices of X. Let P be a shortest (u, v)-path and Q be a shortest
(u, w)-path. Denote by u, the last vertex common to P and Q. Since P and
Q are shortest paths, the (u, u;)-sections of both P and Q are shortest
(u, u,)-paths and, therefore, have the same length. Now, since the lengths of
both P and Q are even, the lengths of the (u;, v)-section P, of P and the
(u:, w)-section Q, of Q must have the same parity. It follows that the
(v, w)-path P'Q, is of even length. If v were joined to w, P;'Q,wv would
be a cycle of odd length, contrary to the hypothesis. Therefore no two
vertices in X are adjacent; similarly, no two vertices in Y are adjacent [



