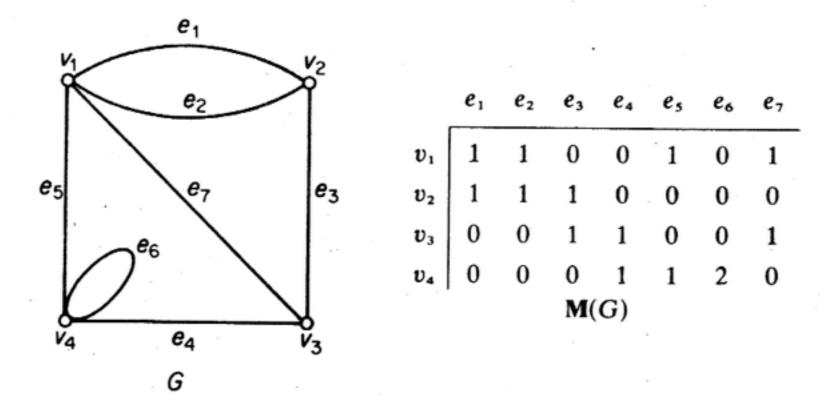
Graph Theory

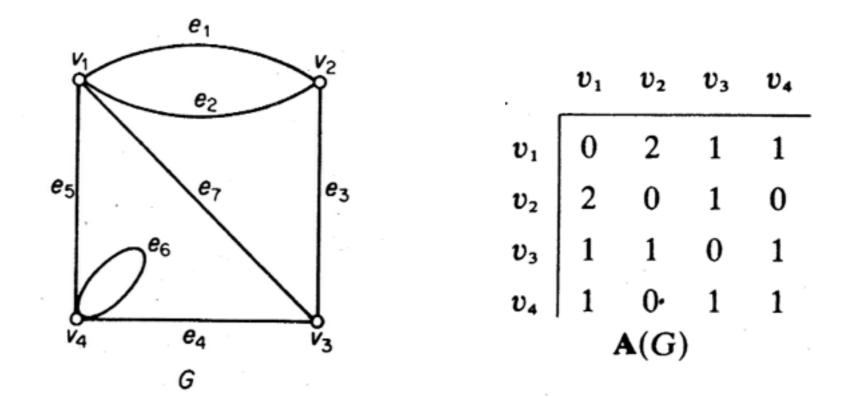
Loana T. Nogueira

THE INCIDENCE AND ADJACENCY MATRICES

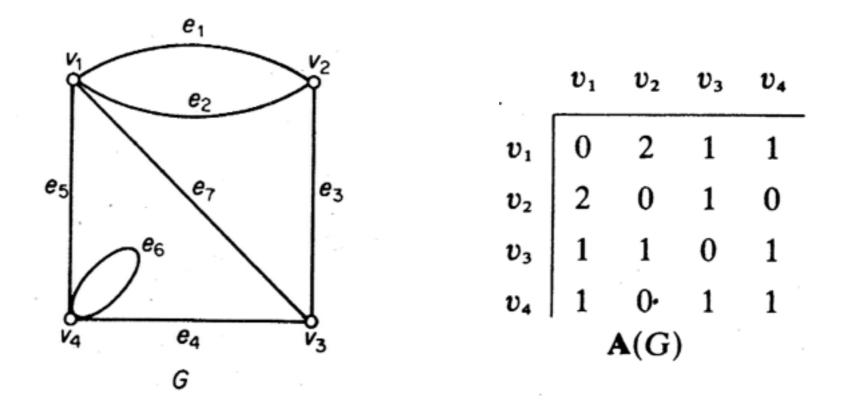
To any graph G there corresponds a $\nu \times \varepsilon$ matrix called the incidence matrix of G. Let us denote the vertices of G by $v_1, v_2, \ldots, v_{\nu}$ and the edges by $e_1, e_2, \ldots, e_{\varepsilon}$. Then the *incidence matrix* of G is the matrix $\mathbf{M}(G) = [m_{ij}]$, where m_{ij} is the number of times (0, 1 or 2) that v_i and e_j are incident. The incidence matrix of a graph is just a different way of specifying the graph.



Another matrix associated with G is the *adjacency matrix*; this is the $\nu \times \nu$ matrix $\mathbf{A}(G) = [a_{ij}]$, in which a_{ij} is the number of edges joining v_i and v_j . A



Another matrix associated with G is the *adjacency matrix*; this is the $\nu \times \nu$ matrix $\mathbf{A}(G) = [a_{ij}]$, in which a_{ij} is the number of edges joining v_i and v_j . A



The adjacency matrix of a graph is generally considerably smaller than its incidence matrix, and it is in this form that graphs are commonly stored in computers.

Exercises

- 1 Let M be the incidence matrix and A the adjacency matrix of a graph G.
 - (a) Show that every column sum of M is 2.
 - (b) What are the column sums of \mathbf{A} ?
- 2 Let G be bipartite. Show that the vertices of G can be enumerated so that the adjacency matrix of G has the form

$$\begin{bmatrix} \mathbf{0} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{0} \end{bmatrix}$$

where A_{21} is the transpose of A_{12} .

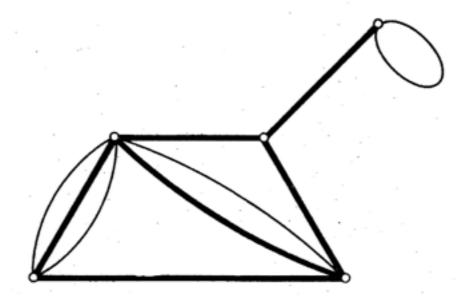
A graph H is a subgraph of G (written $H \subseteq G$) if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$, and ψ_H is the restriction of ψ_G to E(H). When $H \subseteq G$ but $H \neq G$, we write $H \subseteq G$ and call H a proper subgraph of G. If H is a subgraph of G, G is a supergraph of H. A spanning subgraph (or spanning supergraph) of G is a subgraph (or supergraph) H with V(H) = V(G).

A graph H is a subgraph of G (written $H \subseteq G$) if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$, and ψ_H is the restriction of ψ_G to E(H). When $H \subseteq G$ but $H \neq G$, we write $H \subseteq G$ and call H a proper subgraph of G. If H is a subgraph of G, G is a supergraph of H. A spanning subgraph (or spanning supergraph) of G is a subgraph (or supergraph) H with V(H) = V(G).

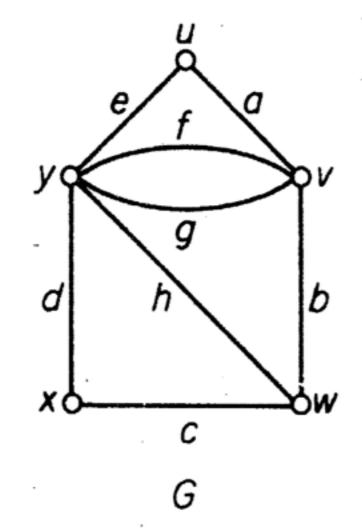
By deleting from G all loops and, for every pair of adjacent vertices, all but one link joining them, we obtain a simple spanning subgraph of G, called the *underlying simple graph* of G. Figure 1.6 shows a graph and its underlying simple graph.

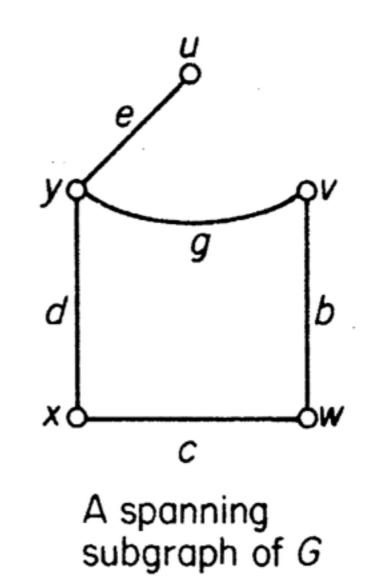
A graph H is a subgraph of G (written $H \subseteq G$) if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$, and ψ_H is the restriction of ψ_G to E(H). When $H \subseteq G$ but $H \neq G$, we write $H \subseteq G$ and call H a proper subgraph of G. If H is a subgraph of G, G is a supergraph of H. A spanning subgraph (or spanning supergraph) of G is a subgraph (or supergraph) H with V(H) = V(G).

By deleting from G all loops and, for every pair of adjacent vertices, all but one link joining them, we obtain a simple spanning subgraph of G, called the *underlying simple graph* of G. Figure 1.6 shows a graph and its underlying simple graph.

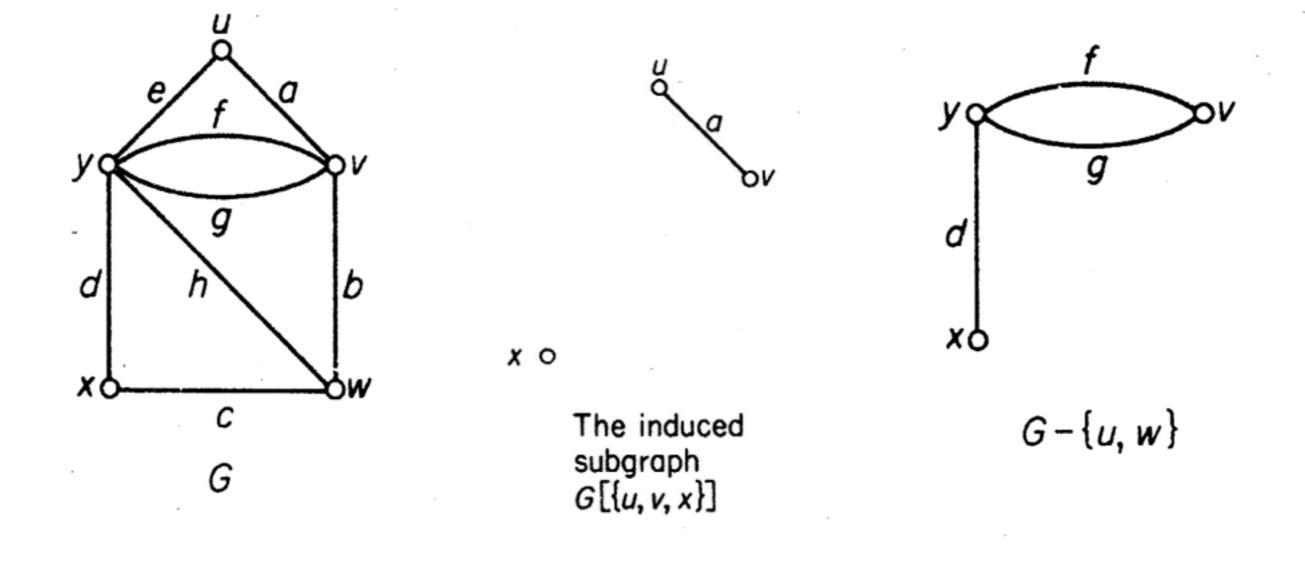


Graphs and Subgraphs

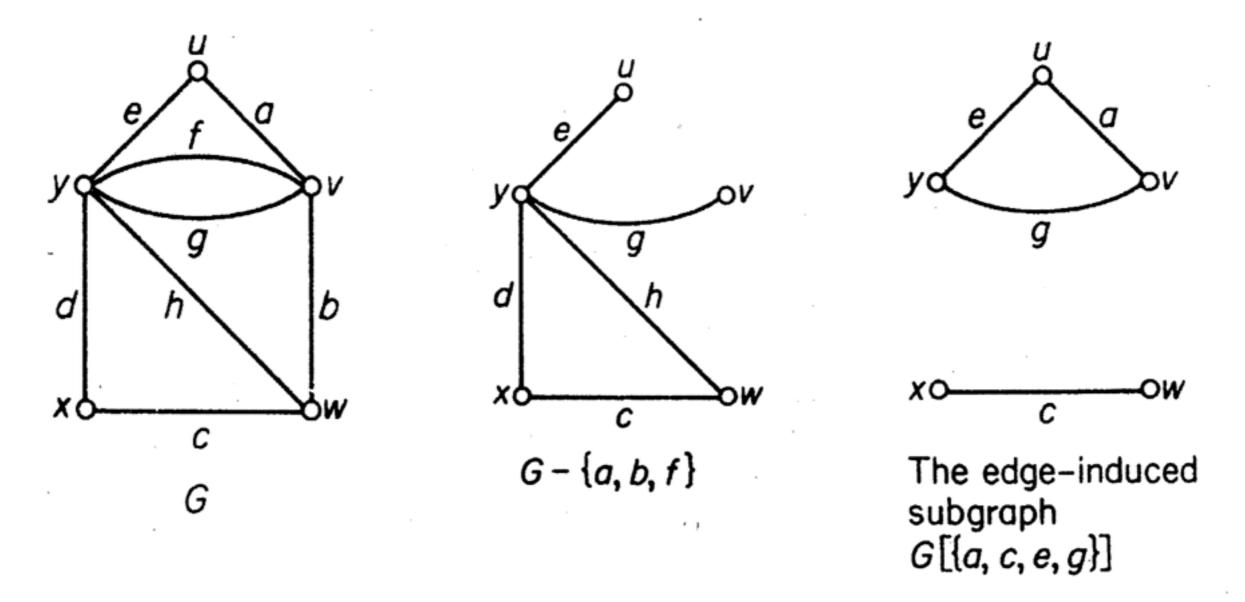




Suppose that V' is a nonempty subset of V. The subgraph of G whose vertex set is V' and whose edge set is the set of those edges of G that have both ends in V' is called the subgraph of G induced by V' and is denoted by G[V']; we say that G[V'] is an induced subgraph of G. The induced subgraph $G[V \setminus V']$ is denoted by G - V'; it is the subgraph obtained from G by deleting the vertices in V' together with their incident edges. If $V' = \{v\}$ we write G - v for $G - \{v\}$.



Now suppose that E' is a nonempty subset of E. The subgraph of G whose vertex set is the set of ends of edges in E' and whose edge set is E' is called the subgraph of G induced by E' and is denoted by G[E']; G[E'] is an edge-induced subgraph of G. The spanning subgraph of G with edge set $E \setminus E'$ is written simply as G - E'; it is the subgraph obtained from G by deleting the edges in E'. Similarly, the graph obtained from G by adding a set of edges E' is denoted by G+E'. If $E' = \{e\}$ we write G-e and G+e instead of $G-\{e\}$ and $G+\{e\}$.



Let G_1 and G_2 be subgraphs of G. We say that G_1 and G_2 are disjoint if they have no vertex in common, and edge-disjoint if they have no edge in common. The union $G_1 \cup G_2$ of G_1 and G_2 is the subgraph with vertex set

 $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$; if G_1 and G_2 are disjoint, we sometimes denote their union by $G_1 + G_2$. The *intersection* $G_1 \cap G_2$ of G_1 and G_2 is defined similarly, but in this case G_1 and G_2 must have at least one vertex in common.

Exercises

- 1 Show that every simple graph on n vertices is isomorphic to a subgraph of K_n .
- 2 Show that
 - (a) every induced subgraph of a complete graph is complete;
 - (b) every subgraph of a bipartite graph is bipartite.
- 3 Describe how M(G-E') and M(G-V') can be obtained from M(G), and how A(G-V') can be obtained from A(G).
- 4 Find a bipartite graph that is not isomorphic to a subgraph of any k-cube.