Graph Theory

Loana T. Nogueira



Independent Sets and
Cliques

A subset S of V is called an independent set of G if no two vertices of S are
adjacent in G. An independent set is maximum if G has no independent set
S’ with |S| >|S|. Examples of independent sets are shown in figure 7.1.

Recall that a subset K of V such that every edge of G has at least one end
in K is called a covering of G. The two examples of independent sets given
in figure 7.1 are both complements of coverings. It is not difficult to see that
this is always the case.
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Figure 7.1. (a) An independent set; (b) a maximum independent set



Theorem 7.1 A set S < V is an independent set of G if and only if V\S is a
covering of G.

Proof By definition, S is an independent set of G if and only if no edge
of G has both ends in S or, equivalently, if and only if each edge has at least
one end in V\S. But this is so if and only if V\S is a covering of G [

The number of vertices in a maximum independent set of G is called the
independence number of G and is denoted by a(G); similarly, the number of
vertices in @ minimum covering of G is the covering number of G and is

denoted by B(G).

Corollary 7.1 a+B=v.

Proof Let S be a maximum independent set of G, and let K be a
minimum covering of G. Then, by theorem 7.1, VAK is an independent set

and V\S is a covering. Therefore
v—B=|V\K|=a (7.1)
and

v—a=|V\S|=8 (7.2)
Combining (7.1) and (7.2) we have a+B=v U



The edge analogue of an independent set is a set of links no two of which
are adjacent, that is, a matching. The edge analogue of a covering is called
an edge covering. An edge covering of G is a subset L of E such that each
vertex of G is an end of some edge in L. Note that edge coverings do not
always exist; a graph G has an edge covering if and only if 8 >0. We denote
the number of edges in a maximum matching of G by «'(G), and the
number of edges in a minimum edge covering of G by B'(G); the numbers

a'(G) and B'(G) are the edge independence number and edge covering
number of G, respectively.



Theorem 7.2 (Gallai, 1959) If 6 >0, then o'+ B'=v.

Proof Let M be a maximum matching in G and let U be the set of
M-unsaturated vertices. Since 8 >0 and M is maximum, there exists a set E’
of |U| edges, one incident with each vertex in U. Clearly, MUE' is an edge
covering of G, and so

B'=MUE'|=a'+(v—-2a')=v—-a'’
or
a'+B'=v (7.3)

Now let L be a minimum edge covering of G, set H= G[L] and let M be
a maximum matching in H. Denote the set of M-unsaturated vertices in H
by U. Since M is maximum, H[U] has no links and therefore

IL|=|M|=|L\M|=|U|=v-2|M|
Because H is a subgraph of G, M is a matching in G and so
a'+B'=|M|+|L|=v (7.4)
Combining (7.3) and (7.4), we have a'+B'=v [



Theorem 7.3 In a bipartite graph G with 8§ >0, the number of vertices in a
maximum independent set is equal to the number of edges in a minimum
edge covering.

Proof Let G be a bipartite graph with §>0. By corollary 7.1 and
theorem 7.2, we have

at+tpB=a+p

and, since G is bipartite, it follows from theorem 5.3 that a'= B. Thus
a=p" [

Even though' the concept of an independent set is analogous to that of a
matching, there exists no theory of independent sets comparable to the
theory of matchings presented in chapter 5; for example, no good algorithm
for finding a maximum independent set in a graph is known.



