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Matchings

A subset M of E is called a matching in G if its elements are links and no
two are adjacent in G; the two ends of an edge in M are said to be matched
under M. A matching M saturates a vertex v, and v is said to be M-
saturated, if some edge of M is incident with v; otherwise, v is M-
unsaturated. If every vertex of G is M-saturated, the matching M is perfect.
M is a maximum matching if G has no matching M’ with |[M'| >|M|; clearly,
every perfect matching is maximum. Maximum and perfect matchings in
graphs are indicated in figure 5.1.
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Figure 5.1. (a) A maximum matching; (b) a perfect matching



Let M be a matching in G. An M-alternating path in G is a path whose
edges are alternately in E\M and M. For example, the path vsvsv,0,06 in the
graph of figure 5.1a is an M-alternating path. An M-augmenting path is an
M -alternating path whose origin and terminus are M-unsaturated.
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Figure 5.1. (a) A maximum matching; (b) a perfect matching



Theorem 5.1 (Berge, 1957) A matching M in G is a maximum matching if
and only if G contains no M-augmenting path.
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Proof Let M be a matching in G, and suppdse that G contains an
M-augmenting path vov; ... Vzm+1. Define M'c E by
M’ -— (M\{UIUZ, 0304, “ v ey va—IUZm}) U{Uovls 0203’ g vaUZIIH-l}

Then M’ is a matching in G, and |[M'|=|M|+ 1. Thus M is not a maximum
matching.



By Contrapositive

Conversely, suppose that M is not a maximum matching, and let M’ be a
maximum matching in G. Then
M| >M| (5.1)
Set H= G[M AM’], where M AM' denotes the symmetric difference of M
and M’ (see figure 5.2).
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Figure 5.2. (a) G, with M heavy and M’ broken; (b) G[M AM']

Each vertex of H has degree either one or two in H, since it can be
incident with at most one edge of M and one edge of M’. Thus each
component of H is either an even cycle with edges alternately in M and M S
or else a path with edges alternately in M and M’ By (5.1), H contains
more edges of M’ than of M, and therefore some path component P of H
must start and end with edges of M'. The origin and terminus of P, being

M'-saturated in H, are M-unsaturated in G. Thus P is an M-augmenting
pathin G 0



MATCHINGS AND COVERINGS IN BIPARTITE GRAPHS

For any set S of vertices in G, we define the neighbour set of S in G to be
the set of all vertices adjacent to vertices in S; this set is denoted by Ng(S).



MATCHINGS AND COVERINGS IN BIPARTITE GRAPHS

For any set S of vertices in G, we define the neighbour set of S in G to be
the set of all vertices adjacent to vertices in S; this set is denoted by Ng(S).

Suppose, now, that G is a bipartite graph with bipartition (X, Y). In many
applications one wishes to find a matching of G that saturates every vertex
in X; an example is the personnel assignment problem.



Theorem 5.2 Let G be a bipartite graph with bipartition (X, Y). Then!G
contains a matching that saturates every vertex in X if and only if

IN(S)|=|S| forall ScX , (5.2)
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IN(S)|=|S| forall ScX , (5.2)

Proof Suppose that G contains a matching M- which saturates every
vertex in X, and let S be a subset of X. Since the vertices in S are matched
under M with distinct vertices in N(S), we clearly have |N(S)|=|S|.



Conversely, suppose that G is a bipartite graph satisfying (5.2), but that G
contains no matching saturating all the vertices in X. We shall obtain a
contradiction. Let M* be a maximum matching in G. By our supposition,
M* does not saturate all vertices in X. Let u be an M*-unsaturated vertex
in X, and let Z denote the set of all vertices connected to u by M*-
alternating paths. Since M* is a maximum matching, it follows from theorem
5.1 that u is the only M*-unsaturated vertex in Z. Set S=ZNX and
T=ZNY (see figure 5.3).

Clearly, the vertices in S\{u} are matched under M* with the vertices in
T. Therefore - |

| T|=1|S|-1 (5.3)
and N(S)=2T. In fact, we have
N(S)=T (54)

since every vertex in N(S) is connected to u by an M*-alternating path. But

(5.3) and (5.4) imply that
IN(S)|=|S|-1<]$]

contradicting assumption (5.2) 0






Corollary 5.2 If G is a k-regular bipartite graph with k >0, then G has a
perfect matching.

Proof Let G be a k-regular bipartite graph with bipartition (X, Y). Since
G is k-regular, k |X|=|E|=k |Y] and so, since k >0, |X|=|Y|. Now let S
be a subset of X and denote by E, and E, the sets of edges incident with
vertices in S and N(S), respectively. By definition of N(S), E.< E; and
therefore

k IN(S)| = |E:| =|E\| =k |S]

It follows that |[N(S)|=|S| and hence, by theorem 5.2, that G has a matching
M saturating every vertex in X. Since | X|=|Y|, M is a perfect matching 0

Corollary 5.2 is sometimes known as the marriage theorem, since it can be
more colourfully restated as follows: if every girl in a village knows exactly k
boys, and every boy knows exactly k girls, then each girl can marry a boy
she knows, and each boy can marry a girl he knows.



