Composição de Máquinas de Turing

Luís Felipe

UFF

12 de Junho de 2023

Luis Felike

Diagramas de composição para MTs

ldeia: Definir MTs que executam ações básicas e compor as MTs mais complexas a partir dessas. We Leike 123

Diagramas de composição para MTs

ldeia: Definir MTs que executam ações básicas e compor as MTs mais complexas a partir dessas.

- P: Máquina que para sem fazer nada

ldeia: Definir MTs que executam ações básicas e compor as MTs mais complexas a partir dessas.

- P: Máquina que para sem fazer nada
- D: Máquina que move o caseçote 1 casa para a direita e para

ldeia: Definir MTs que executam ações básicas e compor as MTs mais complexas a partir dessas.

- P: Máquina que para sem fazer nada
- D: Máquina que move o cabeçote 1 casa para a direita e para
- E: Máquina que move o caseçote 1 casa para a esquerda, se não estiver sobre ▷, ou 1 casa para a direita, caso contrário

ldeia: Definir MTs que executam ações Básicas e compor as MTs mais complexas a partir dessas.

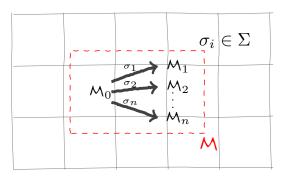
- P: Máquina que para sem fazer nada
- D: Máquina que move o cabeçote 1 casa para a direita e para
- E: Máquina que move o caseçote 1 casa para a esquerda, se não estiver sobre ▷, ou 1 casa para a direita, caso contrário
- W_a $(a \in \Sigma)$: Máquina que escreve o símbolo a na posição atual da fita e para

ldeia: Definir MTs que executam ações Básicas e compor as MTs mais complexas a partir dessas.

- P: Máquina que para sem fazer nada
- D: Máquina que move o cabeçote 1 casa para a direita e para
- E: Máquina que move o cabeçote 1 casa para a esquerda, se não estiver sobre ▷, ou 1 casa para a direita, caso contrário
- W_a $(a \in \Sigma)$: Máquina que escreve o símbolo a na posição atual da fita e para

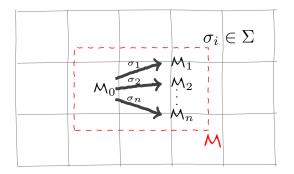
OBS.: Não existe máquina W_{\triangleright}

ldeia: Definir MTs que executam ações Básicas e compor as MTs mais complexas a partir dessas.


- P: Máquina que para sem fazer nada
- D: Máquina que move o cabeçote 1 casa para a direita e para
- E: Máquina que move o caseçote 1 casa para a esquerda, se não estiver sobre ▷, ou 1 casa para a direita, caso contrário
- W_a $(a \in \Sigma)$: Máquina que escreve o símbolo a na posição atual da fita e para

OBS.: Não existe máquina W_{\triangleright}

Exercício: Escrever as 6-uplas destas máquinas.


Composição

O que está acontecendo??

Luis FeilPe VLIObl23

Composição

O que está acontecendo?? Executa M_0 , vê onde parou o cabeçote. Executa M_i se o cabeçote estiver parado sobre $\sigma_i, i=1,\ldots,n,\ \sigma_i\in\Sigma$. Se o que tiver escrito não for σ_i , para após executar M_0 .

Wis Feiler 123

Decisores - máquinas adicionais

Por conveniência, vamos definir duas máquinas adicionais para construir decisores:

- S: Máquina que para aceitando

Por conveniência, vamos definir duas máquinas adicionais para construir decisores:

- S: Máquina que para aceitando
- N: Máquina que para rejeitando

Por conveniência, vamos definir duas máquinas adicionais para construir decisores:

- S: Máquina que para aceitando
- N: Máquina que para rejeitando

Além disso é conveniente definir:

- E_{σ} : Máquina que move para a esquerda até achar σ

Por conveniência, vamos definir duas máquinas adicionais para construir decisores:

- S: Máquina que para aceitando
- N: Máquina que para rejeitando

Além disso é conveniente definir:

- E_{σ} : Máquina que move para a esquerda até achar σ
- D_{σ} : Máquina que move para a direita até achar σ

Por conveniência, vamos definir duas máquinas adicionais para construir decisores:

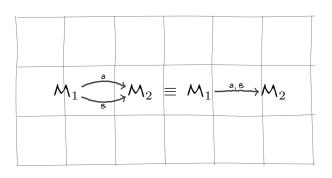
- S: Máquina que para aceitando
- N: Máquina que para rejeitando

Além disso é conveniente definir:

- E_{σ} : Máquina que move para a esquerda até achar σ
- D_{σ} : Máquina que move para a direita até achar σ
- $E_{\overline{\sigma}}$: Máquina que move para a esquerda enquanto achar σ , i.e. quando encontrar algo diferente de σ então para

Por conveniência, vamos definir duas máquinas adicionais para construir decisores:

- S: Máquina que para aceitando
- N: Máquina que para rejeitando


Além disso é conveniente definir:

- E_{σ} : Máquina que move para a esquerda até achar σ
- D_{σ} : Máquina que move para a direita até achar σ
- $E_{\overline{\sigma}}$: Máquina que move para a esquerda enquanto achar σ , i.e. quando encontrar algo diferente de σ então para
- $D_{\overline{\sigma}}$: Máquina que move para a direita enquanto achar σ , i.e. quando encontrar algo diferente de σ então para

werewe Notação

~	$\sqrt{1}$	\nearrow M_2		

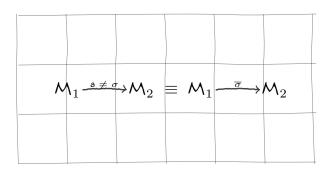
w^{s ceine} Notação

werewe Notação

$M_1 \xrightarrow{\sigma_1} M$	$oldsymbol{\Lambda}_2$		

we reine Notação

$M_1 = \frac{1}{2}$	σ_1 $\sigma \in \Sigma$	$\Lambda_2 \equiv$	M_1 —	$\longrightarrow M_2$	


werewe Notação

$M_1 = \frac{1}{\sqrt{2}}$	$\sigma_1 \longrightarrow \mathcal{N}$ $\sigma \in \Sigma$	$\Lambda_2 \equiv$	M ₁	$\longrightarrow M_2$	$\equiv M$	$_1M_2$

werewe Notação

٨	\ ₁ _	$\rightarrow M_2$		

ws reine Notação

Luis Feile

Exemplos:

1. Máquina de copiar

Entrada: ⊳w Saída: ⊳w ⊔ w Wis Feilee

Exemplos:

1. Máquina de copiar

Entrada: ⊳w

P	^{a≠ ⊔} → V	$ullet_{\sqcup}$			

Luis Feilipe 12106/23

Exemplos:

1. Máquina de copiar

Entrada: ⊳w

P ^{è≠ ⊔} \	$ u$ \square D \square			

Wis Feilee 123

Exemplos:

1. Máquina de copiar

Entrada: ⊳w

₽→	רים היים	D⊔		

Wis Feilee 123

Exemplos:

1. Máquina de copiar

Entrada: ⊳w

P	^{a≠ ⊔} → V	ヘロロロ	$D_\sqcup W_a$		

Exemplos:

1. Máquina de copiar

Entrada: ⊳w

P	^{a≠ ⊔} →V	ヘロロロ	$D_\sqcup W_a$	E		

Exemplos:

1. Máquina de copiar

Entrada: ⊳w

P	$\rightarrow W \Box D \Box$	$D_{\sqcup}W_{a}$	EUEL	J	

Exemplos:

1. Máquina de copiar

Entrada: ⊳w

Р	^{a≠ ⊔} → V	ヘロロー	$D_\sqcup W_a$	EUEL	\bigcup_a	

Luis Feilpe NJOb/23

Exemplos:

1. Máquina de copiar

Entrada: ⊳w

P	ª≠ ⊔ → V	\sim \Box D \Box	$D_\sqcup W_a$	EUEL	\mathcal{W}_a D	

Exemplos:

1. Máquina de copiar

Entrada: ⊳w

$\overline{}$	a≠ ⊔ , \				٠. ، ٨	
Ρ		$\cup_{\square}\cup_{\square}$	$ u_{\sqcup} u_{a}$	EUEL	$_{\scriptscriptstyle 1}$ $oldsymbol{arphi}_a$ $oldsymbol{D}$	
	-	1)	
			a≠ ⊔			
		1				

Luis Feilipe
12/06/23

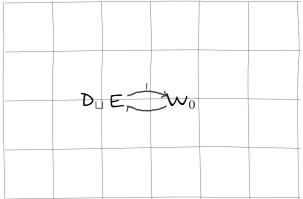
Exemplos:

1. Máquina de copiar

Entrada: ⊳w

P	a≠ ⊔ → V	∩Ω⊓.	$D_{\sqcup}W_{a}$	ELEL	$\mathcal{W}_a \mathcal{D}$	_	P
			a≠ ⊔				

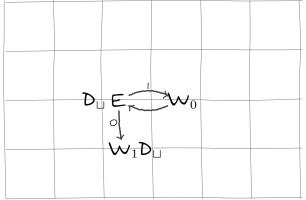
Luis Felly 123


Exemplos:

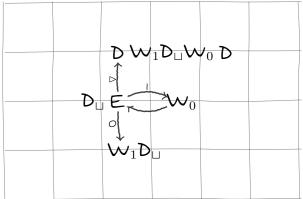
2. Máquina de somar : f(x) = x + 1, onde x está codificado em Binário

Luis Feire NJOb/23

Exemplos:


2. Máquina de somar : f(x) = x + 1, onde x está codificado em Binário

Exemplos:


2. Máquina de somar : f(x) = x + 1, onde x está codificado em Binário

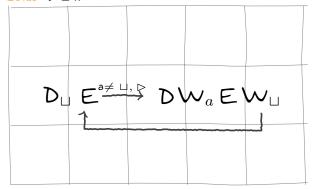
Exemplos:

2. Máquina de somar : f(x) = x + 1, onde x está codificado em Binário

Luis Feile

Exemplos:

 Máquina que realiza um SHIFT-RIGHT Entrada: >w


Saída: ⊳ ⊔ w

Luis Feilipe 12106/23

Exemplos:

 Máquina que realiza um SHIFT-RIGHT Entrada: >w

Saída: ▷ ☐ w

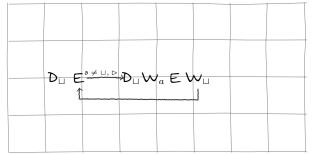
Luis Feile

Exemplos:

4. Máquina que realiza um ROTATE-RIGHT Entrada: $\triangleright \sigma_1 \dots \sigma_k$ Saída: $\triangleright \sigma_k \sigma_1 \dots \sigma_{k-1}$ Luis Feire

Exemplos:

4. Máquina que realiza um ROTATE-RIGHT

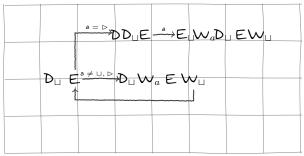

Entrada: $\triangleright \sigma_1 \dots \sigma_k$ Saída: $\triangleright \sigma_k \sigma_1 \dots \sigma_{k-1}$

D _□ E	a ≠ ⊔, ⊳	≯D _⊔ W	′ _a ∈ √	$oldsymbol{arphi}_{\sqcup}$	

Exemplos:

4. Máquina que realiza um ROTATE-RIGHT

Entrada: $\triangleright \sigma_1 \dots \sigma_k$ Saída: $\triangleright \sigma_k \sigma_1 \dots \sigma_{k-1}$



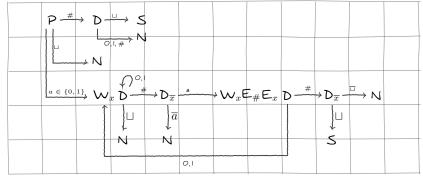
Luis Feilipe
VLIOb/23

Exemplos:

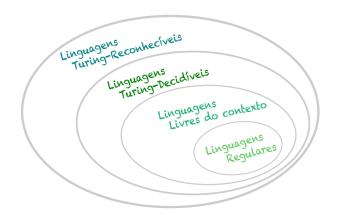
4. Máquina que realiza um ROTATE-RIGHT

Entrada: $\triangleright \sigma_1 \dots \sigma_k$ Saída: $\triangleright \sigma_k \sigma_1 \dots \sigma_{k-1}$

Luis Feile 123

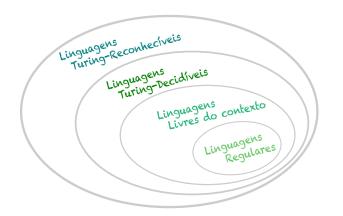

Exemplos:

5. Máquina que decide a linguagem $L=\{w\#w:w\in\{0,1\}^\star\}$


Luis Feire

Exemplos:

5. Máquina que decide a linguagem $L=\{w\#w:w\in\{0,1\}^\star\}$



Hierarquia de linguagens

Ws Feile NJOH123

Hierarquia de linguagens

Veja a relação com a Hierarquia de Chomsky