
Aula 9: Subprogramação

Luís Felipe

UFF

06 de Outubro de 2025

Luís
Felip

e

06/
10/

25

Funções em Programas

Um ponto chave na resolução de um problema complexo é conseguir
“quebrá-lo” em subproblemas menores.

- Quebrar um problema em partes menores facilita o desenvolvimento.
- Cada parte pode ser implementada como uma função.
- Funções aumentam a legibilidade e reaproveitamento de código.
- Uma função agrupa comandos e pode retornar um valor.

Por que usar funções?
- Melhor organização do código.
- Evita repetições e facilita alterações.
- Permite reutilização em diferentes partes do programa.
- Facilita a depuração e manutenção do código.

Luís
Felip

e

06/
10/

25

Definindo uma função

1 def nome_funcao(param1 , param2):
2 comandos ...
3 return resultado

Os parâmetros são variáveis, que são inicializadas com valores indicados
durante a invocação da função.
O comando return devolve para o invocador da função o resultado da
execução desta.

- A execução da função começa ao ser chamada no programa.
- O valor retornado é passado para quem chamou a função.

Luís
Felip

e

06/
10/

25

Exemplo: soma de dois valores

A função que recebe como parâmetro dois valores inteiros, faz a soma
destes valores, e devolve o resultado.

1 def soma(a, b):
2 c = a + b
3 return c
4
5 r = soma(12, 90)
6 print("r =", r)
7
8 r = soma(-9, 45)
9 print("r =", r)

Quando o comando return é executado, a função para de executar e
retorna o valor indicado para quem fez a invocação (ou chamada) da
função.

Luís
Felip

e

06/
10/

25

Mais exemplos de chamadas

1 def soma(a, b):
2 return a + b
3
4 def quadradoDaSoma(a, b):
5 return soma(a,b)**2
6
7 print("Soma:", soma(4, 2))
8 a = 2
9 c = 3

10 print("Quadrado da soma:", quadradoDaSoma(a, c))

Luís
Felip

e

06/
10/

25

Fluxo do programa
- Qualquer programa começa executando os comandos fora de

qualquer função na ordem de sua ocorrência.

- Quando se encontra a chamada para uma função, o fluxo de
execução passa para ela e se executa os comandos até que um
return seja encontrado ou o fim da função seja alcançado.

- Depois disso, o fluxo de execução volta para o ponto onde a
chamada da função ocorreu.

1 def soma(a, b):
2 c = a+b
3 return c
4
5 x1 = 4
6 x2 = -10
7
8 r = soma (5,6)
9 print(r)

10 r = soma(x1 ,x2)
11 print(r)

Luís
Felip

e

06/
10/

25

Definir funções antes do seu uso!
- Até o momento, definimos as funções antes do seu uso.
- O que aconteceria se declarássemos depois?

1 x1 = leNumero ()
2 x2 = leNumero ()
3 res = soma(x1, x2)
4 print("Soma é: ", res)
5
6 def soma(a,b):
7 c = a + b
8 return c
9

10 def leNumero ():
11 c = int(input("Digite um número: "))
12 return c

- Ocorre um erro ao executarmos o programa

1 Traceback (most recent call last):
2 File "... .py", line 1, in <module >
3 x1 = leNumero ()
4 ^^^^^^^^
5 NameError: name ’leNumero ’ is not defined

Luís
Felip

e

06/
10/

25

Função sem parâmetro

O que é e quando usar
- Funções sem parâmetro têm assinatura do tipo def nome(): e não recebem

valores de entrada.

- São úteis para encapsular tarefas que não dependem de dados variáveis na
chamada (ex.: ler do teclado, mostrar um menu, inicializar algo).

- Podem retornar um valor (com return) ou apenas produzir um efeito colateral
(ex.: imprimir na tela).

- Atenção: por não receberem dados, tendem a depender de I/O (input/output)
ou variáveis globais; use com moderação para manter o código claro e testável.

- Se a tarefa precisar variar conforme a situação, transforme em função com
parâmetros futuramente.

1 def leNumeroInt ():
2 c = input("Digite um número inteiro: ")
3 return int(c)
4
5 r = leNumeroInt ()
6 print("Número digitado:", r)

Luís
Felip

e

06/
10/

25

Funções que não retornam nada

- Faz sentido para uma função não retornar nada. Em particular,
funções que apenas imprimem algo normalmente não precisam
retornar nada.

- Há dois modos de criar funções que não retornam nada:
▶ Não use o comando return na função.
▶ Use o return None.

- None é um valor que representa o “nada”.

1 def imprime(num):
2 print("Número: ", num)

Luís
Felip

e

06/
10/

25

Funções sem return ou com return None

1 def imprimeCaixa(numero):
2 tamanho=len(str(numero))
3 for i in range (12+ tamanho):
4 print("+",end="")
5 print()
6 print("| Número:",numero ,"|")
7 for i in range (12+ tamanho):
8 print("+",end="")
9 print()

10
11 imprimeCaixa (10)
12 imprimeCaixa (23456)
13
14 # Saída:
15 # ++++++++++++++
16 # | Número: 10 |
17 # ++++++++++++++
18 # +++++++++++++++++
19 # | Número: 23456 |
20 # +++++++++++++++++

1 def imprimeCaixa(numero):
2 tamanho=len(str(numero))
3 for i in range (12+ tamanho):
4 print("+",end="")
5 print()
6 print("| Número:",numero ,"|")
7 for i in range (12+ tamanho):
8 print("+",end="")
9 print()

10 return None
11
12 imprimeCaixa (10)
13 imprimeCaixa (23456)
14
15 # Saída:
16 # ++++++++++++++
17 # | Número: 10 |
18 # ++++++++++++++
19 # +++++++++++++++++
20 # | Número: 23456 |
21 # +++++++++++++++++

Em ambos casos, a chamada da função é um comando por si só.

Luís
Felip

e

06/
10/

25

Função main()
- É comum criarmos uma função main() que executa os comandos

iniciais do programa.
- O programa conterá várias funções (incluindo a main()) e um único

comando no final do arquivo que é a chamada da função main().
- O programa será organizado da seguinte forma:

1 def main ():
2 Comandos Iniciais
3
4 def fun1(parâmetro):
5 Comandos
6
7 def fun2(parâmetro):
8 Comandos
9

10 ...
11 ...
12 main()

Exemplo:

1 def main ():
2 x1 = leNumero ()
3 x2 = leNumero ()
4 res = soma(x1, x2)
5 print("Soma é: ", res)
6
7 def soma(a,b):
8 c = a + b
9 return c

10
11 def leNumero ():
12 c = int(input("Número: "))
13 return c
14
15 main()

Luís
Felip

e

06/
10/

25

Funções com argumentos nomeados
- Até agora, na chamada de uma função era preciso colocar tantos

argumentos quantos os parâmetros definidos para a função.

- Mas é possível definir uma função onde alguns parâmetros vão ter
um valor default, e se não houver na invocação o argumento
correspondente, este valor default é usado como valor do parâmetro.

1 def fx (a,b=9):
2 return a+b
3 >>> fx(3)
4 12
5 >>> fx(3,4)
6 7

- Os argumentos de uma função
podem ser passados por nome
em vez de por posição.

- Parâmetros com valor default
costumam ser chamados por
nome, isso não é obrigatório
(outros parâmetros também
podem ser nomeados).

1 def fx2(a,b=9,c=0):
2 return 100*a+10*b+c
3 >>> fx2(3)
4 390
5 >>> fx2(3,4,5)
6 345
7 >>> fx2(b=8,a=5,c=7)
8 587

Luís
Felip

e

06/
10/

25

A função print

- A função print tem dois parâmetros com valor default:
▶ sep: define o separador entre os argumentos (default é ’ ’).
▶ end: define o que é impresso ao final (default é ’\n’).

- Esses parâmetros devem ser passados nomeados.
- Exemplo:

1 print(3, 4, 5, end=’ = ’, sep=’ + ’)

- Saída: 3 + 4 + 5 =

- O separador foi ’ + ’, e o final foi ’ = ’, sem quebra de linha.
- O print pode receber qualquer número de argumentos (não

veremos isso neste curso).

Luís
Felip

e

06/
10/

25

Troca de elementos
- Faça um programa que receba uma lista de elementos e faça a troca

de posições de um par arbitrário de elementos dessa lista.

1 def trocar(lista , pos1 , pos2):
2 if 0 <= pos1 < len(lista) and 0 <= pos2 < len(lista):
3 aux = lista[pos1]
4 lista[pos1] = lista[pos2]
5 lista[pos2] = aux
6 return lista
7
8 def main ():
9 print("Digite as pessoas , separando por vírgulas: ")

10 pessoas = input (). split(", ")
11 x = int(input("Diga qual a primeira posição: "))
12 y = int(input("Diga qual a segunda posição: "))
13 print("Lista de entrada era: ", pessoas)
14 print(f"Lista trocando posições {x} com {y}: ", trocar(pessoas , x, y))
15 return None
16
17 main()

1 Digite as pessoas , separando por vírgulas:
2 ana , lucio , joao , beatriz
3 Diga qual a primeira posição: 1
4 Diga qual a segunda posição: 2
5 Lista de entrada era: [’ana’, ’lucio’, ’joao’, ’beatriz ’]
6 Lista trocando posições 1 com 2 é: [’ana’, ’joao’, ’lucio’, ’beatriz ’]

Luís
Felip

e

06/
10/

25

Uniformização
- Uniformizar saída com nomes separados somente por vírgula:

1 def trocar(lista , pos1 , pos2):
2 if 0 <= pos1 < len(lista) and 0 <= pos2 < len(lista):
3 aux = lista[pos1]
4 lista[pos1] = lista[pos2]
5 lista[pos2] = aux
6 return lista
7
8 def organizarLista(lista):
9 for i in range(len(lista)-1):

10 print(lista[i], end = ", ")
11 print(lista[len(lista)-1])
12
13 def main ():
14 print("Digite as pessoas , separando por vírgulas: ")
15 pessoas = input (). split(", ")
16 x = int(input("Diga qual a primeira posição: "))
17 y = int(input("Diga qual a segunda posição: "))
18 print("Lista de entrada era: ", end = "")
19 organizarLista(pessoas)
20 print(f"Lista trocando posições {x} com {y} é: ", end = "")
21 organizarLista(trocar(pessoas , x, y))
22
23 main()

1 Digite as pessoas , separando por vírgulas:
2 ana , luis carlos , beatriz , maria , joao
3 Diga qual a primeira posição: 1
4 Diga qual a segunda posição: 2
5 Lista de entrada era: ana , luis carlos , beatriz , maria , joao
6 Lista trocando posições 1 com 2 é: ana , beatriz , luis carlos , maria , joao

