

0°

Funcdes em Programas

Um ponto chave na resolu¢do de um problema complexo é conseguir
“quebra-lo” em subproblemas menores.

- Quebrar um problema em partes menores facilita o desenvolvimento.
- Cada parte pode ser implementada como uma funcio.
- Func¢des aumentam a legibilidade e reaproveitamento de cédigo.

- Uma fungdo agrupa comandos e pode retornar um valor.

Por que usar fun¢des?
- Melhor organizacdo do cédigo.
- Evita repeticdes e facilita alteracdes.
- Permite reutilizacdo em diferentes partes do programa.
- Facilita'a depuracido e manutencio do cédigo.

o®

Definindo uma funcdo

def nome_funcao(paraml, param2):
comandos. ..
return resultado

Os parametros s3o variaveis, que sio inicializadas com valores indicados
durante a invocagdo da funcio.

O comando return devolve para o invocador da funcdo o resultado da
execucdo desta.

- A execucdo da fungdo comecga ao ser chamada no programa.

- O valor retornado é passado para quem chamou a funcio.

o®

Exemplo: soma de dois valores

A fungdo que recebe como pardmetro dois valores inteiros, faz a soma
destes valores, e devolve o resultado.

def soma(a, b):
ci.=as
return c

r = soma(12, 90)
prin tiE =t ey
r = soma(-9, 45)
print (e =i

Quando o comando return é executado, a funcio para de executar e
retorna o valor indicado para quem fez a invocacdo (ou chamada) da
funcio.

1
2
3
a4
5
6
T
8
9

Iy
=}

o®

Fluxo do programa

- Qualquer programa comega executando os comandos fora de
qualquer funcdo na ordem de sua ocorréncia.

- Quando se encontra a chamada para uma funcio, o fluxo de
execucdo passa para ela e se executa os comandos até que um
return seja encontrado ou o fim da funcdo seja alcancado.

- Depois disso, o fluxo de execucdo volta para o ponto onde a
chamada da funcio ocorreu.

def soma(a, b):
c = atb
return c

4
-10

x1
x2

r = soma(5,6)
printEr)

r = soma(x1,x2)
printE@e)

<
o o
W 4ol?
©
o

Definir fun¢des antes do seu uso!

- Até o momento, definimos as fungdes antes do seu uso.
- O que aconteceria se declarassemos depois?

x1 = leNumero ()

x2 = leNumero()

res = soma(x1, x2)
print(”Soma é: ", res)

def soma(a,b):
c.=3a &b
return c

def leNumero():
c = int(input("Digite um numero: ")) iy
return c

- Ocorre um erro ao executarmos o programa

Traceback (most recent call last):
File "...2&py", Adine ‘IS SSiSiiodule>
x1 = leNumero() :

AAAAAAAA

NameError: name ’leNumero’ is not defined

o®

Funcdo sem pardmetro

O que é e quando usar

Funcdes sem parametro tém assinatura do tipo def nome(): e n3o recebem
valores de entrada.

Sdo uteis para encapsular tarefas que ndo dependem de dados variaveis na
chamada (ex.: ler do teclado, mostrar um menu, inicializar algo).

Podem retornar um valor (com return) ou apenas produzir um efeito colateral
(ex.: imprimir na tela).

Atencdo: por ndo receberem dados, tendem a depender de 1/0O (input/output)
ou variaveis globais; use com moderag¢io para manter o cédigo claro e testavel.
Se a tarefa precisar variar conforme a situagdo, transforme em funcdo com
parametros futuramente.

def

o=

leNumeroInt():
c = input(”"Digite um nUmero inteiro: ")
return int(c)

leNumereInt ()

print(”"Numero digitado:", r)

o®

Funcdes que ndo retornam nada

- Faz sentido para uma funcio n3o retornar nada. Em particular,
fungBes que apenas imprimem algo normalmente ndo precisam
retornar nada.

- Ha dois modos de criar funcdes que ndo retornam nada:

» N3o use o comando return na fungao.
» Use o return None.

- None é um valor que representa o “nada™;

def imprime(num):
print(”"NGmero: ", num)

o®

Funcdes sem return o

u com return None

def imprimeCaixa(numero):

print("+", end="")
print ()

print("+",end="")
print()

imprimeCaixa(10)
imprimeCaixa(23456)

Saida:
+++++ttttt++

| Numero: 10

B o o
++++++tttttt 4
| Nimero: 23456 |
++++++

HOoH H H H HE R

tamanho=len(str (numero))
for i in range(l12+tamanho):

print(”| Namero:", numero,"|")
for i in range(12+tamanho):

4

def imprimeCaixa(numero):

tamanho=len(str(numero))

for i in range(12+tamanho):
print(%+",end="")

print () :

print(”| Némero:”,6 numero,”|")

for i in range(12+tamanho):
print("+",end="")

print @)

return None

imprimeCaixa(10)
imprimeCaixa(23456)

Saida:

E et A

| Numero: 10

o+ttt

E R o
| Numero: 23456 |
ottt bbb

Em ambos casos, a chamada da funcdo é um comando por si s6.

<
\e o
W 0 \'Z«
(3
o

Fung¢do main()

- E comum criarmos uma fungdo main() que executa os comandos
iniciais do programa.

- O programa contera varias fungdes (incluindo a main()) e um Gnico
comando no final do arquivo que é a chamada da funcdo main().

- O programa sera organizado da seguinte forma:

Exemplo:
def main():
Comandos Iniciais def main():
x1 = leNumero()

def funl(paréametro):

x2 = leNumero ()
Comandos

res ="goma(x1, x2)

rint("Soma é: ", res
def fun2(parametro): i B :

Comandos def soma(a,b):

c =4a +-b
return c
main () def leNumero():

c = int(input(”Namero: "))
- ; return c

main ()

o®

Fun¢Ses com argumentos nomeados

- Até agora, na chamada de uma fun¢do era preciso colocar tantos
argumentos quantos os parametros definidos para a fungdo.

- Mas é possivel definir uma funcdo onde alguns pardmetros véo ter
um valor default, e se ndo houver na invocacio o argumento
correspondente, este valor default é usado como valor do parametro.

def fx (a,b=9):
return atb
>>> fx(3)

>>> fx(3,4)
7

- Os argumentos de uma fun¢do
podem ser passados por nome
em vez de por posicdo.

- Pardmetros com valor default
costumam ser chamados por
nome,%isso ndo é obrigatério
(outros pardmetros também
podem ser nomeados).

def fx2(a,b=9,c=0):
return 100*a+10*b+c
>>> fx2(3)

390

>>> BX24(8,,4:5)

345

>>> fx2(b=8,a=5,c=7)
587

<&
o 12
ol%°
o

A funcdo print

- A fungdo print tem dois pardmetros com valor default:

» sep: define o separador entre os argumentos (default &€ *).
» end: define o que é impresso ao final (default € ’\n”).

- Esses parametros devem ser passados nomeados.

- Exemplo:

print(3; .4,:'5, end=2 =Nl ep=it 1

=eSaidas 3 HEAEEEEE—
- O separador foi > + ’, e o final foi * = ’, sem quebra de linha.

- O print pode receber qualquer nimero de argumentos (ndo
veremos isso neste curso).

o®

Troca de elementos

- Fagca um programa que receba uma lista de elementos e faca a troca
de posicdes de um par arbitrario de elementos dessa lista.

def trocar(lista, posl, pos2):
if @ <= posl < len(lista) and @ <= pos2 < len(lista):
aux = listalposi] o s
listalpos1] = listalpos2] 3
listal[pos2] = aux
return lista
def main():
print("Digite as pessoas, separando por virgulas: ")
pessoas = input().split(", ")
x = int(input(”"Diga qual a primeira posicao: "))
y int(input(”"Diga qual a segunda posigdo: "))
print(”"Lista de entrada era: ", pessoas) Ny
print(f”"Lista trocando posigdes {x} com {y}: ", trocar(pessoas, x, y))
return None
main()

Digite as pessoas,

separando por virgulas:
beatriz

ana, lucio, joao,
Diga qual a primeira posicdo:

1

Diga qual a segtinda posigédo: 2
Lista de entrada era: [’ana’, ’lucio’, ’joao’, ’beatriz’]
Lista trocando posigdes 1 com 2 é:. [Zamad, ’joao’, ’lucio’, ’'beatriz’]

W

X

2%

ol

o®

Uniformizagao '

- Uniformizar saida com nomes separados somente por virgula:

def trocar(lista, posl, pos2):
if 0 <= posl < len(lista) and @ <= pos2 < len(lista):
aux = listalposi]
listal[pos1] = listalpos2]
lista[pos2] = aux
return lista

def organizarLista(lista):
for i in range(len(lista)-1):
print(lista[i], end = ", ")
print(listallen(lista)-11)

def main():
print(”Digite as pessoas, separando por virgulas: ")
pessoas = input().split(”, ")

x = int(input("Diga qual a primeira posigdo: "))

y = int(input(”"Diga qual a segunda posigdo: "))
print(”Lista de entrada era: ", end = "")
organizarLista(pessoas)

print(f”Lista trocando posigdes {x} com {y} é: ", end = "")
organizarLista(trocar(pessoas, x, y))

main ()

Digite as pessoas, separando por virgulas:

ana, luis carlos, beatriz, maria, joao

Diga qual a primeira posicdo: 1 i

Diga qual a segunda posicdo: 2 5

Lista de entrada era: ana, luis carles, beatriz, maria, joao

Lista trocando posigGes 1 com 2 é: ana, beatriz, luis carlos, maria, joao

