
Aula 6: Listas

Luís Felipe

UFF

15 de Setembro de 2025



Luís
Felip

e

15/
09/

25

Vetores

Vetores são construções de linguagens de programação que servem para
armazenar vários dados de forma simplificada.

Intuito: Definir variável que armazene mais de um valor.
- Ex.: Suponha que desejemos guardar notas de 100 alunos. Criar 100

variáveis distintas não é uma solução elegante. problema.

Essas variáveis são conhecidas como variáveis compostas, variáveis
subscritas, variáveis indexáveis ou arranjos (array = vetores).

Em Python existem três tipos principais de variáveis compostas (com a
mesma lógica), cada uma com suas características especiais:

- Listas (foco de hoje)
- Tuplas
- Dicionário



Luís
Felip

e

15/
09/

25

Listas em Python
- Uma lista em Python é uma estrutura que armazena vários dados,

que podem ser de um mesmo tipo ou não.
- O acesso a um dado específico da lista é feito por meio da sua

posição (índice).
- Uma lista é criada com a construção:

lista = [dado1, dado2, ..., dadon].
Obs.: Declara-se uma lista, colocando entre colchetes uma sequência
de dados separados por vírgula.

- Os índices começam em 0, pois essa convenção é herdada de
linguagens como C, onde o índice representa a distância (ou
deslocamento) do primeiro elemento da lista.

Exemplos:
1 >>> a = [1, "ola", 2]
2 >>> type(a)
3 <class ’list’>
4 >>> a[0]
5 1
6 >>> a[1]
7 ’ola’
8 >>> a[2]
9 2

1 >>> a = [1, 4, 2] # Lista de inteiros

1 >>> a = [1, "a", 2] # Lista c/ tipos distintos

1 >>> a = [1, [4,5], [2]] # Lista com outras listas

1 >>> a = [] # Lista vazia



Luís
Felip

e

15/
09/

25

Usando uma lista

- Pode-se acessar uma posição de uma lista usando um índice inteiro.
- Se n é o tamanho da lista, índices válidos vão de 0 a n − 1.
- Primeira posição: índice 0
- Última posição: índice n − 1
- Sintaxe: identificador[posicao]

1 notas = [4.5, 8.6, 9, 7.8, 7]
2 print(notas [1] + 2) # 10.6
3 notas [3] = 0.4
4 print(notas) # [4.5, 8.6, 9, 0.4, 7]



Luís
Felip

e

15/
09/

25

Acesso usando variáveis como índice

- É comum usar for para percorrer listas.

1 notas = [4.5, 8.6, 9, 7.8, 7]
2 for i in range (5):
3 print(notas[i])
4
5 # Saída:
6 # 4.5
7 # 8.6
8 # 9
9 # 7.8

10 # 7

Exemplo:

1 l = [0,0,0,0,0,0,0,0,0,0]
2 for i in range (10):
3 l[i] = 5 * i
4 print(l)
5
6 # Saída:
7 # [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]



Luís
Felip

e

15/
09/

25

Listas – Índices negativos e erros

- Índices negativos contam de trás para frente.
- -1 é o último elemento, -2 o penúltimo, etc.
- Acessar uma posição inexistente gera erro IndexError.

1 notas = [4.5, 8.6, 9, 7.8, 7]
2
3 print(notas [-1]) # 7
4
5 print(notas [100]) # IndexError: list index out of range
6
7 print(notas [-6]) # IndexError: list index out of range



Luís
Felip

e

15/
09/

25

Listas – Índices e Slicing
- Listas em Python suportam slicing, operação que obtém uma

sublista.
- Forma geral: identificador[ind1:ind2]

- Retorna elementos do índice ind1 até ind2 - 1.

1 notas = [4.5, 8.6, 9, 7.8, 7]
2
3 print(notas [1:4]) # [8.6, 9, 7.8]

Observações:
- O índice inicial é incluído, o final é excluído.
- Se ind1 for omitido, começa do início da lista.
- Se ind2 for omitido, vai até o final.

1 notas = [4.5, 8.6, 9, 7.8, 7]
2
3 print(notas [2:]) # [9, 7.8, 7]
4 print(notas [:2]) # [4.5, 8.6]



Luís
Felip

e

15/
09/

25

Operações básicas com listas

Listas podem ser modificadas. Pode-se incluir incluir e remover itens.

Seja uma lista com nome lista.
- append(valor): adiciona valor ao final da lista.
- len(lista): retorna o número de elementos da lista.
- valor in lista: retorna True se valor estiver na lista, caso

contrário, False.
- remove(valor): remove a primeira ocorrência de valor na lista.
- pop(): remove o último elemento da lista.
pop(indice): remove o elemento da posição indice.

Exemplo de uso:
1 lista = [10, 20, 30]
2 lista.append (40) # [10, 20, 30, 40]
3 print(len(lista)) # 4
4 print (20 in lista) # True
5 lista.remove (10) # [20, 30, 40]
6 x = lista.pop() # x = 40, lista = [20, 30]

1 lista = [10, 20, 30]
2
3 lista.insert(1, 40)
4 print(lista) # [10, 40, 20, 30]



Luís
Felip

e

15/
09/

25

Funções
É muito comum usar a função len junto com o laço for para percorrer
todas as posições de uma lista:

1 x = [1,2,3,4,5,6]
2 for i in range(len(x)):
3 print(x[i]+1, end = " ")
4 print("\n") # Saída: 2 3 4 5 6 7

É comum acrescentar um item no final de uma lista, feito com append:

1 x = [6, 5]
2 x.append (98)
3 print(x) # Saída: [6, 5, 98]

Observação:
- O formato é lista.append(item)

- A lista que será modificada vem antes, seguida de ponto, depois o
método append com o item como argumento.

- Esse tipo de operação associada a um objeto é chamado de método.



Luís
Felip

e

15/
09/

25

Preenchendo uma lista

Lendo dados e adicionando com append:
Leia um número inteiro N que indica quantas notas serão digitadas. Em
seguida, leia N valores reais (um por vez) e armazene cada valor ao final
da lista x usando o método append. Ao término da leitura, imprima a
lista x preservando a ordem de entrada dos dados.

Observação: a mensagem “Entre com a nota i” utiliza o índice i
iniciando em 0 (as notas são solicitadas nas posições 0, 1, 2, . . . ,N − 1).

1 x = []
2 n = int(input("Entre com o numero de notas: "))
3 for i in range(n):
4 dado = float(input("Entre com a nota " + str(i) + ": "))
5 x.append(dado)
6 print(x)

Importante: Note que a lista deve ser criada antes de utilizar o append.



Luís
Felip

e

15/
09/

25

Concatenação de listas

- Usamos o operador + para juntar duas listas.
- Isso gera uma nova lista sem modificar as originais.

1 lista1 = [1, 2, 4]
2 lista2 = [27, 28, 29, 30, 33]
3 x = lista1 + lista2
4 print(x)
5
6 # [1, 2, 4, 27, 28, 29, 30, 33]



Luís
Felip

e

15/
09/

25

Repetição de listas

- O operador * repete a concatenação de uma lista.

1 x = [1, 2]
2 y = 4 * x
3 print(y)
4
5 # [1, 2, 1, 2, 1, 2, 1, 2]



Luís
Felip

e

15/
09/

25

Outros métodos em listas

- lista.insert(i, dado): insere dado para que fique na posição i .
- del lista[i]: remove elemento da posição i .

1 x = [40, 30, 10, 40]
2
3 x.insert(1, 99) # [40, 99, 30, 10, 40]
4
5 del x[2] # [40, 99, 10, 40]



Luís
Felip

e

15/
09/

25

Elementos Iguais – Versão 1

- Ler dois vetores com 5 inteiros cada.
- Checar quais elementos do segundo vetor são iguais a algum

elemento do primeiro vetor.
- Se não houver elementos em comum, o programa deve informar isso.

1 x = []
2 y = []
3 for i in range (5):
4 x.append(int(input(f"Valor {i+1} vetor 1: ")))
5 y.append(int(input(f"Valor {i+1} vetor 2: ")))
6
7 umEmComum = False
8 for i in range(len(x)):
9 for j in range(len(y)):

10 if x[i] == y[j]:
11 umEmComum = True
12 print(f"Elemento da pos. {i} do vetor 1 igual elemento da pos. {j} do vetor 2")
13
14 if not umEmComum:
15 print("Nenhum elemento em comum")



Luís
Felip

e

15/
09/

25

Elementos Iguais – Versão 2

- Similar ao programa anterior, mas agora nos laços percorremos as
listas diretamente com seus valores, ao invés de se utilizar índices
para as listas.

1 x = []
2 y = []
3 for i in range (5):
4 x.append(int(input(f"Valor {i+1} vetor 1: ")))
5 y.append(int(input(f"Valor {i+1} vetor 2: ")))
6
7 umEmComum = False
8 for a in x:
9 for b in y:

10 if a == b:
11 umEmComum = True
12
13 if not umEmComum:
14 print("Nenhum elemento em comum")



Luís
Felip

e

15/
09/

25

Leitura e Inicialização de Listas

Exemplo 1: Lendo todos os valores de uma vez, separados por espaço.

1 valores = input("Digite os valores na mesma linha: ").split()

Exemplo 2: Lendo um vetor com 10 valores, um por vez.

1 valores = [None] * 10
2 for i in range(len(valores )):
3 valores[i] = input("Digite um valor: ")

Alternativa: Criando listas já preenchidas usando list comprehension.

1 # Lista com 5 zeros
2 x = [0 for i in range (5)] # [0, 0, 0, 0, 0]
3
4 # Lista com os 5 primeiros pares
5 x = [2*i for i in range (5)] # [0, 2, 4, 6, 8]



Luís
Felip

e

15/
09/

25

Matriz 2D é um Vetor de Vetores

A declaração abaixo corresponde a uma matriz (2 dimensões) cujo tipo
base é boolean.

1 celulas = [
2 [True , False , False , True , True],
3 [True , True , False , True , False]
4 ]

- O primeiro índice representa a linha.
- O segundo índice representa a coluna.



Luís
Felip

e

15/
09/

25

Acessando elementos em uma Matriz

1 celulas = [
2 [True , False , False , True , True],
3 [True , True , False , True , False]
4 ]
5
6 print(celulas [0][0]) # Acessa linha 0, coluna 0
7
8 print(celulas [1][0]) # Acessa linha 1, coluna 0
9

10 print(celulas [1][2]) # Acessa linha 1, coluna 2

- celulas[1][2] retorna o valor da segunda linha, terceira coluna.
- Neste caso: False.



Luís
Felip

e

15/
09/

25

Exemplo: Loteria Esportiva

Uma matriz de 13 linhas e 3 colunas para representar a aposta.

1 aposta = [
2 [" ", "X", " "],
3 ["X", " ", " "],
4 [" ", " ", "X"],
5 ...
6 ]

- aposta → matriz completa.
- aposta[i] → linha i (um vetor com 3 caracteres).
- aposta[i][j] → caractere na linha i, coluna j.



Luís
Felip

e

15/
09/

25

Exemplo: Estado do Jogo da Velha

1 # 0 = célula vazia
2 tabuleiro = [
3 [0, 0, 0],
4 [0, 0, 0],
5 [0, 0, 0]
6 ]
7
8 tabuleiro [1][1] = 1 # Jogador 1: centro
9 tabuleiro [0][2] = 2 # Jogador 2: sup. direita

10 tabuleiro [0][0] = 1 # Jogador 1: sup. esquerda
11 tabuleiro [2][2] = 2 # Jogador 2: inf. direita

Cada atualização altera o estado do tabuleiro.


