
Aula 15: Arquivos, parâmetros do
programa

Luís Felipe

UFF

24 de Novembro de 2025



Luís
Felip

e

24/
11/

25

Programas interativos e arquivos

- Programas interativos: leem dados do teclado e exibem resultados
na tela.

- Úteis para poucos dados ou quando há interação humana.
- Para grandes quantidades de dados, usam-se arquivos para

armazenar entrada e saída.
- Arquivos de entrada e saída permitem processar dados sem interação

contínua do usuário.



Luís
Felip

e

24/
11/

25

Arquivos texto

- Dois tipos básicos: texto e binário.
- Arquivo texto: sequência de caracteres organizada em linhas, com

um nome.
- Pode ser criado e editado por editores de texto.
- Armazenado como sequência de caracteres, incluindo:

▶ \n → fim de linha
▶ \0 → fim do arquivo



Luís
Felip

e

24/
11/

25

Abrindo arquivos em Python

1 # Abrindo arquivo
2 dados = open("teste.txt", "r") # leitura
3 dados = open("teste.txt", "w") # escrita (sobrescreve)
4 dados = open("teste.txt", "a") # escrita no final

- "r": leitura (padrão, se omitido = “r”).
- "w": escrita, apaga conteúdo anterior.
- "a": escrita no final.
- "r+": leitura e escrita (não visto aqui).



Luís
Felip

e

24/
11/

25

Modos de abertura de arquivos em Python

1 dados = open("teste.txt", "r")

- "r": leitura
▶ Se existir: abre o arquivo e posiciona a cabeça de leitura no início.
▶ Se não existir: gera FileNotFoundError.

1 dados = open("teste.txt", "w")

- "w": escrita (sobrescreve)
▶ Se existir: apaga o conteúdo anterior e posiciona a cabeça de escrita

no início.
▶ Se não existir: cria o arquivo e posiciona a cabeça de escrita no

início.

1 dados = open("teste.txt", "a")

- "a": escrita no final (append)
▶ Se existir: abre para escrita e posiciona a cabeça no final do arquivo.
▶ Se não existir: cria o arquivo e posiciona a cabeça no final (início do

arquivo).



Luís
Felip

e

24/
11/

25

Fechando arquivos

Obs.: Sempre fechar um arquivo para garantir que os dados sejam
gravados:

1 dados = open("exemplo.txt", "w")
2 # ... operações de escrita ...
3 dados.close()

Após close(), o arquivo não pode mais ser usado sem reabertura.



Luís
Felip

e

24/
11/

25

Leitura com readline()

A operação readline(), aplicada sobre um arquivo texto aberto, retorna
uma linha completa do arquivo, incluindo o fim de linha: \n.

A cabeça de leitura avança para a próxima linha. Uma string vazia é
retornada quando o fim de arquivo é encontrado.

readline() lê uma linha completa (incluindo \n).

1 dados = open("exemplo.txt", "r")
2 linha = dados.readline ()
3 print(linha , end="")
4 dados.close ()

Retorna "" (string vazia) ao chegar no fim do arquivo.



Luís
Felip

e

24/
11/

25

Lendo arquivo linha a linha

O programa abaixo pede ao usuário que escolha um nome de arquivo,
existente em seu diretório, e exibe seu conteúdo na tela.

1 nomeArquivo = input("Digite o nome do arquivo: ")
2 dados = open(nomeArquivo , "r")
3 linha = dados.readline ()
4 while linha != "":
5 print(linha , end="")
6 linha = dados.readline ()
7 dados.close ()



Luís
Felip

e

24/
11/

25

Lendo todas as linhas de uma vez

readlines() carrega todas as linhas para uma lista (funciona apenas
para arquivos pequenos, até algumas dezenas de megabytes).

1 nomeArquivo = input("Digite o nome do arquivo: ")
2 dados = open(nomeArquivo , "r")
3 linhas = dados.readlines ()
4 for linha in linhas:
5 print(linha , end="")
6 dados.close ()



Luís
Felip

e

24/
11/

25

Escrevendo com write()

Para escrever uma sequência de caracteres em um arquivo texto, no
modo “w” ou “a”, podemos utilizar o método write().

write("texto") escreverá a string desejada (texto) a partir do ponto em
que a cabeça de escrita do arquivo estiver posicionada.

Ao final, a cabeça de escrita ficará posicionada após o último caractere
da String desejada.

1 dados = open("teste.txt", "w")
2 dados.write("qualquer dado pode ser escrito.")
3 dados.close()

Para escrever uma linha, incluir \n:

1 dados = open("teste.txt", "w")
2 dados.write("qualquer dado\n")
3 dados.close ()



Luís
Felip

e

24/
11/

25

Criando arquivo com múltiplas linhas

O programa abaixo pede ao usuário que escolha um nome de arquivo e
quantidade de linhas que deseja escrever, em seguida os seus conteúdos
são lidos do teclado e escritos no arquivo.

1 nomeArquivo = input("Digite o nome do arquivo: ")
2 quantasLinhas = int(input("Quantas linhas: "))
3 dados = open(nomeArquivo , "w")
4
5 for i in range(quantasLinhas ):
6 nova = input("Linha " + str(i+1) + ": ")
7 dados.write(nova + "\n")
8
9 dados.close ()

Escreve o conteúdo linha por linha, adicionando \n ao final.



Luís
Felip

e

24/
11/

25

Exemplo: leitura e escrita de arquivos
Objetivo: criar um arquivo com nomes e notas de alunos, depois ler e
exibir seu conteúdo.

1 # Escrita no arquivo
2 dados = open("alunos.txt", "w")
3
4 dados.write("Ana , 9.5\n")
5 dados.write("Bruno , 7.8\n")
6 dados.write("Carla , 8.2\n")
7
8 dados.close()
9

10 # Leitura do arquivo
11 dados = open("alunos.txt", "r")
12 linhas = dados.readlines ()
13
14 for linha in linhas:
15 nome , nota = linha.strip (). split(", ")
16 print(f"Aluno: {nome} - Nota: {nota}")
17 dados.close()

Saída:

Aluno: Ana - Nota: 9.5
Aluno: Bruno - Nota: 7.8
Aluno: Carla - Nota: 8.2



Luís
Felip

e

24/
11/

25

Abrindo arquivos com with

A construção with open(...) as f é uma forma prática e confiável de
trabalhar com arquivos em Python.

- Garante que o arquivo seja fechado automaticamente ao final do
bloco.

- Ajuda a evitar erros comuns, como esquecer close().
- Deixa o código mais organizado e fácil de ler.

1 with open("dados.txt", "r") as f:
2 for linha in f:
3 print(linha , end="")



Luís
Felip

e

24/
11/

25

Codificação de caracteres (encoding)

- Um arquivo texto é armazenado como bytes no disco.
- O encoding (codificação) define como esses bytes são convertidos

em caracteres (e vice-versa).
- Exemplos comuns de encoding:

▶ UTF-8 (padrão em muitos sistemas modernos);
▶ cp1252, latin1 (muito usados em Windows antigos).

- Se o encoding usado para ler o arquivo não for o mesmo usado para
gravar, podem ocorrer:
▶ Erros de decodificação (UnicodeDecodeError);
▶ Caracteres estranhos: Ã, §, etc.



Luís
Felip

e

24/
11/

25

Por que usar encoding="utf-8"?

- Se não indicarmos o encoding, o Python usa um padrão do sistema:
▶ Em muitos Linux/macOS: geralmente utf-8;
▶ Em Windows: pode ser cp1252 ou outro.

- Isso significa que o mesmo código pode:
▶ Funcionar em um computador e falhar em outro;
▶ Mostrar acentos corretamente em um sistema e corrompidos em

outro.

- Ao escrever:

1 with open(nome_arquivo , "r", encoding="utf -8") as f:
2 ...

estamos:
▶ Padronizando a forma de ler o arquivo;
▶ Garantindo que acentos e caracteres especiais sejam tratados

corretamente;
▶ Tornando o programa mais portável entre diferentes máquinas.



Luís
Felip

e

24/
11/

25

Exemplo com e sem encoding

Sem especificar encoding:

1 # Pode funcionar em um sistema e falhar em outro
2 with open("carta.txt", "r") as f:
3 for linha in f:
4 print(linha , end="")

- Depende do encoding padrão do sistema.
- Pode gerar UnicodeDecodeError ou mostrar acentos incorretos.

Com encoding explícito (UTF-8):

1 with open("carta.txt", "r", encoding="utf -8") as f:
2 for linha in f:
3 print(linha , end="")

- Assume que o arquivo foi gravado em UTF-8 (padrão comum em
editores modernos).

- Torna o comportamento do programa mais previsível e consistente
em diferentes sistemas.



Luís
Felip

e

24/
11/

25

Processamento de Arquivos Texto com Números Reais
Objetivo: Processar arquivos texto não vazios cujas linhas contêm um ou
mais números de ponto flutuante. O programa deve calcular estatísticas
sem carregar o arquivo inteiro na memória.

Entrada: Um nome de arquivo válido. Cada linha possui números reais
separados por espaços. O arquivo não estará vazio.
Saída:

- Exibir o conteúdo completo do arquivo (linha por linha);
- Calcular a média de todos os números;
- Contar quantos números são estritamente maiores que essa média.

Restrição: O arquivo pode ser maior que a memória principal. O
programa deve manter apenas uma linha em memória por vez. Exemplo:

Conteúdo em alfa:
10 20 33.33 22.1
-43.29 87.1111 13.05
8 -77.12

Média dos Números em alfa: 8.131233333333334
Quantidade Acima de 8.131233333333334 em alfa: 6



Luís
Felip

e

24/
11/

25

1 def imprime_e_calcula_soma_contagem(nome_arquivo ):
2 soma = 0.0
3 cont = 0
4 with open(nome_arquivo , "r", encoding="utf -8") as f:
5 for linha in f:
6 # imprime o conteúdo exatamente como está no arquivo
7 print(linha , end="") # linha já tem ’\n’ no final
8
9 # processa os números da linha

10 partes = linha.split()
11 for p in partes:
12 # converte para float
13 valor = float(p)
14 soma += valor
15 cont += 1
16 return soma , cont
17
18 def conta_acima_da_media(nome_arquivo , media):
19 qtd_acima = 0
20 with open(nome_arquivo , "r", encoding="utf -8") as f:
21 for linha in f:
22 partes = linha.split()
23 for p in partes:
24 valor = float(p)
25 if valor > media:
26 qtd_acima += 1
27 return qtd_acima
28
29 def main ():
30 nome_arquivo = input("Digite o nome do arquivo: ")
31 # 1a passagem: imprimir conteúdo, somar e contar números
32 soma , cont = imprime_e_calcula_soma_contagem(nome_arquivo)
33 if cont == 0:
34 print("\nNenhum número encontrado no arquivo.")
35 return
36 # 2a passagem: calcular média e contar quantos estão acima
37 media = soma / cont
38 print("\n\nMédia dos números no arquivo:", media)
39 qtd_acima = conta_acima_da_media(nome_arquivo , media)
40 print("Quantidade de números acima da média:", qtd_acima)
41
42 if __name__ == "__main__": # só executa este bloco quando o arquivo é rodado diretamente
43 main() # não roda ao ser importado por outro código; chama a função principal


