

2

Programas interativos e arquivos

- Programas interativos: leem dados do teclado e exibem resultados
na tela. ;

- Uteis para poucos dados ou quando ha interacio humana.

- Para grandes quantidades de dados, usam-se arquivos para
armazenar entrada e saida.

- Arquivos de entrada e saida permitem processar dados sem interacio
continua do usuario.

2

Arquivos texto

- Dois tipos basicos: texto e binario.

- Arquivo texto: sequéncia de caracteres organizada em linhas, com
um nome.

Pode ser criado e editado por editores de texto.
- Armazenado como sequéncia de caracteres, incluindo:

» \n — fim de linha
» \0 — fim do arquivo

<
o 2%
N2 &yd
o

Abrindo arquivos em Python

Abrindo arquivo

dados = open("teste.txt”, "r") # leitura ;
dados open("teste.txt", "w") # escrita (sobrescreve)
dados = .open(!teste. txt" S ta") # escrita no final

n.n

- "r": leitura (padrdo, se omitido = "r").

noon

- "w": escrita, apaga contetdo anterior.

nn

- "a": escrita no final.

n

- "r+": leitura e escrita (ndo visto aqui).

2

Modos de abertura de arquivos em Python

’dados = open("teste.txt”", "r")

- "r": leitura
P Se existir: abre o arquivo e posiciona a cabeca de leitura no inicio.
» Se n3o existir: gera FileNotFoundError.

dados = open("teste.txt”, "w")

noon

- "w": escrita (sobrescreve)
> Se existir: apaga o contefido anterior e posiciona a cabega de escrita

no inicio.
» Se n3o existir: cria o arquivo e posiciona a cabeca de escrita no
inicio.
dados = open("teste.txt", "a")

n

- "a": escrita no final (append)
P Seé'existir: abre para escrita e posiciona a cabeca no final do arquivo.
» Se n3o existir: cria o arquivo e posiciona a cabeg¢a no final (inicio do
arquivo).

n

2

Fechando arquivos

gravados:

Sempre fechar um arquivo para garantir que os dados sejam

dados = open(”exemplo.txt”, "w")
... operacdes de escrita
dados.close ()

Ap6s close(), o arquivo ndo pode mais ser u

sado sem reabertura.

2

Leitura com readline()

A operacdo readline(), aplicada sobre um arquivo texto aberto, retorna
uma linha completa do arquivo, incluindo o fim de linha: \n.

A cabeca de leitura avanga para a préxima linha. Uma string vazia é
retornada quando o fim de arquivo é encontrado.

readline() |é uma linha completa (incluindo \n).

dados = open("exemplo.txt”", "r")
linha = dados.readline()
print(linha, end="")
dados.close()

nn

Retorna "" (string vazia) ao chegar no fim do arquivo.

<
o 2%
N2 &yd
o

Lendo arquivo linha a linha

O programa abaixo pede ao usuario que escolha um nome de arquivo,
existente em seu diretdrio, e exibe seu contetido na tela.

nomeArquivo = input("Digite o nome do arquivo: ")
dados = open(nomeArquivo, "r")
linha = dados.readline()
while linha != "":
print(linha, end="")
linha = dados.readline()
dados.close()

2

Lendo todas as linhas de uma vez

readlines() carrega todas as linhas para uma lista (funciona apenas
para arquivos pequenos, até algumas dezenas de megabytes).

nomeArquivo = input("Digite o nome do arquivo: ")
dados = open(nomeArquivo, "r")
linhas = dados.readlines()
for linha in linhas:

print(linha, end="")
dados.close () g

Escrevendo com write()

Para escrever uma sequéncia de caracteres em um arquivo texto, no

“u_n

modo “w" ou “a”, podemos utilizar o método write().

write("texto") escrevera a string desejada (texto) a partir do ponto em
que a cabeca de escrita do arquivo estiver posicionada.

Ao final, a cabeca de escrita ficara posicionada apds o dltimo caractere
da String desejada.

dados = open("teste.txt”, "w")
dados.write(”qualquer dado pode ser escrito.”):
dados.close()

Para escrever uma linha, incluir \n:

dados = open("teste.txt”, "w")
dados.write("qualquer dado\n")
dados.close()

3
W

2

Criando arquivo com mdltiplas linhas

O programa abaixo pede ao usuario que escolha um nome de arquivo e
quantidade de linhas que deseja escrever, em segunda 0s seus contetdos
sdo lidos do teclado e escritos no arquivo. %

nomeArquivo = input("Digite o nome do arquivo: ")
quantasLinhas = int(input(”Quantas linhas: "))
dados = open(nomeArquivo, "w"

for i in range(quantasLinhas):
nova = input¢ZLinRal " Fistr i) ot by
dados.write(nova + "\n")

Ny

dados.close ()

Escreve o contetdo linha por linha, adicionando \n ao final.

<
g 29
WV 1 y“\
2

Exemplo: leitura e escrita de arquivos

Objetivo: criar um arquivo com nomes e notas de alunos, depois ler e
exibir seu conteiido.

Escrita no arquivo
dados = open(”alunos.txt”, "w")

dados.write("Ana, 9.5\n")
dados.write("Bruno, 7.8\n")
dados.write(”Carla, 8.2\n")

dados.close ()

Leitura do arquivo
dados = open(”alunos.txt”, "r")
linhas = dados.readlines ()

for linha in linhas:
nome, nota = linha.strip().split(”, ")
print (f"Aluno: {nome} - Nota: {nota}")
dados.close ()

Saida:

Aluno: Ana - Nota: 9.5
Aluno: Bruno - Nota: 7.8
Aluno: Carla - Nota: 8.2

2

Abrindo arquivos com with

A construcdo with open(...) as f & uma forma pratica e confiavel de
trabalhar com arquivos em Python.

- Garante que o arquivo seja fechado automaticamente ao final do
bloco.

- Ajuda a evitar erros comuns, como esquecer close().
- Deixa o cédigo mais organizado e facil de ler.

with open("”"dados.txt"”, "r") as f:
for linha ‘dnt
print(linha, end="")

2

Codificagdo de caracteres (encoding)

- Um arquivo texto é armazenado como bytes no disco.
- O encoding (codificagdo) define como esses bytes sdo convertidos
em caracteres (e vice-versa).
- Exemplos comuns de encoding:
» UTF-8 (padrdo em muitos sistemas modernos);
» cp1252, latinl (muito usados em Windows antigos).
- Se o encoding usado para ler o arquivo ndo for o0 mesmo usado para
gravar, podem ocorrer:

» Erros de decodificagdo (UnicodeDecodeError);
» Caracteres estranhos: A, §, etc.

2

Por que usar encoding="utf-8"7

- Se n3o indicarmos o encoding, o Python usa um padrdo do sistema:

» Em muitos Linux/macOS: geralmente utf-8;
» Em Windows: pode ser cp1252 ou outro.

- Isso significa que o mesmo cédigo pode:

» Funcionar em um computador e falhar em outro;

» Mostrar acentos corretamente em um sistema € corrompidos em
outro.

- Ao escrever:

with open(nome_arquivo, "r", encoding="utf-8") as f:

estamos:

» Padronizando a forma de ler o arquivo;

» Garantindo que acentos e caracteres especiais sejam tratados
coerretamente;

» Tornando o programa mais portavel entre diferentes maquinas.

Exemplo com e sem encoding

Sem especificar encoding:

Pode funcionar em um sistema e falhar em outro
with open("capka txt" 'ri)tasf:
for linha in*f:
print(linha, end="")

Depende do encoding padrdo do sistema.
Pode gerar UnicodeDecodeError ou mostrar acentos incorretos.

Com encoding explicito (UTF-8):

with open(”carta.txt”, "r", encoding:“utf—s”)“és P
for: linha iin: i
print(linha, end="")

- Assume que o arquivo foi gravado em UTF-8 (padrdo comum em
editores modernos).

- Torna o comportamento do programa mais previsivel e consistente
em diferentes sistemas.

Processamento de Arquivos Texto com Nimeros Reais

Objetivo: Processar arquivos texto ndo vazios cujas linhas contém um ou
mais nameros de ponto flutuante. O programa deve calcular estatisticas
sem carregar o arquivo inteiro na memoria.

Entrada: Um nome de arquivo valido. Cada linha possw nameros reais
separados por espacos. O arquivo ndo estara vazio.
Saida:

- Exibir o conteado completo do arquivo (linha por linha);

- Calcular a média de todos os nimeros;

- Contar quantos nameros s3o estritamente maiores que essa média.
Restricdo: O arquivo pode ser maior que a memoria principal. O
programa deve manter apenas uma linha em memdria por vez. Exemplo:

Conteudo em alfa:

10 20 33.33 22.1
-43.29 87.1111 13.05
8 -77.12

Média dos Numeros em alfa: 8.131233333333334
Quantidade Acima de 8.131233333333334 em alfa: 6

l@*f imprime_e_calcula_soma_contagem(nome_arquivo):
sgma = 0.0
4\%ont = 0
Lb'\ with open(nome_arquivo,
for linha in f:
imprime o conteldo exatamente como esta no arquivo
print(linha, end="") # linha ja tem ’\n’ no final

2
WV

r", encoding="utf-8") as f:

processa os numeros da linha
partes = linha.split()
for p in partes:
converte para float
valor = vfloac(p)
soma += valor
cont 1
return soma, cont

def conta_acima_da_media(nome_arquivo, media): 2
qtd_acima = @ 3
with open(nome_arquivo,

for linha in f:
partes = linha.split() 3
for p in partes:

valor = float(p)
if valor > media:
qtd_acima +=

r”, encoding="utf-8") as f: BRE"

return qtd_acima

def main():
nome_arquivo input("Digite o nome do arquivo: ")

imprimir conteldo, somar e contar nGmeros

soma, cont = imprime_e_calcula_soma_contagem(nome_arquivo)
if cont >

print("\nNenhum ndmero encontrado no arquivo.")

return

2a passagem: calcular média e contar quantos estdo acima
media = soma / copt

print("\n\nMédia dos numeros no arquivo:", media)
qtd_acima =yconta_acima_da_media(nome_arquivo, media)
print(”Quantidade de numeros acima da média:”, qtd_acima)

ifs ZEnamess "__main__": # s6 executa este bloco quando o arquivo é rodado diretamente
main () # ndo roda ao ser importado por outro cédigo; chama a funcgdo principal

