
Universidade Federal Fluminense
Luís Felipe Ignácio Cunha

Maratona 4 – Manipulação de arquivos texto

1. Análise de palavras em arquivo texto

(a) Objetivo: Implementar um programa em Python, utilizando subprogramações, que
leia o nome de um arquivo texto e dois valores inteiros que definem um intervalo de
tamanho de palavras. O programa deve exibir o conteúdo do arquivo, construir um di-
cionário de palavras com contagem de ocorrências e apresentar esse dicionário ordenado
alfabeticamente.

(b) Dados de entrada:

• Na primeira linha da entrada padrão, o nome de um arquivo texto. Cada linha
desse arquivo pode conter zero ou mais palavras.

• Na segunda linha da entrada padrão, dois números inteiros, chamados tamanhoMinimo
e tamanhoMaximo.

(c) Saída esperada: O programa deve:

i. Mostrar na saída padrão o conteúdo completo do arquivo informado, preservando os
caracteres acentuados, antecedido por um cabeçalho indicando o nome do arquivo.

ii. Produzir um dicionário em que:
• As chaves são palavras convertidas para letras maiúsculas;
• Todas as vírgulas presentes no texto devem ser removidas antes do processa-

mento das palavras;
• Apenas palavras cujo comprimento (número de caracteres) esteja no intervalo

tamanhoMinimo ≤ comprimento da palavra ≤ tamanhoMaximo

devem ser consideradas.
iii. Exibir o dicionário de palavras produzido no item anterior, juntamente com a con-

tagem de ocorrências de cada palavra, em ordem alfabética, no formato:

PALAVRA ocorreu X vez/vezes

seguindo o modelo apresentado no teste a seguir.

(d) Observação: O arquivo texto referido pode conter trechos com acentuação. A saída
deve preservar esses caracteres ao imprimir o conteúdo do arquivo.

(e) Exemplo de teste:
Entrada:



carta.txt
5 7

Saída correspondente:

Conteúdo do Arquivo: carta
Rua Nascimento Silva, cento e sete
Você ensinando pra Elizete
As canções de canção do amor demais

Lembra que tempo feliz, ai, que saudade
Ipanema era só felicidade
Era como se o amor doesse em paz

Nossa famosa garota nem sabia
A que ponto a cidade turvaria
Esse Rio de amor que se perdeu

Mesmo a tristeza da gente era mais bela
E além disso se via da janela
Um cantinho de céu e o Redentor

É, meu amigo, só resta uma certeza
É preciso acabar com essa tristeza
É preciso inventar de novo o amor

Dicionário de Palavras com Contagem de Ocorrências:
ACABAR ocorreu 1 vez
AMIGO ocorreu 1 vez
CANÇÃO ocorreu 1 vez
CANÇÕES ocorreu 1 vez
CENTO ocorreu 1 vez
CERTEZA ocorreu 1 vez
CIDADE ocorreu 1 vez
DEMAIS ocorreu 1 vez
DISSO ocorreu 1 vez
DOESSE ocorreu 1 vez
ELIZETE ocorreu 1 vez
FAMOSA ocorreu 1 vez
FELIZ ocorreu 1 vez
GAROTA ocorreu 1 vez
GENTE ocorreu 1 vez
IPANEMA ocorreu 1 vez
JANELA ocorreu 1 vez
LEMBRA ocorreu 1 vez
MESMO ocorreu 1 vez
NOSSA ocorreu 1 vez
PERDEU ocorreu 1 vez
PONTO ocorreu 1 vez



PRECISO ocorreu 2 vezes
RESTA ocorreu 1 vez
SABIA ocorreu 1 vez
SAUDADE ocorreu 1 vez
SILVA ocorreu 1 vez
TEMPO ocorreu 1 vez

2. Remoção de linhas com números primos em arquivo texto

(a) Objetivo: Implementar um programa em Python, utilizando subprogramações, que
leia o nome de um arquivo texto e processe seu conteúdo linha a linha. Cada linha
do arquivo contém zero ou mais números inteiros separados por espaços em branco.
O programa deve exibir o conteúdo original do arquivo, remover todas as linhas que
contenham pelo menos um número primo e, em seguida, exibir novamente o conteúdo
do arquivo após as eventuais remoções.

(b) Dados de entrada:

• Na primeira linha da entrada padrão, o nome de um arquivo texto. Cada linha
desse arquivo pode conter zero ou mais números inteiros separados por um ou mais
espaços.

(c) Saída esperada: O programa deve:

i. Mostrar na saída padrão o conteúdo completo do arquivo informado, antecedido
por um cabeçalho que indique o nome do arquivo.

ii. Processar o arquivo de forma a remover todas as linhas que contenham pelo menos
um número primo.

iii. Exibir novamente o conteúdo do arquivo, após as remoções, também precedido por
um cabeçalho adequado.

Um número inteiro é considerado primo se, e somente se, for maior que 1 e tiver como
únicos divisores positivos o número 1 e ele próprio.

(d) Restrição: Assuma que, em geral, o arquivo não pode ser mantido integralmente na
memória principal. O programa deve manter em memória apenas a linha que está sendo
processada em cada momento.

(e) Exemplo de teste:
Entrada:

numeros.txt

Conteúdo do arquivo numeros:

4 6 8
5 10 12
9 21 15
2 4 6

Saída correspondente:



Conteúdo do Arquivo numeros:
4 6 8
5 10 12
9 21 15
2 4 6

Conteúdo do Arquivo numeros após eventuais remoções:
4 6 8
9 21 15

Nesse exemplo, as linhas que contêm os números 5 e 2 são removidas por apresentarem
pelo menos um número primo.

3. Detecção de células com vizinhos maiores em matriz inteira

(a) Objetivo: Implementar um programa em Python, utilizando subprogramações, que
leia da entrada padrão o nome de um arquivo texto contendo uma matriz bidimensional
de números inteiros. O programa deve identificar e exibir todas as posições da matriz
cujos valores sejam estritamente menores que todos os seus vizinhos existentes. São
considerados vizinhos as células adjacentes horizontal, vertical e diagonalmente.

(b) Dados de entrada:

• Na entrada padrão, o nome de um arquivo texto.
• O arquivo referido contém, em cada linha, um ou mais valores inteiros separados

por um ou mais espaços em branco.
• Cada linha do arquivo representa uma linha da matriz; o número de colunas é

determinado pela quantidade de inteiros em cada linha.

(c) Saída esperada: O programa deve:

i. Ler o nome do arquivo, abrir o arquivo e interpretar seu conteúdo como uma matriz
de inteiros.

ii. Para cada célula da matriz, verificar todos os vizinhos existentes:
• mesma linha, colunas anterior e posterior (quando existirem);
• mesma coluna, linhas anterior e posterior (quando existirem);
• células diagonais adjacentes (superior esquerda, superior direita, inferior es-

querda, inferior direita), quando existirem.
iii. Para cada célula cujo valor seja estritamente menor que o valor de todos os seus

vizinhos existentes, imprimir uma linha na forma:

Linha X, Coluna Y, Valor = V

onde X é o número da linha, Y é o número da coluna (ambos iniciando em 1), e V é
o valor armazenado nessa célula.

(d) Observações:

• A matriz pode ter qualquer dimensão válida (número de linhas ≥ 1 e número de
colunas ≥ 1).

• Nos elementos de borda e de canto, apenas os vizinhos que existirem devem ser
considerados na comparação.



• Recomenda-se percorrer a matriz utilizando índices de linha e coluna, de forma a
facilitar o acesso aos vizinhos.

(e) Exemplos de teste:
Exemplo 1
Conteúdo do arquivo testeUm.txt:

10 20 15
13 18 21
-4 19 92
7 9 5

Entrada:

testeUm.txt

Saída correspondente:

Linha 1, Coluna 1, Valor = 10
Linha 1, Coluna 3, Valor = 15
Linha 3, Coluna 1, Valor = -4
Linha 4, Coluna 3, Valor = 5

Exemplo 2
Conteúdo do arquivo testeDois.txt:

-9 20 15 13 18 21
-4 19 92 7 9 5

Entrada:

testeDois.txt

Saída correspondente:

Linha 1, Coluna 1, Valor = -9
Linha 2, Coluna 4, Valor = 7
Linha 2, Coluna 6, Valor = 5

4. Contagem recursiva de ocorrências e posições em matriz

(a) Objetivo: Implementar um programa em Python, utilizando subprogramações e recur-
sividade, que leia da entrada padrão as dimensões de uma matriz de inteiros, seguido
dos seus elementos, e um valor alvo x. O programa deve contar, por meio de uma
função recursiva, quantas vezes x aparece na matriz e listar todas as posições (linha
e coluna) onde essas ocorrências acontecem.

(b) Dados de entrada:



• Na primeira linha da entrada padrão, dois inteiros positivos L e C, representando
o número de linhas e colunas da matriz.

• Em seguida, L linhas, cada uma contendo C números inteiros separados por espaço.
• Na última linha, o número inteiro x a ser buscado.

(c) Saída esperada: O programa deve:

i. Exibir a matriz lida, linha a linha.
ii. Utilizar uma função recursiva para percorrer toda a matriz e:

• contar quantas vezes x aparece;
• registrar as posições onde x ocorre.

iii. Exibir o resultado no formato:

x ocorre N vez(es) na matriz

seguido da lista de posições, no formato:

Linha i, Coluna j

onde as posições são numeradas a partir de 1.

(d) Restrições:

• A busca deve ser implementada por uma função recursiva, percorrendo a matriz
por índices.

• Não é permitido utilizar count().

(e) Exemplo de teste:
Entrada:

3 4
1 2 3 4
5 1 1 0
-1 2 1 7
1

Saída correspondente:

Matriz lida:
1 2 3 4
5 1 1 0
-1 2 1 7

1 ocorre 4 vez(es) na matriz
Posições:
Linha 1, Coluna 1
Linha 2, Coluna 2
Linha 2, Coluna 3
Linha 3, Coluna 3


