
Universidade Federal Fluminense
Programação de Computadores
Prof. Luís Felipe Ignácio Cunha

Maratona 3 – Tuplas e Dicionários

Esta lista aborda tuplas e dicionários em Python, integrando conteúdos já vistos na disciplina,
como listas, strings, subprogramação, recursividade, busca e ordenação.

1. Agenda simples com dicionário

(a) Objetivo: Implementar um programa que constrói uma agenda telefônica utilizando
um dicionário, em que cada nome está associado a um telefone. Além disso, se um nome
já estiver na agenda, deve ser pedido outro nome ao usuário.

(b) Dados de entrada: Cinco pares de valores, cada par composto por um nome (string)
e um telefone (string ou inteiro), lidos do teclado.

(c) Saída esperada: Ao final da leitura, o programa deve imprimir todos os contatos
armazenados, um por linha, no formato:

nome: telefone

2. Contador de letras em uma string

(a) Objetivo: Implementar uma função que conte quantas vezes cada letra aparece em
uma string, utilizando um dicionário.

(b) Dados de entrada: Uma linha de texto (string), podendo conter letras, espaços e
outros caracteres.

(c) Saída esperada: Impressão de um dicionário em que cada chave é uma letra (conside-
rando tudo em minúsculas e ignorando espaços) e o valor é a quantidade de ocorrências
daquela letra na string.

3. Tupla de dados pessoais

(a) Objetivo: Representar dados pessoais em uma tupla e exibir suas informações após
desempacotamento.

(b) Dados de entrada: Três valores lidos do teclado: nome (string), idade (inteiro) e
altura (número real).

(c) Saída esperada: Impressão das informações no formato:

Nome: ...Idade: ...Altura: ...

utilizando o desempacotamento da tupla para acessar os valores.



4. Dicionário de notas e média da turma

(a) Objetivo: Armazenar em um dicionário as notas de alunos e determinar quais alunos
ficaram acima da média da turma.

(b) Dados de entrada:

• Um número inteiro n representando a quantidade de alunos.
• Para cada aluno, um nome (string) e uma nota (número real).

(c) Saída esperada:

• A média aritmética das notas da turma.
• A lista dos alunos com nota estritamente maior do que a média, cada um com seu

nome e nota.

5. Consulta de nota

(a) Objetivo: Consultar a nota de um aluno em um dicionário, tratando o caso de aluno
inexistente.

(b) Dados de entrada:

• Um dicionário já preenchido, no formato nome → nota.
• Um nome (string) a ser consultado, lido do teclado.

(c) Saída esperada:

• Se o nome estiver no dicionário, imprimir a nota do aluno.
• Caso contrário, imprimir uma mensagem informando que o aluno não foi encon-

trado.

6. Conversão de dicionário para lista de tuplas

(a) Objetivo: Transformar um dicionário em uma lista de tuplas, facilitando outras ope-
rações sobre os dados.

(b) Dados de entrada: Um dicionário notas no formato nome → nota, já preenchido no
programa.

(c) Saída esperada: Uma lista de tuplas no formato:

[(nome_1, nota_1), (nome_2, nota_2), . . .]

impressa na tela.

7. Soma de matrizes esparsas

(a) Objetivo: Somar duas matrizes esparsas representadas por dicionários que usam tuplas
como chaves.

(b) Dados de entrada: Dois dicionários A e B representando matrizes esparsas, com as
seguintes chaves:

• "Número de Linhas" e "Número de Colunas", indicando as dimensões.
• Tuplas (i, j) representando posições da matriz com valores inteiros diferentes de

zero.



(c) Saída esperada: Um novo dicionário C representando a matriz soma, com mesmas
chaves de dimensão e apenas as posições (i, j) cujo valor resultante seja diferente de
zero, impressos de forma adequada.

8. Dicionário de temperaturas com tuplas como chave

(a) Objetivo: Armazenar temperaturas de cidades em diferentes dias, utilizando tuplas
como chaves em um dicionário.

(b) Dados de entrada:

• Um número inteiro n representando a quantidade de leituras.
• Para cada leitura: uma cidade (string), um dia (string) e uma temperatura (inteiro).
• Ao final, uma cidade C (string) cuja média de temperatura deve ser calculada.

(c) Saída esperada:

• A média das temperaturas cadastradas apenas para a cidade C.
• Uma mensagem informando que não há dados, caso a cidade C não possua registros.

9. Agrupamento de alunos por nota

(a) Objetivo: Construir um novo dicionário que agrupa alunos de acordo com a nota
obtida.

(b) Dados de entrada: Um dicionário notas no formato nome → nota, previamente
preenchido.

(c) Saída esperada: Um dicionário agrupado no formato:

nota → [lista de nomes com essa nota]

e a impressão desse dicionário na tela.

10. Frequência de palavras em uma frase

(a) Objetivo: Contar quantas vezes cada palavra aparece em uma frase, utilizando um
dicionário.

(b) Dados de entrada: Uma linha de texto (string) contendo uma frase, lida do teclado.

(c) Saída esperada:

• Um dicionário em que a chave é a palavra e o valor é a quantidade de ocorrências.
• A impressão das palavras em ordem alfabética, juntamente com suas contagens.

11. Fibonacci com memoização usando dicionário

(a) Objetivo: Implementar uma função recursiva para calcular o n-ésimo número de Fibo-
nacci, utilizando um dicionário para armazenar resultados já calculados (memoização).

(b) Dados de entrada: Um número inteiro n ≥ 0, lido do teclado.

(c) Saída esperada: O valor de F (n), correspondente ao n-ésimo número da sequência de
Fibonacci, impresso na tela.

12. Agrupando palavras por tamanho

(a) Objetivo: Agrupar palavras de uma frase de acordo com o seu tamanho, utilizando
um dicionário em que as chaves são comprimentos de palavras.



(b) Dados de entrada: Uma linha de texto (string) contendo uma frase, lida do teclado.

(c) Saída esperada:

• Um dicionário em que cada chave é um inteiro representando o tamanho das pala-
vras, e o valor é a lista de palavras com aquele tamanho.

• A impressão do dicionário, mostrando os comprimentos em ordem crescente.

13. Boletim com tupla de três notas

(a) Objetivo: Representar o boletim de uma turma em um dicionário, utilizando tuplas
para armazenar as três notas de cada aluno.

(b) Dados de entrada:

• Um número inteiro n representando a quantidade de alunos.
• Para cada aluno: um nome (string) e três notas (números reais).

(c) Saída esperada:

• A média de cada aluno.
• Uma lista de pares (nome, média) ordenada em ordem decrescente de média.
• Para cada aluno, a indicação de situação: APROVADO (média ≥ 6), RECUPERAÇÃO

(4 ≤ média < 6) ou REPROVADO (média < 4).

14. Busca binária recursiva em lista de tuplas

(a) Objetivo: Implementar a busca binária de forma recursiva em uma lista de tuplas,
para localizar o preço associado a um código.

(b) Dados de entrada:

• Um número inteiro n representando a quantidade de produtos.
• Uma lista de n tuplas (código, preço), com os códigos inteiros em ordem cres-

cente.
• Um código (inteiro) a ser buscado na lista.

(c) Saída esperada:

• Se o código for encontrado, o preço correspondente deve ser impresso.
• Caso o código não esteja presente, deve ser impressa uma mensagem informando

que o produto não foi encontrado.

15. Sistema de cache com dicionário e tuplas como chaves

(a) Objetivo: Implementar um sistema simples de cache para uma função “cara”, utilizando
um dicionário que mapeia tuplas de parâmetros para resultados.

(b) Dados de entrada:

• Diversos conjuntos de parâmetros numéricos (a, b, c), lidos do teclado, que serão
usados como entrada para a função.

(c) Saída esperada:

• Para cada chamada, o resultado da função aplicada a (a, b, c).
• Mensagens que indiquem quando o resultado foi obtido a partir de um cálculo novo

e quando foi recuperado do cache (dicionário).


