Universidade Federal Fluminense
Programacao de Computadores
Prof. Luis Felipe Ignacio Cunha

Maratona 3 — Tuplas e Dicionarios

Esta lista aborda tuplas e dicionarios em Python, integrando contetidos ja vistos na disciplina,
como listas, strings, subprogramacao, recursividade, busca e ordenacao.

1. Agenda simples com dicionéario

(a) Objetivo: Implementar um programa que constréi uma agenda telefonica utilizando
um dicionério, em que cada nome esté associado a um telefone. Além disso, se um nome
jé& estiver na agenda, deve ser pedido outro nome ao usuario.

(b) Dados de entrada: Cinco pares de valores, cada par composto por um nome (string)
e um telefone (string ou inteiro), lidos do teclado.

(c) Saida esperada: Ao final da leitura, o programa deve imprimir todos os contatos

armazenados, um por linha, no formato:

nome: telefone

2. Contador de letras em uma string
(a) Objetivo: Implementar uma fun¢ao que conte quantas vezes cada letra aparece em
uma string, utilizando um dicionario.

(b) Dados de entrada: Uma linha de texto (string), podendo conter letras, espagos e
outros caracteres.

(c) Saida esperada: Impressao de um dicionario em que cada chave é uma letra (conside-
rando tudo em mindsculas e ignorando espagos) e o valor é a quantidade de ocorréncias
daquela letra na string.

3. Tupla de dados pessoais

(a) Objetivo: Representar dados pessoais em uma tupla e exibir suas informagdes apos
desempacotamento.

(b) Dados de entrada: Trés valores lidos do teclado: nome (string), idade (inteiro) e
altura (nimero real).

(c) Saida esperada: Impressao das informagdes no formato:
Nome: ...Idade: ...Altura:

utilizando o desempacotamento da tupla para acessar os valores.



4. Dicionario de notas e média da turma

(a) Objetivo: Armazenar em um dicionario as notas de alunos e determinar quais alunos
ficaram acima da média da turma.

(b) Dados de entrada:

e Um numero inteiro n representando a quantidade de alunos.

e Para cada aluno, um nome (string) e uma nota (namero real).
(c) Saida esperada:

e A média aritmética das notas da turma.
e A lista dos alunos com nota estritamente maior do que a média, cada um com seu
nome e nota.

5. Consulta de nota

(a) Objetivo: Consultar a nota de um aluno em um dicionério, tratando o caso de aluno
inexistente.
(b) Dados de entrada:
e Um dicionério ja preenchido, no formato nome — nota.
e Um nome (string) a ser consultado, lido do teclado.
(c) Saida esperada:

e Se o0 nome estiver no dicionario, imprimir a nota do aluno.
e Caso contréario, imprimir uma mensagem informando que o aluno nao foi encon-
trado.

6. Conversao de dicionario para lista de tuplas

(a) Objetivo: Transformar um dicionario em uma lista de tuplas, facilitando outras ope-
ragoes sobre os dados.

(b) Dados de entrada: Um dicionario notas no formato nome — nota, ja preenchido no
programa.

(c) Saida esperada: Uma lista de tuplas no formato:
[(nome_1,nota_1), (nome_2,nota_2),.. ]

impressa na tela.
7. Soma de matrizes esparsas

(a) Objetivo: Somar duas matrizes esparsas representadas por dicionarios que usam tuplas
como chaves.
(b) Dados de entrada: Dois dicionéarios A e B representando matrizes esparsas, com as
seguintes chaves:
e "Numero de Linhas" e "Nimero de Colunas", indicando as dimensoes.
e Tuplas (7, j) representando posigdes da matriz com valores inteiros diferentes de

ZEero.



(c) Saida esperada: Um novo dicionario C' representando a matriz soma, com mesmas
chaves de dimensao e apenas as posigoes (i,7) cujo valor resultante seja diferente de
zero, impressos de forma adequada.

8. Dicionario de temperaturas com tuplas como chave
(a) Objetivo: Armazenar temperaturas de cidades em diferentes dias, utilizando tuplas

como chaves em um dicionario.

(b) Dados de entrada:
e Um numero inteiro n representando a quantidade de leituras.
e Para cada leitura: uma cidade (string), um dia (string) e uma temperatura (inteiro).
e Ao final, uma cidade C (string) cuja média de temperatura deve ser calculada.
(c) Saida esperada:
e A média das temperaturas cadastradas apenas para a cidade C.
e Uma mensagem informando que nao ha dados, caso a cidade C' nao possua registros.

9. Agrupamento de alunos por nota

(a) Objetivo: Construir um novo dicionario que agrupa alunos de acordo com a nota
obtida.

(b) Dados de entrada: Um dicionario notas no formato nome — nota, previamente
preenchido.

(c) Saida esperada: Um dicionario agrupado no formato:

nota — [lista de nomes com essa notal

e a impressao desse dicionario na tela.
10. Frequéncia de palavras em uma frase
(a) Objetivo: Contar quantas vezes cada palavra aparece em uma frase, utilizando um
dicionario.
(b) Dados de entrada: Uma linha de texto (string) contendo uma frase, lida do teclado.
(c) Saida esperada:

e Um dicionario em que a chave é a palavra e o valor ¢ a quantidade de ocorréncias.
e A impressao das palavras em ordem alfabética, juntamente com suas contagens.

11. Fibonacci com memoizag¢ao usando dicionario

(a) Objetivo: Implementar uma fungao recursiva para calcular o n-ésimo ntimero de Fibo-
nacci, utilizando um dicionario para armazenar resultados ja calculados (memoizagao).
(b) Dados de entrada: Um namero inteiro n > 0, lido do teclado.

(c) Saida esperada: O valor de F'(n), correspondente ao n-ésimo ntimero da sequéncia de
Fibonacci, impresso na tela.

12. Agrupando palavras por tamanho

(a) Objetivo: Agrupar palavras de uma frase de acordo com o seu tamanho, utilizando
um dicionario em que as chaves sao comprimentos de palavras.



(b) Dados de entrada: Uma linha de texto (string) contendo uma frase, lida do teclado.
(c) Saida esperada:

e Um dicionario em que cada chave é um inteiro representando o tamanho das pala-
vras, e o valor é a lista de palavras com aquele tamanho.

e A impressao do dicionario, mostrando os comprimentos em ordem crescente.
13. Boletim com tupla de trés notas
(a) Objetivo: Representar o boletim de uma turma em um dicionério, utilizando tuplas
para armazenar as trés notas de cada aluno.

(b) Dados de entrada:
e Um numero inteiro n representando a quantidade de alunos.
e Para cada aluno: um nome (string) e trés notas (ntmeros reais).

(c) Saida esperada:

e A média de cada aluno.
e Uma lista de pares (nome, média) ordenada em ordem decrescente de média.

e Para cada aluno, a indicacao de situacao: APROVADO (média > 6), RECUPERAGAD
(4 < média < 6) ou REPROVADO (média < 4).

14. Busca binaria recursiva em lista de tuplas
(a) Objetivo: Implementar a busca binaria de forma recursiva em uma lista de tuplas,
para localizar o preco associado a um codigo.

(b) Dados de entrada:

e Um numero inteiro n representando a quantidade de produtos.

e Uma lista de n tuplas (cédigo, prego), com os codigos inteiros em ordem cres-
cente.

e Um codigo (inteiro) a ser buscado na lista.
(c) Saida esperada:

e Se o codigo for encontrado, o preco correspondente deve ser impresso.

e Caso o codigo nao esteja presente, deve ser impressa uma mensagem informando
que o produto nao foi encontrado.

15. Sistema de cache com dicionario e tuplas como chaves
(a) Objetivo: Implementar um sistema simples de cache para uma fungao “cara”; utilizando
um dicionario que mapeia tuplas de parametros para resultados.

(b) Dados de entrada:

e Diversos conjuntos de parametros numéricos (a, b, ), lidos do teclado, que ser@o
usados como entrada para a fungao.

(c) Saida esperada:

e Para cada chamada, o resultado da fungao aplicada a (a, b, ¢).

e Mensagens que indiquem quando o resultado foi obtido a partir de um célculo novo
e quando foi recuperado do cache (dicionario).



