
Aula 13: Algoritmos de Ordenação
MergeSort e QuickSort

Luís Felipe

UFF

10 de Novembro de 2025

Luís
Felip

e

10/
11/

25

Algoritmos de ordenação

- Em aulas passadas estudamos alguns algoritmos de ordenação.
▶ Selection Sort
▶ Bubble Sort
▶ Insertion Sort

- Cada um desses algoritmos possui complexidade quadrática em
função do tamanho da entrada no pior caso.

- Será que dá para fazer melhor?
▶ Veremos que sim!

Luís
Felip

e

10/
11/

25

MergeSort

Problema:
- Temos uma lista v de inteiros de tamanho n.
- Objetivo: ordenar v de forma crescente.

Técnica utilizada: Dividir e Conquistar com recursão.

Etapas:
- Dividir: quebrar P em subproblemas menores.
- Resolver: subproblemas são resolvidos recursivamente.
- Conquistar: unir soluções dos subproblemas para resolver P.

Luís
Felip

e

10/
11/

25

MergeSort: Ideia Geral

Dividir e conquistar

- Dividir: separar a lista em duas sublistas de tamanhos ≈ n/2.
- Recursão: ordenar cada sublista.
- Conquistar: intercalar as sublistas ordenadas.

Luís
Felip

e

10/
11/

25

Função mergeSort

1 def mergeSort(v, ini , fim , aux):
2 meio = (fim + ini) // 2
3 if ini < fim: # lista tem pelo menos 2 elementos
4 mergeSort(v, ini , meio , aux)
5 mergeSort(v, meio+1, fim , aux)
6 merge(v, ini , meio , fim , aux)

Luís
Felip

e

10/
11/

25

Função merge (Fusão)

Recebe duas listas ordenadas e devolve uma lista ordenada contendo
todos os elementos.

1 def merge(a, b):
2 i = 0; j = 0
3 c = []
4 while i < len(a) and j < len(b):
5 if a[i] <= b[j]:
6 c.append(a[i])
7 i += 1
8 else:
9 c.append(b[j])

10 j += 1
11 while i < len(a):
12 c.append(a[i])
13 i += 1
14 while j < len(b):
15 c.append(b[j])
16 j += 1
17 return c

Luís
Felip

e

10/
11/

25

Merge para sublistas

1 def merge(v, ini , meio , fim , aux):
2 i = ini; j = meio +1; k = 0
3 while i <= meio and j <= fim:
4 if v[i] <= v[j]:
5 aux[k] = v[i]; i += 1
6 else:
7 aux[k] = v[j]; j += 1
8 k += 1
9 while i <= meio:

10 aux[k] = v[i]; i += 1; k += 1
11 while j <= fim:
12 aux[k] = v[j]; j += 1; k += 1
13 i = ini; k = 0
14 while i <= fim:
15 v[i] = aux[k]
16 i += 1; k += 1

Luís
Felip

e

10/
11/

25

Exemplo de uso do MergeSort

1 def main ():
2 v = [10, 8, 5, 3, 7, 13, 1, 6]
3 aux = [0 for _ in range(len(v))]
4 print("Lista original:", v)
5 mergeSort(v, 0, len(v)-1, aux)
6 print("Lista ordenada:", v)
7
8 main()

Apenas duas listas são criadas:
- v: a lista a ser ordenada
- aux: lista auxiliar com o mesmo tamanho de v

Luís
Felip

e

10/
11/

25

Exemplo

Luís
Felip

e

10/
11/

25

Complexidade vista no exemplo

Luís
Felip

e

10/
11/

25

Complexidade vista no exemplo

Luís
Felip

e

10/
11/

25

Complexidade do MergeSort

A cada descida na árvore de recursão, cada sublista reduz pela metade.
Ou seja:

- No 1o nível, temos uma lista de tamanho n.
- No 2o nível, temos duas listas de tamanho n/2
- No 3o nível, temos quatro listas de tamanho n/4.
- De modo geral, no k-ésimo nível, temos 2k−1 listas de tamanho

n
2k−1 .

A base da recorrência é quando cada lista tem tamanho 1. Ou seja,
quando temos n listas de tamanho n

2k−1 = 1. Isso acontece quando
k = O(log n). Assim, temos O(log n) níveis.

Como cada nível precisamos aplicar a função merge entre os elementos
das listas e dessa forma percorremos todos os n elementos em cada nível.

Ou seja, temos O(n log n) operações no total.

Luís
Felip

e

10/
11/

25

QuickSort

Problema:
- Temos uma lista v de inteiros de tamanho n.
- Objetivo: ordenar v em ordem crescente.

Técnica utilizada: Dividir e Conquistar com recursão.
- Dividir: quebrar o problema P em subproblemas menores.
- Resolver: resolver recursivamente cada subproblema.
- Conquistar: unir as soluções dos subproblemas.

Luís
Felip

e

10/
11/

25

QuickSort: Ideia Geral

- Ordena lista entre posições ini e fim.
- Dividir:

▶ Escolhe um elemento como pivô.
▶ Particiona a lista em torno do pivô. Elementos menores que o pivô

ficam a sua esquerda, elementos maiores a sua direita.

- Recursão: ordenar sublistas à esquerda e à direita do pivô.
- Conquistar: nada a fazer, particionamento garante ordenação local.

Luís
Felip

e

10/
11/

25

Um pouco mais a baixo nível

Pergunta: Como fazer a separação de L em S1 e S2?

OBS.: Considere todos elementos distintos.

1. Escolha o pivô x ;

2. Afaste o pivô de L (ponha x após a última posição de L)

3. Utilize dois ponteiros i e j :

▶ i é inicializado apontando para o primeiro elemento de L;

▶ j é inicializado apontando para o último elemento de L.

4. Incrementamos a posição de i enquanto os elementos de L são
menores que pivô x ;

5. Decrementamos a posição de j enquanto os elementos de L são
maiores que pivô x .

Luís
Felip

e

10/
11/

25

E quando pararmos?

- Ao sair do “enquanto”, duas situações podem ocorrer:
i) Se i < j , os elementos de L devem ser trocados e prosseguimos;

ii) Se i > j , a posição está determinada. Troque o elemento com índice
i com o pivô x .

- Consequência: Todos os elementos a esquerda de x serão menores
do que x e todos os elementos a direita de x serão maiores do que x .

Luís
Felip

e

10/
11/

25

Vamos passar uma vez?

Exemplo:

40 37 95 42 23 51 27

40 37 95 42 23 51 27

40 37 95 42 23 51 27
pivô

27 37 95 42 23 51 40
troquei 27 com 40

27 37 95 42 23 51 40

i j

27 37 95 42 23 51 40

i j

27 37 95 42 23 51 40

i j

27 37 23 42 95 51 40

j i

27 37 23 40 95 51 42

troquei 40 com 42

27 37 23 40 95 51 42

Faça o mesmo em cada parte

Luís
Felip

e

10/
11/

25

Quicksort
1 def quicksort(L, ini , fim):
2 # Caso base: sublista de tamanho 0 ou 1
3 if fim - ini < 2:
4 if fim - ini == 1 and L[ini] > L[fim]:
5 L[ini], L[fim] = L[fim], L[ini]
6 return
7
8 # Escolha do pivô (pode ser o meio)
9 mediana = (ini + fim) // 2

10 L[mediana], L[fim] = L[fim], L[mediana]
11
12 i = ini
13 j = fim - 1
14 key = L[fim]
15
16 # Particionamento
17 while j >= i:
18 while i <= j and L[i] < key:
19 i += 1
20 while j >= i and L[j] > key:
21 j -= 1
22 if j >= i:
23 L[i], L[j] = L[j], L[i]
24 i += 1
25 j -= 1
26
27 # Coloca o pivô na posição correta
28 L[i], L[fim] = L[fim], L[i]
29
30 # Chama recursivamente para as duas metades
31 quicksort(L, ini , i - 1)
32 quicksort(L, i + 1, fim)
33
34 print("Lista ordenada:", ordenados)

1 def aplicar_quicksort(L):
2 # Função que chama o quicksort
3 if len(L) > 1:
4 quicksort(L, 0, len(L) - 1)
5 return L
6
7 valores = [38, 27, 43, 3, 9, 82, 10]
8 ordenados = aplicar_quicksort(valores)

Luís
Felip

e

10/
11/

25

Complexidade do QuickSort

- Caso médio: O(n log n).
- Pior caso: O(n2) (partições muito desbalanceadas).
- Pior caso ocorre, por exemplo, em listas já ordenadas se pivô fixo for

usado.

Obs.: Conteúdo da disciplina de Análise e Projeto de Algoritmos.

Luís
Felip

e

10/
11/

25

Tratando o Pior Caso: Random QuickSort

- O pior caso do QuickSort ocorre quando o pivô divide mal o vetor,
por exemplo, em listas já ordenadas.

- Para reduzir essa chance, podemos escolher o pivô de forma
aleatória.

- Isso faz com que, estatisticamente, o algoritmo tenda ao
comportamento médio, com tempo esperado de O(n log n).

- Podemos usar a função random.randint(a,b) da biblioteca
random, que retorna um número inteiro aleatório entre a e b.

Ideia principal: Escolher o pivô aleatoriamente a cada chamada recursiva,
trocando-o com o último elemento antes do particionamento.

Luís
Felip

e

10/
11/

25

Implementação: Random QuickSort
1 import random
2
3 def random_quicksort(L, ini , fim):
4 if fim - ini < 2:
5 if fim - ini == 1 and L[ini] > L[fim]:
6 L[ini], L[fim] = L[fim], L[ini]
7 return
8
9 pivo = random.randint(ini , fim) # Escolhe pivô aleatoriamente

10 L[pivo], L[fim] = L[fim], L[pivo]
11 key = L[fim]
12
13 i = ini
14 j = fim - 1
15
16 while j >= i:
17 while i <= j and L[i] < key:
18 i += 1
19 while j >= i and L[j] > key:
20 j -= 1
21 if j >= i:
22 L[i], L[j] = L[j], L[i]
23 i += 1
24 j -= 1
25
26 L[i], L[fim] = L[fim], L[i]
27
28 random_quicksort(L, ini , i - 1)
29 random_quicksort(L, i + 1, fim)
30
31 def aplicar_random_quicksort(L):
32 if len(L) > 1:
33 random_quicksort(L, 0, len(L) - 1)
34 return L

