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Algoritmos de ordenagdo

- Em aulas passadas estudamos alguns algoritmos de ordenac3o.
» Selection Sort i
» Bubble Sort
» Insertion Sort

- Cada um desses algoritmos possui complexidade quadratica em
func¢do do tamanho da entrada no pior caso.

- Sera que da para fazer melhor?
» Veremos que sim!
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MergeSort

Problema:
- Temos uma lista v de inteiros de tamanho n.

- Objetivo: ordenar v de forma crescente.

Técnica utilizada: Dividir e Conquistar com recursao.

Etapas:
- Dividir: quebrar P em subproblemas menores.
- Resolver: subproblemas s3o resolvidos recursivamente.

- Conquistar: unir solucdes dos subproblemas para resolver P.









Funcdo merge (Fusdo)

Recebe duas listas ordenadas e devolve uma lista ordenada contendo
todos os elementos.

def merge(a, b):
i ='0; g =80
c = [1
while i < len(a) and j < len(b):
if ATl is=tbEjils
c.append(alil])
i +=1
else:
c.append(b[j1)
j= ;
while i < len(a):
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return

.append(alil)

+= 1

j < len(b):
append(b[jl)
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Exemplo de uso do MergeSort

def main():
v = [10, ;8 55 3. 7 i ey
aux = [@ for _ in range(len(v))]

print(”"Lista original:”, v)

mergeSort(v, @, len(v)-1, aux)

print(”"Lista ordenada:", v)
main()

Apenas duas listas sdo criadas:

- v: a lista a ser ordenada

- aux: lista auxiliar com o mesmo tamanho de v



o
W

40

Exemplo
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Complexidade vista no exemplo
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Complexidade vista no exemplo
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Complexidade do MergeSort

A cada descida na arvore de recursdo, cada sublista reduz pela metade.
Ou seja:

- No 1o nivel, temos uma lista de tamanho n.

- No 20 nivel, temos duas listas de tamanho n/2"

- No 3o nivel, temos quatro listas de tamanho n/4.

- De modo geral, no k-ésimo nivel, temos 2~ listas de tamanho
A base da recorréncia é quando cada lista tem,tamanho 1. Ou seja,
quando temos n listas de tamanho 5%3 = 1. Isso acontece quando
k = O(log n). Assim, temos O(log n) niveis.

Como cada nivel precisamos aplicar a funcdo merge entre os elementos
das listas e dessa forma percorremos todos os n elementos em cada nivel.

Ou seja, temos O(nlog n) operacdes no total.
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QuickSort

Problema:
- Temos uma lista v de inteiros de tamanho n.

- Objetivo: ordenar v em ordem crescente.

Técnica utilizada: Dividir e Conquistar com recurs3o.
- Dividir: quebrar o problema P em subproblemas menores.
- Resolver: resolver recursivamente cada subproblema

- Conquistar: unir as solucées dos subproblemas.
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QuickSort: Ideia Geral

- Ordena lista entre posicées ini e fim.
- Dividir:
» Escolhe um elemento como pivé.

» Particiona a lista em torno do pivod. Elementos menores que o pivd
ficam a sua esquerda, elementos maiores.a sua direita.

- Recurs3o: ordenar sublistas a esquerda e & direita do pivo.

- Conquistar: nada a fazer, particionamento garante ordenacio local.
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Um pouco mais a baixo nivel
Pergunta: Como fazer a separacdo de L em S; e 5,7
Considere todos elementos distintos.
1. Escolha o pivd x;
2. Afaste o pivé de L (ponHa X apos a Gltima posivg'é;;) de L)
3. Utilize dois ponteiros i e j: A
» | é inicializado apontando para o prlmelro elemento de L

» j é inicializado apontando para o u|t|mo elemento de L.

4. Incrementamos a posicdo de i enquanto os elementos de L sdo
menores que pivo X;

5. Decrementamos a posi¢do de j enquanto os elementos de L sdo
maiores que pivd Xx.
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E quando pararmos?

- Ao sair do “enquanto’, duas situacdées podem ocorrer:
i) Se i < j, os elementos de L devem ser trocados e prosseguimos;
ii) Sei>j, a posicdo esta determinada. Troque o elemento com indice

i com o pivd x.

- Todos os elementos a esquerda de x serdo menores
do que x e todos os elementos a direita de x serdo maiores do que x.
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Complexidade do QuickSort

- Caso médio: O(nlogn).
- Pior caso: O(n?) (particdes muito desbalanceadas).

- Pior caso ocorre, por exemplo, em listas ja ordenadas se pivé fixo for
usado.

Obs.: Contetdo da disciplina de Analise e Projeto de Algoritmos.
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Tratando o Pior Caso: Random QuickSort

- O pior caso do QuickSort ocorre quando o pivo divide mal o vetor,
por exemplo, em listas ja ordenadas.

- Para reduzir essa chance, podemos escolher o plvé de forma
aleatdria.

- Isso faz com que, estatisticamente, o algoritmo tenda ao
comportamento médio, com tempo esperado de O(nlog n).

- Podemos usar a funcdo random.randint¢a,b) da biblioteca
random, que retorna um ndamero inteiro aleatério entre a e b.

Ideia principal: Escolher o pivé aleatoriamente a cada chamada recursiva,
trocando-o com o altimo elemento antes do particionamento.
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