


o

Algoritmos de Ordenacdo

- O problema da ordenacdo é caracterizado pela organizacdo de um
conjunto de elemento do mesmo tipo segundo um critério de
ordenacgdo.

- Sem perda de generalidade, o problema sera atacado
considerando-se que:

» Os elementos a serem ordenados sdo numéricos e estdo armazenados
em um vetor; ¢
» Deseja-se ordenar os elementos ndo decrescentemente:
se i < j, entdo valores[i] < valores[j]

- Note que, ao realizar uma busca em umailista ordenada, é possivel
obter um ganho de eficiéncia em comparacdo com a busca em uma
lista ndo ordenada.

» Aula passada vimos o Algoritmo de Busca Binaria.
- Hoje veremos algumas formas de ordenar elementos de uma lista:
» Selection Sort
» Bubble Sort
» Insertion Sort



o

Selection Sort

Ideia geral:

- Para cada posicdo i do vetor valores (desde a 1a até a altima), o
algoritmo procura pelo i-ésimo menor elemento e o coloca na
posicdo i.

» A colocagdo desse elemento se da pela troca dele com quem estava
na posicao i. ¢ ;

» Apés fazer essa troca, o algoritmo continua da posicdo i + 1, caso
n3o tenha concluido.



o

Selection Sort

# Operacgdo que troca o conteudo de duas células do vetor
def trocar(vals, posX, posY):

temp = vals[posX]

vals[posX] = vals[posY]

vals[posY] = temp

return None

# Operagdo que encontra o local do menor elemento do vetor
# considerando as células a partir de um dado inicio

def selecionarMenor (vals, inicio):

localMenor = inicio
for pos in range(inicio+1, len(vals)):
if vals[pos] < vals[localMenor]: S

localMenor = pos
return localMenor

# Método da Selecdo (Selection Sort)

def ordenar(valores):
for ind¢iin range(len(valores)-1)
menor = selecionarMenor (valores, ind)
trocar(valores, ind, menor)
return None




CONOUAWN

WWNNNNNNNN
= o

ww
w N

N
o
Utilizando Selection Sort
# Operacdo que troca o conteldo de duas células do vetor
def trocar(vals, posX, posY):
temp = vals[posX] 2
vals[posX] = vals[posY]
vals[posY] = temp
return None
# Operacdo que encontra o local do menor elemento do vetor
# considerando as células a partir de um dado inicio
def selecionarMenor(vals, inicio):
localMenor = inicio
for pos in range(inicio+1, len(vals)):
if vals[pos] < vals[localMenor]:
localMenor = pos
return localMenor
# Método da Selecdo (Selection Sort)
def ordenar(valores):
for ind in range(len(valores)-1):
menor = selecionarMenor (valores, ind)
trocar(valores, ind, menor)
return valores
# Saida no formato igual da entrada
def main():
lista = input().split()
lista_ordenada = ordenar(lista)
for i in ran‘ge(len(lista_ordenada));
print(lista_ordenadali], end=’ ’)
main ()




o

Exemplo de Execugcdo — Selection Sort

Vetor inicial:  [29, 10, 14, 37, 13]

Passo 1: menor elemento entre posicdes 0—4 é 10 (pos 1) Troca com
posicdo 0 = [10, 29, 14, 37, 13]

Passo 2: menor elemento entre posicdes 1-4 é 13 (pos 4) Troca com
posigdo 1 = [10, 13, 14, 37, 29]

Passo 3: menor elemento entre posicdes 2—4 €14 (pos 2) Sem troca (ja
esta no lugar) = [10, 13, 14, 37, 29]

Passo 4: menor elemento entre posicdes 3—4 é 29 (pos 4) Troca com
posicdo 3 = [10, 13, 14, 29, 37]

Vetor ordenado:  [10, 13, 14, 29, 37]



o

Analise de Complexidade — Selection Sort

No algoritmo anterior, ha basicamente duas estruturas de repeticdo for
aninhadas.

- A mais externa executa, para cada elemento do vetor, comparacdes
com os elementos seguintes e, em seguida, uma troca.

» Desta forma, aproximadamente n(n + 1)/2 elementos sdo acessados.
- Ou seja, o nimero de elementos avaliados é da ordem de n?.

- Portanto, sua complexidade &: O(n?)



o

Ordenacgdo pelo Método da Bolha (Bubble‘Sort)

- Esta estratégia executa n — 1 iteracGes, controladas por uma
repeticdo mais externa. o

- Em cada iteracdo, por meio de uma repeticdo interna:
» Percorre-se todo o vetor, comparando cada par de elementos
valores[i] e valores[i+1]. ;
» Caso valores[i] > valores[i+1], realiza-se a troca de posicdo.

Observacdo: Ap6s cada iteracdo externa, o maior elemento ainda n&o
ordenado “bolha” para o final do vetor.



?g@°
5 3
v ol?

o

Cédigo — Bubble Sort

def bubble_sort(valores): e
n = len(valores)
for i in range(n-1):
for j in range(n-1-i): # loop interno
if valores[j] > valores[j+1]: # faz a troca
temp = valores[j]
valores[j] = valores[j+1]
valores[j+1] = temp
return None

# loop externo (n-1 iteragdes)

Complexidade: No pior e no médio caso: O(n?).



e
S o
v ol?
o

Utilizando o Bubble Sort

def bubble_sort(valores):
n = len(valores)
for 1 inEEangen=i):
for j in range (nEl=3):
if valores[j] > valores[j+11:

temp = valores[j]
valores[j] = valores[j+1]
valores[j+1] = temp

return valores

def main():
lista = input().split()
lista_ordenada = bubble_sort(lista)
for i in range(len(lista_ordenada)):
print(lista_ordenadalil, end=’ ’)

main ()

# loop externo (n-1 iteracdes)
# loop interno
# faz a troca




¢ al
N 17
Mg
o

Exemplo de Execucdo — Bubble Sort

Vetor inicial:  [5, 3, 4, 1, 2]

Iteracao 1:
[3,5,4,1,2] = [3,4,5, 1213 41 5 2] =5 [34125]

Iteracao 2:
[34125]—)[31425]—)[31245]

Iteracdo 3:
[3,1,2,4,5] > [1, 2, 3,4,5]

Iteracao 4:
[1, 2, 3, 4, 5] (ordenado)

Resultado final: [1, 2, 3, 4, 5]



o

Ordenacdo pelo Método da Insercdo (Insertion Sort)

- Esta estratégia constréi o vetor ordenado de forma incremental.

- Para cada elemento (a partir da segunda posicdo), insere-o na
posicdo correta dentro da parte ja ordenada do vetor.

- Para inserir, desloca os elementos maiores uma posicdo a frente,
abrindo espaco para o elemento atual.

Observacdo: Funciona bem para listas pequenas ou quase ordenadas.
Complexidade:

Pior e médio caso: O(n?) Melhor caso: O(n)



e
3
47

o

Coédigo — Insertion Sort

def insertion_sort(valores):
n = len(valores)
for i int Range Gt noE
atual = valores[i]
j o= i
# desloca elementos maiores que ’atual’
while j >= @ and valores[j] > atual:
valores[j+1] = valores[j]
o=@l
# insere o elemento na posigdo correta
valores[j+1] = atual L
return None g

Complexidade:
- Pior e médio caso: O(n?)
- Melhor caso (ja ordenado): O(n)



o3l

Utilizando o Insertion Sort

def insertion_sort(valores):

n = len(valores)

for 1 inYEange(1, n):
atual = valores[i]
j =]

# desloca elementos maiores que ’atual’
while j >= @ and valores[j] > atual:
valores[j+1] = valores[j]

ap =
# insere o elemento na posicdo correta
valores[j+1] = atual

return valores

# Saida no formato igual da entrada
def main():
lista = input().split()
lista_ordenada = insertion_sort(lista)
for i in range(len(lista_ordenada)):
print(lista_ordenadalil, end=’ ’)

main () &




o

Exemplo de Execugcdo — Insertion Sort

Vetor inicial:  [5, 3, 4, 1, 2]
Passo 1: (i=1) Insere 3 antes de 5 [3, 5, 4, 1, 2]
Passo 2: (i=2) Insere 4 entre 3e 5 [3, 4, 5, 1, 2]
Passo 3: (i=3) Insere 1 na posi¢do inicial [1, 3, 4, 5, 2]
Passo 4: (i=4) Insere 2 entre 1 e 3 [1, 2, 3, 4, 5]
Resultado final: [1, 2, 3, 4, 5]



o

Videos com execugdo dos algoritmos

- Selection sort: https://www.youtube.com/watch?v=hFhf9djnM5A&
1list=RDhFhf9djnM5A&start_radio=1

- Bubble sort: https://www.youtube.com/wétch?v=Iv3vng8Pv4&
list=RDIv3vgjM8Pv4&start_radio=1

- Insertion sort: https://www.youtube.com/watch?v=QdQmAdyfmDI&
1ist=RDQdQmAdyfmDI&start_radio=1


https://www.youtube.com/watch?v=hFhf9djnM5A&list=RDhFhf9djnM5A&start_radio=1
https://www.youtube.com/watch?v=hFhf9djnM5A&list=RDhFhf9djnM5A&start_radio=1
https://www.youtube.com/watch?v=Iv3vgjM8Pv4&list=RDIv3vgjM8Pv4&start_radio=1
https://www.youtube.com/watch?v=Iv3vgjM8Pv4&list=RDIv3vgjM8Pv4&start_radio=1
https://www.youtube.com/watch?v=QdQmAdyfmDI&list=RDQdQmAdyfmDI&start_radio=1
https://www.youtube.com/watch?v=QdQmAdyfmDI&list=RDQdQmAdyfmDI&start_radio=1

