
Aula 11: Algoritmos de Ordenação

Luís Felipe

UFF

03 de Novembro de 2025



Luís
Felip

e

03/
11/

25

Algoritmos de Ordenação

- O problema da ordenação é caracterizado pela organização de um
conjunto de elemento do mesmo tipo segundo um critério de
ordenação.

- Sem perda de generalidade, o problema será atacado
considerando-se que:
▶ Os elementos a serem ordenados são numéricos e estão armazenados

em um vetor;
▶ Deseja-se ordenar os elementos não decrescentemente:

se i < j, então valores[i] ≤ valores[j]

- Note que, ao realizar uma busca em uma lista ordenada, é possível
obter um ganho de eficiência em comparação com a busca em uma
lista não ordenada.
▶ Aula passada vimos o Algoritmo de Busca Binária.

- Hoje veremos algumas formas de ordenar elementos de uma lista:
▶ Selection Sort
▶ Bubble Sort
▶ Insertion Sort



Luís
Felip

e

03/
11/

25

Selection Sort

Ideia geral:
- Para cada posição i do vetor valores (desde a 1a até a última), o

algoritmo procura pelo i-ésimo menor elemento e o coloca na
posição i .
▶ A colocação desse elemento se dá pela troca dele com quem estava

na posição i .
▶ Após fazer essa troca, o algoritmo continua da posição i + 1, caso

não tenha concluído.



Luís
Felip

e

03/
11/

25

Selection Sort
1 # Operação que troca o conteúdo de duas células do vetor
2 def trocar(vals , posX , posY):
3 temp = vals[posX]
4 vals[posX] = vals[posY]
5 vals[posY] = temp
6 return None
7
8
9 # Operação que encontra o local do menor elemento do vetor

10 # considerando as células a partir de um dado início
11
12 def selecionarMenor(vals , inicio ):
13 localMenor = inicio
14 for pos in range(inicio+1, len(vals )):
15 if vals[pos] < vals[localMenor ]:
16 localMenor = pos
17 return localMenor
18
19
20 # Método da Seleção (Selection Sort)
21
22 def ordenar(valores ):
23 for ind in range(len(valores )-1):
24 menor = selecionarMenor(valores , ind)
25 trocar(valores , ind , menor)
26 return None



Luís
Felip

e

03/
11/

25

Utilizando Selection Sort
1 # Operação que troca o conteúdo de duas células do vetor
2 def trocar(vals , posX , posY):
3 temp = vals[posX]
4 vals[posX] = vals[posY]
5 vals[posY] = temp
6 return None
7
8
9 # Operação que encontra o local do menor elemento do vetor

10 # considerando as células a partir de um dado início
11 def selecionarMenor(vals , inicio ):
12 localMenor = inicio
13 for pos in range(inicio+1, len(vals )):
14 if vals[pos] < vals[localMenor ]:
15 localMenor = pos
16 return localMenor
17
18
19 # Método da Seleção (Selection Sort)
20 def ordenar(valores ):
21 for ind in range(len(valores )-1):
22 menor = selecionarMenor(valores , ind)
23 trocar(valores , ind , menor)
24 return valores
25
26 # Saída no formato igual da entrada
27 def main ():
28 lista = input (). split()
29 lista_ordenada = ordenar(lista)
30 for i in range(len(lista_ordenada )):
31 print(lista_ordenada[i], end=’ ’)
32
33 main()



Luís
Felip

e

03/
11/

25

Exemplo de Execução — Selection Sort

Vetor inicial: [ 29, 10, 14, 37, 13 ]

Passo 1: menor elemento entre posições 0–4 é 10 (pos 1) Troca com
posição 0 ⇒ [ 10, 29, 14, 37, 13 ]

Passo 2: menor elemento entre posições 1–4 é 13 (pos 4) Troca com
posição 1 ⇒ [ 10, 13, 14, 37, 29 ]

Passo 3: menor elemento entre posições 2–4 é 14 (pos 2) Sem troca (já
está no lugar) ⇒ [ 10, 13, 14, 37, 29 ]

Passo 4: menor elemento entre posições 3–4 é 29 (pos 4) Troca com
posição 3 ⇒ [ 10, 13, 14, 29, 37 ]

Vetor ordenado: [ 10, 13, 14, 29, 37 ]



Luís
Felip

e

03/
11/

25

Análise de Complexidade — Selection Sort

No algoritmo anterior, há basicamente duas estruturas de repetição for
aninhadas.

- A mais externa executa, para cada elemento do vetor, comparações
com os elementos seguintes e, em seguida, uma troca.
▶ Desta forma, aproximadamente n(n + 1)/2 elementos são acessados.

- Ou seja, o número de elementos avaliados é da ordem de n2.
- Portanto, sua complexidade é: O(n2)



Luís
Felip

e

03/
11/

25

Ordenação pelo Método da Bolha (Bubble Sort)

- Esta estratégia executa n − 1 iterações, controladas por uma
repetição mais externa.

- Em cada iteração, por meio de uma repetição interna:
▶ Percorre-se todo o vetor, comparando cada par de elementos

valores[i] e valores[i+1].
▶ Caso valores[i] > valores[i+1], realiza-se a troca de posição.

Observação: Após cada iteração externa, o maior elemento ainda não
ordenado “bolha” para o final do vetor.



Luís
Felip

e

03/
11/

25

Código — Bubble Sort

1 def bubble_sort(valores ):
2 n = len(valores)
3 for i in range(n-1): # loop externo (n-1 iterações)
4 for j in range(n-1-i): # loop interno
5 if valores[j] > valores[j+1]: # faz a troca
6 temp = valores[j]
7 valores[j] = valores[j+1]
8 valores[j+1] = temp
9 return None

Complexidade: No pior e no médio caso: O(n2).



Luís
Felip

e

03/
11/

25

Utilizando o Bubble Sort

1 def bubble_sort(valores ):
2 n = len(valores)
3 for i in range(n-1): # loop externo (n-1 iterações)
4 for j in range(n-1-i): # loop interno
5 if valores[j] > valores[j+1]: # faz a troca
6 temp = valores[j]
7 valores[j] = valores[j+1]
8 valores[j+1] = temp
9 return valores

10
11 def main ():
12 lista = input (). split()
13 lista_ordenada = bubble_sort(lista)
14 for i in range(len(lista_ordenada )):
15 print(lista_ordenada[i], end=’ ’)
16
17 main()



Luís
Felip

e

03/
11/

25

Exemplo de Execução — Bubble Sort

Vetor inicial: [ 5, 3, 4, 1, 2 ]

Iteração 1:
[ 3, 5, 4, 1, 2 ] → [ 3, 4, 5, 1, 2 ] → [ 3, 4, 1, 5, 2 ] → [ 3, 4, 1, 2, 5 ]

Iteração 2:
[ 3, 4, 1, 2, 5 ] → [ 3, 1, 4, 2, 5 ] → [ 3, 1, 2, 4, 5 ]

Iteração 3:
[ 3, 1, 2, 4, 5 ] → [ 1, 2, 3, 4, 5 ]

Iteração 4:
[ 1, 2, 3, 4, 5 ] (ordenado)

Resultado final: [ 1, 2, 3, 4, 5 ]



Luís
Felip

e

03/
11/

25

Ordenação pelo Método da Inserção (Insertion Sort)

- Esta estratégia constrói o vetor ordenado de forma incremental.
- Para cada elemento (a partir da segunda posição), insere-o na

posição correta dentro da parte já ordenada do vetor.
- Para inserir, desloca os elementos maiores uma posição à frente,

abrindo espaço para o elemento atual.

Observação: Funciona bem para listas pequenas ou quase ordenadas.
Complexidade:

Pior e médio caso: O(n2) Melhor caso: O(n)



Luís
Felip

e

03/
11/

25

Código — Insertion Sort

1 def insertion_sort(valores ):
2 n = len(valores)
3 for i in range(1, n):
4 atual = valores[i]
5 j = i - 1
6 # desloca elementos maiores que ’atual’
7 while j >= 0 and valores[j] > atual:
8 valores[j+1] = valores[j]
9 j -= 1

10 # insere o elemento na posição correta
11 valores[j+1] = atual
12 return None

Complexidade:
- Pior e médio caso: O(n2)
- Melhor caso (já ordenado): O(n)



Luís
Felip

e

03/
11/

25

Utilizando o Insertion Sort

1 def insertion_sort(valores ):
2 n = len(valores)
3 for i in range(1, n):
4 atual = valores[i]
5 j = i - 1
6 # desloca elementos maiores que ’atual’
7 while j >= 0 and valores[j] > atual:
8 valores[j+1] = valores[j]
9 j -= 1

10 # insere o elemento na posição correta
11 valores[j+1] = atual
12 return valores
13
14 # Saída no formato igual da entrada
15 def main ():
16 lista = input (). split()
17 lista_ordenada = insertion_sort(lista)
18 for i in range(len(lista_ordenada )):
19 print(lista_ordenada[i], end=’ ’)
20
21 main()



Luís
Felip

e

03/
11/

25

Exemplo de Execução — Insertion Sort

Vetor inicial: [ 5, 3, 4, 1, 2 ]

Passo 1: (i=1) Insere 3 antes de 5 [ 3, 5, 4, 1, 2 ]

Passo 2: (i=2) Insere 4 entre 3 e 5 [ 3, 4, 5, 1, 2 ]

Passo 3: (i=3) Insere 1 na posição inicial [ 1, 3, 4, 5, 2 ]

Passo 4: (i=4) Insere 2 entre 1 e 3 [ 1, 2, 3, 4, 5 ]

Resultado final: [ 1, 2, 3, 4, 5 ]



Luís
Felip

e

03/
11/

25

Vídeos com execução dos algoritmos

- Selection sort: https://www.youtube.com/watch?v=hFhf9djnM5A&
list=RDhFhf9djnM5A&start_radio=1

- Bubble sort: https://www.youtube.com/watch?v=Iv3vgjM8Pv4&
list=RDIv3vgjM8Pv4&start_radio=1

- Insertion sort: https://www.youtube.com/watch?v=QdQmAdyfmDI&
list=RDQdQmAdyfmDI&start_radio=1

https://www.youtube.com/watch?v=hFhf9djnM5A&list=RDhFhf9djnM5A&start_radio=1
https://www.youtube.com/watch?v=hFhf9djnM5A&list=RDhFhf9djnM5A&start_radio=1
https://www.youtube.com/watch?v=Iv3vgjM8Pv4&list=RDIv3vgjM8Pv4&start_radio=1
https://www.youtube.com/watch?v=Iv3vgjM8Pv4&list=RDIv3vgjM8Pv4&start_radio=1
https://www.youtube.com/watch?v=QdQmAdyfmDI&list=RDQdQmAdyfmDI&start_radio=1
https://www.youtube.com/watch?v=QdQmAdyfmDI&list=RDQdQmAdyfmDI&start_radio=1

