Aula 14 - Teorema de Vizing

Luís Felipe

UFF

04 de Novembro de 2022

Teorema de Vizing

Teorema. (Vizing) Para todo $G,\,\chi'(G)=\Delta(G)$ ou $\chi'(G)=\Delta(G)+1$.

Prova: Como é imediato verificar (visto na aula passada) que $\chi'(G) \geq \Delta(G)$, só precisamos mostrar que $\chi'(G) \leq \Delta(G) + 1$.

Suponha, por contradição, que $\chi'(G) > \Delta(G) + 1$ e tome uma $(\Delta+1)$ -coloração ótima de G. Seja u um vértice tal que c(u) < d(u) (OBs.: Note que este vértice existe pois a $(\Delta+1)$ -coloração não é própria).

Assim, existem cores i_0 e i_1 da $(\Delta+1)$ -coloração tais que i_0 não é representada em u (pois $d(u) \leq \Delta$)) e i_1 é representada pelo menos duas vezes em u (pois a coloração não é própria).

Luis Felipe

Sejam uv e uv_1 arestas que possuem a cor i_1 .

Como $d(v_1) < \Delta + 1$, alguma cor i_2 não é representada em v_1 . Apesar disso, i_2 é representada em u, caso contrário, obteríamos uma melhoria na coloração ao pôr i_2 em uv_1 , contrariando a coloração tomada ser ótima. Assim, existe uma aresta uv_2 com cor i_2 .

Novamente, como $d(v_2) < \Delta + 1$, alguma cor i_3 não é representada em v_2 . Apesar disso, i_3 é representada em u (tal como no caso anterior). Assim, existe uma aresta uv_3 com cor i_3 .

Luis Felipe

Esquema

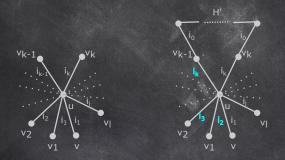
Continuando esse procedimento, há uma sequência de vértices v_1,v_2,\ldots e uma sequência de cores i_1,i_2,\ldots tais que:

- uv; possui cor i;, e
- i_{j+1} não é representada em v_j .

Como o grau de u é finito, existe um menor inteiro l tal que, para algum k, temos que: k < l e $i_{l+1} = i_k$.

Recoloração I

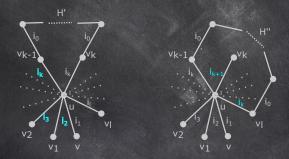
Façamos a seguinte recoloração: Para todas as arestas de uv_1 até uv_{k-1} , recolora com a cor disponível (tal como na figura abaixo).



Ou seja, para $1 \le j \le k-1$, recolora uv_j com cor i_{j+1} . Essa é uma $(\Delta+1)$ -col. Ótima (não piora $c(v), v \in V$). Assim, $H' \approx G[E'_{i_0} \cup E'_{i_k}]$ que contém u é um ciclo ímpar (provado na aula 13).

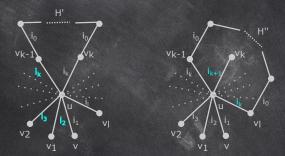
Recoloração 2

Façamos, agora, a seguinte recoloração: Para todas as arestas de uv_k até uv_{l-1} , recolora com a cor disponível (tal como na figura abaixo). E, uv_l com a cor i_k .



Ou seja, para $k \leq j \leq l-1$, recolora uv_j com cor i_{j+1} . Essa ainda é uma $(\Delta+1)$ -col. ótima. $H'' \approx G[E''_{i_0} \cup E''_{i_k}]$ que contém u é um ciclo ímpar.

Finalização



Note que v_k pertencia a H' e pertence também a H'' (há uma aresta colorida por i_0 em v_k com caminho até u por H' que se mantém).

Contradição, por v_k ter grau 1 em H'' e justificamos que H'' era um ciclo ímpar.