

Universidade Federal Fluminense Disciplina: Fundamentos Matemáticos para Computação Professor: Luís Felipe

Demonstração da Indução Matemática

Indução: A seguir, vamos demonstrar que a Indução Matemática é de fato uma técnica de demonstração matemática. Para essa demonstração, utilizaremos o **Princípio da Boa Ordenação**, que diz: Todo subconjunto não vazio S de \mathbb{Z} limitado inferiormente possui um mínimo.

Teorema da Indução: Seja P(n) uma propriedade, para cada $n \in \mathbb{N}$. Se

- i. P(1) é verdadeira e
- ii. P(k) verdadeira $\Rightarrow P(k+1)$ verdadeira, $\forall k \in \mathbb{N}$,

então P(n) é verdadeira $\forall n \in \mathbb{N}$.

Demonstração: Suponha, por contradição, que as afirmações (i) e (ii) sejam verdadeiras, porém P(n) não seja verdadeira para algum $n \in \mathbb{N}$.

Seja $S\subseteq \mathbb{N}$ onde para cada elemento $s\in S$ a afirmação P(s) seja falsa. Ou seja, $S=\{s\mid P(s) \text{ \'e falsa}\}$. Como supomos que existe elemento que não satisfaz P, então $S\neq\emptyset$.

Como S é um subconjunto de $\mathbb N$ e $\mathbb N$ é limitado inferiormente, então S também é limitado inferiormente, e assim, pelo Princípio da Boa Ordenação, S possui um elemento mínimo.

Seja $s_0 \in S$ o elemento mínimo de S. Assim, $P(s_0)$ é falsa, por definição de S. Como a afirmação (i) é verdadeira, temos que P(1) é verdadeira, e assim $s_0 > 1$. Portanto, $s_0 \ge 2$.

Considere $k = s_0 - 1$, ou seja, k é o antecessor de s_0 . Como $s_0 \ge 2$, então $k \ge 1$. Como s_0 é o elemento mínimo de S, temos que k necessariamente não pertence a S, ou seja, P(k) é verdadeira. Como a afirmação (ii) é verdadeira, então P(k+1) é verdadeira, e assim, como $k = s_0 - 1$, temos $k + 1 = s_0$ e, dessa forma, $P(s_0)$ é verdadeira.

Contradição por termos tomado s_0 como pertencente a S e assim, $P(s_0)$ é falsa. Dessa forma, concluímos que $S = \emptyset$, e portanto, o teorema da indução está demonstrado.