
Appendix A
Some NP-Complete Problems

To ask the hard question is simple.

But what does it mean?
What are we going to do?

W.H. Auden

In this appendix we present a brief list of NP-complete problems; we restrict
ourselves to problems which either were mentioned before or are closely re-
lated to subjects treated in the book. A much more extensive list can be
found in Garey and Johnson [GarJo79].

Chinese postman (cf. Sect. 14.5)

Let G= (V,A,E) be a mixed graph, where A is the set of directed edges and
E the set of undirected edges of G. Moreover, let w be a nonnegative length
function on A ∪E, and c be a positive number. Does there exist a cycle of
length at most c in G which contains each edge at least once and which uses
the edges in A according to their given orientation?

This problem was shown to be NP-complete by Papadimitriou [Pap76],
even when G is a planar graph with maximal degree 3 and w(e) = 1 for all
edges e. However, it is polynomial for graphs and digraphs; that is, if either
A= ∅ or E = ∅. See Theorem 14.5.4 and Exercise 14.5.6.

Chromatic index (cf. Sect. 9.3)

Let G be a graph. Is it possible to color the edges of G with k colors, that is,
does χ′(G)≤ k hold?

Holyer [Hol81] proved that this problem is NP-complete for each k ≥ 3;
this holds even for the special case where k = 3 and G is 3-regular.

Chromatic number (cf. Sect. 9.1)

Let G be a graph. Is it possible to color the vertices of G with k colors, that
is, does χ(G)≤ k hold?

Karp [Kar72] proved that this problem is NP-complete for each k ≥ 3.
Even the special case where k = 3 and G is a planar graph with maximal
degree 4 remains NP-complete; see [GarJS76]. Assuming P �= NP, there is

D. Jungnickel, Graphs, Networks and Algorithms,

Algorithms and Computation in Mathematics 5,
DOI 10.1007/978-3-642-32278-5, © Springer-Verlag Berlin Heidelberg 2013

527

http://dx.doi.org/10.1007/978-3-642-32278-5

528 A Some NP-Complete Problems

not even a polynomial approximative algorithm which always needs fewer
than 2χ(G) colors; see [GarJo76]. For perfect graphs, the chromatic number
can be computed in polynomial time; see [GroLS93].

As noted in Lemma 9.2.1, the clique number ω(G) is a (trivial) lower bound
for χ(G). However, it is (for general graphs) NP-complete to decide if one
has equality, even if some colouring of G with χ(G) colours is given; this is
equivalent to the result of [BusPa06] on the clique partition and independence
numbers, using Lemma 9.2.1.

Clique (cf. Exercise 2.8.4)

Let G= (V,E) be a graph and c≤ |V | a positive integer. Does G contain a
clique consisting of c vertices?

This problem is NP-complete by a result of Karp [Kar72]; thus deter-
mining the clique number ω(G) is an NP-hard problem. Also, the related
question of whether G contains a clique with at least r|V | vertices, where
0< r < 1, is NP-complete for fixed r. Assuming P �= NP, there is not even
a polynomial ε-approximative algorithm for determining a maximal clique;
see [AroSa02]. However, the problem can be solved in polynomial time for
perfect (in particular, for bipartite) graphs; see [GroLS93].

Clique Partition (cf. Sect. 9.2)

Let G = (V,E) be a graph and c ≤ |V | a positive integer. Does V admit a
partition into at most c cliques?

This problem is NP-complete by a result of Karp [Kar72]. Thus deter-
mining the clique partition number θ(G) is an NP-hard problem, but the
problem can be solved in polynomial time for perfect (in particular, for bi-
partite) graphs; see [GroLS93]. As noted in Lemma 9.2.1, the independence
number α(G) is a (trivial) lower bound for θ(G). However, it is (for general
graphs) NP-complete to decide if one has equality, even if some minimum
clique partition is given; see [BusPa06].

Diameter (cf. Sect. 3.9)

Let G= (V,E) be a connected graph, and let c ≤ |V | be a positive integer.
Recall that the diameter of G can be determined efficiently; see Sect. 3.9.
However, the following two related problems are NP-complete; see [ChvTh78]
and [GarJo79].

(1) Does there exist a strongly connected orientationH of G with diameter at
most c? Note that Robbins’ theorem allows us to check efficiently whether
a strongly connected orientation exists (and to find such an orientation,
if possible); see Sect. 1.6.

(2) Let C be a given set of at most |E| nonnegative integers. Does there
exist a mapping w : E → C such that G has weighted diameter at most
c, that is, such that any two vertices u, v have distance d(u, v)≤ c in the
network (G,w)? This problem remains NP-complete even for C = {0,1}.

A Some NP-Complete Problems 529

Discrete metric realization (cf. Sect. 3.2)

LetD = (dxy) be an n×nmatrix with integer entries representing distances in
a finite metric space. Is there a network (G,w) of total length ≤ k realizingD?

Winkler [Win88] proved that this problem—and also the analogous real
problem—is NP-complete.

Disjoint connecting paths (cf. Sect. 7.1)

Let G be a graph, k an integer, and (s1, t1), . . . , (sk, tk) pairs of vertices
(usually called terminals). Are there disjoint paths P1, P2, . . . , Pk such that
Pi connects si with ti?

Here disjoint may be interpreted as either edge disjoint and vertex disjoint.
In both cases, this problem is NP-complete as stated (that is, if k is included
in the input), even when G is assumed to be planar; these results are due to
Karp [Kar75] and Lynch [Lyn75]. However, the problem becomes polynomial
for every fixed k, a result first proved in the framework of the fundamental
theory of graph minors due to Robertson and Seymour [RobSe95]. Recently, a
quadratic time algorithm was given by Kawarabayashi, Kobayashi and Reed
[KawKR12]; this paper also contains a good discussion of the problem, in-
cluding many further references.

Disjoint paths (cf. Sect. 7.1)

Let G= (V,E) be a graph, s and t be two vertices of G, and k and c be two
positive integers. Does G contain k vertex disjoint paths of length at most c
from s to t?

Itai, Pearl and Shiloach [ItaPS82] proved that this problem is NP-complete
for each fixed k ≥ 5 (whereas it is polynomial for fixed k ≤ 4). Similar results
hold for edge disjoint paths from s to t, and for the analogous problems where
each path should contain precisely c edges. In contrast, the maximal number
of (edge or vertex) disjoint paths from s to t can be determined efficiently
using network flow methods if no restrictions are added; see Sect. 7.1.

Dominating set (cf. Sect. 2.8)

Let G= (V,E) be a graph and k a positive integer. Does G admit a domi-
nating set D with |D| ≤ k? The variant where D is required to be connected
is likewise NP-complete, see Exercise 2.8.7.

Graph partitioning (cf. Sect. 9.2)

Let G= (V,E) be a graph and c a positive integer. The question of whether
G can be partitioned into at most c subgraphs of a given type is NP-complete
for many classes of subgraphs: for triangles and, more generally, for subgraphs
with a given isomorphism type, for Hamiltonian subgraphs, for forests, for
cliques, and for matchings. We refer the reader to [GarJo79, §A1.1] and the
references given there.

530 A Some NP-Complete Problems

In particular, determining the clique partition number θ(G) is an NP-
hard problem in general. For perfect graphs, this problem can be solved in
polynomial time; see [GroLS93].

Hamiltonian cycle (cf. Sects. 1.4 and 2.8)

Let G= (V,E) be a graph. Does G contain a Hamiltonian cycle?
Karp [Kar72] proved that this problem is NP-complete; it remains NP-

complete even if we know a Hamiltonian path of G [PapSt77]; see Theo-
rem 15.7.3. The special cases for bipartite graphs and for planar, 3-connected,
3-regular graphs are still NP-complete; see [Kri75] and [GarJT76]. The anal-
ogous problem for directed Hamiltonian cycles in digraphs likewise is NP-
complete [Kar72]; see Exercise 2.7.6.

Hamiltonian path (cf. Exercise 2.7.7)

Does the graph G = (V,E) contain a Hamiltonian path? This problem and
the analogous directed problem are NP-complete, even if the start and end
vertices of the Hamiltonian path are fixed; see [GarJo79].

Independent set (cf. Exercise 2.8.4)

Let G= (V,E) be a graph and c≤ |V | a positive integer. Does G contain an
independent set with c elements? Note that the independent sets of G are
precisely the cliques of the complementary graph G. This problem is therefore
NP-complete in general, but polynomial for perfect graphs (see Clique and
Vertex cover).

The independent set problem remains NP-complete when restricted to 3-
regular planar graphs; see [GarJS76].

Induced subgraph

Let G= (V,E) be a graph and c a positive integer. The problem of whether
G contains an induced subgraph on c vertices that belongs to a prescribed
class of graphs is often NP-complete: for cliques and independent sets (see
Clique and Independent set), and also for planar subgraphs, for bipartite
subgraphs, for subforests, etc. We refer to [GarJo79, § A1.2] and the references
given there.

Integer linear programming (cf. Sect. 14.3)

Let A be anm×n integer matrix, c ∈ Z
n and b ∈ Z

m integer vectors, and d an
integer. Does there exist an integer vector x ∈ Z

n satisfying x≥ 0, AxT ≤ bT ,
and cxT ≥ d? This problem is NP-complete by a result of Karp [Kar72],
whereas the corresponding linear program (where x may have rational en-
tries) can be solved in polynomial time by the work of Khachyan [Kha79].

A Some NP-Complete Problems 531

Longest cycle

Let N = (G,w) be a network with a nonnegative length function w, where G
is a graph, and let c be a positive integer. Does N contain a cycle of length
at least c?

This problem is NP-complete even when all edges have length 1; see Ex-
ercise 2.7.8. Similar results hold for the analogous directed problem.

Longest path (cf. Sects. 2.7 and 3.1)

Let s and t be two vertices in a network N = (G,w) on a graph G, where w
is a nonnegative length function, and let c be a positive integer. Does there
exist a path from s to t of length at least c?

This problem is NP-complete even when all edges have length 1; see Ex-
ercise 2.7.8. Similar results hold for the analogous directed problem.

Matroid intersection (cf. Sect. 5.4)

Let (E,Si) (i= 1,2,3) be three matroids on the same set E, and let c be a
positive integer. Does E have a subset U of cardinality c which is an inde-
pendent set for all three matroids?

This problem is NP-complete; see Theorem 5.4.13. Note that the corre-
sponding problem for the intersection of two matroids is solvable in polyno-
mial time (even in the weighted case); see [Law75, Law76, Edm79, Cun86],
and [Whi87].

Max cut (cf. Chap. 6)

Let G = (V,E) be a graph with a nonnegative capacity function c, and let
b be a positive integer. Does there exist a cut (S,T) of G with capacity
c(S,T)≥ b?

This problem is NP-complete by a result of Karp [Kar72]; this holds even in
the special case where G has maximal degree 3 and c(e) = 1 for all edges e; see
[Yan78]. Thus determining a cut of maximal capacity is an NP-hard problem,
whereas the analogous problem for cuts of minimal capacity is easy.

However, the max cut problem is polynomial for planar graphs; see
[Had75].

Min cut (cf. Chap. 6)

Let G= (V,E) be a graph with a nonnegative capacity function c, let s and
t be two vertices of G, and b ≤ |V | and k be two positive numbers. Does
there exist a cut (S,T) of G with s ∈ S, t ∈ T , |S| ≤ b, |T | ≤ b, and capacity
c(S,T)≤ k?

This problem is NP-complete, even when c(e) = 1 for all edges e; see
[GarJS76]. Note that omitting the bounds on |S| and |T | (that is, putting
b= |V |) yields one of the fundamental easy problems: again, we have a case
of an easy problem becoming hard due to additional constraints.

532 A Some NP-Complete Problems

Minimum k-connected subgraph (cf. Chap. 8)

Let G = (V,E) be a graph, and let k ≤ |V | and b ≤ |E| be two positive
integers. Does there exist a subset E∗ of E with |E∗| ≤ b such that G∗ =
(V,E∗) is k-connected?

This problem—and also the analogous problem for k-fold line connectivity
—is NP-complete for each fixed k ≥ 2; see [GarJo76]. Thus determining a
minimal k-connected subgraph of G is NP-hard. Note that the case k = 1 can
be solved with complexity O(|E|) using BFS, for example: then we merely
have to find a spanning tree of G.

Minimum spanning tree (cf. Chap. 4)

Let N = (G,w) be a network with a nonnegative weight function w on a
connected graph G. As we saw in Sect. 4.3, determining a minimal spanning
tree T is one of the fundamental easy problems of algorithmic graph theory.
As for the problem of determining spanning trees in general, we obtain NP-
complete problems by adding side constraints, for example by restricting the
diameter of T or asking for many leaves. See Sect. 4.7 and [GarJo79, §A.2.1].

Network flow (cf. Chaps. 6 and 10)

The flow problems we treated in this book are all solvable in polynomial time.
Again, adding side constraints will often result in NP-complete problems. We
refer the reader to [GarJo79, §A.2.4] and the references given there.

Network reliability (cf. Example 3.1.2)

Let G = (V,E) be a graph, V ∗ a subset of V , p a mapping from E to the
rational numbers in [0,1] (the failure probability), and q ≤ 1 a positive rational
number. Is the probability that any two vertices in V ∗ are connected by at
least one reliable path (that is, a path which does not contain an edge which
fails) at least q?

This problem is NP-complete by a result of Rosenthal [Ros77]; see also
[Val79b] for related questions. Provan [Pro86] showed that it is NP-hard to
determine the probability for the existence of a reliable path from s to t in a
planar acyclic digraph G, and also in a planar graph G with maximal degree
Δ(G) = 3.

Permanent evaluation (cf. Sect. 7.4)

Let A be an n× n matrix with entries 0 and 1, and let k ≤ n! be a positive
integer. Does perA= k hold?

This problem and the corresponding problems about perA≤ k and perA≥
k are NP-hard, which is due to Valiant [Val79a]; we note that it is not known
whether these problems actually belongs to NP.

Recall that determining the number of perfect matchings in a bipartite
graph is equivalent to determining the permanent of an appropriate matrix,
so that this problem is likewise NP-hard.

A Some NP-Complete Problems 533

Restricted matching (cf. Sect. 14.7)

Let G= (V,E) be a graph, and consider a decomposition of E into subsets Ei

(i= 1, . . . , k). Also, let c and bi (i= 1, . . . , k) be positive integers. Does there
exist a matching K with c edges such that |K∩Ei| ≤ bi holds for i= 1, . . . , k?

This problem is NP-complete, even when all bi are 1; see [ItaRT78].

Satisfiability (cf. Sect. 2.7)

Let C1 . . .Cm be a formula involving n Boolean variables in conjunctive nor-
mal form. Does there exist an assignment of the values true and false to the
n variables such that the given formula takes the value true?

This problem is NP-complete, even when each of the Ci involves pre-
cisely three of the n Boolean variables (3-SAT). This celebrated result due
to [Coo71] was the starting point of the theory of NP-completeness.

Shortest cycle (cf. Sects. 3.3 and 10.6)

Let N = (G,w) be a network on a graph G, where w is a length function that
may take negative values, and c an integer. Does G contain a cycle of length
at most c?

This problem is NP-complete; see [GarJo79]. It can be solved in polyno-
mial time for nonnegative length functions; see, for example, [ItaRo78] and
[Mon83]. Similar results hold for the analogous directed problem. Note that
determining a cycle of minimum cycle mean is easy for arbitrary length func-
tions w; see Sect. 10.6.

Shortest path (cf. Chap. 3 and Sect. 14.6)

Let s and t be two vertices in a network N = (G,w) on a graph G, where w
is a length function that may take negative values, and let c be an integer.
Does there exist a path from s to t of length at most c?

This problem is NP-complete, and this also holds for the analogous di-
rected problem; see [GarJo79]. As we saw in Sect. 14.6, the problem becomes
polynomial if we assume that N does not contain any cycles of negative
length. Particularly good algorithms exist for the special case where all edges
have nonnegative length; see Chap. 3.

Spanning tree (cf. Chap. 4)

We know that a spanning tree in a connected graph G can be determined
with linear complexity using either BFS or DFS; see Sects. 3.3 and 8.2.

However, the problem usually becomes NP-complete if we add extra con-
straints such as either a lower bound on the number of leaves, or an up-
per bound on the maximal degree of the tree; see Sect. 4.7 and [GarJo79,
§ 4.7]. The same conclusion holds if we ask whether the sum of the distances
d(u, v) in T (taken over all pairs (u, v) of vertices) can be bounded by c; see
[JohLR78].

534 A Some NP-Complete Problems

Steiner network (cf. Sect. 4.6)

Let N = (G,w) be a network on a graph G= (V,E), where V = R
.
∪ S and

where w :E →R
+ is a positive weight function, and let c be a positive integer.

Does there exist a minimal spanning tree T for some induced subgraph whose
vertex set has the form R ∪ S′ with S′ ⊂ S so that w(T)≤ c?

This problem is NP-complete by a result of Karp [Kar72]. The problem
becomes polynomial when either |R| or |S| is fixed.

Steiner tree (cf. Sect. 4.6)

For a given set of n points in the Euclidean plane, we want to find a minimal
Steiner tree (that is, a tree of minimal length with respect to the Euclidean
distance) which contains the given n points. This problem was shown to be
NP-hard by Garey, Graham and Johnson [GarGJ77].

Travelling salesman problem (TSP) (cf. Chap. 15)

Let w : E → R
+ be a positive length function on the complete graph Kn.

Given a positive integer b, is there a tour (that is, a Hamiltonian cycle) of
length at most b?

Recall that the TSP served as our standard example for an NP-complete
problem. It remains NP-complete in the metric case, in the asymmetric case,
and for length functions restricted to the values 1 and 2. The related questions
of whether a tour is suboptimal or whether an optimal tour contains a given
edge are likewise NP-hard.

The associated approximation problem is NP-hard in the general case,
but easy in the metric case: there is a polynomial ε-approximative algorithm
with ε= 1/2 for the ΔTSP. The existence of such an algorithm for a value
ε < 1/219 would already imply P =NP; see [PapVe06].

See Chap. 15 and the monographs [LawLRS85] and [GusPa02].

Unextendable matching (cf. Sect. 7.2 and Chap. 13)

Let G= (V,E) be an arbitrary graph, and let c be a positive integer. Does
G contain an unextendable matching of cardinality at most c?

This problem is NP-complete by a result of Yannakakis and Gavril
[YanGa80]. The problem remains NP-complete in the special cases of planar
graphs and of bipartite graphs (even when the maximal degree is restricted
to 3).

Recall that a matching which cannot be extended does not have to have
maximal cardinality in general. As we have seen, it is easy to determine a
maximal matching (that is, a matching of maximal cardinality) in G. Hence
the existence of an unextendable matching of cardinality at least c is easy to
decide.

A Some NP-Complete Problems 535

Vertex cover (cf. Sect. 2.8)

Let G = (V,E) be a graph, and let c be a positive integer. Does G have a
vertex cover of cardinality at most c?

This problem is NP-complete by a result of Karp [Kar72]; see Theo-
rem 2.8.3. It can be solved in polynomial time for perfect graphs (hence,
for bipartite graphs); see [GroLS93].

Note that Vertex cover is equivalent to Independent set: the comple-
ment of a vertex cover is an independent set.

Appendix B
Solutions

People of quality know everything without
ever having been taught anything.

Molière

This appendix contains solutions (or extended hints) to virtually all the ex-
ercises. For difficult exercises, we include more details; if an exercise is of a
purely computational nature, we usually state only the result.

B.1 Solutions for Chap. 1

1.1.2 As 2n− 1 is odd, 2i (i= 1, . . . ,2n− 1) runs through all residue classes
modulo 2n− 1. Therefore the sets Fi are pairwise disjoint. Clearly, each Fi

is a factor of K2n. As F1, . . . , F2n−1 contain altogether n(2n− 1) edges, they
must form a factorization.

1.1.3 Note T3 = K3. The graph T4 is K6 with one 1-factor removed. The
complement of T5 is shown in Fig. 1.12; cf. Exercise 1.5.11.

A vertex {x, y} of Tn is adjacent precisely to the 2(n − 2) vertices of
the form {x, z} and {y, z}, where z �= x, y. Two distinct vertices {x, y} and
{x, z} are adjacent precisely to the n− 3 vertices {x,w} for w �= x, y, z and
to {y, z}. Finally, the common neighbors of two vertices {x, y} and {z,w},
where x, y, z,w are distinct, are precisely {x, z}, {x,w}, {y, z}, and {y,w}.

1.1.4 For a given vertex x, there are exactly a′ = n− a− 1 vertices which
are not adjacent to x in G. If x and y are vertices adjacent in G, there are
precisely a− c−1 vertices which are adjacent to x but not to y, and precisely
(n− a− 1)− (a− c− 1) vertices which are adjacent neither to x nor to y.
Thus G has parameters a′ = n−a− 1 and d′ = n− 2a+ c. Similar arguments
give c′ = n− 2a+ d− 2.

To prove the validity of the equation in question, choose some vertex x.
Then there are n − a − 1 vertices z which are not adjacent to x. For each
such vertex z, there are precisely d vertices y which are adjacent to x as well

D. Jungnickel, Graphs, Networks and Algorithms,

Algorithms and Computation in Mathematics 5,
DOI 10.1007/978-3-642-32278-5, © Springer-Verlag Berlin Heidelberg 2013

537

http://dx.doi.org/10.1007/978-3-642-32278-5

538 B Solutions

as to z. On the other hand, there are a vertices y adjacent to x, and for each
such vertex y, there are a− c− 1 vertices z adjacent to y but not adjacent
to x.

1.2.1 Let W = (v0, . . . , vn) be a walk with start vertex a= v0 and end vertex
b = vn. If W is not a path, it contains repeated vertices. Let x = vi be the
first such vertex, and let vj be the next occurrence of x on W . Then the
subwalk of W from vi to vj is a closed walk, and omitting it from W yields
a shorter walk W ′ from a to b. Using induction on the length of W gives the
assertion.

Now let W = (v0, . . . , vn) be a closed walk of odd length which is not a
cycle. Suppose there exists some index i �= 0, n such that v0 = vi = vn. Then
one of the closed walks (v0, . . . , vi) or (vi, . . . , vn) has odd length, and the
assertion follows by induction. In the general case, there are indices i, j �= 0, n
with i �= j and vi = vj ; again, the assertion follows by induction.

We obtain a closed walk of even length not containing any cycle if we
append to some path P (from u to v, say) the same path P traversed in the
opposite direction (that is, from v to u).

1.2.2 Let x and y be any two vertices. Then the connected components of x
and y contain at least (n+1)/2 vertices each; hence they cannot be disjoint,
and therefore they coincide.

1.2.3 Trivially, the condition is necessary. To show that it is also sufficient,
choose some vertex s and let V1 be its connected component. Then V2 = V \V1

has to be empty: otherwise, the hypothesis would provide an edge vw with
v ∈ V1 and w ∈ V2, and w would after all be in V1, a contradiction.

1.2.4 If neither G nor G are connected, choose some vertex s and denote the
connected components of G and G containing s by S and T , respectively. As
each vertex v �= s is either adjacent to s in S or in T , we must have V = S∪T .
It can be seen by similar arguments that there cannot exist a pair (v,w) of
vertices with v ∈ S \ T and w ∈ T \ S, a contradiction.

1.2.5 The assertion follows from
∑

v deg v = 2n − 2; see the proof of
Lemma 1.1.1.

1.2.9 If G\ e is connected, the assertion follows using induction on |E|. Oth-
erwise, G consists of two connected components V1 and V2. Using induction
on n, the assertion holds for the induced graphs G|V1 and G|V2. Hence

|E|=
∣
∣(E|V1)

∣
∣+

∣
∣(E|V2)

∣
∣+ 1≥

(
|V1| − 1

)
+
(
|V2| − 1

)
+ 1= n− 1.

1.2.15 See Fig. B.1.

B.1 Solutions for Chap. 1 539

Fig. B.1 Solution to Exercise 1.2.15

1.2.16 The symbol u occurs precisely degu−1 times in πV (G); this is similar
to the proof of Lemma 1.2.12. In particular, stars are precisely those trees
G for which all entries of πV (G) agree, whereas paths are the trees having a
Prüfer code with distinct entries.

1.2.17 As a tree on n vertices has n− 1 edges, condition (1.6) is certainly
necessary. By the solution to Exercise 1.2.16, the degree of a vertex u in a
tree T equals the number of entries u in the Prüfer code πV (T) plus 1. Now
let d1, . . . , dn be a sequence of positive integers satisfying (1.6); then

(d1 − 1) + (d2 − 1) + · · ·+ (dn − 1) = n− 2.

Hence there are words of length n − 2 over the alphabet {1, . . . , n} which
contain exactly di − 1 entries i (for i= 1, . . . , n), and the corresponding trees
under the Prüfer code have the prescribed degree sequence. For the sequence
(1,1,1,1,2,3,3), we may use the Prüfer code (5,6,6,7,7) to obtain the tree
shown in Fig. B.2.

1.3.3 Denote the vertices of odd degree by xi and yi (for i= 1, . . . , k). Adding
the edges xiyi to G yields an Eulerian multigraph H . The desired trails arise
by omitting the edges xiyi from a Euler tour for H .

1.3.4 Note that an edge uv of G has degree degu+deg v−2 when considered
as a vertex of L(G). In particular, L(Km,n) is (m+n−2)-regular. If x, y, z,w
are distinct vertices of Km,n, edges of the form xy and zw are always adjacent
to precisely two edges in L(Km,n). Edges of the form xy and xz are adjacent
to m− 2 or n− 2 edges, depending on which part of Km,n contains x. Hence
L(Km,n) is an SRG if and only if m= n.

540 B Solutions

Fig. B.2 Tree with

prescribed degree sequence

1.3.5 Note first that L(G) is connected, since G is assumed to be connected.
By Exercise 1.3.4, an edge uv of G has degree degu+ deg v − 2 in L(G); by
Theorem 1.3.1, L(G) is Eulerian if and only if this number is always even.
As G is connected, this requires that the degrees of all the vertices of G have
the same parity. In particular, this condition is met if G is Eulerian: then all
vertices of G have even degree. Finally, L(K2n) is Eulerian while K2n is not
Eulerian, as all vertices have odd degree.

1.4.4 The existence of non-adjacent vertices u and v with degu+deg v < n
would imply m< 1

2 (n−2)(n−3)+n= 1
2 (n−1)(n−2)+2, since the maximal

number of edges arises if the remaining n−2 vertices induce a complete graph.

1.4.5 As K6 is Hamiltonian, G also has to be Hamiltonian by Theorem 1.4.1.
Therefore G contains a cycle of length 6. We have to add at least two edges
to this cycle to obtain a graph where degu+ deg v ≥ 6 holds for some pair
of non-adjacent vertices u and v. On the other hand, it is easy to check that
the closure of such a graph G is indeed K6. Hence eight edges are needed.

1.4.6 Let (e1, . . . , em) be an Euler tour ofG; then the sequence (e1, . . . , em, e1)
is a Hamiltonian cycle in L(G). The converse is false; for example, K4 is not
Eulerian even though L(K4) = T4 is Hamiltonian.

1.4.8 We color the squares of a chess board alternately black and white, as
usual. Note that a knight always moves from a black square to a white one,
and from a white square to a black one; in the corresponding graph, all edges
connect a black and a white vertex. (This means that G is bipartite; see
Sect. 3.3.) Obviously, G can only contain a Hamiltonian cycle if the numbers
of white and black vertices are equal, which is impossible if n and m are both
odd. This accounts for case (a).

In case (b), the preceding necessary condition is satisfied. However, the
cases m = 1 and m = 2 are trivially impossible. In order to show that a
knight’s cycle is also impossible for m= 4, we consider a second coloring of
the chess board: the squares of the first and fourth rows are green, whereas
the squares in rows two and three are red. Then a knight can move from a
green square only to a red square; from a red square, green squares as well
as red squares are accessible. Now assume the existence of a knight’s cycle.
Then the knight has to reach and to leave each of the green squares precisely
once. As the green squares are only accessible from the red ones, the 2n

B.1 Solutions for Chap. 1 541

Fig. B.3 Plane realizations of K5 \ e and K3,3 \ e

Fig. B.4 The Petersen graph

moves from a red square always have to be moves to a green square, so that
red and green squares alternate in the knight’s cycle. But white and black
squares also occur alternately; as the two colorings of the board are obviously
distinct, this is impossible.

1.5.6 See Fig. B.3.

1.5.7 Any subdivision of a graph increases the number of vertices by the
same value as the number of edges.

1.5.10 The Petersen graph G has girth g = 5. As G contains more than
40/3 edges, G cannot be planar by Theorem 1.5.3. Figure B.4 shows G and
a subgraph homeomorphic to K3,3, where the vertices of K3,3 are indicated
by fat circles and squares, whereas the vertices obtained by subdivision are
drawn as small circles. Thus Result 1.5.8 applies. Contracting each outer
vertex of G with its adjacent inner vertex shows that G can be contracted to
K5, so that Result 1.5.9 likewise applies.

542 B Solutions

Fig. B.5 Maximal planar graphs

1.5.11 We write the 2-subsets {x, y} of {1, . . . ,5} simply as xy. Then the
vertices of T5 are the xy, and xy and zw are adjacent in T5 if and only
if x, y, z,w are four distinct elements. Now it is easy to give the desired
isomorphism using the labelling of the vertices shown in Fig. B.4.

1.5.12 Each permutation α ∈ S5 induces an automorphism of T5—and
hence, by Exercise 1.5.11, an automorphism of the Petersen graph—by map-
ping each 2-subset xy to xαyα. Actually, S5 already yields all automorphisms
of the Petersen graph; however, proving this requires a little more effort.
(Hint: Try to show that there are at most 120 automorphisms of the Pe-
tersen graph.)

1.5.13 For n = 1, . . . ,4, Kn is already planar. For n ≥ 5, Kn cannot be
planar, since a planar graph on n vertices has at most 3n − 6 edges by
Corollary 1.5.4. Thus we have to remove at least 1

2n(n − 1) − (3n − 6) =
1
2 (n− 2)(n− 5)+ 1 edges. Using induction, it can be shown that there exists
a planar graph with 3n−6 edges for each n; in fact, this graph can even be as-
sumed to have a triangle as its outer border. The induction basis (n= 3,4,5)
and the recursive construction of placing a planar graph with n vertices and
3n− 6 edges inside a triangle are sketched in Fig. B.5.

1.5.14 As n− nd vertices have degree at least d+1, Corollary 1.5.4 implies
(n− nd)(d+ 1)≤

∑
v deg v = 2m≤ 6n− 12 and hence the assertion. In par-

ticular, n5 ≥ 2 and n6 ≥ n/7; thus more than 14% of the vertices of a planar
graph have degree at most 6.

The given formula can be strengthened as follows: any planar graph can
be embedded in a planar graph (by adding appropriate edges) whose vertices
have degree at least 3. For these planar graphs, the left hand side of the
inequality can be increased by 3nd, and we obtain

nd ≥
n(d− 5) + 12

d− 2
;

in particular, n5 ≥ 4 and n6 ≥ n/4.

B.2 Solutions for Chap. 2 543

1.6.1 Let G be pseudosymmetric. Choose an arbitrary edge e1 = v0v1, then
some edge e2 = v1v2 and so on, always selecting edges which have not oc-
curred before. Whenever we reach a vertex vi �= v0 via an edge ei, there is an
unused edge ei+1 available for leaving vi, since G is pseudosymmetric. Hence
our construction yields a directed cycle C. Removing C from G results in a
pseudosymmetric graph H , and the assertion follows by induction.

1.6.4 Obviously, an edge contained in a cycle cannot be a bridge. Conversely,
let e= uv be an edge which is not a bridge. Then the connected component
containing u and v is still connected after removing e, so that there exists a
path P from u to v not containing e. Appending e to P yields the desired
cycle.

1.6.5 G is Eulerian by Theorem 1.3.1. Let (v0, . . . , vm = v0) be the sequence
of vertices in an Euler tour (e1, . . . , em) of G. Orienting each edge ei from
vi−1 towards vi, we obtain an orientation of G, and (e1, . . . , em) is a directed
Euler tour for this orientation. Hence this orientation is pseudosymmetric
and strongly connected.

1.6.6 First letW = (v0, . . . , vn) be a closed directed walk which is not a cycle.
Suppose there exists some index i �= 0, n such that v0 = vi = vn. Then each
of the closed walks (v0, . . . , vi) and (vi, . . . , vn) has shorter length, and the
assertion follows by induction. In the general case, there are indices i, j �= 0, n
with i �= j and vi = vj ; again, the assertion follows by induction.

Now let W = (v0, . . . , vn) be a directed walk with start vertex a= v0 and
end vertex b= vn. If W is not a path, it contains repeated vertices. Let x= vi
be the first such vertex, and let vj be the next occurrence of x on W . Then the
subwalk W ′ of W from vi to vj is a directed closed walk and hence contains
a directed cycle C. Omitting C from W yields a shorter directed walk W ′

from a to b, and the assertion follows by induction on the length of W .

B.2 Solutions for Chap. 2

2.1.3 Let G have the n! permutations of {1, . . . , n} as vertices, and let two
permutations be adjacent if and only if they differ by only a transposition.
The case n= 3 is shown in Fig. B.6, where we denote the permutation (x, y, z)
of {1,2,3} by xyz; here the sequence (123,132,312,321,231,213) provides a
solution.

2.1.4 (a) First assume that G \ v0 is acyclic, and let C be a maximal path
starting at v0. Then C is a cycle. If C were not an Euler tour, we could find
a cycle C ′ in G \ C as in Example 2.1.2. By hypothesis, C ′ would have to
contain v0, so that C would not be maximal. Hence G is arbitrarily traceable

544 B Solutions

Fig. B.6 Transposition

graph for S3

from v0. Conversely, suppose that G is arbitrarily traceable from v0. If there
exists a cycle C in G \ v0, we can choose an Euler tour K of the connected
component of v0 in G \ C, so that K is a maximal trail starting in v0, a
contradiction.

(b) Let w be a vertex of maximal degree 2k in G, and let C be an Euler
tour for G. Then C can be divided into k cycles C1, . . . ,Ck, each of which
contains w only once. As G \ v0 is acyclic by (a), v0 has to occur in each of
these cycles, and hence also deg v0 = 2k.

(c) Suppose G is arbitrarily traceable from u, v, and w. By part (a), each
of these three vertices has to occur in all cycles of G. Suppose that G contains
at least two cycles (which intersect in u, v, and w); then it is easy to construct
a third cycle which contains only two of these vertices, a contradiction. Hence
G contains at most one cycle and thus is itself a cycle.

(d) By part (b), both vertices have to be vertices of maximal degree, say 2k.
Choose two vertices u and v and connect them by 2k parallel edges. Then all
subdivisions of this multigraph are arbitrarily traceable from both u and v.

2.2.5 Use induction on h; the case h= 1 is clear. With B = Ah, the (i, k)-
entry of Ah+1 is the sum of all terms bijajk over j = 1, . . . , n. By the induction
hypothesis, bij is the number of walks of length h from i to j. Moreover,
ajk = 1 if (j, k) is an edge, and ajk = 0 otherwise. Observe that a walk of
length h+1 from i to k consists of a walk of length h (from i to some vertex
j) followed by a last edge (j, k). This proves the assertion for graphs; the
same argument works in the directed case, if we restrict attention to directed
walks.

2.2.6 By Exercise 2.2.5, the (i, j)-entry of the matrix A2 is the number of
walks of length 2 from i to j; note that this reduces to the degree of i whenever
i= j. Denote the matrix with all entries equal to 1 by J . Using the defining
properties of a strongly regular graph yields the desired quadratic equation:
A2 = aI + cA+ d(J − I −A).

B.2 Solutions for Chap. 2 545

Fig. B.7 The digraph G3,3

2.3.2 Note that a word w = ai . . . ai+n−1 is the immediate predecessor of a
word v = ai+1 . . . ai+n in a de Bruijn sequence if and only if the edge v has the
end vertex of w as start vertex; thus the de Bruijn sequences correspond to
Euler tours in Gs,n. It remains to show that Gs,n satisfies the two conditions
of Theorem 1.6.1. First, Gs,n is strongly connected: two vertices b1 . . . bn−1

and c1 . . . cn−1 are connected by the directed path

(b1 . . . bn−1c1, b2 . . . bn−1c1c2, . . . , bn−1c1 . . . cn−1).

Gs,n is also pseudosymmetric: din(x) = dout(x) = s for each vertex x.

2.3.3 The digraph G3,3 is shown in Fig. B.7.
Using s= 00, the procedure TRACE(s,new;K) yields the cycle

K = (000,001,010,100,002,020,200).

546 B Solutions

Then all edges with start vertex 00 have been used, and L= (00,01,10,02,20).
In step (5) of EULER, the vertex u = 20 is removed from L; then step (7)
calls TRACE(u,new;C), which yields the cycle

C = (201,011,110,101,012,120,202,021,210,102,022,220).

This cycle is inserted in front of the edge 200 into K according to step (8)
of EULER; we then have K = (000,001, . . . ,020,201,011, . . . ,220,200) and
L= (00,01,10,02,11,12,21,22). Next, u= 22 is removed from L in step (5),
and the cycle

C = (221,211,111,112,121,212,122,222)

is constructed and inserted intoK in front of the edge 220. After this, EULER
discovers that all edges have been used (by investigating all vertices in L).
The de Bruijn sequence corresponding to this Euler tour is

0 0 0 1 0 0 2 0 1 1 0 1 2 0 2 1 0 2 2 1 1 1 2 1 2 2 2.

2.6.8 Let G = (V,E) be the empty digraph with n vertices: E = ∅. Then
any algorithm using the adjacency matrix has to check at least one of the
two entries aij and aji for each pair (i, j) with i �= j: otherwise, we could
add the edges (i, j) and (j, i) to G and the algorithm would not realize that
the digraph is no longer acyclic. Thus the algorithm has to check at least
n(n− 1)/2 =Ω(n2) entries.

2.6.9 The algorithm first calculates ind(1) = 2, ind(2) = 0, ind(3) = 3,
ind(4) = 1, ind(5) = 2, ind(6) = 4, ind(7) = 3, and L= (2). Then 2 is removed
from L and the function ind is updated as follows: ind(1) = 1, ind(3) = 2,
ind(4) = 0, ind(7) = 2. Now 4 is appended to L. During the next iteration,
4 is removed from L, and the following updates are performed: ind(1) = 0,
ind(3) = 1, ind(5) = 1, ind(7) = 1. Then 1 is appended to L and immediately
removed again during the next iteration. Continuing in this way yields the
topological sorting (2,4,1,3,5,7,6) for G; see Fig. B.8, where indeed all edges
are oriented from left to right.

2.7.6 DHC contains HC as a special case; this follows by considering the
complete orientation of a given graph.

2.7.7 We transform HC to HP. Let G = (V,E) be a connected graph. We
choose a fixed vertex v0. Then we adjoin three new vertices u, u′, and w to
G, and add the following edges: uu′, wv0, and an edge uv for each vertex v
adjacent to v0; see Fig. B.9. The resulting graph G′ has a Hamiltonian path
if and only if G admits a Hamiltonian cycle; this follows by noting that every
Hamiltonian path of G′ has to start with the edge uu′ and to end with the
edge v0w.

B.2 Solutions for Chap. 2 547

Fig. B.8 Solution to Exercise 2.6.9

Fig. B.9 Construction for Exercise 2.7.7

2.7.8 Note that HP is a special case of Longest path: given a graph G with
n vertices, we apply Longest path with k = n.

Now assume that we also have to specify the end vertices of the path. If we
had a polynomial algorithm for this modified problem, we could just invoke
the algorithm for all pairs of vertices to get a polynomial algorithm for the
unrestricted problem.

The corresponding result holds for longest cycles: the question “Does a
given graph G admit a cycle consisting of at least k edges?” contains HC.

548 B Solutions

2.8.4 Independent sets are precisely the complements of vertex covers. As
VC is NP-complete, it follows immediately that Independent set is NP-
complete as well.

The cliques in a graph G are precisely the independent sets of the com-
plementary graph G. Therefore, Clique is likewise NP-complete.

2.8.7 One proceeds exactly as in the proof of Theorem 2.8.6, with the fol-
lowing modification: in H , we in addition also introduce all edges of the form
uv, where u and v are non-adjacent vertices of G. In other words, we make
sure that the induced subgraph H|V is a complete graph. As before, any
vertex cover W of G is also a dominating set for H , and as W is a subset of
V , the subgraph H|W is trivially connected. Conversely, as before, we can
construct from any dominating set D for H a dominating set D′ which con-
sists of vertices in V only. Hence D′ is also a vertex cover for G of size at
most |D|, and the subgraph H|W ′ is connected.

B.3 Solutions for Chap. 3

3.1.3 Let all pairs (j, k) with j = 1, . . . , n and k = 0, . . . , b be vertices of G.
We choose all pairs ((j − 1, k), (j, k)) as edges of length 0 (for j = 2, . . . , n;
k = 0, . . . , b), and all pairs ((j − 1, kj − aj), (j, kj)) as edges with length cj
(for j = 2, . . . , n and kj = aj , . . . , b). We also adjoin a start vertex s to G,
and add the edges (s, (1,0)) with length 0 and (s, (1, a1)) with length c1.
Then the paths from s to (j, k) correspond to those subsets of {1, . . . , j}
whose total weight is k (and whose total value is the length of the associated
path). Finally, we add an end vertex t and edges ((n,k), t) of length 0 (for
k = 0, . . . , b). Then paths from s to t correspond to subsets whose weight is
at most b, and the length of a longest path from s to t is the value of an
optimal solution for the given knapsack problem.

3.2.3 The distances in the metric space have to be integral; moreover,
d(x, y)≥ 2 always has to imply that a point z with d(x, y) = d(x, z) + d(z, y)
exists. It is clear that this condition is necessary. In order to show that it is
also sufficient, choose all pairs {x, y} with d(x, y) = 1 as edges.

3.3.4 The connected components can be determined as follows, where p de-
notes the number of connected components and where c(v) is the component
of G containing v ∈ V .

Procedure COMP(G;p, c)

(1) i← 1;
(2) while V �= ∅ do
(3) choose a vertex s ∈ V ;

B.3 Solutions for Chap. 3 549

(4) BFS(G,s;d);
(5) L←{v ∈ V : d(v) is defined}; V ← V \L;
(6) for v ∈ L do c(v)← i od
(7) i← i+ 1
(8) od

3.3.8 Let G be a graph containing cycles. Obviously, G contains a cycle
which is accessible from some vertex s if and only if a BFS with start vertex
s reaches a vertex w (when searching from the vertex v, say) such that d(w)
is already defined. Considering the point where such a vertex w occurs for the
first time, we obtain a bound g for the length of a shortest cycle accessible
from s:1

g ≤
{
2d(v) + 2 if d(w) = d(v) + 1;
2d(v) + 1 if d(w) = d(v).

If d(w) = d(v), the bound cannot be improved by continuing the BFS. How-
ever, if d(w) = d(v)+ 1, the BFS should be continued until all vertices which
are in the same layer as v have been examined, because l might still be
decreased by one; after this, the BFS may be terminated.

If we execute this procedure for all possible start vertices, the final value
of g clearly equals the girth of G. If we also store a vertex s for which the
BFS did yield the best value for g, it is easy to actually determine a cycle C
of shortest length using a final modified BFS with start vertex s: we always
store the vertex v from which w is reached when it is labelled with d(w); that
is, we add the instruction p(w)← v in step (7) of BFS. The final BFS can be
terminated as soon as an edge vw which closes a cycle C occurs. Then we use
the predecessor function p to construct the paths (in the BFS-tree Ts) from
v and w to the root, and define C as the union of these two paths and the
edge vw. We leave it to the reader to write down such a procedure explicitly.2

As BFS has complexity O(|E|), we achieve a complexity of O(|V ||E|) by this
approach.

3.4.5 As the distances d(s, v) are known by assumption, one may determine
with complexity O(|E|) the set E′′ of all edges of G satisfying condition (3.2).
It follows from the proof of Theorem 3.4.4 that E′′ contains an SP-tree; more
precisely, any spanning arborescence with root s of G′′ = (V,E′′) is an SP-
tree. Hence a BFS on G′′ with start vertex s will determine the desired
SP-tree. In view of Theorem 3.3.2, this proves the assertion.

1Note that this is indeed just a bound; the precise length can be determined by backtracking

the paths from v and w to s in the BFS-tree Ts up to the first vertex they have in common.

Obviously, this vertex does not have to be s.

2If we want to check first whether G actually contains cycles, we may use the procedure

COMP of Exercise 3.3.4 to determine the connected components, and then check the

numbers of edges of the components using Theorem 1.2.8.

550 B Solutions

Fig. B.10 A network

with a negative cycle

3.4.6 First let T be an SP-tree and uv an edge of G. By definition, the path
from s to v in T is a shortest path from s to v in G. On the other hand,
appending the edge uv to the path from s to u in T also yields a path from
s to v in G. Therefore

dT (s, v) = d(s, v)≤ dT (s,u) +w(uv),

which is the desired inequality. Conversely, suppose that

(∗) dT (s, v)≤ dT (s,u) +w(uv)

holds for all edges uv of G. If P is a shortest path from s to v in G (for v �= s)
and e= uv is the last edge of P , then P ′ = P \ e is a shortest path from s to
u in G, by Lemma 3.4.1. Using induction on the number of edges of P , we
may assume d(s,u) =w(P ′) = dT (s,u). Then (∗) implies

d(s, v) = d(s,u) +w(uv) = dT (s,u) +w(uv)≥ dT (s, v),

so that dT (s, v) = d(s, v). Thus T is indeed a shortest path tree.

3.4.7 Consider the network (G,w) displayed in Fig. B.10. Then

P = s− a− b− c

is the unique shortest path from s to c (with length 3), and P ′ = s− c− a
is the unique shortest path from s to a (with length 0). Hence any SP-tree
would have to contain the union of these two paths; but this union is already
all of G and contains, for instance, the directed cycle C = a − b − c − a, a
contradiction.

Now change the value w(ca) from −4 to −3, so that C is still a directed
cycle of negative length. But now d(s, a) = 1, and both P ′ and s − a are
shortest paths from s to a. Thus the path P is an SP-tree for the modified
network.

3.5.2 Let us again consider the network (G,w) used for the solution of Ex-
ercise 3.4.7; see Fig. B.10. This time, we change the value w(ca) from −4

B.3 Solutions for Chap. 3 551

Fig. B.11 Digraph for the project New production facility

to −2, so that C = a− b− c− a becomes a directed cycle of length 0. Then
d(s, s) = 0, d(s, a) = 1, d(s, b) = 2 and d(s, c) = 3 in the modified network,
giving one solution of Bellman’s equations (B). However, it is easily checked
that us = ua = 0, ub = 1 and uc = 2 also gives a solution of (B).

It is easy to generalize this example: Let (G,w) be any network containing
an induced cycle C of length 0, and assume that no edges are leading from C
to another vertex of G. By subtracting a suitable constant from the distances
of all vertices on C, one may obtain a second solution of system (B).

3.5.5 Let ui denote the length of a longest path from 1 to i. Then the
following analogue of the Bellman equations has to be satisfied:

(
B′) u1 = 0 and ui =max{uk +wki : i �= k} (i= 2, . . . , n),

where we put wki = −∞ if (k, i) is not an edge of G. Then the results of
Sect. 3.5 carry over to this case: replace w by −w and apply the original
theorems to (G,−w). If we do not want to require G to be acyclic, it suffices
to assume that G contains cycles of negative length only.

The digraph corresponding to the knapsack problem of Exercise 3.1.3 is
acyclic, so that it is possible to determine a longest path from s to t—that is,
a solution of the knapsack problem—with complexity O(|E|). However, this
does not yield an efficient algorithm, because the number of edges of G has
order of magnitude O(nb), so that it depends not only on n but also on b.
Restricting the values of b yields a polynomial algorithm, whereas the general
knapsack problem is NP-hard; see [Kar72] and [GarJo79].

3.6.2 We obtain the network shown in Fig. B.11 and the values ts = 0, t1 = 0,
t2 = 0, t3 = 8, t4 = 25, t5 = 25, t8 = 25, t6 = 34, t7 = 46, t9 = 52, t10 = 54,
t11 = 55, tz = 57 and Tz = 57, mz = 0; T11 = 55, m11 = 0; T10 = 54, m10 = 0;
T9 = 52,m9 = 0; T7 = 46,m7 = 0; T6 = 37,m6 = 3; T8 = 39,m8 = 14; T5 = 25,

552 B Solutions

m5 = 0; T4 = 28, m4 = 3; T3 = 32, m3 = 24; T2 = 24, m2 = 24; T1 = 0, m1 = 0;
Ts = 0, ms = 0. The critical path is (s,1,5,7,9,10,11, z).

3.6.3 Consider the network on G where all edges have length 1. As G is
acyclic, we may use TOPSORT to determine a topological sorting for G. Then
the length of a longest path from s to v can be determined as in Sect. 3.6
or as explained in the solution to Exercise 3.5.5, by recursively solving the
equations (B′) or (CPM), respectively. The entire method has complexity
O(|E|).

3.6.4 For the time being, we denote the rank function on G by r′. Thus
we have to show that, at the end of RANK, r(v) = r′(v) holds for all v.
This can be done using induction on the order in which r is defined. Note
that p(w) is the predecessor of w on a longest path from s to w; this func-
tion can also be used to find such a path: in reverse order, we get the path
(w,p(w), p(p(w)), . . . , s). The values d(v) = din(v) needed in step (3) can be
determined from the adjacency lists (as in TOPSORT). Ordering the vertices
of G by increasing rank yields a topological sorting of G; the order of ver-
tices of the same rank is arbitrary. As each edge is examined exactly twice
during RANK (once when d is determined in (3), and once in step (7)), this
algorithm has complexity O(|E|).

3.7.4 We introduce a variable p(v) which will yield the predecessor of v on
a shortest path from s to v (at the end of the algorithm): p(v) is initialized
to be 0, and step (6) is changed as follows:

(6′) for v ∈ T ∩Au do if d(u) +w(uv)< d(v)

then d(v)← d(u) +w(uv); p(v)← u fi od

At the end of the algorithm, all edges of the form p(v)v constitute an SP-tree.

3.7.6 One obtains in turn d(1) = 0, d(5) = 1, d(3) = 2, d(4) = 6, d(2) = 9,
d(8) = 13, d(6) = d(7) = 14.

3.7.9 We may assume the given network to be connected; then planarity
implies |E| = Θ(|V |); see Example 2.5.1. Thus the modified algorithm of
Dijkstra has complexity O(|V | log |V |).

3.7.10 Let us denote the values defined in (1) and (2) by d0(v), and the
values defined during the k-th iteration of the repeat-loop by dk(v). Using
induction, one shows that dk(v) is the length of a shortest path from s to v
which has at most k edges. As (G,w) does not contain any cycles of negative
length, a shortest path from s to v consists of at most |V |−1 edges. Thus the
condition in (7) holds for k = |V | at the latest. As one iteration of the repeat-
loop requires O(|E|) steps (using backward adjacency lists), we obtain a
complexity of O(|V ||E|).

B.3 Solutions for Chap. 3 553

3.8.1 Determine the least common multiple T of all time cycles and replace
each line L with time cycle TL = T/mL, where mL �= 1, by mL lines with
time cycle T and times of departure sL, sL + TL, sL + 2TL, . . .

3.9.3 Proceed as in the solution to Exercise 3.7.4.

3.9.5 The final matrix is

D7 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 4 5 7 12 10 12
∞ 0 6 3 8 6 8
∞ ∞ 0 4 9 7 9
∞ ∞ 3 0 5 3 3
∞ ∞ 7 4 0 3 2
∞ ∞ 9 6 2 0 2
∞ ∞ ∞ ∞ ∞ ∞ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

3.9.6 Replace the length function w in the procedure FLOYD by the ad-
jacency function of G: put d(i, j) = 1 in (3) if ij is an edge, and d(i, j) = 0
otherwise. Then change step (9) to

(9′) d(i, j)←max(d(i, j),min(d(i, k), d(k, j)));

alternatively, max could be interpreted as the Boolean operation or, and min
as and.

3.9.7 Let G be an acyclic digraph, and consider the network on G having
all lengths equal to 1. As in the solution to Exercise 3.9.6, we replace the
length function w in the procedure FLOYD by the adjacency function of
G; moreover, we calculate max(d(i, j), d(i, k) + d(k, j)) in step (9) of that
procedure instead of the minimum given there. As G is acyclic, the revised
procedure will compute longest paths between all pairs of vertices: at the end
of the algorithm, d(i, j) = 0 if and only if j is not accessible from i; otherwise,
d(i, j) is the maximal length of a path from i to j. (This can be shown by
analogy to the proof of Theorem 3.9.2.) Then Gred consists of all the edges
ij with d(i, j) = 1.

3.10.3 Define the values of the variables dk(v) as in the solution to Ex-
ercise 3.7.10. Then G contains a directed cycle of negative length which is
accessible from s if and only if dn−1 �= dn. (The reader should prove this
claim in detail.) Since s is a root of G, the algorithm of Bellman-Ford can
be used to find cycles of negative length by replacing the repeat-until-loop
used in BELLFORD with a for-do-loop. If we also introduce a predecessor
function p(v), we can find either a directed cycle of negative length or an SP-
tree with root s. We give such a procedure below, using backward adjacency
lists A′

v .

554 B Solutions

Procedure SPTREE(G,w, s;d, p,neg, T)

(1) d(s)← 0;
(2) T ←∅;
(3) for v ∈ V \ {s} do d(v)←∞ od
(4) for i= 1 to n do
(5) for v ∈ V do d′(v)← d(v) od
(6) for v ∈ V do
(7) for u ∈A′

v do
(8) if d′(v)> d′(u) +wuv

(9) then d(v)← d′(u) +wuv ; p(v)← u
(10) fi
(11) od
(12) od
(13) od
(14) if d(v) = d′(v) for all v ∈ V
(15) then neg ← false;
(16) for v ∈ V \ {s} do T ← T ∪ {p(v)v} od
(17) else neg ← true
(18) fi

3.10.4 Replace the initial values d(i, i) = 0 in step (3) of procedure FLOYD
by d(i, i) =∞. Then, at the end of the algorithm, d(i, i) equals the shortest
length of a directed cycle through i.

3.11.2 Note that a = a ⊕ o shows that � is reflexive. Also a = b ⊕ b′ and
b= c⊕ c′ imply a= c⊕ (b′ + c′), so that � is transitive as well. Suppose that
⊕ is idempotent. Then a= b⊕ c and b= a⊕ d imply

a= b⊕ c= b⊕ (b⊕ c) = b⊕ a= a⊕ b= a⊕ (a⊕ d) = a⊕ d= b;

it follows that � is antisymmetric.

3.11.3 Let E be the matrix with diagonal entries 0 and all other entries ∞.
Then D =D ∗W ⊕E.

3.11.5 We have (A′)k =
∑k

i=0

(
k
i

)
Ai =

∑k
i=0A

i = A(k). Thus A(n) can be
calculated for n= 2a using a matrix multiplications:

A(1) =A′ =A⊕E, A(2) =
(
A′)2, A(4) =

(
A(2)

)2
, etc.

If we assume that the operations ⊕ and ∗ in R take one step each, we obtain a
complexity of O(n3 logn) for this method of calculating A(n). For the special
case (R,⊕,∗), we get—as explained in Lemma 3.11.4—an alternative to the
algorithm of Floyd-Warshall, as D =W (n−1). However, the complexity of this
technique is inferior to the one achieved in Theorem 3.9.2.

B.4 Solutions for Chap. 4 555

3.11.6 It is routine to verify that the matrices form a path algebra. For any
solution Y of (3.8), we have

Y =W ∗ (W ∗ Y ⊕B)⊕B =W 2 ∗ Y ⊕W (1) ∗B;

hence, by induction,

Y =W k+1 ∗ Y ⊕W (k) ∗B for all k.

In particular, for k = p,

Y =W p+1 ∗ Y ⊕W ∗ ∗B; that is, Y �W ∗ ∗B.

If the addition ⊕ on R is idempotent, then addition of matrices is likewise
idempotent; in this case, the corresponding preordering on the set of matrices
is even a partial ordering by Exercise 3.11.2. Then the minimal solution
W ∗ ∗B of (∗) is unique.

3.11.10 Choose R= {a : 0≤ a≤ 1}, ⊕=max, and ∗= ·.

3.11.11 Note that A is stable if and only if Ar = 0 for some r ∈ N, since
A(r−1) =A(r) =A(r−1)+Ar holds if and only if Ar = 0. Lemma 3.11.4 implies
that this condition is satisfied in the acyclic case: then each walk contains
at most r − 1 edges, where r is the number of vertices of G. In this case,
A is a solution of the equation A∗ = A∗A+ E. As K is a field, this means
A∗(E −A) =E; that is, A∗ = (E −A)−1.

More generally, it is possible to show that A is stable if all cycles in G
have weight 0 with respect to w. The converse is false in general: it is easy to
find an example with weights 1 and −1 such that A is stable, but G contains
cycles of weight �= 0. However, the converse does hold for K =R and positive
weights.

B.4 Solutions for Chap. 4

4.1.2

(1) ⇒ (2): Let e be an edge contained in the unique cycle C of G. Then
G \ e is connected and acyclic, so that G \ e is a tree.

(2) ⇒ (3): As every tree on n vertices has n− 1 edges and is connected, the
claim in (3) follows.

(3) ⇒ (4): As G is not a tree (since it has one more edge than a tree
would have), there must be edges in G which are not bridges;
see Lemma 4.1.1. Removing some edge e which is not a bridge
yields a tree, so that e has to be contained in each cycle of G.
Thus the set of all edges which are not bridges forms a cycle.

556 B Solutions

(4) ⇒ (1): An edge e is not a bridge if and only if it lies in a cycle; see
Exercise 1.6.4. Thus G contains a unique cycle, which consists
of those edges which are not bridges.

4.1.3 The claim concerning the number of centers is clear for the trees K1

and K2. For every other tree T , remove all leaves of T ; then the resulting
tree T ′ has the same centers as T , and the assertion follows by induction.

Denote the diameter of a tree T by d and the eccentricity of a center by e.
Then either d = 2e or d = 2e − 1, and d = 2e holds if and only if T has a
unique center. For a formal proof, proceed again by induction.

4.1.4 Let W be a trail of maximal length in G. As G is acyclic, W has to
be a path, and as W is maximal, the end vertices of W have degree 1. Thus
G\W is a forest containing 2k−2 vertices of odd degree. Now use induction.

4.1.5 By hypothesis, T has at least two connected components. Let x and y
be two arbitrary vertices in distinct connected components of T . In particular,
x and y are not adjacent in T , so that T contains the edge xy. Thus any two
points in distinct components of T have to be adjacent in T .

The preceding observation shows that there cannot be three distinct con-
nected components: otherwise, we would obtain a cycle of length 3 in T .
Moreover, one of the two components must be an isolated point of T : other-
wise, we would obtain a cycle of length 4 in T . Hence T contains a vertex x
which is adjacent to all other vertices, so that T is a star. The final assertion
follows from Exercise 1.2.4 and Theorem 1.2.6.

4.1.6 There are precisely six isomorphism types of trees on 6 vertices; repre-
sentatives for these types were given in Fig. 1.6; we will denote these repre-
sentatives by T1, . . . , T6. Now let T be any tree on {1, . . . ,6}. Then the image
of T under an arbitrary permutation σ ∈ S6 is a tree isomorphic to T . By a
well-known equation for permutation groups, the number of trees isomorphic
to T is equal to the order of S6 (that is, 6! = 720) divided by the order of the
automorphism group of T . We obtain:

T1: cyclic group of order 2 (rotate the tree by 180◦), 360 isomorphic trees;
T2: cyclic group of order 2 (exchange the two lower leaves of the tree), 360

isomorphic trees;
T3: symmetric group S3 (acting on the three lower leaves of the tree), 120

isomorphic trees;
T4: cyclic group of order 2 (reflect the tree, exchanging the two branches),

360 isomorphic trees;
T5: direct product of 3 cyclic groups of order 2 (reflect the tree, exchanging

the two centers and the two pairs of leaves; or switch the two leaves of
one of the two pairs), 90 isomorphic trees;

T6: symmetric group S5 (acting on the five leaves), 6 isomorphic trees.

B.4 Solutions for Chap. 4 557

This gives a total of 360 + 360+ 120+ 360+ 90+ 6 = 1296 = 64 trees, which
agrees with the result of Corollary 1.2.11.

4.2.11 By Theorem 4.2.9, the number of spanning trees of the complete
bipartite graph Km,n is equal to the absolute value of the determinant of the
matrix

A′ =

(
nIm −Jm,n−1

−Jn−1,m mIn−1

)

,

where the indices give the numbers of rows and columns of the respective
submatrices (and where I denotes an identity matrix and J a matrix hav-
ing all entries 1, as usual). Now it is just a matter of some linear algebra
to show detA′ = nm−1mn−1: using appropriate row and column transforma-
tions, one can transform A′ into a triangular matrix with diagonal entries
1, n, . . . , n,m, . . . ,m.

4.2.12 The proofs of the results in question carry over: just take into account
that now 1+ 1 = 0, and hence −1 =+1.

4.2.13 First assume that G′ is bipartite, with respect to the partition V =
S

.
∪ T . Let M ′ be a square submatrix of M of order k, say. The case k = 1

is trivial, so let k �= 1. First consider the case where each column of M ′

contains two entries 1. The k vertices corresponding to the rows of M ′ can
be divided into two sets S′ ⊂ S and T ′ ⊂ T . Each column of M ′ corresponds
to an edge of G which has both end vertices in S′ ∪ T ′ (by hypothesis). As
G is bipartite, each column of M has one entry 1 in a row corresponding to
S′, and the other entry 1 in a row corresponding to T ′. Hence the sum of
the rows corresponding to S′ equals the sum of the rows corresponding to
T ′, so that the rows of M ′ are linearly dependent, and hence detM ′ = 0. It
remains to consider the case where M ′ contains a column with at most one
entry 1. Then the claim follows by developing detM ′ with respect to this
column (and using induction).

Conversely, let M be totally unimodular, and suppose that G is not bi-
partite. By Theorem 3.3.5, G contains a cycle C of odd length, say

C : v0
e1

v1 · · · v2n−1

e2n
v2n

e2n+1

v0.

But then the determinant of the submatrix M corresponding to the 2n+ 1
vertices and the 2n+ 1 edges of C is 2, a contradiction.

4.2.14 By Corollary 1.2.11, the graph Kn has precisely nn−2 spanning trees.
Note that each spanning tree of Kn has n− 1 edges and that each edge e
has to be contained in the same number x of spanning trees, which implies
x= 2nn−3. Hence the number of spanning trees of Kn \ e is nn−2 − 2nn−3 =
(n− 2)nn−3.

558 B Solutions

4.2.15 G has p= n−m connected components.

4.2.16 We may assume that F consists of the edges {2i− 1,2i}, where i=
1, . . . , n. Then, by Theorem 4.2.9, the number of spanning trees of G \ F
equals the determinant of the (2n− 1)× (2n− 1)-matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2n− 2 0 ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗
0 2n− 2 ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗
∗ ∗ 2n− 2 0 ∗ . . . ∗ ∗ ∗ ∗
∗ ∗ 0 2n− 2 ∗ . . . ∗ ∗ ∗ ∗

. . .

∗ ∗ ∗ ∗ ∗ . . . ∗ 2n− 2 0 ∗
∗ ∗ ∗ ∗ ∗ . . . ∗ 0 2n− 2 ∗
∗ ∗ ∗ ∗ ∗ . . . ∗ ∗ ∗ 2n− 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where we have used the abbreviation ∗ to indicate entries equal to −1. We
may compute the determinant of M as the product of its eigenvalues. From
the form of M , one easily sees the following 2n− 3 eigenvalues:

• an (n − 1)-fold eigenvalue 2n − 2, belonging to the pairwise orthogonal
eigenvectors (1 ∗ 00 . . .0)T ; (001 ∗ 00 . . .0)T ; . . . ; (00 . . .001 ∗ 0)T ;

• an (n− 2)-fold eigenvalue 2n, belonging to the pairwise orthogonal eigen-
vectors (11 ∗ ∗00 . . .0)T ; (1100 ∗ ∗00 . . .0)T ; . . . ; (110 . . .00 ∗ ∗0)T .

The remaining two eigenvalues are not obvious. However, the orthogonal
complement of the (2n− 3)-dimensional vector space generated by the eigen-
values constructed so far is clearly spanned by the two vectors (1, . . . ,1,0)T

and (0, . . . ,0,1)T , which are not eigenvectors. Thus the further eigenvectors
have to have the form (1, . . . ,1, x)T . Then the corresponding eigenvalue is
necessarily 2− x, which leads to the condition

(2n− 2)(x− 1) = x(2− x).

We get two solutions for x, namely −n+2±
√
n2 − 2n+ 2. Hence the missing

two eigenvalues are n ±
√
n2 − 2n+ 2, with product 2n − 2. Therefore the

desired number equals

(2n− 2)n(2n)n−2.

4.3.4 Let e be an edge incident with v which has smallest weight among all
such edges, and suppose that e is not contained in a given minimal spanning
tree T for G. The cycle CT (e) which arises by adding e to T has to contain a
second edge incident with v, say f ; by Theorem 4.3.1, w(e)≥ w(f). In view
of our choice of e, we conclude w(f) =w(e), so that f is an edge of T having
the required property.

B.4 Solutions for Chap. 4 559

4.3.5 The assertion is an immediate consequence of Exercise 4.3.6. A direct
proof of the special case in question could proceed as follows. Suppose that
G contains two distinct minimal spanning trees T and T ′. Order the edges
of T and T ′ according to increasing weight and assume that both trees have
their first k− 1 edges in common, whereas they differ in their respective kth

edges:

T = {e1, . . . , ek−1, ek, . . . , en−1} and T ′ =
{
e1, . . . , ek−1, e

′
k, . . . , e

′
n−1

}
,

where (without loss of generality)

w(e1)< · · ·<w(en−1) and w(ek)<w
(
e′k
)
< · · ·<w

(
e′n−1

)
.

Adding the edge ek to T ′ yields a cycle CT ′(ek); by Theorem 4.3.1, w(ek)≥
w(f) for all edges f ∈ CT ′(ek). As the weights of the edges are distinct, all
edges f �= ek of CT ′(ek) have to be contained among the first k − 1 edges
e1, . . . , ek−1 of T ′. Hence T contains the cycle CT ′(ek), a contradiction.

4.3.6 Let T be any minimal spanning tree, so that T satisfies condition
(4.1). Then T can be transformed into any fixed minimal spanning tree T ′

by a sequence of edge exchanges as in the proof of Theorem 4.3.1, where we
obtained a third minimal spanning tree T ′′ = (T ′ \ {e′})∪ {e}. Moreover, we
had w(e) =w(e′), so that such an exchange always transforms T ′ into a tree
T ′′ with the same weight sequence. Hence the induction argument given in
the proof of Theorem 4.3.1 actually proves the additional assertion of the
present exercise.

4.4.6 Perturb the weight function w by adding small constants to the weights
of edges having the same weight under w. Clearly, this may be done in such
a way that the resulting weight function w′ assigns distinct weights to dis-
tinct edges, and that w′(e)< w′(e′) holds if and only if either w(e)< w(e′)
or w(e) = w(e′), but e precedes e′ under the specified tiebreaking rule. By
Exercise 4.3.5, there is a unique minimal spanning tree with respect to w′,
which implies the assertion.

4.4.11 Order the edges of G according to increasing weight. As the algo-
rithm of Kruskal constructs a minimal spanning tree T by selecting edges in
this order (as far as possible), no spanning tree having a smaller maximum
edge weight can exist. Moreover, any two minimal spanning trees have the
same weight sequence by Exercise 4.3.6. Hence any spanning tree T ′ satisfies
W (T ′)≥W (T).

4.4.15 Assign weight 1 to all the edges, and apply the algorithm of Boruvka
in this situation. Then we could choose an arbitrary edge eu leaving a given
connected component U ∈M . In general, there will exist two connected com-
ponents U,U ′ ∈M which can be connected by two different edges of G; then
choosing these two edges as eu and eu′ would create a cycle.

560 B Solutions

Fig. B.12 A digraph

4.4.16 A minimal spanning tree has weight 2 + 13+ 21+ 35+ 51 = 122.

4.4.17 The proof of Theorem 4.3.1 shows that the subgraph of the minimal
spanning trees (for a given weight function w) is connected. If we assign
weight w(e) = 1 to all edges e, we see that this implies that the whole tree
graph is connected.

4.5.5 The edges e15, e14, e13, e12, e11, e10 and e8 form a maximal spanning
tree (of weight 28 + 27+ 26+ 24+ 10+ 9+ 8 = 132). The edges are given in
the order in which the algorithm of Kruskal would find them.

4.5.6 The following characterization of maximal spanning trees follows from
Theorem 4.3.1 by replacing w by −w: a spanning tree T is maximal if and
only if the condition

(∗) w(e)≤w(f) for all edges f in CT (e)

holds for each edge e /∈ T . Now let e= uv be an edge of G not contained in T .
By hypothesis, the unique path P from u to v in T has capacity w(P)≥w(e);
this implies (∗) in view of CT (e) = P ∪ {e}, which proves the assertion.

4.5.8 The digraph shown in Fig. B.12 provides an example.

4.7.9 Let T be an arbitrary spanning tree for G, and let x be a center
of T . Denote the eccentricity of x in T by eT (x); then T has diameter either
dT = 2eT (x) or dT = 2eT (x)− 1 by Exercise 4.1.3. Clearly, x has eccentricity
at most eT (x) in G. Thus it is an obvious approach to look for spanning trees
whose centers are centers of G as well.

Now let z be a center of G, and let Tz be a spanning tree for G determined
by a BFS starting at z. Note that Tz is an SP-tree for G with root z. It is
easy to see that z is also a center of Tz . Therefore Tz has diameter d = 2e
or d = 2e − 1, where e denotes the eccentricity of z in G. Moreover, every
other spanning tree has diameter at least 2e−1. Hence the tree Tz solves our
problem; note that a center z (and then a tree Tz) can be determined with
complexity O(|V |3) by Theorem 3.9.8.

We mention that it is easy to find examples where a BFS starting at z
could either find a tree of diameter 2e or a tree of diameter 2e−1, depending
on the order in which adjacent vertices are examined.

B.5 Solutions for Chap. 5 561

Fig. B.13 Two matchings

Fig. B.14 A counter-

example for the case k = 2

B.5 Solutions for Chap. 5

5.1.5 The network in Fig. B.13 has a maximal matching of weight 14, but
the greedy algorithm constructs a matching of weight 12.

5.2.3 Let N be the incidence matrix of the graph G = (V,E). Identify E
with the set of columns of N and apply Theorem 4.2.3.

5.2.4 Let A ⊆ E. As the forests of G form the graphic matroid M(G) =
M0(G) on E, A has a well-defined rank �(A) in M(G), namely the maximal
cardinality of a forest contained in A. We use this fact to verify condition
(3) in Theorem 5.2.1 for M =Mk(G), which will establish that M is likewise
a matroid. We distinguish two cases: if |A| − �(A)≤ k, then A itself is inde-
pendent in M (and thus the only maximal independent set contained in A);
and if |A| − �(A)> k, then the maximal independent sets of M contained in
A are the maximal forests in A enlarged by any k further edges from A (and
thus all have cardinality �(A) + k).

5.2.5 The assertion is a special case of Exercise 5.2.3, as the 1-forests of
G= (V,E) are just those subsets of E which contain at most one cycle. The
analogous statement for k = 2 does not hold, as Fig. B.14 shows.

562 B Solutions

Here removing either e or both of f and f ′ results in maximal subgraphs
with at most two cycles, so that condition (3) in Theorem (5.2.1) is violated.
Note that adding two edges to the star spanning G may create either two or
three cycles, depending on whether or not e is one of these edges.

5.2.6 Conditions (1) and (2) are clear. To show that (3) holds, let J be a
maximal independent subset of A ∩ B, and choose a maximal independent
subset K of A ∪ B containing J . Write K = J

.
∪ X

.
∪ Y with X ⊂ A and

Y ⊂B. Then J ∪X and J ∪ Y are independent subsets of A and B, respec-
tively, so that

ρ(A∪B) + ρ(A∩B) = 2|J |+ |X|+ |Y |= |J ∪X|+ |J ∪ Y | ≤ ρ(A) + ρ(B).

5.2.10 By Theorem 5.2.9, σ(X) = {e ∈ E : ρ(X ∪ {e}) = ρ(X)}; therefore
condition (1) is clear. To prove (2), let J be a maximal independent subset
of Y , and choose a maximal independent subset K of X containing J . If
e ∈ σ(Y), then e ∈ σ(X): otherwise K ∪ {e} would be independent, so that
J ∪ {e} would be independent as well, contradicting ρ(J ∪ {e}) = ρ(J)).

By Theorem 5.2.9, σ(X) is the unique maximal set containing X such
that ρ(σ(X)) = ρ(X); now (3) is clear. To show (4), let J be a maximal
independent subset of X (and hence of σ(X)). As y /∈ σ(X) and y ∈ σ(X ∪
{x}), J∪{x} and J∪{y} have to be independent sets. Moreover, ρ(X∪{x}) =
ρ(X ∪ {y}) = ρ(X ∪ {x, y}). But this implies x ∈ σ(X ∪ {y}).

5.2.11 Let B be a basis of the matroid M = (E,S). As ρ(B) = ρ(E), The-
orem 5.2.9 yields ρ(B) = E, so that B is a generating set for M . Suppose
that B is not minimal. Then there exists a proper subset C of B such that
B ⊂E = σ(C). But then ρ(E) = |C|< |B|, which contradicts the fact that B
is independent.

Conversely, let D be a minimal generating set and A a maximal inde-
pendent subset of D. Then ρ(D) = |A| implies D ⊂ σ(A) and (using Ex-
ercise 5.2.10) E = σ(D) ⊂ σ(σ(A)) = σ(A). Hence A is a generating set of
M , and the minimality of D implies A = D. Thus D is independent. Now
σ(D) =E, so that |D|= ρ(E); therefore D is a basis of M .

5.2.12 Let A and B be two closed sets in M . Then

σ(A∩B)⊂ σ(A)∩ σ(B) =A∩B ⊂ σ(A∩B),

so that A∩B is closed as well; this establishes (a).
To prove (b), let A be a closed set containing X . Then σ(X)⊂ σ(A) =A.

Thus σ(X) is contained in the intersection of all closed sets containing X .
Now (a) implies that σ(X) coincides with this intersection.

Finally, suppose that the condition in (c) is violated for some x ∈ E \X ,
so that ρ(X ∪ {x}) = ρ(X). Then x ∈ σ(X), and X cannot be closed. The
converse is similar.

B.5 Solutions for Chap. 5 563

5.2.13 Let {x1, . . . , xr} be a basis of (E,S). The 2r subsets of this basis have
2r distinct spans.

5.2.17 Suppose that condition (2′) does not hold. Choose two cycles C and
D and elements x ∈ C ∩D and y ∈ C \D violating (2′), so that |C ∪D| is
minimal among all counterexamples. In view of Theorem 5.2.16, there exists
a cycle F1 ⊂ (C ∪D)\{x} with y /∈ F1. Note that the set F1∩ (D \C) cannot
be empty: otherwise F1 would be a proper subset of C. Hence we may choose
an element z ∈ F1 ∩ (D \C).

Now consider the cycles D and F1 and the elements z ∈D ∩ F1 and x ∈
D \ F1. Note that D ∪ F1 is a proper subset of C ∪ D, since y /∈ D ∪ F1.
By the minimality of our counterexample, there exists a cycle F2 such that
x ∈ F2 ⊂ (D∪F1)\{z}. Consider C, F2, x ∈C∩F2, and y ∈C \F2. Again, the
minimality of our counterexample applies: there exists a cycle F3 such that
y ∈ F3 ⊂ (C ∪ F2) \ {x}. As C ∪ F2 is contained in C ∪D, we have obtained
a contradiction.

5.3.4 We use Exercise 5.2.11 to show that E \C is a closed set of M∗. Thus
let c be any element of C. We need to check that adding c to E \C increases
the rank:

�∗
(
(E \C)∪ {c}

)
=

∣
∣(E \C)∪ {c}

∣
∣+ �

(
C \ {c}

)
− �(E)

= |E \C|+ 1+ �(C)− �(E) = �∗(E \C) + 1.

It remains to show �∗(E \C) = �∗(M∗)− 1. As C is a circuit, C \ {c} is an
independent set and hence contained in a basis B of M . Then B∗ =E \B is
a basis for M∗ and therefore has rank �∗(M∗). But B∗ ⊆ (E \C)∪ {c}, and
thus �∗((E \C)∪ {c}) = �∗(M∗), which proves the assertion.

5.3.7 By Theorem 5.3.1, ρ(E \A∗) = ρ∗(A∗)− |A∗|+ ρ(E) = ρ(E), since A∗

is independent in M∗. As A is an independent subset of E \ A∗, A can be
extended to a maximal independent subset (in M) of E \A∗; we denote this
subset by B. Then ρ(B) = ρ(E), so that B is a basis of M . Hence B∗ =E \B
is a basis of M∗ containing A∗.

5.3.8 First let B be a basis of M . Suppose that C∗ is a cocircuit which
is disjoint to B. Then E \B contains the cocircuit C∗ and is dependent in
M∗, which contradicts Corollary 5.3.2. Now suppose that a subset X of B
intersects each cocircuit. Then E \X cannot contain any circuit of M∗, so
that E \X must be independent in M∗. As E \X contains the basis E \B
of M∗, we conclude X =B. Thus the bases are the minimal sets intersecting
each cocircuit. The converse is shown in a similar manner.

5.3.9 Suppose C ∩ C∗ = {e}. Then the disjoint sets A = C \ {e} and A∗ =
C∗ \ {e} are independent in M and in M∗, respectively. By Exercise 5.3.7, A

564 B Solutions

and A∗ can be extended to bases B and B∗ of M and M∗, respectively, and
these bases are disjoint. Hence E =B ∪B∗. As C and C∗ are dependent, e
can be contained neither in B nor in B∗, a contradiction.

5.3.10 Let B be a basis of M containing C \{x}. As B∗ =E \B is a basis of
M∗, B∗ ∪{y} has to contain a unique cocircuit C∗ of M by Theorem 5.2.14.
Obviously, y must be contained in C∗. Now x /∈C∗ would imply |C ∩C∗|= 1,
contradicting Exercise 5.3.9. Thus x, y ∈C ∩C∗, so that C ∩C∗ = {x, y}.

5.4.6 It suffices to find a subset A of E and two maximal independent subsets
D and D′ of A such that 2|D′|= n|D|. We may assume V = {1, . . . , n}. Then
D = {(i, i + 1) : i = 1, . . . , n − 1}, D′ = {(i, j) : i, j = 1, . . . , n and i > j} and
A=D ∪D′ have the required property.

5.4.10 M is the intersection of the graphic matroidM(G), the head-partition
matroid of G, and the tail-partition matroid of G.

5.5.7 Suppose w does not have to satisfy the triangle inequality. Then we
may, for instance, increase the weight of the edge of maximal weight in Ex-
ample 5.5.6 by an arbitrary value and thus make the solution determined by
the greedy algorithm arbitrarily poor.

5.6.3 Suppose that (CC) is violated by some A ∈ S, elements x, y ∈ ext(A),
and a set X ⊂ E \ (A ∪ ext(A)). Thus there exists a basis B such that A ∪
X ∪ {x} ⊂ B, whereas A ∪X ∪ {y} is not contained in any basis. Consider
the following weight function for E:

w(z) =

⎧
⎪⎪⎨

⎪⎪⎩

3 if z ∈A,
2 if z ∈X,
1 if z = y,
0 otherwise.

Then the basis B has weight w(B) = 3|A| + 2|X|. The greedy algorithm
begins by constructing (in some order) the feasible set A and then adds y;
note that the elements of X have larger weight than y, but are not contained
in ext(A). After that, the algorithm can add at most |X| − 1 of the elements
of X , because we assumed that A∪X ∪ {y} is not contained in any feasible
set. Thus the solution generated by the greedy algorithm has weight at most

3|A|+ 1+ 2
(
|X| − 1

)
<w(B),

a contradiction.

B.6 Solutions for Chap. 6 565

Fig. B.15 A flow

B.6 Solutions for Chap. 6

6.1.9 Replace each vertex v by a pair (v, v′) of vertices, and each edge vw
by v′w. Furthermore, add all edges of the form vv′, and put c(v′w) = c(vw)
and c(vv′) = d(v). It is easily checked that a flow f ′ on the new network
corresponds to a flow f on N satisfying (F3).

Now let (S,T) be a cut in the new network, and denote the set of edges e
with e− ∈ S and e+ ∈ T by E′. Each edge of type v′w corresponds to an edge
vw in N , and each edge of type vv′ corresponds to a vertex v of N . Thus the
set E′ of edges of the cut (S,T) corresponds to a cut in N in the following
sense: a (generalized) cut is a set of edges and vertices (distinct from s and
t) of G so that every directed path from s to t contains at least one of these
edges and vertices. The capacity of such a cut is the sum of all c(e) and
d(v) for edges e and vertices v, respectively, which are contained in the cut.
Then the generalization of Theorem 6.1.6 states that he minimal capacity of
a generalized cut equals the maximal value of a flow satisfying (F3). This
theorem is easily derived by applying Theorem 6.1.6 to the network defined
above.

6.1.10 If we require k vertices s1, . . . , sk as sources (so that (F2) does not
have to be satisfied for these vertices, and as much flow as possible should
originate there), we can add a new source s and all edges ssi (i = 1, . . . , k)
with sufficiently large capacity.

6.1.11 Let W be the maximal value of a flow on N , and let (S,T) be a
minimal cut; by hypothesis, c(S,T) =W �= 0. If we remove an edge e with
e− ∈ S and e+ ∈ T and c(e) �= 0 from G, the capacity c(S,T) and hence the
value of a maximal flow is decreased by c(e). This suggests to choose e as an
edge of maximal capacity in a minimal cut. However, these edges do not have
to be most vital, as the example of the network given in Fig. 6.12 shows: here
the edge sa is obviously most vital, but it is not contained in a minimal cut.

6.1.12 No: the flow in the flow network of Fig. B.15 provides a counter-
example.

6.1.13 The capacities in the flow network of Fig. B.15 actually define an
integral flow, which is obviously maximal but not the sum of elementary
flows.

6.1.14 First, in step (3) of Algorithm 6.1.7, we set d(v) = 0 for v �= s. During
the following labelling process, the labels are not permanent; similarly to

566 B Solutions

the algorithm of Dijkstra, the label of the vertex v which is chosen in step
(5) is made permanent at this point. As we want to construct augmenting
paths of maximal capacity from s to all the other vertices, we choose in step
(5)—among all labelled vertices v with u(v) = false (that is, v is not yet
permanent)—the vertex v for which d(v) is maximal; initially, this is s.

Moreover, we do not change the flow as soon as t is reached, but wait until
t is chosen in step (5) (and thus made permanent). For this purpose, we insert
an if clause after step (5): if v = t, we may change the flow as in steps (16)
to (28) of Algorithm 6.1.7; of course, we have to set d(v) = 0 for v �= s in step
(27). Otherwise (if v �= t), the labelling process is continued from v. As in
steps (6) to (9), we first consider all edges of the form e= vw. If u(w) = false
(that is, w is not yet labelled permanently) and d(w)<min{d(v), c(e)−f(e)},
then d(w) is replaced by this minimum and w is labelled with (v,+, d(w)), so
that the former label is also replaced. Steps (10) to (13) (for edges of the form
e= wv) are changed in an analogous manner. Next v is made permanent in
step (14). We leave the details and the task of writing down a formal version
of this method to the reader.

6.1.15 Let us write P = S ∩S′, Q= T ∩S′, R= S ∩T ′, and U = T ∩T ′; see
Fig. B.16. Denote the maximal flow value on N by W . By hypothesis,

W = c(S,T) = c(P,Q) + c(P,U) + c(R,Q) + c(R,U)

and

W = c
(
S′, T ′)= c(P,R) + c(P,U) + c(Q,R) + c(Q,U).

On the other hand, using Lemma 6.1.2,

W ≤ c
(
S ∩ S′, T ∪ T ′)= c(P,Q) + c(P,R) + c(P,U)

and

W ≤ c
(
S ∪ S′, T ∩ T ′)= c(P,U) + c(Q,U) + c(R,U).

Hence

2W = c(S,T) + c
(
S′, T ′)≥ c

(
S ∩ S′, T ∪ T ′)+ c

(
S ∪ S′, T ∩ T ′)≥ 2W.

Thus we have equality throughout, implying

c
(
S ∩ S′, T ∪ T ′)= c

(
S ∪ S′, T ∩ T ′)=W.

6.1.16 Let (S,T) be any minimal cut, and assume that some vertex v ∈ T is
accessible from s on an augmenting path P with respect to the given maximal
flow f . Clearly, P has to contain an edge e which lies in the cocycle E(S,T).
If e is a forward edge, it cannot be saturated; and if e is a backward edge,
it cannot be void. But this contradicts the characterization of minimal cuts

B.6 Solutions for Chap. 6 567

Fig. B.16 The cuts in

Exercise 6.1.15

given in Lemma 6.1.2, and we conclude Sf ⊆ S for each minimal cut (S,T).
Hence the intersection S0 of all such S contains Sf . By Exercise 6.1.15, S0 is
itself the s-part of a minimal cut, which proves the assertion: Sf = S0.

6.2.4 A second maximal flow g can be obtained from the flow f9 in Fig. B.15
by letting the edge ct not carry any flow, and enlarging the value of the flow on
the edges cf and ft accordingly: g(ct) = 0, g(cf) = 15, g(ft) = 17. Actually,
there are further maximal flows, as there are several ways of distributing the
flow emanating from c.

In contrast, (Sf , Tf) is the unique minimal cut, as can be seen using Ex-
ercise 6.1.16 and the criterion in Lemma 6.1.2. For instance, if we wanted to
move the vertex b from the t-part Tf to the s-part Sf of the cut, we would
have to include also c into the s-part, as the edge bc is not saturated. Con-
versely, if we wanted to include c, we also would have to include b, as bc is
not void either. Using this type of argument shows that the s-part Sf cannot
be enlarged at all.

6.2.5 We use the algorithm described in the solution to Exercise 6.1.14.
During the first iteration, the vertices chosen in step (5) are s with d(s) =∞,
a with d(a) = 38, d with d(d) = 13, c with d(c) = 10, f with d(f) = 10, and t
with d(t) = 10 (in this order). This yields an augmenting path with capacity
10; we obtain the flow f1 of value 10 shown in Fig. B.17, which also gives the
labels determined by the first iteration.

During the next iteration, the vertices s with d(s) =∞, a with d(a) = 28,
d with d(d) = 13, b with d(b) = 8, c with d(c) = 8, f with d(f) = 8, and t
with d(t) = 8 are chosen in step (5). The corresponding augmenting path
with capacity 8 yields the flow f2 shown in Fig. B.18.

During the following iteration, the vertices chosen in step (5) are s with
d(s) =∞, a with d(a) = 20, d with d(d) = 13, and t with d(t) = 7. We obtain
an augmenting path with capacity 7 and the flow f3 shown in Fig. B.19.

Four more iterations are needed; the augmenting paths constructed are

568 B Solutions

Fig. B.17 w(f1) = 10

Fig. B.18 w(f2) = 18

• s f t with capacity 2,

• s a d b c f t with capacity 2,

• s b c t with capacity 1,
• and s a d e t with capacity 1.

The resulting flow f with w(f) = 31 is shown in Fig. B.20.
Thus this algorithm needs seven flow changes, whereas the algorithm of

Edmonds and Karp used in Example 6.2.3 made nine changes. However, in

B.6 Solutions for Chap. 6 569

Fig. B.19 w(f3) = 25

Fig. B.20 w(f) = 31

the algorithm used here, the labelling process is somewhat more involved.
Note that the maximal flows of Figs. 6.12 and B.20 are not identical.

6.2.6 The maximal value of a flow is 5; Fig. B.21 shows a flow f with w(f) =
5 and a cut having this capacity.

6.2.7 Let f be the flow of value W =w(f) which was found for the incorrect
capacity d(e), let (S,T) be a minimal cut, and denote the correct capacity by
c(e). The results for the incorrect input data can be used when calculating a
flow for the correct capacity as follows, where we distinguish two cases.

570 B Solutions

Fig. B.21 Solution to Exercise 6.2.5

Case 1. c(e)< d(e). It is clear that (S,T) is still a minimal cut, if e is con-
tained in (S,T) (that is, e− ∈ S and e+ ∈ T). In the corrected network, (S,T)
has capacity c(S,T)− (d(e)− c(e)), so that the maximal value of a flow is
W ′ = W − (d(e) − c(e)). To find a flow of value W ′, consider all the aug-
menting paths (constructed before) containing e and decrease the value of
the corresponding flow by d(e)− c(e).

If e is not contained in (S,T) and f(e)≤ c(e), there is obviously nothing
to change. If f(e)> c(e), we decrease the flow by f(e)− c(e) (as before) and
run the algorithm again, using the decreased flow as the initial flow.

Case 2. c(e)> d(e): If e is not contained in (S,T), then (S,T) is still a minimal
cut and there is nothing to change. Otherwise, we run the algorithm again,
using f as the initial flow.

6.2.8 Note that the edge e= ac is contained in the minimal cut (S,T) shown
in Fig. 6.12. If c(e) = 8, (S,T) is still a minimal cut, so that the value of
the flow has to be decreased to 29. A maximal flow of this value can be
constructed from the flow of Fig. 6.12 by decreasing the flow values of all
edges in the augmenting path shown in Fig. 6.7 by 2. For c(e) = 12, the same
augmenting path can be used for increasing the value of the flow to 33.

6.2.9 First, the capacity of ac is increased to 12, so that the value of the
flow can be increased to 33 (by increasing f(e) by 2 for each of the edges
e = sa, ac, cf, ft); see Exercise 6.2.8. Since the edge ad is not contained in
the minimal cut (S,T), increasing the capacity of this edge does not affect
the maximal flow. Now we delete the edge de. As this edge is contained in
(S,T), the value of the flow has to be decreased by 1, say along the path
s a d e t. Finally, ct is removed. The value of a maximal flow is
not changed, because the unit of flow carried by ct can be moved along the

B.6 Solutions for Chap. 6 571

Fig. B.22 w(f) = 32 = c(S,T)

Fig. B.23 A blocking flow

path c f t instead. We obtain the flow of value 32 shown in Fig. B.22;

note that (Sf , Tf) is still a minimal cut, as it should be according to Exer-
cise 6.1.16.

6.3.5 By definition, c′(S,T) is the sum of all c′(x) for x− ∈ S and x+ ∈ T . If
x= e′ corresponds to a forward edge e, we have c′(x) = c(e)−f(e). Otherwise
(if x= e′′ corresponds to a backward edge e), c′(x) = f(e). Thus

c′(S,T) =
∑

e−∈S,e+∈T

c(e)−
∑

e−∈S,e+∈T

f(e) +
∑

e−∈T,e+∈S

f(e);

hence, using Lemma 6.1.2, c′(S,T) = c(S,T)−w(f). In particular, this holds
for minimal cuts, and the assertion follows by applying Theorem 6.1.6 to both
networks.

6.3.8 Execute a BFS starting at t on the digraph with opposite orientation,
and remove all vertices which are not reached during the algorithm.

6.3.9 The network N ′′ and a blocking flow are shown in Fig. B.23.

572 B Solutions

Fig. B.24 Layered auxiliary network for N ′(f)

Fig. B.25 Layered auxiliary network for N ′′(f)

6.3.10 Consider Example 6.3.7, and note that the blocking flow g on N ′′(f)
of value 10 leads to a maximal flow g′ of value 11 on N ′′(f). The underlying
flow f has value 10, whereas the maximal value of a flow on N is 31 �= 10+11;
see Example 6.2.3.

6.3.13 The layered auxiliary network with respect to g on N ′(f) is shown
in Fig. B.24, and the layered auxiliary network with respect to g on N ′′(f) is
shown in Fig. B.25. The flow determined on N by f and g is the flow h= f6
shown in Fig. 6.9. Thus N ′′(h) is equal to the network of Fig. B.24.

6.3.19 Replace step (17) of procedure AUXNET (Algorithm 6.3.14) by

(17′) if t ∈ V ′′ then max← false; d← i else max← true;
S ← V ′′; T ← V \ S fi

6.4.5 A blocking flow determined by Algorithm 6.4.1 is shown in Fig. B.26.
The paths corresponding to the sequences (s, a, d, f, t), (s, b, d, f, t), (s, c, d,
f, t), (s, c, d, g, t), (s, a, e, h, t), (s, a, e, k, t) were constructed in this order (as
usual, if there were several possible ways of choosing the edge e= uv in step
(5), we have proceeded according to the alphabetical order of the vertices);
their capacities are 3, 2, 4, 3, 1, and 10, respectively. Thus the total value of
the flow is 23.

6.4.10 Algorithm 6.4.6 needs four iterations, where the vertices of minimal
potential are h with p(h) = 4, c with p(c) = 7, d with p(d) = 2, and e with
p(e) = 10, respectively. The resulting blocking flow of value 23 is shown in
Fig. B.27. Note that it is not identical with the one given in Fig. B.26.

B.6 Solutions for Chap. 6 573

Fig. B.26 Solution to Exercise 6.4.5

Fig. B.27 Solution to Exercise 6.4.10

6.5.6 Define a bipartite graph G on S
.
∪ T , where S = {1, . . . ,m} and T =

{1′, . . . , n′}, and let {i, j′} be an edge if and only if girl i and boy j′ know
each other. Then the desired arrangement for a dance obviously corresponds
to a matching of maximal cardinality in G; a solution can be determined
using Example 6.5.5.

6.5.7 Let A⊂ S, and let X ⊂ A be an independent subset of maximal car-
dinality of A, say |X| = k. Consider the network N constructed from G in
Example 6.5.5. Remove all vertices of S \A together with all edges incident
with them from N , and denote the resulting network by NA. Moreover, let

574 B Solutions

M be a matching of G with X = {e− : e ∈M}. As we saw in Example 6.5.5,
M induces a flow of value k on NA.

Now let Y be a maximal independent subset of A, say Y = {e− : e ∈M ′}
for some matching M ′; by hypothesis, |Y | ≤ k. Suppose |Y | < k. Then the
flow on NA corresponding to M ′ cannot be maximal, and a maximal flow
f can be obtained by constructing k − |Y | augmenting paths in NA. It is
easy to see that there always is a matching corresponding to an independent
subset of A containing Y (for each change of the flow). Thus Y cannot have
been maximal either, a contradiction. Hence any two maximal independent
subsets of A have the same cardinality k, so that (S,S) satisfies condition (3)
of Theorem 5.2.1 and therefore is a matroid.

Such matroids are called transversal matroids; they are considered in
Sect. 7.3. We have given an algorithmic proof for the fact that (S,S) is
a matroid, by showing in a constructive way that condition (3) of Theo-
rem 5.2.1 is satisfied. In a similar manner, the validity of condition (3) can
be proved also—in the language of transversal theory—by using the algorithm
of [Hal56]; see Sect. 7.3.

6.6.13 As there are only n− 2 vertices distinct from s and t, at least one of
the numbers i in the range 1≤ i≤ n−1 does not occur as a label d(v). Choose
such an i, and consider S = {v ∈ V : d(v) > i} and T = {w ∈ V : d(w) < i}.
Note s ∈ S and t ∈ T . Our selection of i implies d(v)≥ d(w)+2 for all choices
of v ∈ S and w ∈ T . Thus no edge e= vw with v ∈ S and w ∈ T can belong
to the residual graph Gf , since it violates the condition d(v) ≤ d(w) + 1.
As explained at the beginning of Sect. 6.6, Gf corresponds to the auxiliary
network N ′(f) used in the classical algorithms. Using similar arguments, it
is easily seen that the fact that no edge e= vw with v ∈ S and w ∈ T belongs
to Gf translates into the statement that each edge e with e− ∈ S and e+ ∈ T
is saturated, whereas each edge e with e− ∈ T and e+ ∈ S is void. Now
Lemma 6.1.2 shows that (S,T) is a minimal cut.

6.6.19 The algorithm FIFOFLOW determines (after nine phases) the max-
imal flow shown in Fig. 6.12. It needs 14 RELABEL and 23 PUSH opera-
tions, that is three more RELABEL and five more PUSH operations than
HLFLOW.

B.7 Solutions for Chap. 7

7.1.3 We use the algorithm of Edmonds and Karp. Suppose that there exists
an augmenting path containing a backward edge, and let P be the first such
path and e= uv be the last backward edge in P . When P is constructed, we
must have f(e) �= 0. Let Q be the last augmenting path constructed before

B.7 Solutions for Chap. 7 575

P for which f(e) was changed (and actually increased). Then P and Q have
the form

P : s
P ′

v u
P ′′

t

and

Q : s
Q′

u v
Q′′

t.

Denote the capacities of P and Q by γ and δ, respectively. Suppose first that
γ ≤ δ. Then we may replace Q and P by the following three paths:

s
Q′

u v
Q′′

t (with capacity δ− γ);

s
Q′

u
P ′′

t (with capacity γ);

s
P ′

v
Q′′

t (with capacity γ).

Then P ′′, Q′, and Q′′ contain only forward edges, and the sum of the capaci-
ties of these three paths is γ+ δ, so that we have removed the backward edge
e from P .

For γ > δ, we use similar arguments to replace P and Q by three paths
whose capacities sum to γ+ δ. However, the backward edge e is not removed
in this case, since we need the path P with capacity γ − δ. Nevertheless,
the capacity of P is decreased, so that this method has to terminate. As
the algorithm of Edmonds and Karp is finite, we get a finite method for
constructing a maximal flow which uses only augmenting paths consisting
exclusively of forward edges.

In Example 6.2.3, the only backward edge occurs in the last augmenting
path, which has capacity 1 (see Fig. 6.11):

P : s a d e c f t;

the backward edge is ce. Here Q is the following augmenting path:

Q : s a c e t,

which has capacity 7; see Fig. 6.6. As described above, we may replace P and
Q by the following three augmenting paths:

• s a c e t (with capacity 6);

• s a c f t (with capacity 1);

• s a d e t (with capacity 1).

576 B Solutions

7.1.7 Clearly, the proposed criterion is sufficient. Now let G be k-connected.
By Menger’s theorem, any two non-adjacent vertices of G are connected by
k vertex disjoint paths. It remains to consider adjacent vertices s and t. Let
H be the graph obtained by removing the edge st from G. Obviously, H is at
least (k − 1)-connected. Again by Menger’s theorem, s and t are connected
in H by k−1 vertex disjoint paths. Then st is the k-th path from s to t in G.

7.1.8 By Exercise 7.1.7, any two vertices of a k-connected graph are con-
nected by k vertex disjoint paths, so that every vertex must have degree at
least k. On the other hand, Exercise 1.5.14 shows that a planar graph has to
contain vertices of degree at most 5. This proves the first assertion.

The graph with six vertices shown in Fig. B.5 is 4-connected. If G is 5-
connected, every vertex must have degree at least 5. As in the solution to
Exercise 1.5.14, we get the following bound on the number n5 of vertices of
degree at most (and hence equal to) 5:

6(n− n5) + 5n5 ≤ 12n− 6;

thus n ≥ n5 ≥ 12. The icosahedral graph provides an example with twelve
vertices; see Fig. 9.1.

7.1.9 Let G be the given graph, and s and t the specified vertices. Consider
the graph H whose vertices are the edges of G together with s and t and
define adjacency as follows: two edges of G are adjacent in H if and only
if they share a common vertex v �= s, t in G; any edge e of the form sv is
adjacent to s; and any edge e of the form vt is adjacent to t. Note that s and
t are not adjacent in H .

It is clear that edge disjoint paths from s to t in G are transformed into
vertex disjoint paths in H by the preceding construction. In the converse
direction, one has to be a bit careful, as a path in H corresponds to a trail
in G, but not necessarily to a path. However, this difficulty can be overcome
by appealing to Exercise 1.2.1, which guarantees that we may select a path
contained in a given trail.

Finally, it is again clear that edge separators for s and t in G correspond to
vertex separators for s and t inH . Hence the undirected case of Theorem 7.1.1
indeed reduces to the undirected case of Theorem 7.1.4. Note that the same
approach also works in the directed case; here one needs to use Exercise 1.6.6
instead of Exercise 1.2.1.

7.1.10 Add two vertices s and t and all edges sx for x ∈ S as well as all
edges yt for y ∈ T to G. Then the assertion follows from Theorem 7.1.4.

7.2.2 An unextendable matching M ′ has at least k/2 edges: otherwise, at
least one of the k edges of a maximal matching M could be added to M ′. It
is easy to construct examples which show that this bound is best possible.

B.7 Solutions for Chap. 7 577

7.2.4 As explained in Example 6.5.5, we may run the labelling algorithm
(or, more efficiently, Dinic’ algorithm) to determine a maximal 0-1-flow f
and hence a maximal matching M . Let us denote the associated minimal cut
by (X,Y), where X consists of all vertices which are accessible from s on an
augmenting path. We write SX for S ∩X , and SY for S ∩ Y ; the analogous
subsets of T will be denoted by TX and TY .

We claim that W = SY ∪TX is a minimum cardinality vertex cover for G.
The only edges which might not be covered by W are the edges of the form vw
with v ∈ SX and w ∈ TY . If such an edge vw does not belong to M , it does not
carry any flow, and hence could be used to extend an augmenting path from
s to v (which exists, as v ∈ SX) on to w, contradicting w ∈ TY . It remains to
consider the case where vw ∈M . But then the edge sv is saturated, so that
v can only be reached via an augmenting path from s whose final edge is vw,
used as a backward edge; again, this gives the contradiction w ∈ TX . Thus
W is indeed a vertex cover.

Finally, we show that W and M have the same cardinality. By the max-
flow min-cut theorem, it suffices to check |W |= c(X,Y), since |M | equals the
value of the maximal flow f . As all capacities are 1, we simply need to count
the edges in the cocycle C = E(X,Y). Trivially, an edge sv belongs to C if
and only if v /∈ SX , giving |SY | edges in C with start vertex s. Similarly, we
get |TX | edges in C with start vertex in TX (and end vertex t). Altogether, we
now already have |W | edges in C, so that C should not contain any further
edges; indeed, any edge vw with start vertex v ∈ SX necessarily has w ∈ TX ,
as we have already seen when proving that W is a vertex cover.

7.2.8 The Petersen graph (see Fig. 1.12) is 3-regular, but does not have a
1-factorization. Assume otherwise. Then at least one of the three 1-factors
involved, say M , has to contain two edges of the outer cycle, say the two
edges drawn as dashed lines in Fig. B.28. But this already determines M
uniquely: for instance, the fifth point of the outer circle forces M to contain
the spoke edge through that point. Hence M is the 1-factor consisting of the
five dashed edges in Fig. B.28. But the complement of M is the union of
two vertex disjoint 5-cycles, and thus cannot split into two 1-factors. (This
argument is taken from [Vol04].)

7.2.10 Let us choose the disjoint union of the three 2n-sets R= {r1, . . . , r2n},
S = {s1, . . . , s2n}, and T = {t1, . . . , t2n} as the vertex set of K6n. Moreover

denote the complete bipartite graph on S
·
∪ T by KST , and the 1-factor

{siti : i= 1, . . . ,2n} of KST by FST .
By Corollary 7.2.7 and Exercise 1.1.2, both GST = KST \ FST and the

complete graph KR on R can be decomposed into 2n−1 1-factors. By choos-
ing an arbitrary bijection between these two sets of 1-factors and by merging
all the corresponding factors, we obtain 2n− 1 1-factors of K6n; altogether,
these factors contain precisely all the edges of one of the types sitj and rirj
(for i �= j).

578 B Solutions

Fig. B.28 A 1-factor of

the Petersen graph

The same method yields (for the two cyclic permutations of the sets R, S,
and T) 4n− 2 further 1-factors of K6n. The remaining edges which do not
occur in one of these 6n− 3 1-factors are of the form risi, riti, and siti (for
i= 1, . . . ,2n); obviously, these edges form a Δ-factor.

7.2.11 Denote the nine vertices by ij, where i, j = 0,1,2. Then the edges
where i is constant form three triangles which yield a first Δ-factor; similarly,
we obtain a second Δ-factor for constant j; then the remaining two Δ-factors
are uniquely determined. This unique decomposition of K9 into Δ-factors
is—using geometric terminology—just the affine plane of order 3; see, for
instance, [BetJL99].

7.2.12 Choose 2n − 1 factors of a 1-factorization of K6n−2 (see Exer-
cise 1.1.2) and denote the graph formed by these factors by G. Then G
is regular with degree (4n− 2) and, hence, can be decomposed into 2-factors
by Theorem 7.2.9. Now choose a bijection between these two sets of 2n− 1
factors and merge corresponding factors.

7.3.2 The assertion is clear for n= 1. Thus let n > 1. Choose x1 ∈ A1 and
put

B= (B2, . . . ,Bn) with Bi =Ai \ {x1}.

Assume first that A does not contain a critical subfamily. Then the union of
any k sets in A contains at least k+1 elements; thus B clearly satisfies (H′).
Hence B contains a transversal T , so that T ∪ {x1} is a transversal of A.

It remains to consider the case where A contains a critical subfamily, say
A′ = (A1, . . . ,Am). By the induction hypothesis, A′ contains a transversal T ′.
Put C= (Cm+1, . . . ,Cn), where Ci =Ai \T ′. Now one checks that C likewise
satisfies condition (H′), so that C has a transversal T ′′. Then T ′ ∪ T ′′ is a
transversal of A.

7.3.3 It is obvious that the maximal cardinality of a matching of G cannot
exceed the minimal cardinality of a vertex cover of G. Now suppose that

B.7 Solutions for Chap. 7 579

X = S′ ∪ T ′ (where S′ ⊂ S and T ′ ⊂ T) is a minimal vertex cover. We will
apply Theorem 7.3.1 in the terminology used in Theorem 7.2.5.

Consider the bipartite graph G′ induced on the set (S \S′)
·
∪ T ′. We want

to show that G′ satisfies condition (H). Suppose otherwise. Then there exists
a subset J of T ′ with |Γ (J)|< |J |, so that the set S′ ∪ Γ (J) ∪ (T ′ \ J) is a
vertex cover for G which has smaller cardinality than |X|. This contradicts
our assumption above and proves that G′ satisfies (H). By Theorem 7.2.5, G′

has a matching of cardinality |T ′|.
Similarly, the bipartite graph G′′ induced on the set S ∪ (T \ T ′) contains

a matching of cardinality |S′|. Then the union of these two matchings of G′

and G′′ forms a matching of cardinality |X| of G.

7.3.6 The maximal cardinality of a matching in a bipartite graph (with

vertex set S
·
∪ T) is |T | −max{|J | − |Γ (J)| : J ⊂ T}.

7.3.10 Consider the familyA which consists of di copies of Ai for i= 1, . . . , k.
Then S is precisely the set of partial transversals of A, so that the assertion
follows from Theorem 7.3.8.

7.3.13 Trivially, (1) follows from (2). So suppose that (1) holds. Write m=
|S| and assume A′ = (A1, . . . ,Ak). Let D be an arbitrary set of cardinality n
which is disjoint to S, and consider the family B consisting of the sets

A1, . . . ,Ak,Ak+1 ∪D, . . . ,An ∪D and m times the set
(
S \ S′)∪D.

Now suppose that B has a transversal. As B consists of m+n subsets of the
set S∪D having m+n elements, this transversal has to be S∪D itself. Thus,
S is a transversal of a subfamily of B which contains all the sets A1, . . . ,Ak,
some of the sets Ak+1 ∪D, . . . ,An ∪D, and some copies of (S \S′)∪D. If we
delete all those elements representing copies of (S \S′)∪D from S, we obtain
a subset S′′ of S which contains S′ and is a transversal for a subfamily of A
containing A′.

It remains to show that the family B defined above satisfies condition (H′)
of the marriage theorem. This condition is

∣
∣
∣
∣
∣

(⋃

j∈J

Aj

)

∪
(⋃

j∈K

Aj ∪D

)

∪
(

c⋃

i=1

(
S \ S′)∪D

)∣
∣
∣
∣
∣
≥ |J |+ |K|+ c (B.1)

for all J ⊂ {1, . . . , k}, K ⊂ {k + 1, . . . , n} and c ∈ {0, . . . ,m}. First consider
the case c= 0. If K = ∅, (B.1) follows from condition (H′) for A′, which holds
as A′ has a transversal. If K �= ∅, the union on the left hand side contains
the n-set D, so that (B.1) is satisfied because of n≥ |J |+ |K|. Now let c �= 0;
it suffices to consider the case c=m. As D and S are disjoint, (B.1) becomes

∣
∣
∣
∣

⋃

j∈J

Aj ∪
(
S \ S′)

∣
∣
∣
∣≥ |J |+m− n for J ⊂ {1, . . . , n}. (B.2)

580 B Solutions

But
∣
∣
∣
∣

⋃

j∈J

Aj ∪
(
S \ S′)

∣
∣
∣
∣=m−

∣
∣S′∣∣+

∣
∣
∣
∣

(⋃

j∈J

Aj

)

∩ S′
∣
∣
∣
∣,

so that (B.2) is equivalent to

∣
∣
∣
∣

(⋃

j∈J

Aj

)

∩ S′
∣
∣
∣
∣≥ |J |+

∣
∣S′∣∣− n.

This condition holds by Theorem 7.3.7, as S′ is a partial transversal of A.

7.3.14 Let G be the bipartite graph with vertex set S
·
∪ T corresponding

to A. As in Exercise 6.5.7, one sees that there is also a matroid induced on
T . Using the terminology of set families, the independent sets of this matroid
are precisely those subsets of the index set T for which the corresponding
subfamily of A has a transversal.

7.3.18 Let B be the family consisting of pi copies of Ai for i = 1, . . . , n.
Then the existence of sets Xi with the desired properties is equivalent to
the existence of a transversal of B. Now condition (H′) for B is precisely
the condition given in the exercise, so that the assertion follows from the
marriage theorem.

7.4.13 The assertions of Corollaries 7.4.6 and 7.2.7 are equivalent.

7.4.14 Let D be a diagonal with entries d1, . . . , dn satisfying d1 . . . dn ≥ n−n.
The inequality between the arithmetic and the geometric mean3 implies

(d1 . . . dn)
1/n ≤ d1 + · · ·+ dn

n
,

so that d1 + · · ·+ dn ≥ 1.

7.4.15 Let T be the set family as described in the hint. Then T satisfies
condition (H′), since the ktr entries 1 in any given k rows of A have to be
contained in at least kt columns of A (note that A has column sums ≤ r).
Therefore T has a transversal, so that there exist pairwise disjoint t-subsets
Si of Ti for i = 1, . . . ,m. Then the matrix P with entries pij = 1 for i ∈ Sj

and pij = 0 otherwise has row sums t and column sums ≤ 1. Moreover, the
matrix A′ =A− P has row sums t(r− 1).

3For a proof of the inequality mentioned above and of a more general inequality due to

Muirhead [Mui03] using the methods of transversal theory, we refer the reader to [Mir71b,

Theorem 4.3.3].

B.7 Solutions for Chap. 7 581

As we want to use induction on r, we still have to make sure that the
set X of all those indices for which column j of A has sum r is contained
in S1 ∪ · · · ∪ Sm (so that A′ has column sums ≤ r − 1). By Corollary 7.3.9,
it is sufficient to show that X is a partial transversal of T. However, any
k columns having sum r together contain precisely kr entries 1, and these
entries have to be contained in at least k/t rows of A. As each Ti occurs
precisely t times in T, any k elements of X correspond to at least k sets
in T. Now Theorem 7.2.5 implies that X is a partial transversal.

7.4.16 Using the equivalence of 0-1-matrices and bipartite graphs discussed
at the beginning of Sect. 7.4, the assertion amounts to showing that a bi-
partite graph of maximal degree r can be decomposed into r matchings. Let

S
·
∪ T be the vertex set of G, and denote the set of vertices of degree r in S

and T by S′ and T ′, respectively. By Theorem 7.2.5, there exist matchings
M ′ and M ′′ of G which meet S′ and T ′, respectively. By Corollary 7.3.12,
there also exists a matching M meeting S′ ∪ T ′. Then G \M has maximal
degree r− 1, and the assertion follows by induction.

7.4.17 We may assume n≥ 3. We show first that the subspace W of R(n,n)

spanned by the permutation matrices consists precisely of those matrices for
which all row and column sums are equal. Obviously, any linear combination
of permutation matrices is contained in W and has constant row and column
sum. Conversely, let A be a matrix with constant row and column sum. If A
does not contain any negative entries, A is contained in W by Theorem 7.4.7.
Otherwise, put b = max{−aij : i, j = 1, . . . , n}. Then the matrix B = A +
bJ (where J is the matrix with all entries 1) has nonnegative entries and
constant row and column sum. Therefore J and B (and A as well) are linear
combinations of permutation matrices.

Now let W ′ be the subspace spanned by the 2n−2 matrices Si and Zi (for
i= 1, . . . , n−1) which have entry 1 in cell (n, i) and in cell (i, n), respectively,
and all other entries 0. Obviously, W and W ′ have only the zero matrix in
common. Thus dimW = n2 − 2n+ 2 follows if we can show that W and W ′

together generate R
(n,n). Let A be an arbitrary matrix in R

(n,n). By adding
appropriate multiples of Si or of Zi to A, we can obtain a matrix C for which
the first n− 1 rows and the first n− 1 columns have a fixed sum s. Then the
last row and the last column of C must have identical sum, say x. Adding
aSi and aZi to C, the sum s can be changed to s′ = s+ a; simultaneously, x
is changed to x′ = x+(n− 1)a. As n �= 2, we can determine a so that x′ = s′;
that is, the resulting matrix C ′ has constant row and column sum. Thus C ′

is contained in W , so that A is contained in W +W ′.

7.5.4 Suppose G is a minimal counterexample to the assertion, and let D
be a dissection of G consisting of as few paths as possible. Then D contains
at least α+ 1 paths. Suppose we have |D| ≥ α+ 2. We omit a path W from
D. As G is minimal, G \W has a dissection into at most α paths, say D′.

582 B Solutions

But then D′ ∪ {W} is a dissection of G into α+ 1 paths contradicting our
assumption.

Hence |D| = α+ 1, say D = {W1, . . . ,Wα+1}. Denote the start vertex of
Wi by pi. By definition of α, the α+1 vertices pi cannot form an independent
set; we may assume that p1p2 is an edge. If W1 consists of p1 only, we may
omit W1 and replace W2 by (p1p2)W2, so that G would be decomposable into
α paths. Thus W1 cannot be trivial.

Let W ′
1 be the path obtained by omitting the first edge p1p

′
1 from W1. As

G is a minimal counterexample, the graph H =G \ p1 satisfies the assertion.
Now {W ′

1,W2, . . . ,Wα+1} is a dissection of H , so that we can find a dissection
{Z1, . . . ,Zk} of H into k ≤ α paths such that the start vertices of these paths
are contained in {p′1, p2, . . . , pα+1}.

If p′1 is the start vertex of one of the paths Zi, Zi can be replaced by
(p1p

′
1)Zi, which yields a dissection of G into at most α paths. If k < α, we

may add the trivial path {p′1} to the Zi. If neither of these two conditions
holds, we must have k = α, and the start vertices of the Zi are precisely the
vertices p2, . . . , pα+1. Thus p2 is the start vertex of some Zh. Replacing Zh

by (p1p2)Zh again yields a dissection of G into at most α paths. Therefore
G cannot be a counterexample, and the assertion holds in general.

7.5.5 As a tournament is an orientation of a complete graph, the maximal
independent sets have only one element in this case. Thus the assertion follows
immediately from Exercise 7.5.4.

Let us also give a very easy direct proof (not using Exercise 7.5.4). Choose a
directed path of maximal length in G, say W : v1 v2 · · · vk. Suppose
that W is not a Hamiltonian path; then there exists a vertex v not on W .
As W is maximal, G contains neither an edge vv1 nor an edge vkv, so that
G has to contain the edges v1v and vvk. Hence there must be some index
i (1 < i < k) such that G contains the edges viv and vvi+1. Then we can
replace the edge vivi+1 in W by these two edges, so that W is not maximal,
a contradiction.

7.5.9 Let k be the maximal cardinality of a chain in M . Moreover, let A
denote the antichain of the maximal elements of M . Then the maximal car-
dinality of a chain in M \A is k− 1, and the assertion follows by induction.

7.5.10 Let A= (A1, . . . ,An) be a family of subsets of {x1, . . . , xm} satisfying
(H′). We define a partial ordering on M = {x1, . . . , xm,A1, . . . ,An} by

u≺ v ⇐⇒ u= xi, v =Aj and xi ∈Aj (for suitable i, j).

Let {x1, . . . , xh,A1, . . . ,Ak} be an antichain of maximal cardinality s= h+k.
Then k ≤ |A1 ∪ · · · ∪ Ak| ≤ m − h, so that s = h + k ≤ m. By Dilworth’s
theorem, (M,�) can be decomposed into s chains, say (after renumbering)

{x1,A1}, . . . ,{xi,Ai}, {Ai+1}, . . . ,{An}, {xi+1}, . . . ,{xm}.

B.8 Solutions for Chap. 8 583

Then s =m+ n− i, and hence n = s−m+ i ≤ i; this forces n = i, so that
{x1, . . . , xn} is a transversal of A.

7.7.3 Use Theorem 7.7.4.

7.7.2 We have derived Theorem 7.7.1 from Theorem 6.1.6 by constructing an
appropriate flow network N . If c, a, and d are integral, the capacity function
of N is likewise integral. Thus Theorem 6.1.5 implies that there exists an
integral solution (provided that there are feasible flows).

B.8 Solutions for Chap. 8

8.1.2 Note that each vertex has to have degree at least k if G is k-connected.

8.1.3 Add a new vertex t and all edges xt with x ∈ T to G. It is easy to show
that the resulting graph H is again k-connected: clearly, there is no vertex
separator for H consisting of k − 1 vertices. By Theorem 8.1.1, there are k
vertex disjoint paths from s to t; these paths have to contain all the k edges
xt with x ∈ T . Deleting these edges, we obtain the desired paths in G.

8.1.6 The graph Km,m+1 has connectivity κ=m and independence number
α=m+ 1. It cannot be Hamiltonian, since a Hamiltonian cycle would have
length 2m+ 1; by Theorem 3.3.5, bipartite graphs do not contain cycles of
odd length.

8.1.7 Using the procedure BLOCK01FLOW of Lemma 6.5.2, we can deter-
mine a maximal 0-1-flow as follows (by analogy with Algorithm 6.3.17). Here
G is a digraph with two special vertices s and t, and val denotes the value of
a maximal flow.

Procedure MAX01FLOW(G,s, t;f,val)

(1) for e ∈E do c(e)← 1; f(e)← 0 od
(2) val ← 0; N ← (G,c, s, t);
(3) repeat
(4) AUXNET (N,f ;N ′′,max, d);
(5) if max = false then BLOCK01FLOW(N ′′;g); AUGMENT (f, g;f) fi
(6) until max = true;
(7) for e ∈As do
(8) if f(e) = 1 then val ← val +1 fi
(9) od

The proofs of Theorems 7.1.1 and 7.1.4 imply that the maximal number of
vertex disjoint paths from s to t in G equals the maximal value of a 0-1-flow
on the 0-1-network with underlying digraph H defined during the following
procedure.

584 B Solutions

Procedure PATHNR(G,s, t;k)

(1) V ′ ←{s, t}; E′ ←∅;
(2) for v ∈ V \ {s, t} do V ′ ← V ′ ∪ {v′, v′′}; E′ ←E′ ∪ {v′v′′} od
(3) for e ∈E do
(4) if e= sv with v �= t then E′ ←E′ ∪ {sv′} fi
(5) if e= tv with v �= s then E′ ←E′ ∪ {v′′t} fi
(6) if e= uv with u, v �= s, t then E′ ←E′ ∪ {u′′v′, v′′u′} fi
(7) od
(8) H ← (V ′,E′); MAX01FLOW (H,s, t;f,val);
(9) if st ∈E then k← val + 1 else k← val fi

Theorems 7.1.1 and 7.1.4 show that this procedure is correct; note that s
and t are not adjacent in H . If s and t should be adjacent in G, we have
to add one further path from s to t, namely the edge st itself. By Corol-
lary 7.1.5, PATHNR has complexity O(|V |1/2|E|). Finally, if G is an undi-
rected graph, we can replace G by its complete orientation (as in the proof
of Theorem 7.1.1).

8.2.6 Define a graph G which has a vertex for each junction of the maze,
where also the entrance, the exit, and dead ends are viewed as junctions.
The edges of G correspond to those paths in the maze which connect two
consecutive junctions: the end vertices of an edge are the respective junctions.
Figures B.29 and B.30 show the graph G which corresponds to the maze given
in Fig. 8.3. The labels of the vertices in Fig. B.30 indicate one possible course
for a DFS on G which starts at the entrance of the maze (which is represented
by the vertex labelled 1); the algorithm terminates when the exit is reached
(that is, at the vertex labelled 64). The corresponding path through the maze
is drawn in Fig. B.31; for the sake of simplicity, we have not included dead
ends occurring during the DFS (which have, of course, to be traversed and
then necessitate corresponding backtracking).

Of course, when we designed the above solution, we had a bird’s-eye view
of the maze (and used this knowledge). However, it is not hard to find a rule
which allows us to apply a DFS to a maze without knowing it in its entirety,
provided that it is possible to label junctions and paths when we pass them.
We leave it to the reader to formulate such a rule.4

4In this context, the following quotation from Umberto Eco’s The Name of the Rose is of

some interest; see [Eco83, p. 176]:

At every new junction, never seen before, the path we have taken will be marked
with three signs. If, because of previous signs on some of the paths of the junction,

you see that the junction has already been visited, you will make only one mark on

the path you have taken. If all the apertures of the junction are still without signs,

you will choose any one, making two signs on it. Proceeding through an aperture
that bears only one sign, you will make two more, so that now the aperture bears

three. All the parts of the labyrinth must have been visited if, arriving at a junction,

B.8 Solutions for Chap. 8 585

Fig. B.29 A maze with corresponding graph G

8.3.2 Consider two vertices u and v for which d(u, v) is maximal. If v were
a cut point, then G \ v would consist of two components, so that we could
choose a vertex w which is not contained in the component of u. Then every
path from u to w would have to contain v, so that the distance from w to
u would have to be at least d(u, v) + 1, a contradiction. Therefore v and u
cannot be cut points. On the other hand, a path of length n contains precisely
n− 2 cut points.

8.3.3 Suppose that bc(G) contains a cycle (B1, c1,B2, c2, . . . ,Bk, ck,B1).
Then we can remove ck and still reach vertices in B1 from vertices in Bk,
a contradiction. This proves that bc(G) is always acyclic. If G is connected,
also bc(G) is connected, so that bc(G) is a tree. This proves (a).

For claim (b), we may assume that G is connected, so that p = 1. Then
bc(G) is a tree and, hence, contains precisely b(G) + c(G) − 1 edges. Each
edge connects a cut point with a block, so that the number of edges equals
the sum of all the b(c) (over all cut points c). Therefore

b(G) + c(G)− 1 =
∑

c

b(c) =
∑

c

1 +
∑

v

(
b(v)− 1

)
= c(G) +

∑

v

(
b(v)− 1

)
,

you never take a passage with three signs, unless none of the other passages is now
without signs.

This somewhat chaotic rule contains the basic idea of a depth first search, even though the
hero of the tale, William of Baskerville (who admits that he just recites ‘an ancient text
I once read’), obviously confused the labelling rules a bit.

586 B Solutions

Fig. B.30 A partial DFS on G

Fig. B.31 A path through the maze

since each vertex which is not a cut point is contained in precisely one block.
Assertion (c) can be proved in a similar manner.

B.8 Solutions for Chap. 8 587

For (d), we use induction on the number c(G) of cut points. The case
c(G) = 1 is clear. Now assume c(G) > 1. Then bc(G) contains a leaf, and
every leaf B has to be a block; note that the unique edge incident with B
has a cut point c as its other end vertex. Removing B from the graph G
corresponds to removing c and B from bc(G). Now the assertion follows by
induction.

8.3.4 Let b(G) = k. We denote the cardinalities of the blocks by n1, . . . , nk

and the number of vertices of G by n. By Exercise 8.3.3 (b), n1 + · · ·+ nk =
k + n− 1. By Exercise 8.3.3 (d), a graph with r cut points has to have at
least r+ 1 blocks; also, G will have the maximum possible number of edges
if and only if each block is a complete graph on at least two vertices. Thus
this number is given by

max

{
k∑

i=1

(
ni

2

)

: n1 + · · ·+ nk = n+ k− 1;n1, . . . , nk ≥ 2;k ≥ r+ 1

}

=max

{

k− 1 +

(
n+ k− 1− (2k− 2)

2

)

: k ≥ r+ 1

}

=

(
n− r

2

)

+ r,

which is realized by a graph consisting of Kn−r with a path of length r
appended.

8.3.10 We obtain the graph shown in Fig. B.32, where each vertex v is
labelled with its DFS-number nr(v) and with L(v). Algorithm 8.3.8 yields
the cut points i, e, s, and h in this order. The blocks are {k, j, i}; {i, e};
{e, f, b, a, s}; {l, h}; and {h,d, g, c, s}. The fat edges are the edges of the DFS
tree, and cut points are indicated by a circle.

8.4.3 As u is reached later than v during the DFS, the examination of u has
to take place during the examination of v.

8.4.4 If a back edge e = vu occurs during the DFS, we obtain a directed
cycle in G, as u is an ancestor of v. Conversely, suppose that G contains a
directed cycle. Let v be the first vertex of G examined during the DFS which
is contained in a directed cycle, and let e= uv be an edge on such a cycle C.
By our choice of v, u is examined later than v during the DFS, so that e is
neither a forward edge nor a tree edge. As u is accessible from v (using C),
u has to be a descendant of v. Thus e cannot be a cross edge either, so that
e must be a back edge.

8.5.2 Choose G to be a directed cycle or the complete orientation of a path.

8.5.3 Let C and C ′ be two distinct strong components of G. As G is con-
nected, there exists an edge e connecting a vertex in C and a vertex in C ′.

588 B Solutions

Fig. B.32 DFS-tree, blocks, and cut points

Fig. B.33 Condensed
digraph for the digraph of

Fig. 3.3

Then e cannot be contained in a directed cycle, because that would imply
C =C ′. Thus G has to be strongly connected provided that every edge of G
is contained in a directed cycle. The converse holds by Theorem 8.5.1.

8.5.8 The vertices h, f , and g each form a strong component with only one
element; the remaining vertices together form a further strong component.

8.5.9 Suppose the strong components C1, . . . ,Cm are contained in a cycle
of G′. Then there are edges viv

′
i with vi ∈ Ci and v′i ∈ Ci+1 (where m+ 1 is

interpreted as 1). As Ci contains a directed path from v′i−1 to vi, we obtain a
directed cycle, so that C1, . . . ,Cm have to be contained in a common strong
component, a contradiction. Therefore G′ has to be acyclic. Figure B.33 shows
G′ for the digraph G of Fig. 3.3.

8.5.10 Define a digraph to be strongly k-connected if it is the complete
orientation of Kk+1, or if each set S of vertices for which G\S is not strongly

B.9 Solutions for Chap. 9 589

Fig. B.34 Solution to Exercise 8.6.2

connected contains at least k vertices. Then the analogues of Theorems 8.1.1
and 8.1.9 hold; in both cases, κ(vi,w) as well as κ(w,vi) have to be calculated.

8.6.2 For k =m= d, we can choose G=Kd+1. For k �= d, we use two copies
of the complete graphKd+1 on two disjoint vertex sets S and T , together with
2k further vertices x1, . . . , xk, x

′
1, . . . , x

′
k and all the edges xix

′
i. Moreover, we

connect each of the xi to d − 1 vertices in S, and each of the x′
i to d − 1

vertices in T . Finally, we add m− k further edges connecting the vertices in
S ∪ {x2, . . . , xk} to some of the x′

i. See Fig. B.34.

8.6.3 Let E′ be a minimal edge separator of G. Then G \E′ has two con-
nected components S and T , and E′ is the cocycle determined by the cut
(S,T). We may assume x = |S| ≤ n/2. Then E′ has to contain at least
xδ − x(x − 1) = x(δ − x + 1) edges. It is easy to check x(δ − x + 1) ≥ δ if
δ ≥ n/2 (for x = 1, . . . , n/2). The graph consisting of two disjoint copies of
Kd (connected by at most d− 1 edges) shows that nothing can be said for
the case δ < n/2.

B.9 Solutions for Chap. 9

9.1.2 If we want to color the icosahedral graph of Fig. 9.1, the three vertices
of the outer triangle have to get different colors. As any two vertices of this
triangle have a further common neighbor, the colors for these three neigh-
bors are now forced (assuming that it is possible to use only three colors);

590 B Solutions

Fig. B.35 A partial 3-coloring of the icosahedral graph

Fig. B.36 A 4-coloring of the icosahedral graph

see Fig. B.35, where the three colors used are indicated by small gray circles,
big gray circles, and big black circles. But now there are vertices of degree 5
for which three neighbors already use up all three colors, so that the color-
ing cannot be completed. If we allow a fourth color, the partial coloring of
Fig. B.35 can be completed; see Fig. B.36.

B.9 Solutions for Chap. 9 591

Fig. B.37 A 3-coloring of

the Petersen graph

9.1.9 Note that the Petersen graph is 3-regular; hence χ(G)≤ 3, by Brook’s
theorem. Now χ(G) = 2 is impossible, as the Petersen graph is not bipartite.
Hence χ(G) = 3; see Fig. B.37 for an explicit 3-coloring.

9.2.4 Let (M0,M1, . . . ,Mk =M0) be a sequence of vertices defining a cycle
of length k ≥ 4 in an interval graph, where Mi = (xi, yi) for i= 0, . . . , k − 1.
(The case of closed intervals is similar.) We may assume x0 < x1. If M2M0

is an edge, we have found a chord of the cycle. Otherwise, M2 ∩ M0 = ∅,
M1 ∩M0 �= ∅, and M2 ∩M1 �= ∅ imply x1 < y0 ≤ x2 < y1. Thus, if the cycle
does not have a chord, the lower bounds of the intervals Mi have to form a
monotonically increasing sequence. But then Mk−1M0 cannot be an edge, a
contradiction. Hence G must be chordal.

9.2.9 As induced subgraphs of a bipartite graph are likewise bipartite, it
suffices to prove α(G) = θ(G) for every bipartite graph G. In the bipartite
case, θ(G) = |V | − α′(G), where α′(G) denotes the maximal cardinality of a
matching. Moreover, α(G) = |V | − β(G); see Lemma 7.5.1. Therefore The-
orem 7.2.3 yields α(G) = θ(G). (Verifying χ(G) = ω(G) is even easier: both
parameters are 2 in the bipartite case; see Example 9.1.1.)

9.3.1 Clearly, χ′(G) is the minimal number of matchings into which G can be
decomposed. Thus the assertion amounts to showing that a bipartite graph
of maximal degree r can always be decomposed into r matchings, which was
proved in the solution to Exercise 7.4.16.

9.3.4 By Exercise 7.2.8, the Petersen graph does not admit a 1-factorization,
and hence Corollary 10.3.3 implies χ′(G) = 4. An explicit 4-coloring may be
obtained as follows: take the broken edges in Fig. B.28 as one color class. As
noted in the solution to Exercise 7.2.8, the complement of M is the union of
two vertex disjoint 5-cycles. Trivially, we may color the edges of these two
cycles using three further colors.

592 B Solutions

9.4.6 Clearly, G=G(H,S) is regular of degree k, where k is the cardinality
of S. Given any two elements x and y of H , we have to determine the number
of elements z ∈H which are adjacent to both x and y. As H acts regularly
on G, we may assume y = 1. By definition, z is adjacent to both 1 and x if
and only if z−1, xz−1 ∈ S. If we put d= z−1 and c= xz−1, we may use (9.1)
to re-write the preceding condition as

x= cd−1, z = d−1 with c, d ∈ S.

Hence the number of elements z of H which are adjacent to both 1 and x
equals the number of quotient representations of x from S. Noting that x is
adjacent to 1 if and only if x ∈ S, one sees that condition (2) in the assertion
holds if and only if G is strongly regular with parameters λ and μ.

9.5.3 Denote the two parts of the bipartition of K3,3 by S and T , and con-
sider an arbitrary choice of color lists of cardinality ≥ 3 each. If two vertices
in the same part, say in S, admit the same color c, we may color them with
c, and color the third vertex in S in any admissible way. As this forbids at
most two colors and as T is an independent set, we may certainly also color
the vertices in the other part T correctly.

Hence we may assume that the color lists for the three vertices in a given
part are all disjoint. Thus we have 9 colors available for S, and also for T .
Now we just have to pick a color from each of the three lists for S in such a
way that the resulting 3-set of colors does not coincide with one of the three
color lists for T . Obviously, this is possible (indeed, in many ways).

B.10 Solutions for Chap. 10

10.1.6 Put b(e) = c(e) = 1 for each directed edge e of G, and replace each
undirected edge e = {u, v} by two directed edges e′ = uv and e′′ = vu with
b(e′) = b(e′′) = 0 and c(e′) = c(e′′) = 1; this defines a directed multigraph H
with capacity constraints b and c. Obviously, every Euler tour of G yields a
feasible circulation on H .

Conversely, let f be a feasible circulation on H . Let e be an undirected
edge of G. If either f(e′) = 1, f(e′′) = 0 or f(e′′) = 1, f(e′) = 0, we replace e
by e′ or by e′′, respectively. Performing this operation for all undirected edges
yields a mixed multigraph G′ for which the number of directed edges with
start vertex v always equals the number of directed edges with end vertex
v. Then an Euler tour can be constructed using the methods of Chap. 1; cf.
Theorems 1.3.1 and 1.6.1.

10.1.7 We introduce the following vertices:

• a source s and a sink t;
• a vertex 0 which represents the person selling the napkins;

B.10 Solutions for Chap. 10 593

• vertices 1, . . . ,N corresponding to the dirty napkins which are sent off for
cleaning (we assume that all napkins are washed for i≤N − n);

• vertices 1′, . . . ,N ′ which represent the supply of clean napkins needed for
the N days.

We also add the following edges (with respective capacity constraints):

• e= s0 with b(e) = 0, c(e) =∞, γ(e) = 0;
• all si with b(si) = c(si) = ri, γ(si) = 0;
• all 0i′ with b(0i′) = 0, c(0i′) =∞, γ(0i′) = α;
• all e= i(i+m)′ with b(e) = 0, c(e) = ri, γ(e) = β (for i+m>N , the edge
i(i+m)′ has to be interpreted as it, so that the cost of this edge has to be
changed to 0);

• all e= i(i+ n)′ with b(e) = 0, c(e) = ri, γ(e) = δ (for i+ n > N , the edge
i(i+ n)′ has to be interpreted as it, so that the cost of this edge has to be
changed to 0);

• all i′t with b(i′t) = c(i′t) = ri, γ(i
′t) = 0;

• all edges e= i′(i+1)′ with b(e) = 0, c(e) =∞, γ(e) = 0; these edges repre-
sent the possibility of saving unused napkins for the next day.

10.2.3 As before, we define c′(e) = c(e)− b(e). Moreover, put

c′(sv) =
∑

e+=v
b(e)>0

b(e)−
∑

e−=v
b(e)<0

b(e); c′(vt) =
∑

e−=v
b(e)>0

b(e)−
∑

e+=v
b(e)<0

b(e).

Then Theorem 10.2.1 remains valid without changes: a feasible circulation
on G exists if and only if the maximal value of a flow on N is given by
W =

∑
e b(e).

10.2.6 First determine—if possible—a feasible flow as in Example 10.2.2.
Next, a maximal flow can be found as in Chap. 6. To make sure that this
flow is still feasible, we have to replace the condition f(e) �= 0 in step (10)
of Algorithm 6.3.14 (when constructing the auxiliary network) by f(e) >
b(e) and replace the assignment in step (11) by c′′(e)← f(e)− b(e). Let us
denote the resulting procedure by LEGAUXNET. We may now proceed as in
Algorithm 6.3.17. (Note that the algorithm of Ford and Fulkerson with similar
changes would serve the same purpose.) We obtain the following algorithm of
complexity O(|V |3), where we put N = (G,b, c, s, t) and use the FIFO preflow
push algorithm for determining a blocking flow.

Procedure MAXLEGFLOW(N ; legal, f)

(1) Add the edge r = ts to G; b(r)← 0; c(r)←∞;
(2) LEGCIRC(G,b, c;f, legal);
(3) if legal = true then
(4) remove the edge r = ts from G;

594 B Solutions

(5) repeat
(6) LEGAUXNET(N,f ;N ′′,max, d);
(7) if max = false then BLOCKMKM(N ′′;g); AUGMENT(f, g;f) fi
(8) until max = true
(9) fi

10.2.9 Apply the criterion of Theorem 10.2.7 to the directed multigraph H
defined in the solution to Exercise 10.1.6 (using the capacity functions b and
c given there); this yields the following theorem.

Let G be a connected mixed multigraph. Then G has an Euler tour if and
only if the following two conditions hold :

(i) Each vertex of G is incident with an even number of edges.
(ii) For each subset X of V , the difference between the number of directed

edges e with e− ∈X and e+ ∈ V \X and the number of directed edges
e with e+ ∈ X and e− ∈ V \ X is at most as large as the number of
undirected edges connecting X and V \X .

10.2.10 Similarly to the proof of Theorem 10.2.8, one sees that the minimal
value of a feasible flow is given by

max

{ ∑

e−∈S,e+∈T

b(e)−
∑

e+∈S,e−∈T

c(e) : (S,T) is a cut on N

}

,

where has c(r) = v and b(r) =−∞ for the return arc r = ts.
To determine a minimal flow, an arbitrary feasible flow can be changed

applying methods similar to those used in Chap. 6. To find a path along
which the value of the flow can be decreased, we admit forward edges e in
the auxiliary network if and only if b(e)< f(e), and backward edges if and
only if f(e) < c(e). Then the bounds on the complexity are the same as in
Chap. 6. We leave the details to the reader.

10.2.11 By Exercise 8.5.3, G is strongly connected if and only if every edge
is contained in a directed cycle. Hence we may show that this criterion is
satisfied if and only if G has a feasible circulation.

First assume that G has a feasible circulation. Let e= uv be an edge of G,
and let S be the set of all vertices s from which u is accessible. If v /∈ S, then
(S,V \S) is a cut for which all edges of the corresponding cocycle are oriented
from S to V \ S. Such a cut would violate the condition of Theorem 10.2.7,
as b(e)> 0. Therefore there exists a directed path W from v to u. Then e is

contained in the directed cycle u
e
— v

W
— u.

Conversely, assume that every edge of G is contained in a directed cy-
cle. Then all cocycles contain edges in both possible directions, so that the
condition of Theorem 10.2.7 is satisfied, since c(e) =∞ for all e.

B.10 Solutions for Chap. 10 595

Finally, let N be a flow network with c(e) =∞ and b(e)> 0 for all edges e.
Removing the return arc r = ts, we see that a feasible flow exists if and only
if each edge is contained either in a directed cycle or in a directed path from
s to t.

10.3.4 The first assertion is an immediate consequence of condition (Z1):

f(S,T) =
∑

e−∈S,e+∈T

f(e) =
∑

v∈S

∑

e−=v,e+∈T

f(e)

=
∑

v∈S

(∑

e−=v

f(e)−
∑

e−=v,e+∈S

f(e)

)

=
∑

v∈S

(∑

e+=v

f(e)−
∑

e−=v,e+∈S

f(e)

)

=
∑

v∈S

(∑

e+=v,e−∈T

f(e) +
∑

e+=v,e−∈S

f(e)−
∑

e−=v,e+∈S

f(e)

)

=
∑

e−∈T,e+∈S

f(e) = f(T,S).

For the second assertion, let f �= 0 be a circulation and consider an edge
e = uv in the support of f . Suppose that e is a bridge. Then G \ e has at
least two connected components S and T , say u ∈ S and v ∈ T . Now e is the
only edge in the cocycle E(S,T), so that f(S,T) = f(e) �= 0 and f(T,S) = 0,
contradicting the first assertion.

10.3.7 We may assume that each of the elementary circulations fe in the
proof of Theorem 10.3.6 satisfies the condition fe(e) = 1 (otherwise we mul-
tiply fe by −1). Given an arbitrary circulation f , put

g = f −
∑

e∈G\T
f(e)fe.

Then the support of g is contained in T , and Corollary 10.3.3 yields g = 0.

10.3.8 Denote the vector in R
m corresponding to δq :E →R by δq. Then

δq=
n∑

i=1

q(vi)ai,

where ai is the i-th row of M (corresponding to the vertex i). Now P corre-
sponds to the row space of M , and Theorem 4.2.4 yields dimP = rankM =
n− p. This shows part (a).

596 B Solutions

For part (b), let (S,T) be a cut of G. We put q(v) = 1 for v ∈ S, and
q(v) = 0 for v ∈ T . Then δq(e) = +1 or =−1 for all edges e contained in the
cocycle corresponding to (S,T), and δq(e) = 0 for all other edges.

Finally, let T be a spanning tree and T ′ the corresponding cotree: T ′ =
E \ T . Consider any edge e ∈ T . By Lemma 4.3.2, there exists a unique cut
for which the corresponding cocycle Ce contains only edges in T ′, except
for e. By part (b), there is a potential difference δqe for Ce whose support
consists precisely of the edges of Ce. Thus the δqe with e ∈ T are n−1 linearly
independent potential differences; in view of part (a), they have to form a
basis of P : as G is connected, p= 1.

10.3.16 First assume the existence of a cycle K as described in the first case
of the painting lemma. As no edge of K is uncolored, we have b(e) < c(e)
for all e ∈K. Now every black edge of K has the same orientation as e0 and
satisfies f(e) < c(e); every green edge of K has the opposite orientation as
e0 and satisfies b(e)< c(e); and every red edge satisfies both of the previous
conditions, that is, b(e)< f(e)< c(e). If we traverse K in the direction given
by e0, black edges are forward edges, while green edges are backward edges;
red edges may be either forward or backward edges. The previous remarks
show that we may define a new circulation f ′ by increasing f on all forward
edges and decreasing f on all backward edges (by a sufficiently small amount
δ), without increasing any of the deviation values d(e). On the contrary, at
least one deviation will become strictly smaller: d(e0) is replaced by d(e0)−δ.
Thus f ′ is indeed a better circulation than f : it satisfies D(f ′)≤D(f)− δ.

Now assume the existence of a cocycle C as described in the second case
of the painting lemma. Let (S,T) be the cut defining C; we may assume
that e0 is oriented from T to S. Similarly to the first case, every forward
edge of C (that is, every edge with the same orientation as e0 in C) satisfies
f(e) ≤ b(e), while every backward edge satisfies c(e) ≤ f(e). Moreover, we
have strict inequality for the forward edge e0, namely f(e0)< b(e0). Hence,
using Exercise 10.3.4,

c(S,T)≤ f(S,T) = f(T,S)< b(T,S).

On the other hand, the circulation theorem 10.2.7 gives the necessary con-
dition b(T,S) ≤ c(S,T) for the existence of a feasible circulation. These in-
equalities are inconsistent, and hence no feasible circulation can exist in the
second case.

Finally, note that the value δ in the first case may always be chosen as an
integer, since the capacities are integral by hypothesis. Using induction, the
value D =D(f) likewise is integral throughout the entire procedure. As D
strictly decreases and is bounded from below by 0, the procedure terminates
with either a feasible circulation or a cocycle certifying the nonexistence of
such a circulation.

B.10 Solutions for Chap. 10 597

10.3.17 Note that the necessity of the criterion given in the circulation the-
orem is rather trivial: in view of Exercise 10.3.4, any feasible circulation f
satisfies

c(S,T)≥ f(S,T) = f(T,S)≥ b(T,S).

Now assume that this criterion is satisfied and that the capacities are integral.
Then the second case in the algorithm of Herz cannot occur (as shown in
the solution of Exercise 10.3.16), and hence the algorithm terminates with a
feasible circulation.

10.4.4 For any feasible circulation, the integer

M =
∑

e
γ(e)> 0

γ(e)c(e) +
∑

e
γ(e)< 0

γ(e)b(e)

is an upper bound for the cost. Defining m as in the proof of Lemma 10.4.2,
M −m is an upper bound for the number of iterations needed.

10.5.4 We first consider the problem of determining the optimal cost γ(v),
where M is the maximal value of a flow on N and v ≤ M a real number.
Denote the largest integer ≤ v by w, and let f be an optimal flow of value w
constructed by Algorithm 10.5.2. Moreover, let W be an augmenting path of
least possible cost from s to t in the auxiliary network N ′(f) with respect to
the cost function γ′. As W has integral capacity, f can be augmented along
W by δ = v − w < 1 with cost δγ′(W). It can be shown that the resulting
flow of value v is optimal (proceed as in the proof of Lemma 10.5.1).

Thus the cost function is linear between any two integers w and w + 1.
As the cost of an augmenting path is always nonnegative, the cost function
is also monotonically increasing. Finally, for any two feasible flows f and f ′

of values v and v′, respectively, and for each λ with 0 ≤ λ ≤ 1, the linear
combination λf + (1 − λ)f ′ is a feasible flow with value λv + (1 − λ)v′, so
that

γ
(
λv+ (1− λ)v′

)
≤ λγ(v) + (1− λ)γ

(
v′
)
.

Hence the cost function is a monotonically increasing, piecewise linear, convex
function.

10.5.5 By Example 10.1.4, the assignment problem can be reduced to the
determination of an optimal flow of value n on a flow network with 2n+ 2
vertices. As all capacities are integral (actually, they are always 1) and as
the cost function is nonnegative, the algorithm of Busacker and Gowen can
be used for determining an optimal flow with complexity O(|V |2n) =O(n3),
by Theorem 10.5.3. Hence the assignment problem has complexity at most
O(n3); it will be studied more thoroughly in Chap. 14.

598 B Solutions

10.6.2 The following procedure provides a possible solution:

Procedure RESIDUAL(G,c, f ;H)

(1) E′ ←∅;
(2) for e ∈E do
(3) if c(e)> f(e) then E′ ←E′ ∪ {e} fi
(4) od
(5) H ← (V,E′)

10.6.8 Let f be an ε-optimal pseudoflow on (G,c) with respect to the cost
function γ. We construct the auxiliary graph Hf described in the proof of
Theorem 10.6.6 with cost function γ(ε), and proceed by determining an SP-
tree for (Hf , γ

(ε)) using the procedure SPTREE given in Exercise 3.10.3;
then the desired potential is just the distance function in this network, by
Corollary 10.6.7. The procedure below does the job; here s is a vertex not
contained in G.

Procedure POTENTIAL(G,c, γ, f, ε;p)

(1) RESIDUAL(G,c, f ;H);
(2) V ∗ ← V ∪ {s}; E∗ ←E′;
(3) for e ∈E do γ∗(e)← γ∗(e) + ε od
(4) for v ∈ V do E∗ ←E∗ ∪ {sv}; γ∗(sv)← 0 od
(5) H∗ ← (V ∗,E∗);
(6) SPTREE (H∗, γ∗, s;p, q,neg, T)

Note that p is the required distance function dT in the arborescence T ; the
remaining output variables (that is, the predecessor function q for the SP-tree
T and the Boolean variable neg) are not actually needed here. We could, of
course, use the condition neg = false to check whether the given pseudoflow
is indeed ε-optimal; see Theorem 10.6.6.

10.6.13 In the following procedure, s is a vertex not contained in H , and
n− 1 denotes the number of vertices of H .

Procedure MEANCYCLE(H,w;μ,C)

(1) TOPSORT (H; topnr,acyclic);
(2) if acyclic = true
(3) then μ←∞
(4) else V ∗ ← V ∪ {s}; E∗ ←E; F (0, s)← 0;
(5) for v ∈ V do
(6) E∗ ←E∗ ∪ {sv};
(7) w(sv)← 0; F (0, v)←∞
(8) od

B.10 Solutions for Chap. 10 599

(9) for k = 1 to n do
(10) for v ∈ V ∗ do
(11) F (k, v)←min{F (k− 1, u) +w(uv) : uv ∈E∗};
(12) q(k, v)← u, where u ∈ V is an element such that

F (k− 1, u) +w(uv) =min{F (k− 1, x) +w(xv) : xv ∈E∗}
(13) od
(14) od
(15) for v ∈ V do

(16) M(v)←max{F (n,v)−F (k,v)
n−k : k = 0, . . . , n− 1}

(17) od
(18) choose v with M(v) =min{M(x) : x ∈ V };
(19) μ←M(v);
(20) determine a walk W of length F (n, v) from s to v which consists

of n edges;
(21) determine a cycle C contained in W
(22) fi

To prove that this procedure is correct, we use the proofs of The-
orem 10.6.11 and Corollary 10.6.12. The procedure TOPSORT checks—
according to Theorem 2.6.6—whether H∗ (and hence H) is acyclic; in this
case, μ is set to ∞. Otherwise, H contains directed cycles, and the for-loop
in steps (9) to (14) determines the minimal length F (k, v) of a directed walk
from s to v consisting of precisely k edges (for all k and v); this is done
recursively. Then, in steps (15) to (19), the minimum cycle mean μ of a di-
rected cycle in H is calculated in accordance with Theorem 10.6.11. Now
consider—as in the proof of Theorem 10.6.11—the changed weight function
w′ defined by w′(e) =w(e)− μ for all e ∈E. The second part of the proof of
Theorem 10.6.11 shows that the corresponding values F ′(k, v) and the vertex
v chosen in step (18) satisfy the condition

max

{
F ′(n, v)− F ′(k, v)

n− k
: k = 0, . . . , n− 1

}

= 0.

Thus the network (H,w′) has minimum cycle mean 0. Now the first part
of the proof of Theorem 10.6.11 shows that F ′(n, v) = F (n, v) − nμ is the
shortest length of a directed walk from s to v (and therefore the distance
from s to v) in (H∗,w′). In step (20), a directed walk W from s to v having
this length and consisting of n edges is determined; this is done recursively
using the function q(k, v) defined in step (12): the last edge of W is uv, where
u= q(n, v); the edge before the last is u′u, where u′ = q(n,u) and so on.

As W consists of precisely n edges, W has to contain a directed cycle C
which is determined in step (21): this can be implemented, for example, by
a labelling process while W is traced from s to v. Then W \C is a directed
walk from s to v as well, which must have length at least F ′(u, v) in (H∗,w′).
Therefore w′(C) has to be 0; otherwise, w′(C) would be positive because of
μ′ = 0, so that w′(W \C)<w′(W). Hence w(C) = μ.

600 B Solutions

10.6.15 Using Exercise 10.6.13 and Theorem 10.6.14, we obtain the following
procedure:

Procedure TIGHT(G,c, γ, f ; ε)

(1) RESIDUAL(G,c, f ;H);
(2) MEANCYCLE(H,γ;μ,C);
(3) if μ≥ 0 then ε← 0 else ε←−μ fi

10.8.9 Define the function Φ as given in the hint. At the beginning of Al-
gorithm 10.8.1, Φ≤ |V |, since the admissible graph GA does not contain any
edges at this point, so that Φ(v) = 1 holds trivially for all vertices.

A saturating PUSH-operation, say PUSH(u, v), can increase Φ by at most
Φ(v) ≤ |V | (if v becomes active by this operation), so that all the saturat-
ing PUSH-operations together can increase Φ by at most O(|V |2|E|), by
Lemma 10.8.7. A RELABEL(v)-operation might add new edges of the form
vu to GA, so that Φ is increased by at most |V |. Note that RELABEL(v) does
not change the values Φ(w) for w �= v: as we saw in the proof of Lemma 10.8.8,
GA does not contain any edges with end vertex v after this operation. By
Lemma 10.8.6, all the RELABEL-operations together can increase Φ by at
most O(|V |3); this value is dominated by O(|V |2|E|).

It remains to consider the non-saturating PUSH-operations. Such a
PUSH(u, v) makes u inactive, whereas v might become active; thus it de-
creases Φ by Φ(u), and possibly increases Φ by Φ(v). However, Φ(u) ≥
Φ(v) + 1, since each vertex in GA which is accessible from v is accessible
from u as well, and since u is not accessible from v (as GA is acyclic by
Lemma 10.8.8). Note that a PUSH-operation does not add any edges to GA

according to the proof of Lemma 10.8.8. Thus each non-saturating PUSH
decreases Φ by at least 1. It follows that the total number of non-saturating
PUSH-operations is bounded by the total increase of Φ during the algorithm,
which is O(|V |2|E|).

10.9.6 The circulation f constructed during the initialization of Algo-
rithm 10.9.1 is clearly C-optimal, so that ε(f0) ≤ C. By Lemma 10.9.3,
|E| consecutive iterations decrease ε(f) by at least a factor of 1 − 1/|V |.
Theorem 10.6.5 guarantees that the algorithm terminates with an optimal
circulation f as soon as ε(f) becomes smaller than 1/|V |; hence it suffices
to decrease ε(f) by a total factor of value < 1/C|V |. By Theorem 10.6.4,
|E||V | consecutive iterations always decrease ε(f) by at least a factor of 1/2,
so that the algorithm has to terminate with an optimal circulation after at
most O(|V ||E| logC|V |) iterations.

10.11.2 Axioms (MS1) and (MS2) for a metric space hold trivially. We need
to check the triangle inequality (MS3). Let x, y, and z be three words in
Sn. Denote by X the set of indices for which x and y disagree, so that

B.11 Solutions for Chap. 11 601

d(x,y) = |X|; similarly, let Z be the set of indices for which z and y disagree.
Then all three words agree for all indices not in X ∪Z, and hence

d(x,z)≤ |X ∪Z|= |X|+ |Z| − |X ∩Z| ≤ d(x,y) + d(y,z).

10.11.4 By Exercise 4.2.14, the incidence matrix M of G has rank n − 1,
also when considered as a binary matrix. Note that a binary vector f satisfies
M f = 0 over Z2 if and only if f is the incidence vector of an even subgraph
of G. Hence CE(G) has dimension m− rankA=m− n+1, as in the case of
circulations. (This again shows that the even subgraphs of G may be viewed
as the binary circulations on G.)

10.11.17 Let a≥ 2. The even graphical code of Kp,p′ with p= 2a+1 and p′ =
2a has parameters [22a+1,22a− 2a+1− 2a+1,4]. We apply Theorem 10.11.15
with c = 2, n1 = 2a+1, and n2 = 2a. Then we may use for O1 the extended
binary Hamming code with parameters [2a+1,2a+1−(a+1)−1,4], and for O2

the extended binary Hamming code with parameters [2a,2a − a− 1,4]. This
results in a graphical code C∗ with parameters [22a+1,22a+1− (2a+1)−1,4].
By the remarks preceding Example 10.11.16, C∗ is in fact the extended binary
Hamming code with these parameters.

10.11.18 We have to show that the extended binary Hamming codes with
parameters [2h,2h −h− 1,4] can be constructed recursively as purely graph-
ical codes. The case h = 2 is realized by the even graphical code of a cycle
of length 4, which indeed has parameters [4,1,4]. The case h= 3 can be ob-
tained from the even graphical code belonging to K4,2, an [8,3,4] code, using
an augmentation according to Lemma 10.11.10. Now we can use induction
on h, applying the constructions in Example 10.11.16 (for even values of h)
and Exercise 10.11.17 (for odd values of h).

B.11 Solutions for Chap. 11

11.3.3 First assume xv ∈ E′, that is, d(v) +
∑

e+=v b(e)−
∑

e−=v b(e) < 0.
With g(e) = b(e) for all e ∈E, the demand restriction for v yields

d(v) = d′(v) = g(xv) +
∑

e+=v

g(e)−
∑

e−=v

g(e)

= g(xv) +
∑

e+=v

b(e)−
∑

e−=v

b(e),

and hence

g(xv) = d(v)−
∑

e+=v

b(e) +
∑

e−=v

b(e) = c′(xv)− 1.

602 B Solutions

Thus indeed g(xv) = h(xv), where h is the admissible flow defined in the
first part of the proof of Theorem 11.3.1. Similarly, one checks g(vx) = h(vx)
whenever vx ∈E′.

B.12 Solutions for Chap. 12

12.1.4 As the proof of Theorem 12.1.1 shows, every maximal spanning tree
for (G,w) is also an equivalent flow tree for N = (G,c). Conversely, let T be
an equivalent flow tree for N . Note that the flow value wT (x, y) between x
and y in the network (T,w|T) equals the capacity w(Pxy) of the unique path
Pxy from x to y in T . By hypothesis, wT (x, y) =w(x, y) for all x, y ∈ V , which
implies that Pxy is a path of maximal capacity from x to y in the network
(G,w). By Exercise 4.5.6, T is a maximal spanning tree for (G,w).

12.1.5 We use induction on the number n of vertices. The case n = 2 is
trivial. Thus let n ≥ 3. Choose a pair (x, y) of vertices such that w(x, y) is
maximal, and remove one of these vertices, say x. By the induction hypoth-
esis, the smaller flow network on G \ x can be realized on a path P , say

P : x1 x2 · · · xn−1,

where y = xi. We insert x after y in P and denote the resulting path by P ′.
As w(x, y) is the largest flow value on N , the flow values realized before on
G \ x are not changed by this operation. Clearly, we also obtain the correct
flow value w(x, y) between x and y.

It remains to consider w(x, z) for a vertex z with z �= x, y. Then w(x, z) =
w(y, z): the inequality (12.1) of Theorem 12.1.1 shows

w(x, z)≥min
{
w(x, y),w(y, z)

}
=w(y, z);

similarly, w(y, z)≥w(x, z). As P realizes all flow values w(y, z) correctly, P ′

yields the correct values w(x, z).
Applying this technique recursively, we obtain from the network of

Fig. 12.1 the flow networks on smaller trees shown in Fig. B.38 (in the order
shown there). These smaller flow networks can be realized (beginning with
the trivial path on two vertices) on the paths shown below the corresponding
tree.

12.3.5 For the graph in Example 12.3.1, u(a) = 13, u(b) = 13, u(c) = 12,
u(d) = 12, u(h) = 13, u(g) = 15, u(f) = 15, and u(e) = 11. As shown in
the proof of Theorem 12.3.4, the increased flow requirements which can be
realized with the minimal capacity of 52 given by r (see Fig. 12.11) are
s(x, y) = min{u(x), u(y)}. Using this weight function on K yields the same
dominating tree T as in Example 12.3.1; only the weights differ, see Fig. B.39.

B.12 Solutions for Chap. 12 603

Fig. B.38 Recursive realization of a flow network on a path

Fig. B.39 Dominating tree T

604 B Solutions

Fig. B.40 Partitioning T into uniform trees

Now we decompose T into the uniform trees U1, . . . ,U4 shown in Fig. B.40
and construct corresponding cycles, say C1 = (a, b, c, d, e, f, g, h, a) with
weight 11/2, C2 = (a, b, c, d, f, g, h, a) with weight 1/2, C3 = (a, b, f, g, h, a)
with weight 1/2, and the edge C4 = (g, f) with weight 2 (recall the order
of the vertices is arbitrary); this yields the dominating network N shown
in Fig. B.41. Note that N indeed allows higher flow values: for example,
w(a, c) = 12, whereas the network of Fig. 12.11 gives a flow between a and c
of value 8 only.

12.4.9 The network for the given values of the request function is shown in
Fig. B.42. By Theorem 12.4.6, we have to determine a cut tree T for (G,r);
this is done using Algorithm 12.4.2. After initializing T as a star with center
1, we obtain s= 2, t= 1, w = 18, and s= {2,3,4,5,6}, so that f(s) = 2. The
vertices 3,4,5, and 6 are then cut off from 1 and connected to 2 instead.

Next we have s= 3, t= 2, w = 13, and S = {3,4,5}. We set f(3) = 13, cut
off the vertices 4 and 5 from 2, and connect them to 3 instead. For s = 4,
we get t = 3, w = 14, and S = {4}. The tree T is not changed during this
iteration, we just set f(4) = 14.

Next s= 5, t= 3, w = 15, and S = {4,5,6}. The vertices 3, 4, and 5 are
removed from T , s= 5 is then connected to p(t) = p(3) = 3, and 3 and 4 are

B.12 Solutions for Chap. 12 605

Fig. B.41 A dominating network

Fig. B.42 Network for Exercise 12.4.9

connected to 5. Also, f(5) is now given the value f(t) = f(3) = 13, and f(3)
is changed to w = 15.

In the final iteration, s = 6, t = 2, w = 17, and S = {3,4,5,6}. We set
f(6) = 17, and cut off 5 from 2 and re-connect it to 6. The resulting tree with
weight 77 solves Problem 12.4.4 for the given request function r. Figure B.43
illustrates how the algorithm works.

12.5.2 The relevant part of the auxiliary network corresponding to the flow
g of Fig. 12.16 is drawn in Fig. B.44; the fat edges form an augmenting path
with cost 3 and capacity 15. Increasing the capacity of both sb and ct by θ
(for θ = 1, . . . ,15), we obtain a flow of value v = 41+ θ. The total cost for the
corresponding increase of the capacity is 20+3θ. In particular, we obtain the
flow h of value 56 and cost 65 shown in Fig. B.45.

The next step yields the auxiliary network shown in Fig. B.46; again, the
fat edges form an augmenting path, now with cost 4 and unlimited capacity.

606 B Solutions

Fig. B.43 Determining a cut tree for N

Thus we can now realize any flow value v = 56 + τ with total cost 65 + 4τ
by increasing the capacity of each of the edges sb, bc, and ct by τ . Note that
there are other paths of cost 4 in the auxiliary network of Fig. B.46, but the
capacity of these paths is limited. We have now determined the cost function
z(v) completely (by executing the iteration step of the algorithm of Busacker
and Gowen three times).

B.13 Solutions for Chap. 13

13.1.3 Define an auxiliary graph H as follows. Adjoin a d-element set D
with D ∩ V = ∅ to the vertex set V of G, and add all edges of the form vw
with v ∈ V and w ∈D to E. It is now easy to see that G has a matching with
precisely d exposed vertices if and only if H has a perfect matching. Thus we
have to show that condition (13.4) is equivalent to the existence of a perfect
matching of H . For each subset X of V ∪D, let o′(X) denote the number of

B.13 Solutions for Chap. 13 607

Fig. B.44 Auxiliary network for g

Fig. B.45 Flow h of value 56

odd components of H \X .

o(S) = o′(S ∪D)≤ |S ∪D|= |S|+ d for all S ⊂ V.

Moreover, if H has a perfect matching, |V |+ d has to be even, so that (13.4)
is necessary.

Conversely, suppose that (13.4) is satisfied. By Theorem 13.1.1, we have
to show that the following condition holds:

o′(X)≤ |X| for all X ⊂ V ∪D. (B.3)

Assume first that D is not contained in X . Then, by the construction of H ,
the graph H \X is connected so that (B.3) is clearly satisfied for X �= ∅. For

608 B Solutions

Fig. B.46 Auxiliary network for h

X = ∅, (B.3) holds as |V ∪D|= |V |+ d is even by hypothesis. Now assume
D ⊂X , say X = S

.
∪D for some S ⊂ V . Then (13.4) implies

o′(X) = o(S)≤ |S|+ d= |X|,

so that (B.3) is satisfied for this case as well.

13.1.4 Let H be the graph which results from adding the edges of the com-
plete graph on T to G. Clearly, G has a perfect matching if and only if H
does. Thus it suffices to show that condition (H) holds for G if and only if
(T) holds for H . Put n= |S|= |T |.

First assume the validity of (H) for G. Given any subset X of V , we have
to show o(X)≤ |X|. This is clear for X = ∅, as H is connected and contains
precisely 2n vertices.

Next we consider the case where X ⊂ T and X �= ∅, and put J = T \X .
Then the components of H \X are the set Y = J ∪ Γ (J) and the singletons
corresponding to the elements of S \ Γ (J). If |Y | is even, we have o(X) =
n−|Γ (J)| and |X|= n−|J |. Now (H) implies |Γ (J)| ≥ |J |, so that o(X)≤ |X|
holds, as desired. If |Y | is odd, |Γ (J)| ≥ |J | actually forces |Γ (J)| ≥ |J |+ 1,
and the assertion follows in the same manner.

It remains to consider the case where X is not a subset of T . If T ⊂X ,
the assertion holds trivially. Otherwise, let X ′ = T ∩X and put J = T \X ,
so that the components of H \X are the set J ∪ Γ (J) and the singletons
corresponding to the elements of S \ Γ (J). This implies

o(X)≤ o
(
X ′)+ 1≤

∣
∣X ′∣∣+ 1≤ |X|,

as required.
Conversely, assume the validity of condition (T) for H . Then one may

check that (H) holds for G using a similar—actually easier—argument.

B.13 Solutions for Chap. 13 609

Fig. B.47 A 3-regular graph without a perfect matching

13.1.5 Let S be a subset of V , and denote the odd components of G \ S by
V1, . . . , Vk. Moreover, let mi be the number of edges connecting a vertex in
Vi to a vertex in S (for i= 1, . . . , k). Since G does not contain any bridges,
always mi �= 1. As G is 3-regular,

∑
v∈Vi

deg v = 3|Vi| for i= 1, . . . , k, so that

mi =
∑

v∈Vi

deg v− 2|Ei|

is an odd number (where Ei denotes the edge set of the graph Gi induced on
Vi). Hence always mi ≥ 3, which yields

o(S) = k ≤ 1

3
(m1 + · · ·+mk)≤

1

3

(∑

v∈S

deg v

)

= |S|.

Thus condition (T) is satisfied, and the assertion follows from Theorem 13.1.1.
Figure B.47 shows a 3-regular graph containing bridges; this graph cannot

have a perfect matching, as o({v}) = 3. Finally, the Petersen graph defined
in Exercise 1.5.10 is a 3-regular graph without bridges which does not admit
a 1-factorization.

13.2.5 Let C be a Hamiltonian cycle in a graph G on 2n vertices. Choosing
every other edge of C, we obtain a perfect matching of G. Thus every Hamil-
tonian graph having an even number of vertices admits a perfect matching.
Hence the two proposed criteria are indeed sufficient for the existence of a
perfect matching of G, by Corollary 1.4.3 and Exercise 1.4.4.

13.2.6 We show first that G is 2-connected. Suppose otherwise. Then there
exists a cut point v, so that G \ v has two components X and Y . Choose an

610 B Solutions

edge of the form vx with x ∈X and extend it to a perfect matching K. Then
|Y | has to be even and X has to be odd. However, the same argument also
shows that |Y | is odd and |X| is even, a contradiction.

Assume first that G is bipartite, say V = S
·
∪ T . Suppose there are non-

adjacent vertices s ∈ S and t ∈ T , and let P be a path from s to t. As P has
odd length, choosing the first, the third, . . . , and the last edge of P gives a
matching M . By hypothesis, M can be extended to a perfect matching M ′.
Then M ′ ⊕ P is a matching whose only exposed vertices are s and t. As s
and t are not adjacent, this matching cannot be extended, a contradiction.
Thus necessarily G=Kn,n in the bipartite case.

It remains to consider the case where G is not bipartite. We show first
that each vertex is contained in a cycle of odd length. Let v be a vertex of
G, and let C be an arbitrary cycle of odd length; note that such a cycle
exists by Theorem 3.3.5. We may assume that v is not contained in C. As
G is 2-connected, Exercise 8.1.3 guarantees the existence of two paths P and
P ′ with start vertex v and end vertex some vertex of C, which share only
the vertex v. Thus these two paths together with the appropriate path in C
which connects the two end vertices of P and P ′ form the desired cycle of
odd length through v.

Now suppose that G contains two vertices u and v which are not adjacent.
We claim that u and v are connected by a path of odd length. To see this,
choose a cycle C of odd length containing v. If u is contained in C, the claim
is clear. Otherwise, choose a path P with start vertex u and end vertex w �= v
on C which does not contain any further vertices of C. Then P together with
the appropriate path in C which connects w and v gives the required path of
odd length from u to v. Now we obtain a contradiction just as in the bipartite
case, and hence necessarily G=K2n.

13.4.2 To simplify matters, we will make use of the inherent symmetry of
the graph shown in Fig. 13.9 and consider only its right half: we restrict
attention to the subgraph G induced on the set {r, s,1,2,3,4,5,6}. The left
half—which is isomorphic to the right half—can be treated in the same way,
and a final augmenting path arises by joining the two individual augmenting
paths via the matching edge ss′.

Beginning the procedure at r yields the alternating tree T shown in
Fig. B.48. When examining the edge 26, the blossom B = {2,5,6} with base
2 is discovered and contracted. We obtain the graph G′ =G/B and the cor-
responding contracted tree T ′ = T/B shown in Fig. B.49.

Next we examine the pseudovertex b and find the blossom B′ = {r,1,3,4, b}
with base r (because of edge 64). Contracting this blossom yields the graph
G′′ = G′/B′ which consists of the edge b′s only. This edge forms a trivial
augmenting path P ′′. Expanding this path starting at s gives the augmenting
path

P ′ : s 1 b 4 3 r

B.13 Solutions for Chap. 13 611

Fig. B.48 Alternating

tree T for G

Fig. B.49 Contracted

graph G/B with
corresponding tree T/B

in G′ and finally the augmenting path

P : s 1 2 5 6 4 3 r

in G.

13.4.5 The graph G of Fig. 13.19 is drawn again in Fig. B.50. Obviously,
1 2 3 5 is an augmenting path in G with respect to M . Contract-
ing the blossom B = {2,3,4}, we obtain the graph G′ = G/B shown also
in Fig. B.50; this graph has the matching M ′ = {b6}. Clearly, G′ does not
contain an augmenting path with respect to M ′.

13.4.8 Let H be the graph with vertex set V = {1, . . . , n} which has an
edge ij if and only if ij′ (and then also ji′) is an edge of G (for i �= j). Then
matchings inH consisting of k edges correspond to symmetric matchings in G
with 2k edges. Thus a maximal symmetric matching of G can be determined
using Algorithm 13.4.6 with complexity O(n3).5

13.5.5 If the maximal matching M constructed via the algorithm of Ed-
monds should be perfect, we simply have D(G) = A(G) = ∅ and C(G) = V .

5The work of Kocay and Stone and Fremuth-Paeger and Jungnickel mentioned at the

beginning of this chapter uses the reverse approach: a symmetric bipartite graph G and

an associated network are used for constructing a maximal matching in the corresponding

graph H .

612 B Solutions

Fig. B.50 Graph G and contracted graph G/B

Thus assume that M is not perfect, so that the set X of exposed vertices is
not empty. As noted before, X ⊆D(G).

Now let G0 be the final graph obtained from G (by repeated shrinking of
blossoms) in the last iteration of the algorithm, searching from the exposed
vertex x, say; also, denote the maximal matching constructed in G0 (and
expanded to M) by M0. Note that all vertices in a blossom B become even
when the associated pseudovertex b is expanded again, as the stem of B is
an alternating path of even length and as each vertex in B different from the
base w of B can be reached from w on an even length path in B.

One also checks that any alternating path involved with a blossom B is
expanded to an alternating path with the same parity when b is expanded,
as the path will enter B through its base. This implies that the classification
of those vertices of G which still belong to G0 with respect to M0 is the
same as with respect to M . Thus D(G) = E consists of all vertices included
in a blossom and of the original vertices of G included in D(G0) = E0. Also,
A(G0) =O0. Finally, note that the classification of vertices in G0 can be read
from the final alternating tree T0.

13.5.6 As mentioned in Example 13.5.2, the initial matching of G drawn in
Fig. 13.10 is a near-perfect matching of H = G \ 18, leaving the vertex 17
exposed. Applying the search procedure in the algorithm of Edmonds to H ,
everything runs exactly as explained in detail in Sect. 13.4: we just need to
leave out the discarded vertex 18 and its two incident edges. Therefore we do
not find 18 when we search from b′ in the tree T ′′ = T ′/B′ in Fig. 13.14. In-
stead, when we examine the edge {12,14}, we close another blossom, namely
B′′ = {b′,11,12,13,14}. Hence we have to perform a further shrinking, and
the final graph G0 =G′′/B′′ agrees with the final tree T0: it is just the alter-
nating path 17—1—b′′ of length 2. Applying the method outlined in Exer-
cise 13.5.5 now confirms the result already stated in Example 13.5.2:

A(H) = {1}, C(H) = ∅ and D(H) = {2, . . . ,17}.

B.14 Solutions for Chap. 14 613

13.6.3 Let G be the bipartite graph on V = S
·
∪ T corresponding to A =

(A1, . . . ,An) (as defined in Sect. 7.3). Obviously, the partial transversals of A
are precisely those subsets of S which are met by a matching of G. Therefore
the partial transversals of A form a matroid by Corollary 13.6.2.

13.6.4 As the maximal matchings of G induce the bases of the matching
matroid (V,S), the assertion follows from Theorem 5.2.7. Alternatively, we
may use Theorem 13.2.2: extending a matching using an augmenting path
(as in the proof of Theorem 13.2.2) leaves any saturated vertex saturated, so
that the assertion follows by induction.

B.14 Solutions for Chap. 14

14.1.2 Proceeding as outlined in Sect. 14.1, we obtain:

Procedure OPTMATCH(n,w;M,D)

(1) W ←max{wij : i, j = 1, . . . , n};
(2) V ←{1, . . . , n} ∪ {1′, . . . , n′} ∪ {s, t};
(3) E ←{ij′ : i, j = 1, . . . , n} ∪ {si : i= 1, . . . , n} ∪ {j′t : j = 1, . . . , n};
(4) G← (V,E);
(5) for i= 1 to n do
(6) γ(si)← 0; γ(i′t)← 0; for j = 1 to n do γ(ij′)←W −wij od
(7) od
(8) for e ∈E do c(e)← 1 od
(9) OPTFLOW(G,c, s, t, γ,n;f, sol);

(10) M ←{ij′ : f(ij′) = 1}; D←
∑

e∈M w(e)

To achieve a complexity of O(n3), we have to use the algorithm of Dijkstra
for determining the shortest paths in step (7) of OPTFLOW, as explained in
Sect. 10.5).

14.2.6 During the first four phases, we obtain (without any changes) the
edges {1,4′}, {2,9′}, {3,6′}, and {4,1′} (in this order). Even the feasible
node weighting (u,v) remains unchanged.

During the fifth phase (where i= 5), the only vertex j′ with δj = 0 is 9′,
which is saturated already. Nothing is changed by i= 2, because mate(9′) = 2
is the smallest vertex in Q. Next, for i= 6, we find the edge {6,3′}. Similarly,
during the phases 6 and 7, the edges {7,8′} and {8,7′} are constructed. Up
to this point, (u,v) was not changed.

During phase 8, we have i = 5, i = 2 (because of δ9 = 0, mate(9′) = 2),
i= 9, and i= 7 (because of δ8 = 0, mate(8′) = 7). Now J = {2,5,7,9}, K =
{8′,9′}, and δ = 1, so that the ui and vj have to be changed. We obtain the

614 B Solutions

exposed vertex 5′ with δ5 = 0, and the edge {9,5′} is added to the matching
constructed so far.

The ninth (and last) phase is the most involved one. Again, we first have
i = 5, i = 2, and i = 7. Then (u,v) has to be changed according to J =
{2,5,7}, K = {8′,9′}, and δ = 2. Then δ4 = 0 and mate (4′) = 1, so that
i = 1. Again, (u,v) has to be changed, this time for J = {1,2,5,7}, K =
{4′,8′,9′} and δ = 3. Three more changes of (u,v) follow: for J = {1,2,4,5,7},
K = {1′,4′,8′,9′}, δ = 1; J = {1,2,4,5,7,9}, K = {1′,4′,5′,8′,9′}, δ = 2; and
J = {1,2,4,5,7,8,9}, K = {1′,4′,5′,7′,8′,9′}, δ = 5. Now 2′ is exposed and
we can complete the matching by adding the edge {5,2′}.

We show the values for (u,v) below; the entries corresponding to edges
used in the construction are in bold type. Note that indeed w(M) =

∑
(ui +

vi) (= 603) holds.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

0 31 24 80 62 39 24 41 42 69
31 0 0 34 54 5 51 45 61 47
24 0 0 31 32 59 28 44 25 59
80 34 31 0 65 45 25 44 47 72
62 54 32 65 0 38 48 66 68 54
39 5 59 45 38 0 8 25 18 59
24 51 28 25 48 8 0 71 66 57
41 45 44 44 66 25 71 0 69 66
42 61 25 47 68 18 66 69 0 61

8 0 0 11 7 0 5 14 14 v\u

Note that the matching consisting of the edges {1,4′}, {2,5′}, {3,6′}, {4,1′},
{5,9′}, {6,3′}, {7,8′}, {8,7′}, and {9,2′} is optimal as well.

14.2.7 The algebraic assignment problem for the ordered semigroup
(R+

0 ,min) yields the bottleneck assignment problem.

14.2.8 During the first two phases, the edges {1,3′} and {2,4′} are found.
In phase 3, first i= 3 and δ4 = 1; as mate(4′) = 2, then i= 2, and we find the
exposed vertex 5′ with δ5 = 1. Thus the present matching is changed using
p(5) = 2, mate(2) = 4′, and p(4) = 3; we obtain the edges {1,3′}, {2,5′}, and
{3,4′}.

In phase 4, the current matching is enlarged by the edge {5,2′}. During
the final phase, (u,v) has to be changed twice: first with J = {2,3,4}, K =
{4′,5′}, and δ = 5/4; and then with J = {2,3,4,5}, K = {2′,4′,5′}, and δ =
36/35. The matching is changed once again; we get the solution

M =
{{

1,3′
}
,
{
2,5′

}
,
{
3,1′

}
,
{
4,4′

}
,
{
5,2′

}}
.

B.14 Solutions for Chap. 14 615

The corresponding entries are set bold in the matrix below. We also check
our calculations: w(M) =

∏
(ui, vi) = 15120.

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

3 8 9 1 6 9
1 4 1 5 5 35/9
7 2 7 9 2 7
3 1 6 8 8 56/9
2 6 3 6 2 35/6

1 36
35 1 9

7
9
7 v\u

Note that this product-optimal matching accidentally coincides with the op-
timal matching of Example 14.2.5; as Exercise 14.2.10 shows, this really is
exceptional.

14.2.9 Denote the given weight matrix by W = (wij) and put W ′ = (logwij).
Then the product-optimal matchings with respect to W are precisely the
optimal matchings with respect to W ′.

However, this transformation is not of practical interest. When executing
calculations with W ′ using a computer, errors occur because of rounding
(logarithms are irrational in general), and this means we cannot check our
solution by comparing w′(M) with

∑
(u′

i + v′i).
Alternatively, we might consider doing all calculations symbolically, so that

we perform operations such as replacing log p+log q with log pq. But then we
may as well use the version of the Hungarian algorithm modified for (R+, ·).
Nevertheless, the above transformation at least yields an immediate proof for
the correctness of this approach.

14.2.10 For the matrix
⎛

⎝
3 1 1
1 4 5
6 1 4

⎞

⎠ ,

the matching given by the bold entries has weight 12 = 1 + 5 + 6 and is
obviously optimal. However, it is not product-optimal. On the other hand,
the matching corresponding to the entries in the main diagonal is product-
optimal but not optimal.

14.3.2 First let A be the incidence matrix of a digraph G. By Lemma 10.3.1,
the vector f = (fe)e∈E gives a circulation if and only if AfT = 0. Therefore
we get the ILP

minimize γxT subject to AxT = 0T , b≤ x≤ c.

616 B Solutions

For the second part, let T be a spanning tree of a graph G on n vertices.
As T contains n− 1 edges and is acyclic, we can use the following ZOLP:

maximize wxT subject to 1xT = n− 1 and
∑

e∈C

xe ≤ |C| − 1,

where x = (xe)e∈E and where C runs over all cycles in G. This approach
is not interesting in practice, as the ZOLP will (in general) contain far too
many inequalities.

14.4.6 Let G be a regular bipartite multigraph with vertex set V = S
·
∪ T ,

where |S|= |T |= n. We define the adjacency matrix A= (aij)i,j=1,...,n of the
multigraph G as follows: aij is the number of edges of G with end vertices i
and j′, where we assume S = {1, . . . , n} and T = {1′, . . . , n′}.

Thus A is a matrix with nonnegative integral entries, and its row and
column sums are constant. By Theorem 7.4.5, we can write A as a sum of
permutation matrices. As each permutation matrix corresponds to a 1-factor
of G, the decomposition of A yields a 1-factorization of G.

14.4.7 Obviously, L(G)⊂H(G)∩Z
E . Now let x be a vector in H(G)∩Z

E ,
and choose some positive integer k which is larger than the absolute value of
x. Then x′ = x+

∑
km is likewise an element of H(G)∩Z

E , where m runs
over the incidence vectors of the perfect matchings of G. Moreover, x′ ≥ 0.

We now define a regular bipartite multigraph G′ by replacing each edge
e of G with x′

e parallel edges. Note that G′ is indeed regular, since x′ is
contained in H(G). By Exercise 14.4.6, G′ can be decomposed into 1-factors.
As each 1-factor of G′ induces a 1-factor of G, we see that x′ has to be a linear
combination of incidence vectors of perfect matchings of G with nonnegative
integral coefficients, so that also x= x′ −

∑
km is contained in L(G).

14.5.6 Every closed walk of G which contains each edge at least once induces
a circulation f on G: define fe as the number of times e occurs in the given
walk. Note f ≥ 1.

Conversely, every circulation f with f ≥ 1 induces a closed walk on G
which contains all edges: replace each edge e with fe parallel edges. By The-
orem 1.6.1, the resulting pseudosymmetric digraph contains an Euler tour,
which induces the desired walk.

Note that G is obviously connected. Thus a shortest directed closed walk
corresponds to an optimal circulation with respect to the capacity constraints
b(e) = 1 and c(e) = ∞ and the cost γ(e) = w(e) (for all e ∈ E). Thus the
directed CPP can be solved using the algorithm OPTCIRC from Sect. 10.7.

14.6.5 W : s c t is a shortest {s, t}-path (of length −1). The corre-
sponding f -factors are

F =
{
{a, a},{b, b}, sc, ct

}
and F ′ =

{
{a, a},{b, b}, sc, ct, cgbg, aebe

}
,

and the corresponding perfect matching isM = {a′a′′, b′b′′, sc′, c′′t, aebe, cgbg}.

B.14 Solutions for Chap. 14 617

Fig. B.51 A path of even

length in G

14.6.6 If (G,w) contains cycles of negative length, the method is not appli-
cable, as the proof of Lemma 14.6.1 shows. (The construction would yield
a path from s to t together with—possibly negative—cycles.) This is not
surprising, since the problem of finding a shortest path is then NP-hard; see
Appendix A or [GarJo79].

14.6.9 Use the following modification of the transformation described in
Theorem 14.6.7: each edge of the form tv is now replaced by an edge tv′′

(instead of tv′), and an eventual edge st is removed.
For the graph G of Example 14.6.8, the even {s, t}-path

W : s u v a t

corresponds to the perfect matching

M =
{
su′, u′′v′′, v′a′, a′′t, b′b′′, c′c′′

}

in the auxiliary graph G′′; see Figs. B.51 and B.52.

14.7.2 Define the weight function w on H as follows:

we =

⎧
⎨

⎩

0 for e /∈E,
c− 1 for e ∈E1,
c for e ∈E \E1.

Now let M be an optimal matching of H with respect to this weight function.
Then M consists exclusively of edges of G if and only if w(M) ≥ n(c− 1),
where |V |= 2n. In this case, the number of edges of M contained in E1 is cn−
w(M). Thus the problem RPM1 has a solution if and only if cn−w(M)≤ b1.

618 B Solutions

Fig. B.52 The

corresponding perfect
matching in G′′

By Result 14.4.5, w(M) can be determined with complexity O(n3), and the
assertion follows.

14.7.4 Put E1 =R, E2 =E \R, b1 = b, and b2 = n− b (where |V |= 2n). The
perfect matchings of G which satisfy condition (14.10) of Problem 14.7.1 for
these values are precisely the desired solutions of EPM, since every perfect
matching contains exactly n edges.

14.8.6 We use the edge labelling of the Petersen graph given in Fig. 14.15
for indexing the coordinate positions, so that the edge labelled i corresponds
to the coordinate position i (for i= 1, . . . ,15). As noted in the hint, it clearly
suffices to check that the cyclic shifts of the codewords in some basis of P ∗

are again in P ∗.
Thus we begin by determining a basis of the Petersen code P , using the

method given in the proof of Theorem 10.3.6. We first have to select a span-
ning tree T for the Petersen graph; let us choose the five spoke edges 3, 6,
9, 12, and 15 together with four edges of the outer cycle, say 2, 5, 8, and
11. Then each of the six edges e /∈ T determines a unique cycle contained in
T ∪ {e}, namely:

• C1 = {1,15,2,11,5,12}, belonging to 1 /∈ T ;
• C4 = {4,15,2,11,3}, belonging to 4 /∈ T ;
• C7 = {7,6,8,2,11,3}, belonging to 7 /∈ T ;
• C10 = {10,9,2,8,6}, belonging to 10 /∈ T ;
• C13 = {13,9,11,5,12}, belonging to 13 /∈ T ;
• C14 = {14,8,2,11,5}, belonging to 14 /∈ T .

B.15 Solutions for Chap. 15 619

Then we obtain the augmented Petersen code P ∗ by adjoining an odd sub-
graph, for instance, the matching formed by the five spoke edges as a further
basis element, see Example 10.11.11:

• S = {3,6,9,12,15}.

Now it suffices to check that the cyclic shifts of these seven codewords are
again in P ∗. We obtain the following images, where τ denotes the cyclic shift:

• Cτ
1 = {1,2,3,6,12,13}, an odd subgraph;

• Cτ
4 = {1,3,4,5,12}, a cycle;

• Cτ
7 = {3,4,7,8,9,12}, an odd subgraph;

• Cτ
10 = {3,7,9,10,11}, a cycle;

• Cτ
13 = {6,10,12,13,14}, a cycle;

• Cτ
14 = {3,6,9,12,15}, the spoke matching;

• Sτ = {1,4,7,10,13}, the inner pentagram.

All these words indeed belong to P ∗.

B.15 Solutions for Chap. 15

15.2.2 Consider an edge e of smallest weight in a perfect matching M of
minimal weight, say e= ij with weight wij . In the symmetric case, wij =wji.
If the remaining weights are much larger, also the edge ji will belong to M .
Hence it is more likely that a pair of antiparallel edges occurs in the symmetric
case than in the asymmetric case.

15.2.5 Let T be the minimal spanning tree associated with the given TSP
which is shown in Fig. 15.2. Note that we obtain a minimal s-tree for s=Aa
by adding the edge AaFr, so that the weight is 186+26 = 212. Similarly, we
obtain weights of 186+34 = 220 and 186+22 = 208 for s=Ba and s=Mu,
respectively.

For s=Du, a minimal spanning tree on the remaining eight vertices con-
sists of the edges BeHa, HaAa, AaFr, FrSt, StBa, StNu and NuMu, so
that the weight of a minimal s-tree is 187 + 8+ 23 = 218.

For the remaining four choices of s, we just list the weight of a minimal
s-tree: 184+ 20+22 = 226 for s= Fr; 158+ 29+43 = 230 for s=Ha; 172+
17+ 19 = 208 for s=Nu; and 176 + 19+ 20 = 215 for s= St.

15.2.6 Let T be a minimal spanning tree associated with the given TSP, and
assume that s is a leaf of T . Then we obtain a minimal s-tree by adding an
edge of smallest weight among all edges not in T and incident with s to T .
This follows by observing that T \ e, where e is the unique edge of T incident
with s, has to be a minimal spanning tree for the complete graph induced on
the remaining points.

620 B Solutions

In general, however, matters cannot be as simple. For instance, if s has
degree at least 3 in T , we cannot obtain an s-tree containing T for trivial
reasons. This observation also suggests examples showing that the strategy
for selecting s which we have used in Example 15.2.4 may fail badly.

For instance, let T be a star for which all edges have weight a, and assume
that all remaining edges have weight b > a; note that T is the unique minimal
spanning tree for TSP-instances of this type. Our strategy does not allow us to
select s as the center of T , which would lead to a minimal s-tree of weight (n−
2)b+ 2a. Any other choice of s is permissible and would result in a minimal
s-tree of weight (n−2)a+2b; in general, this will be a considerably smaller—
and hence inferior—bound. Thus our strategy can prevent the optimal choice
for s, and the deviation between the resulting bounds can even be made
arbitrarily large.

15.2.7 Any s-tree is a spanning 1-forest, but not conversely: if we add an
edge joining two non-adjacent vertices of degree at least two in a spanning
tree, we obtain a 1-forest which is clearly not an s-tree for any choice of
s. Thus the weight of a minimal spanning 1-forest is a lower bound for the
weight of a minimal s-tree (for all choices of s). Clearly, it is also a lower
bound for the weight of a given TSP, as any two is obviously a spanning
1-forest.

A minimal spanning 1-forest is easily found using the greedy algorithm,
as the 1-forests form a matroid on the edge set, by Exercise 5.2.6. It can also
be obtained by adding an edge of smallest weight to any minimal spanning
tree; this follows from Exercise 4.3.6. Adding the edge StMu of weight 22 to
the minimal spanning tree in Fig. 15.2 gives a minimal 1-forest with weight
186+22 = 208. Note that this happens to be the minimal s-tree for s=Mu
discussed in the solution to Example 15.2.5.

15.2.8 By Corollary 1.2.11, there are (n− 1)n−3 distinct spanning trees on
the remaining n− 1 vertices. To each of these trees, we have to add one of
the (n− 1)(n− 2)/2 pairs of edges incident with s, so that the total number
of s-trees of Kn is 1

2 (n− 2)(n− 1)n−2.

15.2.9 In every tour, each vertex i is incident with two edges whose weight
is at least s(i) + s′(i). This leads to the desired inequality and yields a lower
bound of 214 for the TSP of Example 15.1.2; note that w is integral.

15.3.1 Let B be an s-tree. Then

∑

i

pi = c×
∑

i

(degB i− 2) = c×
(∑

i

degB i− 2n

)

= c(2n− 2n) = 0.

15.5.4 As in Example 15.5.3, we begin with s= Fr. In the first two steps, we
obtain the partial tour (Fr,St,Fr) with length 40 and then (Fr,St,Nu,Fr)
with length 61.

B.15 Solutions for Chap. 15 621

Now Mu is inserted, and we get (Fr,St,Mu,Nu,Fr) with length 81. The
next iteration yields (Fr,Du,St,Mu,Nu,Fr) with length 125. Inserting Aa
between Du and St yields a partial tour with length 138.

We proceed with (Fr,Du,Aa,Ba,St,Mu,Nu,Fr) with length 176; after
this, we insertHa between Fr andDu, which yields a partial tour with length
246. Finally, we obtain the tour (Fr,Be,Ha,Du,Aa,Ba,St,Mu,Nu,Fr)
with length 281.

15.6.4 First, the edges AaMu and FrBe are replaced with MuBe and
AaFr. This reduces the weight of the tour shown in Fig. 15.7 by 34 =
(64 + 56) − (60 + 26); the resulting tour of weight 307 − 34 = 273 is
(Aa,Du,Ha,Be,Mu,Nu,Ba,St,Fr,Aa).

Next, the edges NuBa and FrSt are replaced with BaFr and StNu.
This yields the tour (Aa,Du,Ha,Be,Mu,Nu,St,Ba,Fr,Aa) and reduces
the weight by (43 + 20)− (34 + 19) = 10 to 263.

Finally, we replace the edges StNu and BeMu with StMu and NuBe,
which yields the (optimal) tour of length 250 shown in Fig. 15.9; indeed, this
step reduces the weight by (19 + 60)− (22 + 44) = 13.

15.7.7 As A′ is assumed to be an ε-approximative algorithm for TSP, we
can use it to solve the problem HC as described in the proof of Theorem
15.4.1. Note that each iteration of the algorithm A′ (that is, each application
of A to a neighborhood N(f)) decreases the weight of the current tour—with
the exception of the final application of A, which merely discovers that the
current tour is now locally optimal.

As the weight function defined in the proof of Theorem 15.4.1 takes only
two values, there can be only n+ 1 distinct lengths of tours. Therefore A′

cannot need more than O(n) iterations of A. Since A is polynomial, A′ would
be a polynomial algorithm for HC, so that P =NP by Result 13.2.2.

15.7.8 Suppose that the given problem could be solved polynomially. We
show that this implies that we can find even an optimal tour in polynomial
time. We may assume that all weights are ≥ 2. (If necessary, we add a constant
to all weights.)

Now we check whether some specified edge e1 is contained in an optimal
tour. If the answer is yes, we reduce w(e1) to 1; this ensures that e1 has to be
contained in every optimal tour for the modified problem. More precisely, the
optimal tours for the new problem are precisely those optimal tours for the
old problem which contain the edge e1. Continuing in this manner, we obtain
an optimal tour for the original problem after O(n2) calls of the decision
problem which we assumed to be polynomial.

15.7.9 Note that TSP suboptimality does not actually produce a better tour:
it only tells us if such a tour exists. Hence it is not possible to apply a hypo-
thetical polynomial algorithm A for this problem repeatedly, which would be
necessary if we were to use A to construct a polynomial algorithm for HC.

Appendix C
List of Symbols

Now pray, what did he mean by that?
Richard Brinsley Sheridan

C.1 General Symbols

This first part of the list contains some general symbols which are more or
less standard. The special symbols of graph theory will be covered in the next
section.

Sets

A∪B union of the sets A and B
A

.
∪B disjoint union of the sets A and B

A∩B intersection of the sets A and B
A×B Cartesian product of the sets A and B
A \B A without B: A∩B
A⊕B symmetric difference of A and B: (A \B)∪ (B \A)
2A power set of A
A complement of A (with respect to a given universal set)
At set of ordered t-tuples with elements from A(
A
t

)
set of t-subsets of A

|A| cardinality of A
∅ empty set
A⊂B A is a subset of B

Mappings

f :A→B f is a mapping from A to B
f(x) image of x under the mapping f
f : x �→ y f maps x to y: f(x) = y
f(X) {f(x) : x ∈X} for f :A→B and X ⊂A
supp f support of f

D. Jungnickel, Graphs, Networks and Algorithms,

Algorithms and Computation in Mathematics 5,
DOI 10.1007/978-3-642-32278-5, © Springer-Verlag Berlin Heidelberg 2013

623

http://dx.doi.org/10.1007/978-3-642-32278-5

624 C List of Symbols

Numbers
∑n

i=1 ai a1 + · · ·+ an
∏n

i=1 ai a1a2 . . . an

�x� smallest integer ≥ x (for x ∈R)
�x� largest integer ≤ x (for x ∈R)
n! n(n− 1)(n− 2) . . .1 (for n ∈N)(
n
t

)
number of t-subsets of an n-set

e base of the natural logarithm

Matrices

AT transpose of the matrix A
J matrix with all entries 1
I identity matrix
diag(a1, . . . , an) diagonal matrix with entries a11 = a1, . . . , ann = an
(aij) matrix with entries aij
detA, |A| determinant of the matrix A
perA permanent of the matrix A

Sets of numbers and algebraic structures

N or Z+ set of natural numbers (not including 0)
N0 set of natural numbers including 0
Z ring of integers
Zn ring of integers modulo n
Q field of rational numbers
Q

+ set of positive rational numbers
Q

+
0 set of non-negative rational numbers

R field of real numbers
R

+ set of positive real numbers
R

+
0 set of non-negative real numbers

K∗ multiplicative group of the field K
Kn n-dimensional vector space over the field K
K(n,n) ring of (n× n)-matrices over the field K
Sn symmetric group acting on n elements

Miscellaneous

x := y, y =: x x is defined to be y
x← y x is assigned the value of y

C.2 Special Symbols

This second part of the list contains symbols from graph theory and the
symbols introduced in this book.

C.2 Special Symbols 625

Graphs and networks

G complementary graph of the graph G
Gred reduced digraph of the acyclic digraph G
G|U subgraph of G induced on the vertex set U
G \ e G with the edge e discarded
G \ T subgraph of G induced on the set V \ T
G \ v subgraph of G induced on the set V \ {v} (for v ∈ V)
G/B contraction of the graph G with respect to the blossom B
G/e contraction of the graph G with respect to the edge e
|G| multigraph underlying the directed multigraph G
(G) underlying graph for the multigraph G
→
G complete orientation of the graph G
[G] closure of the graph G
bc(G) block-cutpoint graph of G
G(H,S) Cayley graph defined b the group H and the set S
Gs,n de Bruijn graph
Hu,v equality subgraph for G with respect to (u,v)
Kn complete graph on n vertices
Km,n complete bipartite graph on m+ n vertices
L(G) line graph of G
N ′, N ′(f) auxiliary network for N (with respect to the flow f)
N ′′, N ′′(f) layered auxiliary network for N (with respect to the flow f)
T (G) tree graph of the connected graph G
Tn triangular graph on

(
n
2

)
vertices

Objects in graphs

CT (e) cycle determined by the spanning tree T and the edge e /∈ T

a
e
— b edge e= ab

e− the start vertex (tail) of the edge e
e+ the end vertex (head) of the edge e
E(S), E(X,Y) edge set corresponding to the cut S = (X,Y)
E|V ′ edge set induced on the vertex set V ′

Fε set of ε-fixed edges (with respect to a given circulation)
ST (e) cut determined by the spanning tree T and the edge e ∈ T
Γ (J) neighborhood of the vertex set J
Γ (v) neighborhood of the vertex v

Parameters for graphs

ch(G) choosability of G
deg v degree of the vertex v
din(v) indegree of the vertex v
dout(v) outdegree of the vertex v
g girth of G

626 C List of Symbols

nd number of vertices of degree d
α(G) independence number of G
α′(G) maximal cardinality of a matching of G
β(G) minimal cardinality of a vertex cover of G
δ(G) minimal degree of a vertex of G
Δ(G) maximal degree of a vertex of G
Δ minimal number of paths in a dissection of G (Dilworth num-

ber)
θ(G) clique partition number of G
κ(G) connectivity of G
λ(G) edge connectivity of G
ν(G) cyclomatic number of G
χ(G) chromatic number of G
χ′(G) chromatic index of G
ω(G) maximal cardinality of a clique in G

Mappings on graphs and networks

a(x) supply at the vertex x
b(e) lower capacity constraint for the edge e
c(e) capacity of the edge e
c(W) capacity of the path W
c(S,T) capacity of the cut (S,T)
d(x) demand at the vertex x
d(a, b) distance between the vertices a and b
dH(a, b) distance between vertices a and b in the graph H
f(S,T) flow value for the cut (S,T) with respect to the flow f
m(K) mean weight of the cycle K
o(S) number of odd components of G \ S
p(v) flow potential at the vertex v
r(v) rank of the vertex v in an acyclic digraph
w(e) weight (or length) of the edge e
w(f) value of the flow f
w(P) weight of the optimal solution for the problem P
w(X) weight (or length) of a set X of edges
w(π) weight of the tour π
wA(P) weight of the solution for problem P determined by algo-

rithm A
w(s, t) value of a maximal flow between s and t (in a symmetric

network)
γ(e) cost of the edge e
γ(ε)(f) cost of the edge e increased by ε
γp(e) reduced cost of the edge e (with respect to the potential p)
γ(f) cost of the circulation or the flow f
γ(M) cost of the perfect matching M
γ(v) cost of an optimal flow with value v

C.2 Special Symbols 627

δq potential difference
ε(f) optimality parameter for the circulation f
ε(v) excentricity of the vertex v
κ(s, t) maximal number of vertex disjoint paths from s to t
λ(s, t) maximal number of edge disjoint paths from s to t
μ(G,w) minimum cycle mean in the network (G,w)
πV (T) Prüfer code of the tree T on the vertex set V

Matroids and independence systems

lr(A) lower rank of the set A
M(G) graphic matroid corresponding to G
M∗ dual matroid of the matroid M
M hereditary closure of the set system M
rq (M) rank quotient of the independence system M
ur (A) upper rank of the set A
S|N restriction of the set system S to the set N
ρ(A) rank of the set A
σ(A) span of the set A

Matrices

A adjacency matrix of a graph
A′ degree matrix of a graph
M incidence matrix of a graph or a digraph
ρ(A) term rank of the matrix A

Codes

CE(G) even graphical code based on G
d(x,y) Hamming distance of x and y
d minimum distance of a code
k dimension of a linear of a code
n length of a code
w(x) weight of x

Miscellaneous

Av adjacency list for the vertex v
A′

v reverse adjacency list for the vertex v
d(a) deficiency of the set family A
t(A) transversal index of the set family A
O(f(n)) upper bound on the complexity
Ω(f(n)) lower bound on the complexity
Θ(f(n)) rate of growth

References

Round up the usual suspects.
From ‘Casablanca’

[AarLe97] Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Wi-

ley, New York (1997)

[Abu90] Abu-Sbeih, M.Z.: On the number of spanning trees of Kn and Km,n. Dis-

crete Math. 84, 205–207 (1990)

[AhoHU74] Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Com-

puter Algorithms. Addison Wesley, Reading (1974)

[AhoHU83] Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms.

Addison Wesley, Reading (1983)

[AhuOr89] Ahuja, R.K., Orlin, J.B.: A fast and simple algorithm for the maximum flow

problem. Oper. Res. 37, 748–759 (1989)

[AhuOr92] Ahuja, R.K., Orlin, J.B.: The scaling network simplex algorithm. Oper. Res.

40(Suppl. 1), S5–S13 (1992)

[AhuMO89] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows. In: Nemhauser,

G.L., Rinnooy Kan, A.H.G., Todd, M.J. (eds.) Handbooks in Operations

Research and Management Science. Optimization, vol. 1, pp. 211–369. North

Holland, Amsterdam (1989)

[AhuOT89] Ahuja, R.K., Orlin, J.B., Tarjan, R.E.: Improved time bounds for the max-

imum flow problem. SIAM J. Comput. 18, 939–954 (1989)

[AhuMOT90] Ahuja, R.K., Mehlhorn, K., Orlin, J.B., Tarjan, R.E.: Faster algorithms for

the shortest path problem. J. Assoc. Comput. Mach. 37, 213–223 (1990)

[AhuMO91] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Some recent advances in network

flows. SIAM Rev. 33, 175–219 (1991)

[AhuGOT92] Ahuja, R.K., Goldberg, A.V., Orlin, J.B., Tarjan, R.E.: Finding minimum-

cost flows by double scaling. Math. Program. 53, 243–266 (1992)

[AhuKMO92] Ahuja, R.K., Kodialam, M., Mishra, A.K., Orlin, J.B.: Computational test-

ing of maximum flow algorithms. Sloan working paper, Sloan School of

Management, MIT (1992)

[AhuMO93] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algo-

rithms and Applications. Prentice Hall, Englewood Cliffs (1993)

[AhuOST94] Ahuja, R.K., Orlin, J.B., Stein, C., Tarjan, R.E.: Improved algorithm for

bipartite network flow. SIAM J. Comput. 23, 906–933 (1994)

[Aig84] Aigner, M.: Graphentheorie. Eine Entwicklung aus dem 4-Farben-Problem.

Teubner, Stuttgart (1984)

[Aig97] Aigner, M.: Combinatorial Theory. Springer, New York (1997)

[Alo90] Alon, N.: Generating pseudo-random permutations and maximum flow al-

gorithms. Inf. Process. Lett. 35, 201–204 (1990)

D. Jungnickel, Graphs, Networks and Algorithms,

Algorithms and Computation in Mathematics 5,
DOI 10.1007/978-3-642-32278-5, © Springer-Verlag Berlin Heidelberg 2013

629

http://dx.doi.org/10.1007/978-3-642-32278-5

630 References

[Alt88] Althöfer, I.: On optimal realizations of finite metric spaces by graphs. Dis-
crete Comput. Geom. 3, 103–122 (1988)

[And71] Anderson, I.: Perfect matchings of a graph. J. Comb. Theory 10, 183–186
(1971)

[And90] Anderson, I.: Combinatorial Designs: Construction Methods. Ellis Horwood,
Chichester (1990)

[And97] Anderson, I.: Combinatorial Designs and Tournaments. Oxford University
Press, Oxford (1997)

[And77] Anderson, L.D.: On edge-colorings of graphs. Math. Scand. 40, 161–175
(1977)

[AndHa67] Anderson, S.S., Harary, F.: Trees and unicyclic graphs. Math. Teach. 60,
345–348 (1967)

[Ans85] Anstee, R.P.: An algorithmic proof of Tutte’s f -factor theorem. J. Algo-
rithms 6, 112–131 (1985)

[AppHa77] Appel, K., Haken, W.: Every planar map is 4-colorable. I. Discharging. Ill.
J. Math. 21, 429–490 (1977)

[AppHa89] Appel, K., Haken, W.: Every Planar Map is Four Colorable. American Math-
ematical Society, Providence (1989)

[AppHK77] Appel, K., Haken, W., Koch, J.: Every planar map is 4-colorable: II. Re-
ducibility. Ill. J. Math. 21, 491–567 (1989)

[AppCo93] Applegate, D., Cook, W.: Solving large-scale matching problems. In: John-
son, D.S., McGeoch, C.C. (eds.) Network Flows and Matching, pp. 557–576.
Am. Math. Soc., Providence (1993)

[AppBCC95] Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding cuts in the TSP
(A preliminary report). DIMACS Technical Report 95-05 (1995)

[AppBCC98] Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of trav-
eling salesman problems. Doc. Math. III, 645–656 (1998) (Extra Volume
ICM 1998)

[AppBCC01] Applegate, D., Bixby, R., Chvátal, V., Cook, W.: TSP cuts which do not
conform to the template paradigm. In: Jünger, M., Naddef, D. (eds.) Com-
putational Combinatorial Optimization, pp. 261–304. Springer, Heidelberg
(2001)

[AppBCC03] Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Implementing the Dantzig-
Fulkerson-Johnson algorithm for large traveling salesman problems. Math.
Program. 97B, 91–153 (2003)

[AppBCC04] Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde (2004). Avail-
able at www.tsp.gatech.edu

[AppBCC06] Applegate, D., Bixby, R., Chvátal, V., Cook, W.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton
(2006)

[ArkPa86] Arkin, E.M., Papadimitriou, C.H.: On the complexity of circulations. J. Al-
gorithms 7, 134–145 (1986)

[Aro98] Arora, S.: Polynomial-time approximation schemes for Euclidean TSP and
other geometric problems. J. Assoc. Comput. Mach. 45, 753–782 (1998)

[AroBa09] Arora, S., Barak, B.: Computational Complexity. A Modern Approach.
Cambridge University Press, Cambridge (2009)

[AroKa06] Arora, S., Karakostas, G.: A 2+ ε approximation algorithm for the k-MST
problem. Math. Program. 107, 491–504 (2006)

[AroSa02] Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization
of NP. In: Proc. 33rd IEEE Symp. on Foundations of Computer Science, pp.
2–13 (1992)

[AroLMS92] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification
and hardness of approximation problems. In: Proc. 33th IEEE Symp. on
Foundations of Computer Science, pp. 14–23 (1992)

http://www.tsp.gatech.edu

References 631

[AusIMN91] Ausiello, G., Italiano, G.F., Marchetti Spaccamela, A., Nanni, U.: Incremen-

tal algorithms for minimal length paths. J. Algorithms 12, 615–638 (1991)

[Avi78] Avis, D.: Two greedy heuristics for the weighted matching problem. Congr.

Numer. 21, 65–76 (1978)

[Avi83] Avis, D.: A survey of heuristics for the weighted matching problem. Net-

works 13, 475–493 (1983)

[BabFLS91] Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in

polylogarithmic time. In: Proc. 23rd ACM Symp. on Theory of Computing,

pp. 21–31 (1991)

[BabFL91] Babai, L., Fortnow, L., Lund, C.: Nondeterministic exponential time has

two-prover interactive protocols. Comput. Complex. 1, 3–40 (1991)

[Bae53] Bäbler, F.: Über eine spezielle Klasse Eulerscher Graphen. Comment. Math.

Helv. 21, 81–100 (1953)

[BacKe92] Bachem, A., Kern, W.: Linear Programming Duality. An Introduction to

Oriented Matroids. Springer, Berlin (1992)

[Bac89] Bachmann, F.: Ebene Spiegelungsgeometrie. B.I. Wissenschaftsverlag,

Mannheim (1989)

[BakWi77] Baker, R.D., Wilson, R.M.: Nearly Kirkman triple systems. Util. Math. 11,

289–296 (1977)

[BalFi93] Balas, E., Fischetti, M.: A lifting procedure for the asymmetric traveling

salesman polytope and a large new class of facets. Math. Program. 58,

325–352 (1993)

[BalXu91] Balas, E., Xue, J.: Minimum weighted coloring of triangulated graphs, with

application to maximum weight vertex packing and clique finding in arbi-

trary graphs. SIAM J. Comput. 20, 209–221 (1991)

[BalYu86] Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM

J. Comput. 15, 1054–1068 (1986)

[BalRa97] Balinski, M., Ratier, G.: On stable marriages and graphs, and strategy and

polytopes. SIAM Rev. 39, 575–604 (1997)

[BalGo91] Balinsky, M.L., Gonzales, J.: Maximum matchings in bipartite graphs via

strong spanning trees. Networks 21, 165–179 (1991)

[Bal85] Ball, M.O.: Polynomial algorithms for matching problems with side con-

straints. Research report CORR 85–21, University of Waterloo (1985)

[BalCo87] Ball, W.W.R., Coxeter, H.S.M.: Mathematical Recreations and Essays, 13th

edn. Dover, New York (1987)

[BalDe83] Ball, M.O., Derigs, U.: An analysis of alternate strategies for implementing

matching algorithms. Networks 13, 517–549 (1983)

[Ban90] Bandelt, H.-J.: Recognition of tree matrices. SIAM J. Discrete Math. 3, 1–6

(1990)

[BanGu09] Bang-Jensen, J., Gutin, G.Z.: Digraphs, 2nd edn. Springer, London (2009)

[BarKP93] Bar-Ilan, J., Kortsarz, G., Peleg, D.: How to allocate network centers. J. Al-

gorithms 15, 385–415 (1993)

[Bar90] Barahona, F.: On some applications of the Chinese postman problem. In:

Korte, B., Lovász, L., Prömel, H.J., Schrijver, A. (eds.) Paths, Flows and

VLSI-Layout, pp. 1–16. Springer, Berlin (1990)

[BarPu87] Barahona, F., Pulleyblank, W.R.: Exact arborescences, matchings and cy-

cles. Discrete Appl. Math. 16, 91–99 (1987)

[BarTa89] Barahona, F., Tardos, E.: Note on Weintraub’s minimum-cost circulation

algorithm. SIAM J. Comput. 18, 579–583 (1989)

632 References

[Bar75] Baranyai, Z.: On the factorization of the complete uniform hypergraph. In:

Proc. Erdős-Koll., Keszthely, 1973, pp. 91–108. North Holland, Amsterdam

(1975)

[BarSa95] Barnes, T.M., Savage, C.D.: A recurrence for counting graphical partitions.

Electron. J. Comb. 2, # R 11 (1995)

[BauWo82] Bauer, F.L., Wössner, H.: Algorithmic Language and Program Develop-

ment. Springer, Berlin (1982)

[BazSS06] Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: The-

ory and Algorithms, 3rd edn. Wiley, New York (2006)

[BazJS10] Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network

Flows, 4th edn. Wiley, New York (2010)

[Bel58] Bellman, R.E.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958)

[Ben90] Bentley, J.L.: Experiments on traveling salesman heuristics. In: Proc. First

SIAM Symp. on Discr. Algorithms, pp. 91–99 (1990)

[Ber57] Berge, C.: Two theorems in graph theory. Proc. Natl. Acad. Sci. USA 43,

842–844 (1957)

[Ber58] Berge, C.: Sur le couplage maximum d’un graphe. C. R. Math. Acad. Sci.

Paris 247, 258–259 (1958)

[Ber61] Berge, C.: Färbung von Graphen, deren sämtliche bzw. deren ungerade

Kreise starr sind (Zusammenfassung). Wiss. Z., Martin-Luther-Univ. Halle-

Wittenb., Math.-Nat.wiss. Reihe 10, 114–115 (1961)

[Ber73] Berge, C.: Graphs and Hypergraphs. North Holland, Amsterdam (1973)

[BerCh84] Berge, C., Chvátal, V.: Topics in Perfect Graphs. North Holland, Amster-

dam (1984)

[BerFo91] Berge, C., Fournier, J.C.: A short proof for a generalization of Vizing’s

theorem. J. Graph Theory 15, 333–336 (1991)

[BerGh62] Berge, C., Ghouila-Houri, A.: Programmes, Jeux et Réseaux de Transport.

Dunod, Paris (1991)

[BerMT94] Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent in-

tractability of certain coding problems. IEEE Trans. Inf. Theory 24, 384–

386 (1978)

[BerRa94] Berman, P., Ramaiyer, V.: Improved approximations for the Steiner tree

problem. J. Algorithms 17, 381–408 (1994)

[Ber78] Bermond, J.C.: Hamiltonian graphs. In: Beineke, L.W., Wilson, R.J. (eds.)

Selected Topics in Graph Theory, pp. 127–167. Academic Press, New York

(1978)

[Ber92] Bermond, J.C. (ed.): Interconnection Networks. North Holland, Amsterdam

(1992)

[Ber93] Bertsekas, D.P.: A simple and fast label correcting algorithm for shortest

paths. Networks 23, 703–709 (1993)

[Bet74] Beth, T.: Algebraische Auflösungsalgorithmen für einige unendliche Fami-

lien von 3–Designs. Matematiche 29, 105–135 (1974)

[BetJL99] Beth, T., Jungnickel, D., Lenz, H.: Design Theory, 2nd edn. vols. 1 and 2.

Cambridge University Press, Cambridge (1999)

[Bie89] Bien, F.: Constructions of telephone networks by group representations.

Not. Am. Math. Soc. 36, 5–22 (1989)

[BieBM90] Bienstock, D., Brickell, E.F., Monma, C.N.: On the structure of minimum-

weight k-connected spanning networks. SIAM J. Discrete Math. 3, 320–329

(1990)

[Bie05] Bierbrauer, J.: Introduction to Coding Theory. Chapman & Hall/CRC,

Boca Raton (2005)

[Big93] Biggs, N.L.: Algebraic Graph Theory, 2nd edn. Cambridge University Press,

Cambridge (1993)

References 633

[BigLW76] Biggs, N.L., Lloyd, E.K., Wilson, R.J.: Graph Theory 1736–1936. Oxford
University Press, Oxford (1976)

[Bir46] Birkhoff, G.: Tres observaciones sobre el algebra lineal. Rev. Univ. Nac.
Tucumán Ser. A 5, 147–151 (1946)

[BjoZi92] Bjørner, A., Ziegler, G.M.: Introduction to greedoids. In: White, N. (ed.)
Matroid Applications, pp. 284–357. Cambridge University Press, Cambridge
(1992)

[BjoLSW92] Bjørner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Ori-
ented Matroids. Cambridge University Press, Cambridge (1992)

[Bla83] Blahut, R.E.: Theory and Practice of Error Control Codes. Addison-Wesley,
Reading (1983)

[BlaSh89] Bland, R.G., Shallcross, D.F.: Large traveling salesman problems arising
from experiments in X-ray crystallography: A preliminary report on com-
putation. Oper. Res. Lett. 8, 125–128 (1989)

[BobHa71] Bobrow, L.S., Hakimi, S.L.: Graph theoretic q-ary codes. IEEE Trans. Inf.
Theory 17, 215–218 (1971)

[BoeFW07] Böckenhauer, H.-J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proi-
etti, G., Widmayer, P.: On the approximability of TSP on local modifica-
tions of optimally solved instances. Algorithmic Oper. Res. 2, 83–93 (2007)

[BoeHS11] Böckenhauer, H.-J., Hromkovič, J., Sprock, A.: Knowing all optimal solu-
tions does not help for TSP reoptimization. In: Springer Lecture Notes in
Computer Science, vol. 6610, pp. 7–15 (2011)

[BoeTi80] Boesch, F., Tindell, R.: Robbins theorem for mixed multigraphs. Am. Math.
Mon. 87, 716–719 (1980)

[Bol78] Bollobás, B.: Extremal Graph Theory. Academic Press, New York (1978)
[BonCh76] Bondy, J.A., Chvátal, V.: A method in graph theory. Discrete Math. 15,

111–135 (1976)
[BonMu76] Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North Hol-

land, Amsterdam (1976)
[BonZi11] Bonsma, P., Zickfeld, F.: A 3/2-approximation algorithm for finding span-

ning trees with many leaves in cubic graphs. SIAM J. Discrete Math. 25,
1652–1666 (2011)

[Boo94] Book, R.V.: Relativizations of the P =? NP and other problems: develop-
ments in structural complexity theory. SIAM Rev. 36, 157–175 (1994)

[BooLu76] Booth, S., Lueker, S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst.
Sci. 13, 335–379 (1976)

[Bor60] Borchardt, C.W.: Über eine der Interpolation entsprechende Darstellung der
Eliminationsresultante. J. Reine Angew. Math. 57, 111–121 (1860)

[Bor87] Borgwardt, K.H.: The Simplex Method. A Probabilistic Analysis. Springer,
Berlin (1987)

[Bor26a] Boruvka, O.: O jistém problému minimálńım. Acta Soc. Sci. Nat. Morav.
3, 37–58 (1926)

[Bor26b] Boruvka, O.: Pŕıspevek k reseńı otázky ekonomické stavby elektrovodńıch
śıt́ı. Elektrotech. Obz. 15, 153–154 (1926)

[Bos90] Bosák, J.: Decompositions of Graphs. Kluwer Academic, Dordrecht (1990)
[BoyFa90] Boyd, E.A., Faigle, U.: An algorithmic characterization of antimatroids.

Discrete Appl. Math. 28, 197–205 (1990)
[BreHa67] Bredeson, J.G., Hakimi, S.L.: Decoding of graph theoretic codes. IEEE

Trans. Inf. Theory 13, 348–349 (1967)
[Bro41] Brooks, R.L.: On colouring the nodes of a network. Proc. Camb. Philos.

Soc. 37, 194–197 (1941)
[BruBH90] Brucker, P., Burkard, R.E., Hurink, J.: Cyclic schedules for r irregularly

occurring events. J. Comput. Appl. Math. 30, 173–189 (1990)

634 References

[BruBr92] Bryant, V., Brooksbank, P.: Greedy algorithm compatibility and heavy-set

structures. Eur. J. Comb. 13, 81–86 (1992)

[Bun74] Bunemann, P.: A note on the metric properties of trees. J. Comb. Theory,

Ser. B 17, 48–50 (1974)

[Bur86] Burkard, R.E.: Optimal schedules for periodically recurring events. Discrete

Appl. Math. 15, 167–180 (1986)

[Bur97] Burkard, R.E.: Efficiently solvable special cases of hard combinatorial opti-

mization problems. Math. Program. 79, 55–69 (1997)

[BurHZ77] Burkard, R.E., Hahn, W., Zimmermann, U.: An algebraic approach to as-

signment problems. Math. Program. 12, 318–327 (1977)

[BurDDW98] Burkard, R.E., Deineko, V.G., van Dal, R., van der Veen, J.A.A., Woeginger,

G.J.: Well-solvable special cases of the traveling salesman problem: a survey.

SIAM Rev. 40, 496–546 (1998)

[BurGo61] Busacker, R.G., Gowen, P.J.: A procedure for determining a family of min-

imum cost flow networks. ORO Techn. Report 15, John Hopkins University

(1961)

[BusPa06] Busygin, S., Pasechnik, D.V.: On NP-hardness of the clique partition—

independence number gap recognition and related problems. Discrete Math.

306, 460–463 (2006)

[CamFM79] Camerini, P.M., Fratta, L., Maffioli, F.: A note on finding optimum branch-

ings. Networks 9, 309–312 (1979)

[CamMMT85] Camerini, P.M., Maffioli, F., Martello, S., Toth, P.: Most and least uniform

spanning trees. Discrete Appl. Math. 15, 181–197 (1986)

[Cam76] Cameron, P.J.: Parallelisms of Complete Designs. Cambridge University

Press, Cambridge (1976)

[CamLi91] Cameron, P.J., van Lint, J.H.: Designs, Graphs, Codes and Their Links.

Cambridge University Press, Cambridge (1991)

[CamRa91] Campbell, D.M., Radford, D.: Tree isomorphism algorithms: speed versus

clarity. Math. Mag. 64, 252–261 (1991)

[CamFT89] Carpaneto, G., Fischetti, M., Toth, P.: New lower bounds for the symmetric

travelling salesman problem. Math. Program. 45, 233–254 (1989)

[Car71] Carré, P.A.: An algebra for network routing problems. J. Inst. Math. Appl.

7, 273–294 (1971)

[Car79] Carré, P.A.: Graphs and Networks. Oxford University Press, Oxford (1979)

[Cat79] Catlin, P.A.: Hajós’ graph coloring conjecture: variations and counterexam-

ples. J. Comb. Theory, Ser. B 26, 268–274 (1979)

[Cay89] Cayley, A.: A theorem on trees. Q. J. Math. 23, 376–378 (1889)

[ChaHo09] Chandran, B.G., Hochbaum, D.S.: A computational study of the pseudoflow

and push-relabel algorithms for the maximum flow problem. Oper. Res. 57,

358–376 (2009)

[ChaTa84] Chandrasekaran, R., Tamir, A.: Polynomial testing of the query ‘Is ab ≥ cd’

with application to finding a minimal cost reliability ratio spanning tree.

Discrete Appl. Math. 9, 117–123 (1984)

[ChaAN81] Chandrasekaran, R., Aneja, Y.P., Nair, K.P.K.: Minimal cost reliability ratio

spanning tree. Ann. Discrete Math. 11, 53–60 (1981)

[ChaGK06] Charikar, M., Hoemans, M.X., Karloff, H.: On the integrality ratio for the

asymmetric traveling salesman problem. Math. Oper. Res. 31, 245–252

(2006)

[Cha66] Chartrand, G.: A graph-theoretic approach to communication problems.

SIAM J. Appl. Math. 14, 778–781 (1966)

[ChaHa68] Chartrand, G., Harary, F.: Graphs with described connectivities. In: Erdős,

P., Katona, G. (eds.) Theory of Graphs, pp. 61–63. Academic Press, New

York (1968)

References 635

[ChaWh70] Chartrand, G., White, A.T.: Randomly transversable graphs. Elem. Math.

25, 101–107 (1970)

[CheHu92] Cheng, C.K., Hu, T.C.: Maximum concurrent flows and minimum cuts.

Algorithmica 8, 233–249 (1992)

[CheTa76] Cheriton, D., Tarjan, R.E.: Finding minimum spanning trees. SIAM J. Com-

put. 5, 724–742 (1976)

[CheHa89] Cheriyan, J., Hagerup, T.: A randomized maximum flow algorithm. In: Proc.

30th IEEE Conf. on Foundations of Computer Science, pp. 118–123 (1989)

[CheHa95] Cheriyan, J., Hagerup, T.: A randomized maximum flow algorithm. SIAM

J. Comput. 24, 203–226 (1995)

[CheMa89] Cheriyan, J., Maheshwari, S.N.: Analysis of preflow push algorithms for

maximum network flow. SIAM J. Comput. 18, 1057–1086 (1989)

[CheHM96] Cheriyan, J., Hagerup, T., Mehlhorn, K.: A O(n3)-time maximum flow al-

gorithm. SIAM J. Comput. 25, 1144–1170 (1996)

[CheGo95] Cherkassky, B.V., Goldberg, A.V.: On implementing Push-Relabel method

for the maximum flow problem. In: Balas, E., Clausen, J. (eds.) Integer Pro-

gramming and Combinatorial Optimization, pp. 157–171. Springer, Berlin

(1995)

[Che80] Cheung, T.Y.: Computational comparison of eight methods for the maxi-

mum network flow problem. ACM Trans. Math. Softw. 6, 1–16 (1980)

[Chr75] Christofides, N.: Graph Theory: An Algorithmic Approach. Academic Press,

New York (1975)

[Chr76] Christofides, N.: Worst-case analysis of a new heuristic for the travelling

salesman problem. Report 388, Grad. School of Ind. Admin., Carnegie-

Mellon University (1976)

[ChuLi65] Chu, Y.J., Liu, T.H.: On the shortest arborescence of a directed graph. Sci.

Sin. 14, 1396–1400 (1965)

[ChuRST02] Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: The strong

perfect graph theorem. Preprint (2002)

[ChuRST03] Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: Progress on

perfect graphs. Math. Program., Ser. B 97, 405–422 (2003)

[Chu86] Chung, F.R.K.: Diameters of communication networks. Proc. Symp. Pure

Appl. Math. 34, 1–18 (1986)

[ChuGT85] Chung, F.R.K., Garey, M.R., Tarjan, R.E.: Strongly connected orientations

of mixed multigraphs. Networks 15, 477–484 (1985)

[Chv83] Chvátal, V.: Linear Programming. Freeman, New York (1983)

[Chv85] Chvátal, V.: Hamiltonian cycles. In: Lawler, E.L., Lenstra, J.K., Rinnooy

Kan, A.H.G., Shmoys, D.B. (eds.) The Travelling Salesman Problem, pp.

403–429. Wiley, New York (1985)

[ChvEr72] Chvátal, V., Erdős, P.: A note on Hamiltonian circuits. Discrete Math. 2,

111–113 (1972)

[ChvTh78] Chvátal, V., Thomasson, C.: Distances in orientations of graphs. J. Comb.

Theory, Ser. B 24, 61–75 (1978)

[Cie98] Cieslik, D.: Steiner Minimal Trees. Kluwer, Dordrecht (1998)

[Cie01] Cieslik, D.: The Steiner Ratio. Kluwer, Dordrecht (2001)

[Col87] Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford Univer-

sity Press, Oxford (1987)

[ColDN89] Colbourn, C.J., Day, R.P.J., Nel, L.D.: Unranking and ranking spanning

trees of a graph. J. Algorithms 10, 271–286 (1989)

[ColHo82] Cole, R., Hopcroft, J.: On edge coloring bipartite graphs. SIAM J. Comput.

11, 540–546 (1982)

[ConHMW92] Conrad, A., Hindrichs, T., Morsy, H., Wegener, I.: Wie es einem Springer

gelingt, Schachbretter von beliebiger Größe zwischen beliebig vorgegebenen

636 References

Anfangs- und Endfeldern vollständig abzureiten. Spektrum der Wiss. 10–14
(1992)

[ConHMW94] Conrad, A., Hindrichs, T., Morsy, H., Wegener, I.: Solution of the knight’s
Hamiltonian path problem on chessboards. Discrete Appl. Math. 50, 125–
134 (1994)

[Coo71] Cook, S.A.: The complexity of theorem proving procedures. In: Proc. 3rd
ACM Symp. on the Theory of Computing, pp. 151–158 (1971)

[Coo12] Cook, W.: In Pursuit of the Traveling Salesman: Mathematics at the Limits
of Computation. Princeton University Press, Princeton (2011)

[CorLRS09] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Al-
gorithms, 3rd edn. MIT Press, Cambridge (2009)

[CorNe78] Cornuejols, G., Nemhauser, G.L.: Tight bounds for Christofides’ traveling
salesman heuristic. Math. Program. 14, 116–121 (1978)

[CosLR05] Costa, M., Létocart, L., Roupin, F.: Minimal multicut and maximal integer
multiflow: a survey. Eur. J. Oper. Res. 162, 55–69 (2005)

[CouRo41] Courant, R., Robbins, H.: What is Mathematics? Oxford University Press,
New York (1941)

[Cox61] Coxeter, H.M.S.: Introduction to Geometry. Wiley, New York (1961)
[Cox73] Coxeter, H.M.S.: Regular Polytopes, 3rd edn. Dover, New York (1973)
[Cro58] Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res.

6, 791–812 (1958)
[CroPa80] Crowder, H., Padberg, M.W.: Solving large-scale symmetric travelling sales-

man problems to optimality. Manag. Sci. 26, 495–509 (1980)
[Cun86] Cunningham, W.H.: Improved bounds for matroid partition and intersection

algorithms. SIAM J. Comput. 15, 948–957 (1986)
[CunMa78] Cunningham, W.H., Marsh, A.B.: A primal algorithm for optimal matching.

Math. Program. Stud. 8, 50–72 (1978)
[CveDS80] Cvetkovic, D.M., Doob, M., Sachs, H.: Spectra of Graphs. Academic Press,

New York (1980)
[CveDGT87] Cvetkovic, D.M., Doob, M., Gutman, I., Torgasev, A.: Recent Results in

the Theory of Graph Spectra. North Holland, New York (1987)
[DanFJ54] Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale

traveling-salesman problem. Oper. Res. 2, 393–410 (1954)
[DanFF56] Dantzig, G.B., Ford, L.R., Fulkerson, D.R.: A primal-dual algorithm for

linear programs. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities
and Related Systems, pp. 171–181. Princeton University Press, Princeton
(1956)

[deB46] de Bruijn, N.G.: A combinatorial problem. Indag. Math. 8, 461–467 (1946)
[deBA51] de Bruijn, N.G., van Aardenne-Ehrenfest, T.: Circuits and trees in oriented

linear graphs. Simon Stevin 28, 203–217 (1951)
[deW80] de Werra, D.: Geography, games and graphs. Discrete Appl. Math. 2, 327–

337 (1980)
[deW81] de Werra, D.: Scheduling in sports. Ann. Discrete Math. 11, 381–395 (1981)
[deW82] de Werra, D.: Minimizing irregularities in sports schedules using graph the-

ory. Discrete Appl. Math. 4, 217–226 (1982)
[deW88] de Werra, D.: Some models of graphs for scheduling sports competitions.

Discrete Appl. Math. 21, 47–65 (1988)
[deWJM90] de Werra, D., Jacot-Descombes, L., Masson, P.: A constrained sports

scheduling problem. Discrete Appl. Math. 26, 41–49 (1990)
[DeiWo00] Dĕıneko, V.G., Woeginger, G.: A study of exponential neighborhoods for

the travelling salesman problem and for the quadratic assignment problem.
Math. Program. 87, 519–542 (2000)

[DeoPK82] Deo, N., Prabhu, G.M., Krishnamoorthy, M.S.: Algorithms for generating
fundamental cycles in a graph. ACM Trans. Math. Softw. 8, 26–42 (1982)

References 637

[Der88] Derigs, U.: Programming in Networks and Graphs. Springer, Berlin (1988)

[DerHe80] Derigs, U., Heske, A.: A computational study on some methods for solving

the cardinality matching problem. Angew. Inform. 22, 249–254 (1980)

[DerMe89] Derigs, U., Meier, W.: Implementing Goldberg’s max-flow algorithm—

A computational investigation. ZOR, Z. Oper.-Res. 33, 383–403 (1989)

[DerMe91] Derigs, U., Metz, A.: Solving (large scale) matching problems combinatori-

ally. Math. Program. 50, 113–121 (1991)

[DeV12] DeVos, M.: The Gallai-Edmonds decomposition. Lecture Notes (2012).

http://www.sfu.ca/�mdevos/notes/misc/gallai-edmonds.pdf

[Die10] Diestel, R.: Graph Theory, 4th edn. Springer, Berlin (2010)

[Dij59] Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer.

Math. 1, 269–271 (1959)

[Dil50] Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann.

Math. 51, 161–166 (1950)

[Din70] Dinic, E.A.: Algorithm for solution of a problem of maximum flow in net-

works with power estimation. Sov. Math. Dokl. 11, 1277–1280 (1970)

[Dir52] Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2,

69–81 (1952)

[DixRT92] Dixon, B., Rauch, M., Tarjan, R.E.: Verification and sensitivity analysis of

minimum spanning trees in linear time. SIAM J. Comput. 21, 1184–1192

(1992)

[Dom89] Domschke, W.: Schedule synchronization for public transit networks. OR

Spektrum 11, 17–24 (1989)

[Dre84] Dress, A.: Trees, tight extensions of metric spaces, and the cohomological

dimension of certain groups: A note on combinatorial properties of metric

spaces. Adv. Math. 53, 321–402 (1984)

[DuHw90a] Du, D.-Z., Hwang, F.: An approach for proving lower bounds: solution of

Gilbert-Pollak’s conjecture on Steiner ratio. In: Proc. 31st Annual Symp.

on Foundations of Computer Science, Los Alamitos, CA, pp. 76–85. IEEE

Computer Society, Los Alamitos (1990)

[DuHw90b] Du, D.-Z., Hwang, F.: The Steiner ratio conjecture of Gilbert and Pollak is

true. Proc. Natl. Acad. Sci. USA 87, 9464–9466 (1990)

[DuZh92] Du, D.-Z., Zhang, Y.: On better heuristics for Steiner minimum trees. Math.

Program. 57, 193–202 (1992)

[DuSR00] Du, D.-Z., Smith, J.M., Rubinstein, J.H.: Advances in Steiner Trees. Kluwer,

Dordrecht (2000)

[Due93] Dueck, G.: New optimization heuristics: the great deluge algorithm and

record-to-record travel. J. Comput. Phys. 104, 86–92 (1993)

[DueSc90] Dueck, G., Scheuer, T.: Threshold accepting: A general purpose optimiza-

tion algorithm appearing superior to simulating annealing. J. Comput. Phys.

90, 161–175 (1990)

[DvoLS11] Dvořák, Z., Lidický, B., Škrekovski, R.: Graphs with two crossings are 5-

choosable. SIAM J. Discrete Math. 25, 1746–1753 (2011)

[Eco83] Eco, U.: The Name of the Rose. Harcourt Brace Jovanovich, San Diego

(1983)

[Edm65a] Edmonds, J.: Maximum matching and a polytope with 0,1-vertices. J. Res.

Natl. Bur. Stand. B 69, 125–130 (1965)

[Edm65b] Edmonds, J.: Paths, trees and flowers. Can. J. Math. 17, 449–467 (1965)

[Edm67a] Edmonds, J.: An introduction to matching. Lecture Notes, Univ. of Michi-

gan (1967)

[Edm67b] Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stand. B 71, 233–240

(1967)

[Edm70] Edmonds, J.: Submodular functions, matroids and certain polyhedra. In:

http://www.sfu.ca/~mdevos/notes/misc/gallai-edmonds.pdf

638 References

Guy, K. (ed.) Combinatorial Structures and Their Applications, pp. 69–87.
Gordon & Breach, New York (1970)

[Edm71] Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1, 127–
136 (1971)

[Edm73] Edmonds, J.: Edge disjoint branchings. In: Rustin, R. (ed.) Combinatorial
Algorithms, pp. 91–96. Algorithmics Press, New York (1973)

[Edm79] Edmonds, J.: Matroid intersection. Ann. Discrete Math. 4, 39–49 (1979)
[EdmFu65] Edmonds, J., Fulkerson, D.R.: Transversals and matroid partition. J. Res.

Natl. Bur. Stand. B 69, 147–153 (1965)
[EdmGi77] Edmonds, J., Giles, R.: A min-max relation for submodular functions on

graphs. Ann. Discrete Math. 1, 185–204 (1977)
[EdmGi84] Edmonds, J., Giles, R.: Total dual integrality of linear systems. In: Pul-

leyblank, W.R. (ed.) Progress in Combinatorial Optimization, pp. 117–129.
Academic Press Canada, Don Mills (1984)

[EdmJo73] Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese post-
man. Math. Program. 5, 88–124 (1973)

[EdmKa72] Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic effi-
ciency for network flow problems. J. Assoc. Comput. Mach. 19, 248–264
(1972)

[EdmLP82] Edmonds, J., Lovász, L., Pulleyblank, W.R.: Brick decompositions and the
matching rank of graphs. Combinatorica 2, 247–274 (1982)

[Ege31] Egerváry, E.: Matrixok kombinatorius tulajdonságairól. Mat. Fiz. Lapok
38, 16–28 (1931)

[Ego81] Egoritsjev, G.E.: Solution of van der Waerden’s permanent conjecture. Adv.
Math. 42, 299–305 (1981)

[EliFS56] Elias, P., Feinstein, A., Shannon, C.E.: Note on maximum flow through a
network. IRE Trans. Inf. Theory IT-12, 117–119 (1956)

[Eng97] Engel, K.: Sperner Theory. Cambridge University Press, Cambridge (1997)
[Epp94] Eppstein, D.: Offline algorithms for dynamic minimum spanning tree prob-

lems. J. Algorithms 17, 237–250 (1994)
[ErdSz35] Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos.

Math. 2, 463–470 (1935)
[ErdRT80] Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Congr. Numer.

26, 125–157 (1980)
[ErvMcC93] Ervolina, T.R., McCormick, S.T.: Two strongly polynomial cut cancelling

algorithms for minimum cost network flow. Discrete Appl. Math. 46, 133–
165 (1993)

[Etz86] Etzion, T.: An algorithm for constructing m-ary de Bruijn sequences. J. Al-
gorithms 7, 331–340 (1986)

[Eul36] Euler, L.: Solutio problematis ad geometriam situs pertinentis. Comment.
Acad. Sci. Imp. Petropol. 8, 128–140 (1736)

[Eul52/53] Euler, L.: Demonstratio nonnullorum insignium proprietatum quibus solida
hadris planis inclusa sunt praedita. Novi Comment. Acad. Sci. Petropol. 4,
140–160 (1752/1753)

[Eul66] Euler, L.: Solution d’une question curieuse qui ne paroit soumise à aucune
analyse. Mém. Acad. R. Sci. Belles Lettres, Année 1759 15, 310–337 (1766)

[Eve73] Even, S.: Combinatorial Algorithms. Macmillan, New York (1973)
[Eve77] Even, S.: Algorithm for determining whether the connectivity of a graph is

at least k. SIAM J. Comput. 6, 393–396 (1977)
[Eve79] Even, S.: Graph Algorithms. Computer Science Press, Rockville (1979)

[EveTa75] Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM
J. Comput. 4, 507–512 (1975)

[EveIS76] Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multi-
commodity flow problems. SIAM J. Comput. 5, 691–703 (1976)

References 639

[EveGT77] Even, S., Garey, M.R., Tarjan, R.E.: A note on connectivity and circuits in
directed graphs. Unpublished manuscript (1977)

[Fai79] Faigle, U.: The greedy algorithm for partially ordered sets. Discrete Math.
28, 153–159 (1979)

[Fai85] Faigle, U.: On ordered languages and the optimization of linear functions
by greedy algorithms. J. Assoc. Comput. Mach. 32, 861–870 (1985)

[Fal81] Falikman, D.I.: Proof of the van der Waerden conjecture regarding the per-
manent of a doubly stochastic matrix. Math. Notes - Ross. Akad. 29, 475–
479 (1981)

[FarMi60] Farahat, H.K., Mirsky, L.: Permutation endomorphisms and a refinement
of a theorem of Birkhoff. Proc. Camb. Philos. Soc. 56, 322–328 (1960)

[FedMo95] Feder, T., Motwani, R.: Clique partitions, graph compression and speeding
up algorithms. J. Comput. Syst. Sci. 51, 261–272 (1995)

[Fie94] Fiechter, C.-N.: A parallel tabu search algorithm for large traveling salesman
problems. Discrete Appl. Math. 51, 243–267 (1994)

[FieSe58] Fiedler, M., Sedlacek, J.: O W-basich orientovanych grafu. Čas. Pěst. Mat.
83, 214–225 (1958)

[FisHJM94] Fischetti, M., Hamacher, H.W., Jørnsten, K.O., Maffioli, F.: Weighted k-
cardinality trees: complexity and polyhedral structure. Networks 24, 11–21
(1994)

[Fis85] Fishburn, P.C.: Interval Orders and Interval Graphs: A Study of Partially
Ordered Sets. Wiley, New York (1985)

[Fis81] Fisher, M.L.: The Langrangian method for solving integer programming
problems. Manag. Sci. 27, 1–18 (1981)

[FleSk07] Fleischer, L., Skutella, M.: Quickest flows over time. SIAM J. Comput. 36,
1600–1630 (2007)

[Fle83] Fleischner, H.: Eulerian graphs. In: Beineke, L.W., Wilson, R.J. (eds.) Se-
lected Topics in Graph Theory 2, pp. 17–53. Academic Press, New York
(1983)

[Fle90] Fleischner, H.: Eulerian Graphs and Related Topics, Part 1, vol. 1. North
Holland, Amsterdam (1990)

[Fle91] Fleischner, H.: Eulerian Graphs and Related Topics, Part 1, vol. 2. North
Holland, Amsterdam (1991)

[Flo62] Floyd, R.W.: Algorithm 97, shortest path. Commun. ACM 5, 345 (1962)
[For56] Ford, L.R.: Network Flow Theory. Rand Corp., Santa Monica (1956)

[ForFu56] Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math.
8, 399–404 (1956)

[ForFu57] Ford, L.R., Fulkerson, D.R.: A simple algorithm for finding maximal network
flows and an application to the Hitchcock problem. Can. J. Math. 9, 210–218
(1957)

[ForFu58a] Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from
static flows. Oper. Res. 6, 419–433 (1958)

[ForFu58b] Ford, L.R., Fulkerson, D.R.: Network flow and systems of representatives.
Can. J. Math. 10, 78–84 (1958)

[ForFu58c] Ford, L.R., Fulkerson, D.R.: A suggested computation for maximum multi-
commodity network flows. Manag. Sci. 5, 97–101 (1958)

[ForFu62] Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press,
Princeton (1962)

[Fra92] Frank, A.: Augmenting graphs to meet edge-connectivity requirements.
SIAM J. Discrete Math. 5, 25–53 (1992)

[FraJo95] Frank, A., Jordán, T.: Minimal edge-coverings of pairs of sets. J. Comb.
Theory, Ser. B 65, 73–110 (1995)

[FraTa88] Frank, A., Tardos, E.: Generalized polymatroids and submodular flows.
Math. Program. 42, 489–563 (1988)

640 References

[Fre85] Frederickson, G.N.: Data structures for on-line updating of minimum span-

ning trees, with applications. SIAM J. Comput. 14, 781–798 (1985)

[Fre87] Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs.

SIAM J. Comput. 16, 1004–1022 (1987)

[FreTa87] Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses on improved

network optimization algorithms. J. Assoc. Comput. Mach. 34, 596–615

(1987)

[FreWi94] Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum

spanning trees and shortest paths. J. Comput. Syst. Sci. 48, 533–551 (1994)

[FreJu99a] Fremuth-Paeger, C., Jungnickel, D.: Balanced network flows I. A unifying

framework for design and analysis of matching algorithms. Networks 33,

1–28 (1999)

[FreJu99b] Fremuth-Paeger, C., Jungnickel, D.: Balanced network flows II. Simple aug-

mentation algorithms. Networks 33, 29–41 (1999)

[FreJu99c] Fremuth-Paeger, C., Jungnickel, D.: Balanced network flows III. Strongly

polynomial augmentation algorithms. Networks 33, 43–56 (1999)

[FreJu01a] Fremuth-Paeger, C., Jungnickel, D.: Balanced network flows IV. Duality

and structure theory. Networks 37, 194–201 (2001)

[FreJu01b] Fremuth-Paeger, C., Jungnickel, D.: Balanced network flows V. Cycle can-

celing algorithms. Networks 37, 202–209 (2001)

[FreJu01c] Fremuth-Paeger, C., Jungnickel, D.: Balanced network flows VI. Polyhedral

descriptions. Networks 37, 210–218 (2001)

[FreJu02] Fremuth-Paeger, C., Jungnickel, D.: Balanced network flows VII. Primal-

dual algorithms. Networks 39, 135–142 (2002)

[FreJu03] Fremuth-Paeger, C., Jungnickel, D.: Balanced network flows VIII. A re-

vised theory of phase ordered algorithms and the O(
√
nm log(n2/m)/ logn)

bound for the non-bipartite cardinality matching problem. Networks 41,

137–142 (2003)

[Fro12] Frobenius, G.: Über Matrizen aus nicht negativen Elementen. Sitz.ber.

Preuss. Akad. Wiss. 1912, 456–477 (1912)

[Fuj86] Fujishige, S.: An O(m3 logn) capacity-rounding algorithm for the minimum-

cost circulation problem: A dual framework of Tardos’ algorithm. Math.

Program. 35, 298–308 (1986)

[Fuj91] Fujishige, S.: Submodular Functions and Optimization. North Holland, Am-

sterdam (1991)

[Ful56] Fulkerson, D.R.: Note on Dilworth’s decomposition theorem for partially

ordered sets. Proc. Am. Math. Soc. 7, 701–702 (1956)

[Ful59] Fulkerson, D.R.: Increasing the capacity of a network: the parametric budget

problem. Manag. Sci. 5, 472–483 (1959)

[Ful61] Fulkerson, D.R.: An out-of-kilter method for minimal cost flow problems.

J. Soc. Ind. Appl. Math. 9, 18–27 (1961)

[Gab76] Gabow, H.N.: An efficient implementation of Edmonds’ algorithm for max-

imum matchings on graphs. J. Assoc. Comput. Mach. 23, 221–234 (1976)

[Gab90] Gabow, H.N.: Data structures for weighted matching and nearest com-

mon ancestors with linking. In: Proc. First Annual ACM-SIAM Symposium

on Discrete Algorithms, pp. 434–443. Soc. Ind. Appl. Math., Philadelphia

(1990)

[GabKa82] Gabow, H.N., Kariv, O.: Algorithms for edge coloring bipartite graphs and

multigraphs. SIAM J. Comput. 11, 117–129 (1982)

[GabTa88] Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization

problems. J. Algorithms 9, 411–417 (1988)

[GabTa89] Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems.

SIAM J. Comput. 18, 1013–1036 (1989)

References 641

[GabTa91] Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general graph-
matching problems. J. Assoc. Comput. Mach. 38, 815–853 (1991)

[GabGST86] Gabow, H.N., Galil, Z., Spencer, T., Tarjan, R.E.: Efficient algorithms for
finding minimum spanning trees in undirected and directed graphs. Combi-
natorica 6, 109–122 (1986)

[Gal57] Gale, D.: A theorem on flows in networks. Pac. J. Math. 7, 1073–1082 (1957)
[Gal68] Gale, D.: Optimal assignments in an ordered set: an application of matroid

theory. J. Comb. Theory 4, 176–180 (1968)
[GalSh62] Gale, D., Shepley, L.S.: College admissions and the stability of marriage.

Am. Math. Mon. 69, 9–15 (1962)
[Gal80] Galil, Z.: Finding the vertex connectivity of graphs. SIAM J. Comput. 9,

197–199 (1980)
[Gal81] Galil, Z.: On the theoretical efficiency of various network flow algorithms.

Theor. Comput. Sci. 14, 103–111 (1981)
[GalSc88] Galil, Z., Schieber, B.: On funding most uniform spanning trees. Discrete

Appl. Math. 20, 173–175 (1988)
[GalTa88] Galil, Z., Tardos, E.: An O(n2(m+ n logn) logn) min-cost flow algorithm.

J. Assoc. Comput. Mach. 35, 374–386 (1986)
[Gal64a] Gallai, T.: Elementare Relationen bezüglich der Glieder und trennenden

Punkte eines Graphen. Magy. Tud. Akad. Mat. Kut. Intéz. K"ozl. 9,
235–236 (1964)

[Gal64b] Gallai, T.: Maximale Systeme unabhängiger Kanten. Publ. Math. Inst.
Hung. Acad. Sci., Ser. A 9, 401–413 (1964)

[Gal67] Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hung.
18, 25–66 (1967)

[GaMi60] Gallai, T., Milgram, A.N.: Verallgemeinerung eines graphentheoretischen
Satzes von Redéi. Acta Sci. Math. 21, 181–186 (1960)

[GalGT89] Gallo, G., Grigoriades, M.D., Tarjan, R.E.: A fast parametric maximum
flow algorithm and applications. SIAM J. Comput. 18, 30–55 (1989)

[GalPa88] Gallo, G., Pallottino, S.: Shortest path algorithms. Ann. Oper. Res. 13,
3–79 (1988)

[GarJo76] Garey, M.R., Johnson, D.S.: The complexity of near-optimal graph coloring.
J. Assoc. Comput. Mach. 23, 43–49 (1976)

[GarJo79] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, New York (1979)

[GarJS76] Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete
graph problems. Theor. Comput. Sci. 1, 237–267 (1976)

[GarJT76] Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit
problem is NP-complete. SIAM J. Comput. 5, 704–714 (1976)

[GarGJ77] Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing
Steiner minimal trees. SIAM J. Appl. Math. 32, 835–859 (1977)

[Gas96] Gasparyan, G.S.: Minimal imperfect graphs: A simple approach. Combina-
torica 16, 209–212 (1996)

[GhiJu90] Ghinelli, D., Jungnickel, D.: The Steinberg module of a graph. Arch. Math.
55, 503–506 (1990)

[Gho62] Ghouila-Houri, A.: Caractérisation des graphes non orientés dont on peut
orienter les arêtes de manière à obtenir le graphe d’une relation d’ordre. C.
R. Math. Acad. Sci. Paris 254, 1370–1371 (1962)

[GilPo68] Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math.
16, 1–29 (1968)

[GilHo64] Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs
and of interval graphs. Can. J. Math. 16, 539–548 (1964)

[GlKP92] Glover, F., Klingman, D., Phillips, N.V.: Network Models in Optimization
and Their Applications in Practice. Wiley, New York (1992)

642 References

[God93] Godsil, C.D.: Algebraic Combinatorics. Chapman and Hall, New York
(1993)

[GodRo01] Godsil, C.D., Royle, G.: Algebraic Graph Theory. Springer, New York
(2001)

[Goe88] Goecke, O.: A greedy algorithm for hereditary set systems and a general-
ization of the Rado-Edmonds characterization of matroids. Discrete Appl.
Math. 20, 39–49 (1988)

[GolKa96] Goldberg, A., Karzanov, A.V.: Path problems in skew-symmetric graphs.
Combinatorica 16, 353–382 (1996)

[GolKa04] Goldberg, A., Karzanov, A.V.: Maximum skew-symmetric flows and match-
ings. Math. Program. 100, 537–568 (2004)

[GolRa99] Goldberg, A., Rao, S.: Flows in undirected unit capacity networks. SIAM
J. Discrete Math. 12, 1–5 (1999)

[GolTa88] Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow prob-
lem. J. Assoc. Comput. Mach. 35, 921–940 (1988)

[GolTa89] Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by can-
celing negative cycles. J. Assoc. Comput. Mach. 36, 873–886 (1989)

[GolTa90] Goldberg, A.V., Tarjan, R.E.: Solving minimum cost-flow problems by suc-
cessive approximation. Math. Oper. Res. 15, 430–466 (1990)

[GolTT90] Goldberg, A.V., Tardos, E., Tarjan, R.E.: Network flow algorithms. In: Ko-
rte, B., Lovász, L., Prömel, H.J., Schrijver, A. (eds.) Paths, Flows and VLSI-
layout, pp. 101–164. Springer, Berlin (1990)

[GolGT91] Goldberg, A.V., Grigoriadis, M.D., Tarjan, R.E.: Use of dynamic trees in a
network simplex algorithm for the maximum flow problem. Math. Program.
50, 277–290 (1991)

[GolPT91] Goldberg, A.V., Plotkin, S.A., Tardos, E.: Combinatorial algorithms for the
generalized circulation problem. Math. Oper. Res. 16, 351–381 (1991)

[GolGr88] Goldfarb, D., Grigoriadis, M.D.: A computational comparison of the Dinic
and network simplex methods for maximum flow. Ann. Oper. Res. 13, 83–
123 (1988)

[GolHa90] Goldfarb, D., Hao, J.: A primal simplex algorithm that solves the maximum
flow problem in at most nm pivots and O(n2m) time. Math. Program. 47,
353–365 (1990)

[GolHa91] Goldfarb, D., Hao, J.: On strongly polynomial variants of the network sim-
plex algorithm for the maximum flow problem. Oper. Res. Lett. 10, 383–387
(1991)

[GolJL02] Goldfarb, D., Jin, Z., Lin, Y.: A polynomial dual simplex algorithm for the
generalized circulation problem. Math. Program. 91, 271–288 (2002)

[Gol67] Golomb, S.W.: Shift Register Sequences. Holden-Day, San Francisco (1967)
[Gol80] Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic

Press, New York (1980)
[GomHu61] Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. Soc. Ind. Appl.

Math. 9, 551–570 (1961)
[GomHu62] Gomory, R.E., Hu, T.C.: An application of generalized linear programming

to network flows. J. Soc. Ind. Appl. Math. 10, 260–283 (1962)
[GomHu64] Gomory, R.E., Hu, T.C.: Synthesis of a communication network. J. Soc.

Ind. Appl. Math. 12, 348–369 (1964)
[GonMi84] Gondran, M., Minoux, N.: Graphs and Algorithms. Wiley, New York (1984)

[Gon92] Gonzaga, C.C.: Path-following methods for linear programming. SIAM Rev.
34, 167–224 (1992)

[GouJa83] Goulden, I.P., Jackson, D.M.: Combinatorial Enumeration. Wiley, New York
(1983)

[GraHe85] Graham, R.L., Hell, P.: On the history of the minimum spanning tree prob-
lem. Ann. Hist. Comput. 7, 43–57 (1985)

References 643

[GreKl78] Greene, R.C., Kleitman, D.J.: Proof techniques in the theory of finite sets.
In: Rota, G.C. (ed.) Studies in Combinatorics, pp. 22–79. Math. Assoc.
America, Washington (1978)

[Gri88] Griggs, J.R.: Saturated chains of subsets and a random walk. J. Comb.
Theory, Ser. A 47, 262–283 (1988)

[GriRo96] Griggs, T., Rosa, A.: A tour of European soccer schedules, or testing the
popularity of GK2n. Bull. Inst. Comb. Appl. 18, 65–68 (1996)

[GriKa88] Grigoriadis, M.D., Kalantari, B.: A new class of heuristic algorithms for
weighted perfect matching. J. Assoc. Comput. Mach. 35, 769–776 (1988)

[Gro80] Grötschel, M.: On the symmetric travelling salesman problem: solution of a
120-city problem. Math. Program. Stud. 12, 61–77 (1980)

[Gro84] Grötschel, M.: Developments in combinatorial optimization. In: Jäger, W.,
Moser, J., Remmert, R. (eds.) Perspectives in Mathematics: Anniversary of
Oberwolfach 1984, pp. 249–294. Birkhäuser, Basel (1984)

[Gro85] Grötschel, M.: Operations Research I. Lecture Notes, Universität Augsburg
(1985)

[GroHo85] Grötschel, M., Holland, G.: Solving matching problems with linear program-
ming. Math. Program. 33, 243–259 (1985)

[GroHo91] Grötschel, M., Holland, O.: Solution of large-scale symmetric travelling
salesman problems. Math. Program. 51, 141–202 (1991)

[GroLS84] Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect
graphs. Ann. Discrete Math. 21, 325–356 (1984)

[GroJR91] Grötschel, M., Jünger, M., Reinelt, G.: Optimal control of plotting and
drilling machines: a case study. ZOR, Z. Oper.-Res. 35, 61–84 (1991)

[GroLS93] Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combi-
natorial Optimization, 2nd edn. Springer, Berlin (1993)

[Guc96] Guckert, M.: Anschlußoptimierung in öffentlichen Verkehrsnetzen—
Graphentheoretische Grundlagen, objektorientierte Modellierung und Im-
plementierung. Ph.D. Thesis, Universität Marburg (1996)

[Gul80] Guldan, F.: Maximization of distances of regular polygones on a circle. Appl.
Math. 25, 182–195 (1980)

[Gus87] Gusfield, D.: Three fast algorithms for four problems in stable marriage.
SIAM J. Comput. 16, 111–128 (1987)

[Gus88] Gusfield, D.: The structure of the stable roommate problem: efficient repre-
sentation and enumeration of all stable assignments. SIAM J. Comput. 17,
742–769 (1988)

[Gus90] Gusfield, D.: Very simple methods for all pairs network flow analysis. SIAM
J. Comput. 19, 143–155 (1990)

[GusIr89] Gusfield, D., Irving, R.W.: The Stable Marriage Problem. Structure and
Algorithms. The MIT Press, Cambridge (1989)

[GusNa91] Gusfield, D., Naor, D.: Efficient algorithms for generalized cut-trees. Net-
works 21, 505–520 (1991)

[GusMF87] Gusfield, D., Martel, C., Fernandez-Baca, D.: Fast algorithms for bipartite
network flow. SIAM J. Comput. 16, 237–251 (1987)

[GusPa02] Gutin, G., Punnen, A.: The Traveling Salesman Problem and Its Variations.
Kluwer, Dordrecht (2002)

[Had61] Hadley, G.: Linear Algebra. Addison-Wesley, Reading (1961)
[Had75] Hadlock, F.O.: Finding a maximum cut of a planar graph in polynomial

time. SIAM J. Comput. 4, 221–225 (1975)
[Had43] Hadwiger, H.: Über eine Klassifikation der Streckenkomplexe. Vierteljahrss-

chr. Nat.forsch. Ges. Zür. 88, 133–142 (1943)
[Haj61] Hajós, G.: Über eine Konstruktion nicht n-färbbarer Graphen. Wiss. Z.,

Martin-Luther-Univ. Halle-Wittenb., Math.-Nat.wiss. Reihe 10, 116–117
(1961)

644 References

[Hak66] Hakimi, S.L.: Recent progress and new problems in applied graph theory.
In: Proc. IEEE Region Six Annual Conf., pp. 635–643 (1966)

[HakBr68] Hakimi, S.L., Bredeson, J.G.: Graph theoretic error-correcting codes. IEEE
Trans. Inf. Theory 14, 584–591 (1968)

[HakBr69] Hakimi, S.L., Bredeson, J.G.: Ternary graph theoretic error-correcting
codes. IEEE Trans. Inf. Theory 15, 435–436 (1969)

[HakFr65] Hakimi, S.L., Frank, H.: Cut set matrices and linear codes. IEEE Trans.
Inf. Theory 11, 457–458 (1965)

[HakVa64] Hakimi, S.L., Yau, S.S.: Distance matrix of a graph and its realizability. Q.
Appl. Math. 22, 305–317 (1964)

[Hal56] Hall, M.: An algorithm for distinct representatives. Am. Math. Mon. 63,
716–717 (1956)

[Hal86] Hall, M.: Combinatorial Theory, 2nd edn. Wiley, New York (1986)
[Hal35] Hall, P.: On representatives of subsets. J. Lond. Math. Soc. 10, 26–30

(1935)
[HalVa50] Halmos, P.R., Vaughan, H.E.: The marriage problem. Am. J. Math. 72,

214–215 (1950)
[HamRu94] Hamacher, H.W., Ruhe, G.: On spanning tree problems with multiple ob-

jectives. Ann. Oper. Res. 52, 209–230 (1994)
[Har62] Harary, F.: The maximum connectivity of a graph. Proc. Natl. Acad. Sci.

USA 48, 1142–1146 (1962)
[Har69] Harary, F.: Graph Theory. Addison Wesley, Reading (1969)

[HarTu65] Harary, F., Tutte, W.T.: A dual form of Kuratowski’s theorem. Can. Math.
Bull. 8, 17–20 and 173 (1965)

[HasJo85] Hassin, R., Johnson, D.B.: An O(n log2 n) algorithm for maximum flow in
undirected planar networks. SIAM J. Comput. 14, 612–624 (1985)

[HauKo81] Hausmann, D., Korte, B.: Algorithmic versus axiomatic definitions of ma-
troids. Math. Program. Stud. 14, 98–111 (1981)

[Hea90] Heawood, P.J.: Map colour theorem. Q. J. Pure Appl. Math. 24, 332–338
(1890)

[HelKa70] Held, M., Karp, R.: The travelling salesman problem and minimum spanning
trees. Oper. Res. 18, 1138–1162 (1970)

[HelKa71] Held, M., Karp, R.: The travelling salesman problem and minimum spanning
trees II. Math. Program. 1, 6–25 (1971)

[HelWC74] Held, M., Wolfe, P., Crowder, H.P.: Validation of subgradient optimization.
Math. Program. 6, 62–88 (1974)

[HelMS93] Helman, P., Mont, B.M.E., Shapiro, H.D.: An exact characterization of
greedy structures. SIAM J. Discrete Math. 6, 274–283 (1993)

[Hel00] Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling
salesman heuristic. Eur. J. Oper. Res. 126, 106–130 (2000)

[Her67] Herz, J.C.: Cours de Théorie des Graphes. Faculté des Sciences de Lille
(1967)

[Hie73] Hierholzer, C.: Über die Möglichkeit, einen Linienzug ohne Wiederholung
und ohne Unterbrechung zu umfahren. Math. Ann. 6, 30–32 (1873)

[HilJa87] Hilton, A.J.W., Jackson, B.: A note concerning the chromatic index of multi-
graphs. J. Graph Theory 11, 267–272 (1987)

[Hit41] Hitchcock, F.L.: The distribution of a product from several sources to nu-
merous localities. J. Math. Phys. 20, 224–230 (1941)

[HoLC91] Ho, J.-M., Lee, D.T., Chang, C.-H., Wong, C.K.: Minimum diameter span-
ning trees and related problems. SIAM J. Comput. 20, 987–997 (1991)

[Hoc08] Hochbaum, D.S.: The pseudoflow algorithm: A new algorithm for the
maximum-flow problem. Oper. Res. 56, 992–1009 (2008)

[HocNS86] Hochbaum, D.S., Nishizeki, T., Shmoys, D.B.: A better than ‘best possible’
algorithm to edge color multigraphs. J. Algorithms 7, 79–104 (1986)

References 645

[Hof60] Hoffman, A.J.: Some recent applications of the theory of linear inequali-

ties to extremal combinatorial analysis. In: Bellman, R.E., Hall, M. (eds.)

Combinatorial Analysis, pp. 113–127. Am. Math. Soc., Providence (1960)

[Hof74] Hoffman, A.J.: A generalization of max flow-min cut. Math. Program. 6,

352–359 (1974)

[Hof79] Hoffman, A.J.: The role of unimodularity in applying linear inequalities to

combinatorial theorems. Ann. Discrete Math. 4, 73–84 (1979)

[HofKr56] Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhe-

dra. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Related

Systems, pp. 233–246. Princeton University Press, Princeton (1956)

[HofKu56] Hoffman, A.J., Kuhn, H.W.: On systems of distinct representatives. Ann.

Math. Stud. 38, 199–206 (1956)

[HofMa64] Hoffman, A.J., Markowitz, H.M.: A note on shortest path, assignment and

transportation problems. Nav. Res. Logist. Q. 10, 375–379 (1963)

[Hol81] Holyer, I.J.: The NP-completeness of edge-coloring. SIAM J. Comput. 10,

718–720 (1981)

[HopKa73] Hopcroft, J., Karp, R.M.: An n5/2 algorithm for maximum matching in

bipartite graphs. SIAM J. Comput. 2, 225–231 (1973)

[HopTa73] Hopcroft, J., Tarjan, R.E.: Dividing a graph into triconnected components.

SIAM J. Comput. 2, 135–158 (1973)

[HopUl79] Hopcroft, J., Ullman, J.D.: Introduction to Automata Theory, Languages

and Computation. Addison Wesley, Reading (1979)

[Hor87] Horton, J.D.: A polynomial time algorithm to find the shortest cycle basis

of a graph. SIAM J. Comput. 16, 358–366 (1987)

[Hu61] Hu, T.C.: The maximum capacity route problem. Oper. Res. 9, 898–900

(1961)

[Hu74] Hu, T.C.: Optimum communication spanning trees. SIAM J. Comput. 3,

188–195 (1974)

[HuMR82] Huang, C., Mendelsohn, E., Rosa, A.: On partially resolvable t-partitions.

Ann. Discrete Math. 12, 160–183 (1982)

[HuDi88] Hung, M.S., Divoky, J.J.: A computational study of efficient shortest path

algorithms. Comput. Oper. Res. 15, 567–576 (1988)

[Hup67] Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967)

[HwaRW92] Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. North

Holland, Amsterdam (1992)

[Ima83] Imai, H.: On the practical efficiency of various maximum flow algorithms.

J. Oper. Res. Soc. Jpn. 26, 61–82 (1983)

[ImrSZ84] Imrich, W., Simões-Pereira, J.M.S., Zamfirescu, C.M.: On optimal embed-

dings of metrics in graphs. J. Comb. Theory, Ser. B 36, 1–15 (1984)

[Irn08] Irnich, S.: Solution of real-world postman problems. Eur. J. Oper. Res. 190,

52–67 (2008)

[Irv85] Irving, R.W.: An efficient algorithm for the ‘stable roommates’ problem.

J. Algorithms 6, 577–595 (1985)

[IrvLe86] Irving, R.W., Leather, P.: The complexity of counting stable marriages.

SIAM J. Comput. 15, 655–667 (1986)

[IrvLG87] Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the ‘opti-

mal’ stable marriage. J. Assoc. Comput. Mach. 34, 532–543 (1987)

[ItaRo78] Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput.

7, 413–423 (1978)

[ItaSh79] Itai, A., Shiloach, Y.: Maximum flow in planar networks. SIAM J. Comput.

8, 135–150 (1979)

[ItaRT78] Itai, A., Rodeh, M., Tanimota, S.L.: Some matching problems in bipartite

graphs. J. Assoc. Comput. Mach. 25, 517–525 (1978)

646 References

[ItaPS82] Itai, A., Perl, Y., Shiloach, Y.: The complexity of finding maximum disjoint

paths with length constraints. Networks 12, 277–286 (1982)

[Jar30] Jarńık, V.: O jistém problému minimálńım. Acta Soc. Sci. Nat. Morav. 6,

57–63 (1930)

[JarKR93] Jarrah, A.I.Z., Yu, G., Krishnamurthy, N., Rakshit, A.: A decision support

framework for airline flight cancellations and delays. Transp. Sci. 27, 266–

280 (1993)

[Jel03] Jelliss, G.: Knight’s Tour Notes (2003). http://www.ktn.freeuk.com/

index.htm

[Jen76] Jenkyns, T.A.: The efficacy of the ‘greedy’ algorithm. In: Proc. 7th South-

eastern Conf. Combinatorics, Graph Theory and Computing, pp. 341–350

(1976)

[JenTo95] Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley, New York (1995)

[JenWi85] Jensen, K., Wirth, N.: PASCAL User Manual and Report, 3rd edn. Springer,

New York (1985)

[Joh75] Johnson, D.B.: Priority queues with update and minimum spanning trees.

Inf. Process. Lett. 4, 53–57 (1975)

[JohMcG93] Johnson, D.S., McGeoch, C.C. (eds.): Network Flows and Matching. Amer-

ican Mathematical Society, Providence (1993)

[JohVe82] Johnson, D.S., Venkatesan, S.M.: Using divide and conquer to find flows

in directed planar networks in O(n3/2 logn) time. In: Proc. 20th Allerton

Conf. on Communication, Control and Computing, pp. 898–905. Univ. of

Illinois, Urbana (1982)

[JohLR78] Johnson, D.S., Lenstra, J.K., Rinnooy Kan, A.H.G.: The complexity of the

network design problem. Networks 8, 279–285 (1978)

[Jun79a] Jungnickel, D.: A construction of group divisible designs. J. Stat. Plan.

Inference 3, 273–278 (1979)

[Jun79b] Jungnickel, D.: Die Methode der Hilfsmatrizen. In: Tölke, J., Wills, J.M.

(eds.) Contributions to Geometry, pp. 388–394. Birkhäuser, Basel (1979)

[Jun86] Jungnickel, D.: Transversaltheorie: Ein Überblick. Bayreuth. Math. Schr.

21, 122–155 (1986)

[Jun93] Jungnickel, D.: Finite Fields. B.I. Wissenschaftsverlag, Mannheim (1993)

[JunLe88] Jungnickel, D., Leclerc, M.: A class of lattices. Ars Comb. 26, 243–248

(1988)

[JunLe89] Jungnickel, D., Leclerc, M.: The 2–matching lattice of a graph. J. Comb.

Theory, Ser. B 46, 246–248 (1989)

[JunLe87] Jungnickel, D., Lenz, H.: Minimal linear spaces. J. Comb. Theory, Ser. A

44, 229–240 (1987)

[JunVa95] Jungnickel, D., Vanstone, S.A.: An application of coding theory to a problem

in graphical enumeration. Arch. Math. 65, 461–464 (1995)

[JunVa96] Jungnickel, D., Vanstone, S.A.: Graphical codes—a tutorial. Bull. Inst.

Comb. Appl. 18, 45–64 (1996)

[JunVa97] Jungnickel, D., Vanstone, S.A.: Graphical codes revisited. IEEE Trans. Inf.

Theory 43, 136–146 (1997)

[JunVa99a] Jungnickel, D., Vanstone, S.A.: Ternary graphical codes. J. Comb. Math.

Comb. Comput. 29, 17–31 (1999)

[JunVa99b] Jungnickel, D., Vanstone, S.A.: q-ary graphical codes. Discrete Math.

208/209, 375–386 (1999)

[KabYDN08] Kabadi, S.N., Yan, J., Du, D., Nair, K.P.K.: Integer exact network synthesis

problem. SIAM J. Discrete Math. 23, 136–154 (2008)

[Kah62] Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5, 558–

562 (1962)

[Kal60] Kalaba, R.: On some communication network problems. In: Bellman, R.E.,

http://www.ktn.freeuk.com/index.htm
http://www.ktn.freeuk.com/index.htm

References 647

Hall, M. (eds.) Combinatorial Analysis, pp. 261–280. Am. Math. Soc., Prov-
idence (1960)

[Kar99] Karger, D.R.: Using random sampling to find maximum flows in uncapac-
itated undirected graphs. In: Proc. 29th. ACM Symp. on Theory of Com-
puting, pp. 240–249. Assoc. Comput. Mach., New York (1999)

[Kar84] Karmarkar, N.: A new polynomial-time algorithm for linear programming.
Combinatorica 4, 373–396 (1984)

[Kar72] Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103.
Plenum Press, New York (1972)

[Kar75] Karp, R.M.: On the computational complexity of combinatorial problems.
Networks 5, 45–68 (1975)

[Kar78] Karp, R.M.: A characterization of the minimum cycle mean in a digraph.
Discrete Math. 23, 309–311 (1978)

[Kar74] Karzanov, A.V.: Determining the maximal flow in a network with the
method of preflows. Sov. Math. Dokl. 15, 434–437 (1974)

[Kas67] Kasteleyn, P.W.: Graph theory and crystal physics. In: Harary, F. (ed.)
Graph Theory and Theoretical Physics, pp. 43–110. Academic Press, New
York (1967)

[KawKR12] Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in
quadratic time. J. Comb. Theory, Ser. B 102, 424–435 (2012)

[KayCh65] Kay, D.C., Chartrand, G.: A characterization of certain Ptolemaic graphs.
Can. J. Math. 17, 342–346 (1965)

[Kem79] Kempe, A.B.: On the geographical problem of the four colours. Am. J. Math.
2, 193–200 (1879)

[Kha79] Khachiyan, L.G.: A polynomial algorithm in linear programming. Sov.
Math. Dokl. 20, 191–194 (1979)

[Khu12] Khuller, S.: Design and Analysis of Algorithms: Course Notes. Dept. of
Computer Science, University of Maryland

[KinRT94] King, V., Rao, S., Tarjan, R.: A faster deterministic maximum flow algo-
rithm. J. Algorithms 17, 447–474 (1994)

[Kirh47] Kirchhoff, G.: Über die Auflösungen der Gleichungen, auf die man bei der
Untersuchung der Verteilung galvanischer Ströme geführt wird. Ann. Phys.
Chem. 72, 497–508 (1847)

[Kir47] Kirkman, T.P.: On a problem in combinatorics. Camb. Dublin Math. J. 2,
191–204 (1847)

[Kir50] Kirkman, T.P.: Query VI. Lady’s Gentlem. Diary 147, 48 (1850)
[Kle67] Klein, M.: A primal method for minimal cost flows, with applications to the

assignment and transportation problems. Manag. Sci. 14, 205–220 (1967)
[KleWe91] Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM J.

Discrete Math. 4, 99–106 (1991)
[Knu67] Knuth, D.E.: Oriented subtrees of an arc digraph. J. Comb. Theory 3, 309–

314 (1967)
[Knu81] Knuth, D.E.: A permanent inequality. Am. Math. Mon. 88, 731–740 (1981)

[KocSt93] Kocay, W., Stone, D.: Balanced network flows. Bull. Inst. Comb. Appl. 7,
17–32 (1993)

[KocSt95] Kocay, W., Stone, D.: An algorithm for balanced flows. J. Comb. Math.
Comb. Comput. 19, 3–31 (1995)

[Koe16] König, D.: Über Graphen und ihre Anwendungen auf Determinantentheorie
und Mengenlehre. Math. Ann. 77, 453–465 (1916)

[Koe31] König, D.: Graphen und Matrizen. Mat. Fiz. Lapok 38, 116–119 (1931)
(Hungarian with a summary in German)

[KorHa78] Korte, B., Hausmann, D.: An analysis of the greedy heuristic for indepen-
dence systems. Ann. Discrete Math. 2, 65–74 (1978)

648 References

[KorLo81] Korte, B., Lovász, L.: Mathematical structures underlying greedy algo-

rithms. In: Gécseg, F. (ed.) Fundamentals of Computation Theory, pp. 205–

209. Springer, Berlin (1981)

[KorMo89] Korte, N., Möhring, R.H.: An incremental linear-time algorithm for recog-

nizing interval graphs. SIAM J. Comput. 18, 68–81 (1989)

[KorVy12] Korte, B., Vygen, J.: Combinatorial Optimization. Theory and Algorithms,

5th edn. Springer, Berlin (2012)

[KorLP90] Korte, B., Lovász, L., Prömel, H.J., Schrijver, A. (eds.): Paths, Flows and

VLSI-Layout. Springer, Berlin (1990)

[KorPS90] Korte, B., Prömel, H.J., Steger, A.: Steiner trees in VLSI-Layout. In: Korte,

B., Lovász, L., Prömel, H.J., Schrijver, A. (eds.) Paths, Flows and VLSI-

layout, pp. 185–214. Springer, Berlin (1990)

[KorLS91] Korte, B., Lovász, L., Schrader, R.: Greedoids. Springer, Berlin (1991)

[Kot00] Kotlov, A.: Short proof of the Gallai-Edmonds structure theorem (2000).

arXiv:math/0011204v1

[Kra07] Kravitz, D.: Two comments on minimum spanning trees. Bull. Inst. Comb.

Appl. 49, 7–10 (2007)

[Kri75] Krishnamoorthy, M.S.: An NP-hard problem in bipartite graphs. SIGACT

News 7(1), 26 (1975)

[Kru56] Kruskal, J.B.: On the shortest spanning subtree of a graph and the travelling

salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)

[Kuh55] Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res.

Logist. Q. 2, 83–97 (1955)

[Kuh56] Kuhn, H.W.: Variants of the Hungarian method for the assignment problem.

Nav. Res. Logist. Q. 3, 253–258 (1956)

[KuiSa86] Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Springer, Berlin

(1986)

[Kur30] Kuratowski, K.: Sur le problème des courbes gauches en topologie. Fundam.

Math. 15, 271–283 (1930)

[Kwa62] Kwan, M.-K.: Graphic programming using odd and even points. Chin. Math.

1, 273–277 (1962)

[Lam87] Lamken, E.: A note on partitioned balanced tournament designs. Ars Comb.

24, 5–16 (1987)

[LamVa87] Lamken, E., Vanstone, S.A.: The existence of partitioned balanced tourna-

ment designs. Ann. Discrete Math. 34, 339–352 (1987)

[LamVa89] Lamken, E., Vanstone, S.A.: Balanced tournament designs and related top-

ics. Discrete Math. 77, 159–176 (1989)

[Las72] Las Vergnas, M.: Problèmes de couplages et problèmes hamiltoniens en

théorie des graphes. Dissertation, Universitè de Paris VI (1972)

[Law75] Lawler, E.L.: Matroid intersection algorithms. Math. Program. 9, 31–56

(1975)

[Law76] Lawler, E.L.: Combinatorial Optimization: Networks and Matriods. Holt,

Rinehart and Winston, New York (1976)

[LawLRS85] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.):

The Travelling Salesman Problem: A Guided Tour of Combinatorial Opti-

mization. Wiley, New York (1985)

[LawLRS93] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequenc-

ing and scheduling: algorithms and complexity. In: Graves, S.C., Rinnooy

Kan, A.H.G., Zipkin, P.H. (eds.) Logistics of Production and Inventory, pp.

445–522. Elsevier, Amsterdam (1993)

[Lec86] Leclerc, M.: Polynomial time algorithms for exact matching problems. M.

Math. thesis, University of Waterloo, Dept. of Combinatorics and Optimiza-

tion (1986)

http://arxiv.org/abs/arXiv:math/0011204v1

References 649

[Lec87] Leclerc, M.: Algorithmen für kombinatorische Optimierungsprobleme mit
Partitionsbeschränkungen. Dissertation, Universität Köln (1987)

[LecRe89] Leclerc, M., Rendl, F.: Constrained spanning trees and the travelling sales-
man problem. Eur. J. Oper. Res. 39, 96–102 (1989)

[Leh64] Lehman, A.: A solution of the Shannon switching game. SIAM J. Appl.
Math. 12, 687–725 (1964)

[Lem88] Lemke, P.: The Maximum-Leaf Spanning Tree Problem in Cubic Graphs
is NP-Complete. IMA Publication, vol. 428. University of Minnesota, Min-
neapolis (1988)

[Len90] Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wi-
ley, New York (1990)

[LenRi75] Lenstra, J.K., Rinnooy Kan, A.H.G.: Some simple applications of the trav-
elling salesman problem. Oper. Res. Q. 26, 717–733 (1975)

[LesPP84] Lesk, M., Plummer, M.D., Pulleyblank, W.R.: Equi-matchable graphs. In:
Bollobás, B. (ed.) Graph Theory and Combinatorics, pp. 239–254. Academic
Press, New York (1984)

[LesOe86] Lesniak, L., Oellermann, O.R.: An Eulerian exposition. J. Graph Theory
10, 277–297 (1986)

[LewLL86] Lewandowski, J.L., Liu, C.L., Liu, J.W.S.: An algorithmic proof of a gener-
alization of the Birkhoff-Von Neumann theorem. J. Algorithms 7, 323–330
(1986)

[LewPa81] Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation.
Prentice Hall, Englewood Cliffs (1981)

[LidNi94] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applica-
tions, revised edn. Cambridge University Press, Cambridge (1994)

[Lin65] Lin, S.: Computer solutions of the travelling salesman problem. Bell Syst.
Tech. J. 44, 2245–2269 (1965)

[LinKe73] Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the travelling
salesman problem. Oper. Res. 31, 498–516 (1973)

[LinLW88] Linial, N., Lovász, L., Widgerson, A.: Rubber bands, convex embeddings
and graph connectivity. Combinatorica 8, 91–102 (1988)

[LitMSK63] Little, J.D.C., Murty, K.G., Sweeney, D.W., Karel, C.: An algorithm for
the travelling salesman problem. Oper. Res. 11, 972–989 (1963)

[Lom85] Lomonosov, M.V.: Combinatorial approaches to multiflow problems. Dis-
crete Appl. Math. 11, 1–93 (1985)

[Lov70a] Lovász, L.: Problem 11. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J.
(eds.) Combinatorial Structures and Their Applications, p. 497. Gordon and
Breach, New York (1970)

[Lov70b] Lovász, L.: Subgraphs with prescribed valencies. J. Comb. Theory 8, 391–
416 (1970)

[Lov72] Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete
Math. 2, 253–267 (1972)

[Lov79] Lovász, L.: Graph theory and integer programming. Ann. Discrete Math. 4,
141–158 (1979)

[Lov85] Lovász, L.: Some algorithmic problems on lattices. In: Lovász, L., Smerédi,
E. (eds.) Theory of Algorithms, pp. 323–337. North Holland, Amsterdam
(1985)

[Lov87] Lovász, L.: The matching structure and the matching lattice. J. Comb.
Theory, Ser. B 43, 187–222 (1987)

[LovPl86] Lovász, L., Plummer, M.D.: Matching Theory. North Holland, Amsterdam
(1986)

[Luc82] Lucas, E.: Récréations Mathématiques. Paris (1882)
[Lue82] Lüneburg, H.: Programmbeispiele aus Algebra, Zahlentheorie und Kombi-

natorik. Report, Universität Kaiserslautern (1982)

650 References

[Lue89] Lüneburg, H.: Tools and Fundamental Constructions of Combinatorial
Mathematics. Bibliographisches Institut, Mannheim (1989)

[Lyn75] Lynch, J.F.: The equivalence of theorem proving and the interconnection
problem. SIGDA Newsl. 5, 31–65 (1975)

[Ma94] Ma, S.L.: A survey of partial difference sets. Des. Codes Cryptogr. 4, 221–
261 (1994)

[Mac87] Maculan, N.: The Steiner problem in graphs. Ann. Discrete Math. 31, 185–
212 (1987)

[MacSl77] MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes.
North Holland, Amsterdam (1977)

[MagWo94] Magnanti, T.L., Wong, R.T.: Network design and transportation planning:
models and algorithms. Transp. Sci. 18, 1–55 (1984)

[MalKM78] Malhotra, V.M., Kumar, M.P., Mahaswari, S.N.: An O(|V |3) algorithm for
finding maximum flows in networks. Inf. Process. Lett. 7, 277–278 (1978)

[ManSc89] Mansour, Y., Schieber, B.: Finding the edge connectivity of directed graphs.
J. Algorithms 10, 76–85 (1989)

[MarMi65] Marcus, M., Minc, H.: Diagonal products in doubly stochastic matrices.
Q. J. Math. 16, 32–34 (1965)

[MaRe59] Marcus, M., Ree, R.: Diagonals of doubly stochastic matrices. Q. J. Math.
10, 296–302 (1959)

[Mar92] Martin, A.: Packen Von Steinerbäumen: Polyedrische Studien und Anwen-
dung. Dissertation, Technische Universität Berlin (1992)

[MarOF91] Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the
traveling salesman problem. Complex Syst. 5, 299–326 (1991)

[Mat95] Matsui, T.: The minimum spanning tree problem on a planar graph. Discrete
Appl. Math. 58, 91–94 (1995)

[Mat87] Matula, D.W.: Determining edge connectivity in O(mn). In: Proc. 28th
Symp. on Foundations of Computer Science, pp. 249–251 (1987)

[McEl87] McEliece, R.J.: Finite Fields for Computer Scientists and Engineers. Kluwer,
Boston (1987)

[Meh84] Mehlhorn, K.: Data Structures and Algorithms. Springer, Berlin (1984)
[MehSa08] Mehlhorn, K., Sanders, P.: Algorithms and Data Structures. The Basic Tool-

box. Springer, Berlin (2008)
[MehSc86] Mehlhorn, K., Schmidt, B.H.: On BF-orderable graphs. Discrete Appl.

Math. 15, 315–327 (1986)
[MenDu58] Mendelsohn, N.S., Dulmage, A.L.: Some generalizations of the problem of

distinct representatives. Can. J. Math. 10, 230–241 (1958)
[MenRo85] Mendelsohn, E., Rosa, A.: One-factorizations of the complete graph—a sur-

vey. J. Graph Theory 9, 43–65 (1985)
[Men74] Meng, D.H.C.: Matchings and coverings for graphs. Ph.D. thesis, Michigan

State University, East Lansing, Mich. (1974)
[Men27] Menger, K.: Zur allgemeinen Kurventheorie. Fundam. Math. 10, 96–115

(1927)
[MicVa80] Micali, S., Vazirani, V.V.: An O(

√
|V ||E||) algorithm for finding maximum

matchings in general graphs. In: Proc. 21st IEEE Symp. on Foundations of
Computer Science, pp. 17–27 (1980)

[Mic92] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer, Berlin (1992)

[MicAK07] Michiels, W., Aarts, E., Korst, J.: Theoretical Aspects of Local Search.
Springer, Berlin (2007)

[Mil10] Miller, G.A.: On a method due to Galois. Q. J. Pure Appl. Math. 41, 382–
384 (1910)

[Min78] Minc, H.: Permanents. Addison-Wesley, Reading (1978)
[Min88] Minc, H.: Nonnegative Matrices. Wiley, New York (1988)

References 651

[Min60] Minty, G.J.: Monotone networks. Proc. R. Soc. Lond. A 257, 194–212
(1960)

[Min66] Minty, G.J.: On the axiomatic foundations of the theories of directed linear
graphs, electrical networks and network programming. J. Math. Mech. 15,
485–520 (1966)

[MirRo84] Mirkin, B.G., Rodin, N.S.: Genes and Graphs. Springer, New York (1984)
[Mir69a] Mirsky, L.: Hall’s criterion as a ‘self-refining’ result. Monatshefte Math. 73,

139–146 (1969)
[Mir69b] Mirsky, L.: Transversal theory and the study of abstract independence.

J. Math. Anal. Appl. 25, 209–217 (1969)
[Mir71a] Mirsky, L.: A dual of Dilworth’s decomposition theorem. Am. Math. Mon.

78, 876–877 (1971)
[Mir71b] Mirsky, L.: Transversal Theory. Academic Press, New York (1971)

[MirPe67] Mirsky, L., Perfect, H.: Applications of the notion of independence to prob-
lems of combinatorial analysis. J. Comb. Theory 2, 327–357 (1967)

[Mit99] Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivi-
sions: A simple polynomial-time approximation scheme for Euclidean TSP,
k-MST, and related problems. SIAM J. Comput. 28, 1298–1309 (1999)

[MohPo93] Mohar, B., Poljak, S.: Eigenvalues in combinatorial optimization. In:
Brualdi, R., Friedland, S., Klee, V. (eds.) Combinatorial and Graph-
Theoretic Problems in Linear Algebra, pp. 107–151. Springer, New York
(1993)

[MohTh01] Mohar, B., Thomassen, C.: Graphs on Surfaces. John Hopkins University
Press, Baltimore (2001)

[Mon83] Monien, B.: The complexity of determining a shortest cycle of even length.
Computing 31, 355–369 (1983)

[Moo59] Moore, E.F.: The shortest path through a maze. In: Proc. Int. Symp. on
Theory of Switching Part II, pp. 285–292. Harvard University Press, Cam-
bridge (1959)

[MuhGK81] Mühlenbein, H., Gorges-Schleuter, M., Krämer, O.: Evolution algorithms in
combinatorial optimization. Parallel Comput. 7, 65–85 (1988)

[Mui03] Muirhead, A.F.: Some methods applicable to identities and inequalities of
symmetric algebraic functions of n letters. Proc. Edinb. Math. Soc. 21,
144–157 (1903)

[Mul66] Müller-Merbach, H.: Die Anwendung des Gozinto-Graphs zur Berechnung
des Roh- und Zwischenproduktbedarfs in chemischen Betrieben. Ablauf-
Plan.forsch. 7, 189–198 (1966)

[Mul69] Müller-Merbach, H.: Die Inversion von Gozinto-Matrizen mit einem
graphen-orientierten Verfahren. Elektron. Datenverarb. 11, 310–314 (1969)

[Mul73] Müller-Merbach, H.: Operations Research, 3rd edn. Franz Vahlen, München
(1973)

[Nad90] Naddef, D.: Handles and teeth in the symmetric travelling salesman poly-
tope. In: Cook, W., Seymour, P.D. (eds.) Polyhedral Combinatorics, pp.
61–74. Am. Math. Soc., Providence (1990)

[NemWo88] Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization.
Wiley, New York (1988)

[NijWi78] Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms, 2nd edn. Academic
Press, New York (1978)

[NisCh88] Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. North
Holland, Amsterdam (1988)

[NobPi96] Nobert, Y., Picard, J.-C.: An optimal algorithm for the mixed Chinese Post-
man Problem. Networks 27, 95–108 (1996)

[NtaHa81] Ntafos, S.C., Hakimi, S.L.: On the complexity of some coding problems.
IEEE Trans. Inf. Theory 27, 794–796 (1981)

652 References

[Or76] Or, I.: Traveling salesman-type combinatorial problems and their relation

to the logistics of regional blood banking. Ph.D. thesis, Northwestern Uni-

versity, Evanston, IL (1976)

[Ore51] Ore, O.: A problem regarding the tracing of graphs. Elem. Math. 6, 49–53

(1951)

[Ore55] Ore, O.: Graphs and matching theorems. Duke Math. J. 22, 625–639 (1955)

[Ore60] Ore, O.: Note on Hamiltonian circuits. Am. Math. Mon. 67, 55 (1960)

[Orl93] Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm.

Oper. Res. 41, 338–350 (1993)

[Orl97] Orlin, J.B.: A polynomial time primal network simplex algorithm for mini-

mum cost flows. Math. Program. 78, 109–129 (1997)

[OrlAh92] Orlin, J.B., Ahuja, R.K.: New scaling algorithms for the assignment and

minimum cycle mean problems. Math. Program. 54, 41–56 (1992)

[OrlSh04] Orlin, J.B., Sharma, D.: Extended neighborhood: definition and character-

ization. Math. Program. 101, 537–559 (2004)

[OrlPT93] Orlin, J.B., Plotkin, S.A., Tardos, E.: Polynomial dual network simplex

algorithms. Math. Program. 60, 255–276 (1993)

[Ott48] Otter, R.: The number of trees. Ann. Math. 49, 583–599 (1948)

[Oxl92] Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)

[Oza25] Ozanam, J.: Récréations Mathématiques et Physiques, vol. 1. Claude

Jombert, Paris (1725)

[PadHo80] Padberg, M.W., Hong, S.: On the symmetric travelling salesman problem:

A computational study. Math. Program. Stud. 12, 78–107 (1980)

[PadRa74] Padberg, M.W., Rao, M.R.: The travelling salesman problem and a class of

polyhedra of diameter two. Math. Program. 7, 32–45 (1974)

[PadRi87] Padberg, M.W., Rinaldi, G.: Optimization of a 532-city symmetric travelling

salesman problem. Oper. Res. Lett. 6, 1–7 (1987)

[PadRi91] Padberg, M.W., Rinaldi, G.: A branch-and-cut algorithm for the resolution

of large-scale travelling salesman problems. SIAM Rev. 33, 60–100 (1991)

[PadSu91] Padberg, M.W., Sung, T.-Y.: An analytical comparison of different formu-

lations of the travelling salesman problem. Math. Program. 52, 315–357

(1991)

[Pap76] Papadimitriou, C.H.: On the complexity of edge traversing. J. Assoc. Com-

put. Mach. 23, 544–554 (1976)

[Pap78] Papadimitriou, C.H.: The adjacency relation on the traveling salesman poly-

tope is NP-complete. Math. Program. 14, 312–324 (1978)

[Pap92] Papadimitriou, C.H.: The complexity of the Lin-Kernighan heuristic for the

traveling salesman problem. SIAM J. Comp. 21, 450–465 (1992)

[Pap94] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading

(1994)

[PapSt77] Papadimitriou, C.H., Steiglitz, K.: On the complexity of local search for the

travelling salesman problem. SIAM J. Comput. 6, 76–83 (1977)

[PapSt78] Papadimitriou, C.H., Steiglitz, K.: Some examples of difficult travelling

salesman problems. Oper. Res. 26, 434–443 (1978)

[PapSt82] Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms

and Complexity. Prentice Hall, Englewood Cliffs (1982)

[PapVe06] Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling

salesman problem. Combinatorica 26, 101–120 (2006)

[PapYa82] Papadimitriou, C.H., Yannakakis, M.: The complexity of restricted spanning

tree problems. J. Assoc. Comput. Mach. 29, 285–309 (1982)

[PapYa93] Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with

distances 1 and 2. Math. Oper. Res. 18, 1–11 (1993)

[PapCo80] Pape, U., Conradt, D.: Maximales Matching in Graphen. In: Späth, H. (ed.)

References 653

Ausgewählte Operations Research Software in FORTRAN, pp. 103–114.

Oldenbourg, München (1980)

[Pel36] Peltesohn, R.: Das Turnierproblem für Spiele zu je dreien. Dissertation,

Universität Berlin (1936)

[Pet91] Petersen, J.: Die Theorie der regulären Graphen. Acta Math. 15, 193–220

(1891)

[Pet98] Petersen, J.: Sur le théorème de Tait. L’Intermédiaire Math. 5, 225–227

(1898)

[PetLo88] Peterson, P.A., Loui, M.C.: The general maximum matching algorithm of

Micali and Vazirani. Algorithmica 3, 511–533 (1988)

[Pos69] Posner, E.C.: Combinatorial structures in planetary reconnaissance. In:

Mann, H.B. (ed.) Error Correcting Codes, pp. 15–46. Wiley, New York

(1969)

[Pri57] Prim, R.C.: Shortest connection networks and some generalizations. Bell

Syst. Tech. J. 36, 1389–1401 (1957)

[Pri96] Prisner, E.: Line graphs and generalizations—a survey. Congr. Numer. 116,

193–229 (1996)

[ProSt02] Prömel, H.-J., Steger, A.: The Steiner Tree Problem. Vieweg, Braunschweig

(2002)

[Pro86] Provan, J.S.: The complexity of reliability computations in planar and

acyclic graphs. SIAM J. Comput. 15, 694–702 (1986)

[Pru18] Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Arch. Math.

Phys. (3) 27, 142–144 (1918)

[Pul83] Pulleyblank, W.R.: Polyhedral combinatorics. In: Bachem, A., Grötschel,

M., Korte, B. (eds.) Mathematical Programming: The State of the Art, pp.

312–345. Springer, Berlin (1983)

[PymPe70] Pym, J.S., Perfect, H.: Submodular functions and independence structures.

J. Math. Anal. Appl. 30, 1–31 (1970)

[Qi88] Qi, L.: Directed submodularity, ditroids and directed submodular flows.

Math. Program. 42, 579–599 (1988)

[Rad42] Rado, R.: A theorem on independence relations. Q. J. Math. 13, 83–89

(1942)

[Rad57] Rado, R.: Note on independence functions. Proc. Lond. Math. Soc. 7, 300–

320 (1957)

[RadGo91] Radzik, T., Goldberg, A.V.: Tight bounds on the number of minimum mean

cycle cancellations and related results. In: Proc. 2nd ACM—SIAM Symp.

on Discrete Algorithms, pp. 110–119 (1991)

[Ral81] Ralston, A.: A new memoryless algorithm for de Bruijn sequences. J. Algo-

rithms 2, 50–62 (1981)

[Ram68] Ramachandra Rao, A.: An extremal problem in graph theory. Isr. J. Math.

6, 261–266 (1968)

[RayWi71] Ray-Chaudhuri, D.K., Wilson, R.M.: Solution of Kirkman’s school girl prob-

lem. In: Proc. Symp. Pure Appl. Math., vol. 19, pp. 187–203. Am. Math.

Soc., Providence (1971)

[Rea62] Read, R.C.: Euler graphs on labeled nodes. Can. J. Math. 14, 482–486

(1962)

[Rec89] Recski, A.: Matroid Theory and Its Applications. Springer, Berlin (1989)

[Red34] Redéi, L.: Ein kombinatorischer Satz. Acta Univ. Szeged., Sect. Litt. 7,

39–43 (1934)

[Ree87] Rees, R.: Uniformly resolvable pairwise balanced designs with block sizes

two and three. J. Comb. Theory, Ser. A 45, 207–225 (1987)

[Rei94] Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Ap-

plications. Springer, Berlin (1994)

654 References

[ReiTa81] Reingold, E.M., Tarjan, R.E.: On a greedy heuristic for complete matching.
SIAM J. Comput. 10, 676–681 (1981)

[Ren59] Rényi, A.: Some remarks on the theory of trees. Magy. Tud. Akad. Mat.
Kut. Intéz. Közl. 4, 73–85 (1959)

[ResWi07] Restrepo, M., Williamson, D.P.: A simple GAP-canceling algorithm for the
generalized maximum flow problem. Math. Program. 118, 47–74 (2009)

[Rie91] Rieder, J.: The lattices of matroid bases and exact matroid bases. Arch.
Math. 56, 616–623 (1991)

[Riz00] Rizzi, R.: A short proof of König’s matching theorem. J. Graph Theory 33,
138–139 (2000)

[Rob39] Robbins, H.: A theorem on graphs with an application to a problem of traffic
control. Am. Math. Mon. 46, 281–283 (1939)

[RobXu88] Roberts, F.S., Xu, Y.: On the optimal strongly connected orientations of city
street graphs I: Large grids. SIAM J. Discrete Math. 1, 199–222 (1988)

[RobSe95] Robertson, N., Seymour, P.: Graph minors. XIII. The disjoint paths prob-
lem. J. Comb. Theory, Ser. B 63, 65–110 (1995)

[RobST93] Robertson, N., Seymour, P., Thomas, R.: Hadwiger’s conjecture for K6-free
graphs. Combinatorica 13, 279–361 (1993)

[RobSST97] Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: The four-colour
theorem. J. Comb. Theory, Ser. B 70, 2–44 (1997)

[Rob03a] Robinson, S.: Are medical students meeting their (best possible) match?
SIAM News 36(3), 8–9 (2003)

[Rob03b] Robinson, S.: How much can matching theory improve the lot of medical
residents? SIAM News 36(6), 4–5 (2003)

[RosSL77] Rosenkrantz, D.J., Stearns, E.A., Lewis, P.M.: An analysis of several heuris-
tics for the traveling salesman problem. SIAM J. Comput. 6, 563–581 (1977)

[Ros77] Rosenthal, A.: Computing the reliability of complex networks. SIAM J.
Appl. Math. 32, 384–393 (1977)

[Rue86] Rueppel, R.: Analysis and Design of Stream Ciphers. Springer, New York
(1986)

[Rys57] Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Can.
J. Math. 9, 371–377 (1957)

[SahGo76] Sahni, S., Gonzales, T.: P-complete approximation problems. J. Assoc.
Comput. Mach. 23, 555–565 (1976)

[Schn78] Schnorr, C.P.: An algorithm for transitive closure with linear expected time.
SIAM J. Comput. 7, 127–133 (1978)

[Schn79] Schnorr, C.P.: Bottlenecks and edge connectivity in unsymmetrical net-
works. SIAM J. Comput. 8, 265–274 (1979)

[Schr80] Schreuder, J.A.M.: Constructing timetables for sport competitions. Math.
Program. Stud. 13, 58–67 (1980)

[Schr92] Schreuder, J.A.M.: Combinatorial aspects of construction of competition
Dutch professional football leagues. Discrete Appl. Math. 35, 301–312
(1992)

[Schr83a] Schrijver, A.: Min-max results in combinatorial optimization. In: Bachem,
A., Grötschel, M., Korte, B. (eds.) Mathematical Programming: The State
of the Art, pp. 439–500. Springer, Berlin (1983)

[Schr83b] Schrijver, A.: Short proofs on the matching polyhedron. J. Comb. Theory,
Ser. B 34, 104–108 (1983)

[Schr84] Schrijver, A.: Total dual integrality from directed graphs, crossing families,
and sub- and supermodular functions. In: Pulleyblank, W.R. (ed.) Progress
in Combinatorial Optimization, pp. 315–361. Academic Press, San Diego
(1984)

[Schr86] Schrijver, A.: Theory of Integer and Linear Programming. Wiley, New York
(1986)

References 655

[Schr03] Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency.
Springer, Berlin (2003) (in 3 volumes)

[Schw91] Schwenk, A.J.: Which rectangular chessboards have a knight’s tour? Math.
Mag. 64, 325–332 (1991)

[SchwW78] Schwenk, A.J., Wilson, R.: On the eigenvalues of a graph. In: Beineke, L.,
Wilson, R. (eds.) Selected Topics in Graph Theory, pp. 307–336. Academic
Press, London (1978)

[Sey79] Seymour, P.: Sums of circuits. In: Bondy, J.A., Murty, U.S.R. (eds.) Graph
Theory and Related Topics, pp. 341–355. Academic Press, New York (1979)

[Sha48a] Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech.
J. 27, 379–423 (1948) (Part I)

[Sha48b] Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech.
J. 27, 623–656 (1948) (Part II)

[Sha49a] Shannon, C.E.: A theorem on colouring lines of a network. J. Math. Phys.
28, 148–151 (1949)

[Sha49b] Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech.
J. 28, 656–715 (1949)

[Sha79] Shapiro, J.F.: A survey of Langrangian techniques for discrete optimization.
Ann. Discrete Math. 5, 113–138 (1979)

[Shi75] Shimbel, A.: Structure in communication nets. In: Proc. Symp. Information
Networks, pp. 199–203. Polytechnic Institute of Brooklyn, New York (1955)

[ShmWi90] Shmoys, D.B., Williamson, D.P.: Analyzing the Held-Karp-TSP bound:
A monotonicity property with application. Inf. Process. Lett. 35, 281–285
(1990)

[Sho85] Shor, N.Z.: Minimization Methods for Non-Differentiable Functions.
Springer, Berlin (1985)

[SieHo91] Sierksma, G., Hoogeveen, H.: Seven criteria for integer sequences being
graphic. J. Graph Theory 15, 223–231 (1991)

[SikTu89] Siklóssy, L., Tulp, E.: Trains, an active time-table searcher. In: ECAI’89,
pp. 170–175 (1989)

[Sim88] Simões-Pereira, J.M.S.: An optimality criterion for graph embeddings of
metrics. SIAM J. Discrete Math. 1, 223–229 (1988)

[Sip06] Sipser, K.: Introduction to the Theory of Computation, 2nd edn. Thompson,
Boston (2006)

[Sle80] Sleator, D.D.: An O(mn logn) algorithm for maximum network flow. Ph.D.
thesis, Stanford University (1980)

[SlaTa83] Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput.
Syst. Sci. 26, 362–391 (1983)

[Spe28] Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z.
27, 544–548 (1928)

[Spi85] Spinrad, J.: On comparability and permutation graphs. SIAM J. Comput.
14, 658–670 (1985)

[SriCh92] Sridhar, S., Chandrasekaran, R.: Integer solution to synthesis of communi-
cation networks. Math. Oper. Res. 17, 581–585 (1992)

[Sta86] Stanley, R.P.: Enumerative Combinatorics, vol. 1. Wadsworth &
Brooks/Cole, Monterey (1986)

[Sta99] Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University
Press, Cambridge (1999)

[SteLe80] Stern, G., Lenz, H.: Steiner triple systems with given subspaces: another
proof of the Doyen-Wilson theorem. Boll. UMI 17, 109–114 (1980)

[Sto85] Stong, R.A.: On 1-factorizability of Cayley graphs. J. Comb. Theory, Ser.
B 39, 298–307 (1985)

[Str88] Strang, G.: Linear Algebra and Its Applications, 3rd edn. Harcourt Brace
Jovanovich, San Diego (1993)

656 References

[Sum79] Sumner, D.P.: Randomly matchable graphs. J. Graph Theory 3, 183–186
(1979)

[Suz82] Suzuki, M.: Group Theory I. Springer, Berlin (1982)
[SysDK83] Syslo, M.M., Deo, N., Kowalik, J.S.: Discrete Optimization Algorithms.

Prentice Hall, Englewood Cliffs (1983)
[Sre98] Škrekovski, R.: Choosability of K5-minor-free graphs. Discrete Math. 190,

223–226 (1998)
[Tah92] Taha, H.A.: Operations Research, 5th edn. Macmillan, New York (1992)

[Tak90a] Takács, L.: On Cayley’s formula for counting forests. J. Comb. Theory, Ser.
A 53, 321–323 (1990)

[Tak90b] Takács, L.: On the number of distinct forests. SIAM J. Discrete Math. 3,
574–581 (1990)

[Tak92] Takaoka, T.: A new upper bound on the complexity of the all pairs shortest
path problem. Inf. Process. Lett. 43, 195–199 (1992)

[Tar85] Tardos, E.: A strongly polynomial minimum cost circulation algorithm.
Combinatorica 5, 247–255 (1985)

[Tar86] Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear
programs. Oper. Res. 34, 250–256 (1986)

[Tar72] Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Com-
put. 1, 146–160 (1972)

[Tar77] Tarjan, R.E.: Finding optimum branchings. Networks 7, 25–35 (1977)
[Tar83] Tarjan, R.E.: In: Data Structures and Network Algorithms. Soc. Ind. Appl.

Math., Philadelphia (1983)
[Tar84] Tarjan, R.E.: A simple version of Karzanov’s blocking flow algorithm. Oper.

Res. Lett. 2, 265–268 (1984)
[Tar97] Tarjan, R.E.: Dynamic trees as search trees via Euler tours applied to the

network simplex algorithm. Math. Program. 78, 169–177 (1997)
[Tar95] Tarry, G.: Le problème des labyrinthes. Nouv. Ann. Math. 14, 187 (1895)
[Ter96] Terlaky, T.: Interior Point Methods of Mathematical Programming. Kluwer,

Dordrecht (1996)
[Tho98] Thomas, R.: An update on the four-color theorem. Not. Am. Math. Soc.

45, 848–859 (1998)
[Tho81] Thomassen, C.: Kuratowski’s theorem. J. Graph Theory 5, 225–241 (1981)
[Tho94] Thomassen, C.: Every planar graph is 5-choosable. J. Comb. Theory, Ser.

B 62, 180–181 (1994)
[Tof96] Toft, B.: A survey of Hadwiger’s conjecture. Congr. Numer. 115, 249–283

(1996)
[TriHw90] Trietsch, D., Hwang, F.: An improved algorithm for Steiner trees. SIAM J.

Appl. Math. 50, 244–264 (1990)
[Tur36] Turing, A.M.: On computable numbers, with an application to the Entschei-

dungsproblem. Proc. Lond. Math. Soc. 42, 230–265 (1936)
[Tur88] Turner, J.S.: Almost all k-colorable graphs are easy to color. J. Algorithms

9, 63–82 (1988)
[Tut47] Tutte, W.T.: The factorization of linear graphs. J. Lond. Math. Soc. 22,

107–111 (1947)
[Tut48] Tutte, W.T.: The dissection of equilateral triangles into equilateral triangles.

Proc. Camb. Philos. Soc. 44, 203–217 (1948)
[Tut52] Tutte, W.T.: The factors of graphs. Can. J. Math. 4, 314–328 (1952)
[Tut54] Tutte, W.T.: A short proof of the factor theorem for finite graphs. Can. J.

Math. 6, 347–352 (1952)
[Tut67] Tutte, W.T.: Antisymmetrical digraphs. Can. J. Math. 19, 1101–1117

(1967)
[Tut71] Tutte, W.T.: Introduction to the Theory of Matroids. Elsevier, New York

(1971)

References 657

[Tut84] Tutte, W.T.: Graph Theory. Cambridge University Press, Cambridge
(1984)

[Vai89] Vaidya, P.M.: Geometry helps in matching. SIAM J. Comput. 19, 1201–
1225 (1989)

[Val79a] Valiant, L.G.: The complexity of computing the permanent. Theor. Comput.
Sci. 8, 189–201 (1979)

[Val79b] Valiant, L.G.: The complexity of enumeration and reliability problems.
SIAM J. Comput. 8, 410–421 (1979)

[vandW26] van der Waerden, B.L.: Aufgabe 45. Jahresber. DMV 117 (1926)
[vandW27] van der Waerden, B.L.: Ein Satz über Klasseneinteilungen von endlichen

Mengen. Abh. Math. Semin. Univ. Hamb. 5, 185–188 (1927)
[vandW37] van der Waerden, B.L.: Moderne Algebra, 2nd edn. Springer, Berlin (1937)
[vandW49] van der Waerden, B.L.: Modern Algebra, Vol. I. Frederick Ungar, New York

(1949) (translated from the 2nd revised German edition by Fred Blum, with
revisions and additions by the author)

[vanLi74] van Lint, J.H.: Combinatorial Theory Seminar Eindhoven University of
Technology. Springer, Berlin (1974)

[vanLi99] van Lint, J.H.: Introduction to Coding Theory, 3rd edn. Springer, Berlin
(1999)

[vanLiWi01] van Lint, J.H., Wilson, R.M.: A Course in Combinatorics, 2nd edn. Cam-
bridge University Press, Cambridge (2001)

[VanOo89] Vanstone, S.A., van Oorschot, P.C.: An Introduction to Error Correcting
Codes with Applications. Kluwer, Boston (1989)

[Vaz94] Vazirani, V.V.: A theory of alternating paths and blossoms for proving cor-
rectness of the O(V 1/2E) general graph matching algorithm. Combinatorica
14, 71–109 (1994)

[Veg11] Végh, L.: Augmenting undirected node-connectivity by one. SIAM J. Dis-
crete Math. 25, 695–718 (2011)

[Viz64] Vizing, V.G.: An estimate of the chromatic class of a p-graph. Diskretn.
Anal. 3, 25–30 (1964) (in Russian)

[Voi93] Voigt, M.: List colourings of planar graphs. Discrete Math. 120, 215–219
(1993)

[VolJo82] Volgenant, T., Jonker, R.: A branch and bound algorithm for the symmetric
travelling salesman problem based on the 1-tree relaxation. Eur. J. Oper.
Res. 9, 83–89 (1982)

[Vol04] Volkmann, L.: The Petersen graph is not 1-factorable: postscript to ‘The
Petersen graph is not 3-edge-colorable—a new proof’. Discrete Math. 287,
193–194 (2004)

[Vos92] Voß, S.: Steiner’s problem in graphs: heuristic methods. Discrete Appl.
Math. 40, 45–72 (1992)

[Wag36] Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresber. DMV 46,
26–32 (1936)

[Wag37] Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114,
170–190 (1937)

[Wag60] Wagner, K.: Bemerkungen zu Hadwigers Vermutung. Math. Ann. 141, 433–
451 (1960)

[Wal92] Wallis, W.D.: One-factorizations of the complete graph. In: Dinitz, J.H.,
Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of Surveys,
pp. 593–639. Wiley, New York (1992)

[Wal97] Wallis, W.D.: One-Factorizations. Kluwer Academic, Dordrecht (1997)
[War62] Warshall, S.: A theorem on Boolean matrices. J. Assoc. Comput. Mach. 9,

11–12 (1962)
[WatNa87] Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems.

J. Comput. Syst. Sci. 35, 96–144 (1987)

658 References

[Wei74] Weintraub, A.: A primal algorithm to solve network flow problems with
convex costs. Manag. Sci. 21, 87–97 (1974)

[Wel68] Welsh, D.J.A.: Kruskal’s theorem for matroids. Proc. Camb. Philos. Soc.
64, 3–4 (1968)

[Wel76] Welsh, D.J.A.: Matroid Theory. Academic Press, New York (1976)
[Wes11] West, D.B.: A short proof of the Berge-Tutte formula and the Gallai-

Edmonds structure theorem. Eur. J. Comb. 32, 674–676 (2011)
[Whi86] White, N. (ed.): Theory of Matroids. Cambridge University Press, Cam-

bridge (1986)
[Whi87] White, N. (ed.): Combinatorial Geometries. Cambridge University Press,

Cambridge (1987)
[Whi92] White, N. (ed.): Matroid Applications. Cambridge University Press, Cam-

bridge (1992)
[Whi32a] Whitney, H.: Congruent graphs and the connectivity of graphs. Am. J.

Math. 54, 150–168 (1932)
[Whi32b] Whitney, H.: Non-separable and planar graphs. Trans. Am. Math. Soc. 54,

339–362 (1932)
[Whi33] Whitney, H.: Planar graphs. Fundam. Math. 21, 73–84 (1933)
[Whi35] Whitney, H.: On the abstract properties of linear dependence. Am. J. Math.

57, 509–533 (1935)
[Wil72] Wilson, L.B.: An analysis of the stable marriage assignment problem. BIT

Numer. Math. 12, 569–575 (1972)
[Wil86] Wilson, R.J.: An Eulerian trail through Königsberg. J. Graph Theory 10,

265–275 (1986)
[Wil89] Wilson, R.J.: A brief history of Hamiltonian graphs. Ann. Discrete Math.

41, 487–496 (1989)
[Wil2002] Wilson, R.J.: Four Colors Suffice: How the Map Problem Was Solved.

Princeton University Press, Princeton (2002)
[Win88] Winkler, P.: The complexity of metric realization. SIAM J. Discrete Math.

1, 552–559 (1988)
[Wir76] Wirth, N.: Algorithms + Data Structures = Programs. Prentice Hall, En-

glewood Cliffs (1976)
[Woe03] Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In:

Springer Lect. Notes Comput. Sci., vol. 2570, pp. 185–207 (2003)
[Woe08] Woeginger, G.J.: Open problems around exact algorithms. Discrete Appl.

Math. 156, 397–405 (2008)
[Wol80] Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound.

Math. Program. Stud. 13, 121–134 (1980)
[WooLi10] Wood, D.R., Linusson, S.: Thomassen’s choosability argument revisited.

SIAM J. Discrete Math. 24, 1632–1637 (2010)
[Woo01] Woodall, D.R.: List colourings of graphs. In: Hirschfeld, J.W.P. (ed.) Com-

binatorial Surveys, pp. 269–301. Cambridge University Press, Cambridge
(2001)

[Yan78] Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: Proc.
10th ACM Symp. on Theory of Computing, pp. 253–264. Assoc. Comput.
Mach., New York (1978)

[YanGa80] Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl.
Math. 38, 364–372 (1980)

[Yao75] Yao, A.C.: An O(|E| log log |V |) algorithm for finding minimum spanning
trees. Inf. Process. Lett. 4, 21–23 (1975)

[Yap86] Yap, H.P.: Some Topics in Graph Theory. Cambridge University Press, Cam-
bridge (1986)

[YouTO91] Young, N.E., Tarjan, R.E., Orlin, J.B.: Faster parametric shortest path and
minimum-balance algorithms. Networks 21, 205–221 (1991)

References 659

[Yu98] Yu, G. (ed.): Operations Research in the Airline Industry. Springer, New

York (1998)
[YusZw97] Yuster, R., Zwick, U.: Finding even cycles even faster. SIAM J. Discrete

Math. 10, 209–222 (1997)
[Zad72] Zadeh, N.: Theoretical efficiency of the Edmonds-Karp algorithm for com-

puting maximal flows. J. Assoc. Comput. Mach. 19, 248–264 (1972)
[Zad73a] Zadeh, N.: A bad network problem for the simplex method and other min-

imum cost flow algorithms. Math. Program. 5, 255–266 (1973)
[Zad73b] Zadeh, N.: More pathological examples for network flow problems. Math.

Program. 5, 217–224 (1973)
[Zim81] Zimmermann, U.: Linear and Combinatorial Optimization in Ordered Al-

gebraic Structures. North Holland, Amsterdam (1981)
[Zuc96] Zuckerman, D.: On unapproximable versions of NP-complete problems.

SIAM J. Comput. 25, 1293–1304 (1996)
[Zwi95] Zwick, U.: The smallest networks on which the Ford-Fulkerson maximum

flow procedure may fail to terminate. Theor. Comput. Sci. 148, 165–170
(1995)

Index

Welcome back, my friends,

to the show that never ends....
Emerson, Lake & Palmer

A
Accessibility axiom, 157

Accessible, 27
Accessible set system, 157

Active vertex, 201, 332
Acyclic digraph, 49, 78, 82, 239, 266

Acyclic graph, 6

Adjacency list, 40
Adjacency matrix, 40, 616

Adjacent, 2, 523
Admissible cell, 234

Admissible edge, 337
Admissible flow, 163, 360

Admissible graph, 337
Admissible operations, 332

Admissible PUSH, 202, 333
Admissible RELABEL, 202, 333

Admissible vector, 454

Algebraic assignment problem, 452
Algorithm, 35, 36, 44–49

ε-approximative, 496–502
dual greedy, 154

efficient, 48
farthest insertion, 503

FIFO preflow push, 207
good, 48

greedy, 136

highest label preflow push, 209
Hungarian, 443–452

insertion, 502
labelling, 167, 310

local search, 505
minimum mean cycle-canceling, 340

MKM, 189–192
nearest insertion, 504

polynomial, 48

primal-dual, 456
strongly polynomial, 315

tree, 497
weakly polynomial, 315

Algorithm of
Bellman and Ford, 87

Boruvka, 118

Busacker and Gowen, 315–319, 400–403
Christofides, 498

Dijkstra, 83–87
Dinic, 186

Edmonds, 427
Edmonds and Karp, 170–176

Floyd and Warshall, 91–96
Ford and Fulkerson, 167, 310

Goldberg and Tarjan, 199–213, 327–339

Gusfield, 383
Hierholzer, 37, 41–43

Klein, 312–314, 339–344
Kruskal, 116

Malhotra, Kumar and Mahaswari,
189–192

Minty, 310
Moore, see BFS

Prim, 114
Tarjan, 263

Alphabet, 43, 347

Alternating forest, 446
Alternating path, 409

Alternating tree, 414
Ancestor, 256

And, 45
Antichain, 240

Antiparallel, 26
Apex, 371

Approximation scheme, 500

D. Jungnickel, Graphs, Networks and Algorithms,

Algorithms and Computation in Mathematics 5,
DOI 10.1007/978-3-642-32278-5, © Springer-Verlag Berlin Heidelberg 2013

661

http://dx.doi.org/10.1007/978-3-642-32278-5

662 Index

ε-approximative algorithm, 496–502
Arbitrarily traceable, 38
Arborescence, 27

spanning, 75, 130–133, 256
Arc, 26

entering, 370
leaving, 371

Articulation point, 258
Assignment (of values to variables), 45
Assignment problem, 238, 297
Assignment relaxation, 485, 523
Associated digraph, 26
Asymmetric travelling salesman problem,

516
Asymmetric TSP, 483
ATSP, 483, 500
AUGMENT, 185, 377, 429, 446
Augmenting path, 165, 367, 409
Augmenting path theorem, 165, 409
Automorphism, 24
Automorphism group, 24, 286

regular, 286
Auxiliary network, 177

layered, 181
AUXNET, 184

B
Back edge, 256, 265
Backward adjacency list, 40
Backward edge

in a directed path, 26
in a flow network, 165

Balanced flow, 405
Balanced network, 405
Baranyai’s theorem, 243
Base, 419
Basis, 139, 157
Basis completion theorem, 140
BELLFORD, 87
Bellman’s equations, 76, 97
Berge-Tutte formula, 406
Berge-Tutte set, 434
BFS, 70–74
Biconnected component, see block
BIPART, 73
Bipartite graph, 72, 110, 197, 224, 237,

247, 276, 417, 434, 442–452
complete, 2
regular, 226
symmetric, 434

BIPMATCH, 417
Block, 258–264
Block-cutpoint graph, 260
BLOCK01FLOW, 195

BLOCKCUT, 263
BLOCKFLOW, 186
Blocking flow, 181–193, 195
BLOCKMKM, 189
Blossom, 415–426
BLOSSOM, 429
Bond space, 308
Boolean variable, 52
Border, 290
BORUVKA, 118
Bottleneck assignment problem, 238, 452
Bottleneck problem, 121, 160
Branch and bound, 515–523
Branching, 27
Breadth first search, see BFS
Break, 30
Bridge, 22, 27, 306
Brooks’ theorem, 278

C
Cancelling a cycle, 312
Canonical, 32
Capacity, 361

in a digraph, 295
in a flow network, 163
of a cut, 164, 303
of a path, 121
residual, 200, 321

Capacity constraints, 295
Capacity function, 379
Capacity increase, 400–403
Capacity restrictions, 360
Cardinality matching problem, 441
Caterer problem, 298
Cayley graph, 285
CDS, 60
Cell (of a matrix), 234

admissible, 234
Center, 95
Certificate, 53
Chain, 240
k-change neighborhood, 505
Chinese postman problem, 461–465, 527
Choosability, 290
Chord, 281
Chordal, 281
Christofides’ algorithm, 498
Chromatic index, 282, 527
Chromatic number, 275, 357, 527
Circuit, 141
Circuit axioms, 142
Circulation, 295, 320

ε-optimal, 323
ε-tight, 324

Index 663

Circulation (cont.)

elementary, 306, 309

feasible, 295, 320

legal, 295

minimum cost, 296

optimal, 296, 321

Circulation theorem, 304

Clause, 52

Clique, 56, 528

Clique number, 280

Clique partition number, 280

Clique partition problem, 528

Clique problem, 59

Closed set, 140

Closed trail, 5

Closed walk, 5

Closure, 16

hereditary, 159

transitive, 92

Closure congruence axiom, 159

Co-NP, 54

Cobasis, 144

Cocircuit, 144, 309

Cocycle, 112

directed, 309

Cocycle space, 308

Code, 347

augmented Petersen, 355, 478

binary, 347

cyclic, 479

decoding algorithms, 475, 477

even graphical, 350

extended binary Hamming, 357

linear, 349

odd pattern, 356

parameters, 348

parity check extension, 356

Petersen, 351

purely graphical, 358

t-error correcting, 349

Codeword, 347

Color, 275

COLOR, 276

Coloring, 275

edge, 282

Common system of representatives, 233

Common transversal, 233

COMP, 548

Comparability graph, 279

Comparable, 279

Complementary graph, 5

Complementary slackness conditions, 322

Complete bipartite graph, 2

Complete digraph, 26
Complete graph, 2
Complete matching, 226
Complete orientation, 26
Complete time-sharing, 395
Complexity, 47
Component

biconnected, see block
connected, 6, 72, 255, 287
odd, 406
strong, 266–270

Condensation, 270
Conjecture

four color, 292
Steiner ratio, 122
strong perfect graph, 282

Conjecture of
Berge, 281
Hadwiger, 279
Hajós, 279
Lovász, 289
Sylvester, 246
van der Waerden, 237

Conjunctive normal form, 52
Connected component, 6, 72, 255, 287

strong, 266–270
Connected digraph, 27

strongly, 27, 266–270
Connected dominating set problem, 60
Connected graph, 6, 72

2-connected, 258–264
k-connected, 222, 251–254
m-fold edge, 271

Connected vertices, 6
Connectivity, 222, 251–254
Connector problem, 103
Constraints, 453
CONTRACT, 429
Contractible, 24
Contraction, 24, 418

elementary, 24
Convex function, 319
Convex hull, 236
Cook’s theorem, 54
Cost

for capacity increase, 400–403
of a circulation, 296
of a flow, 297
of a matching, 442
of a pseudoflow, 321

Cost curve, 318
Cost function, 360

for capacity increase, 400–403
for circulations, 296

664 Index

reduced, 321
Cotree, 144
Cover (a matching covers a set), 232, 438,

439
Covered vertex, 406
CPP, see Chinese postman problem
Critical edge, 171
Critical path, 80
Critical path method, 79
Critical subfamily, 229
Critical task, 80
Cross edge, 265
Crossing cuts, 385
Current edge, 207, 337
Current vertex, 337
Cut, 361

in a digraph, 303
in a flow network, 164
in a graph, 112
minimal, 164

Cut point, 258
Cut tree, 396–399
Cuts

crossing, 385
non-crossing, 385

CUTTREE, 396
Cycle, 5

cancelling, 312
directed, 26
Hamiltonian, 15, 55

directed, 55
of minimum cycle mean, 325–327,

340–344
of negative length, 96, 97, 313, 322, 323
pivot, 371
shortest, 74

Cycle mean
minimum, 325

Cycle space, 307, 350
Cyclic graph, 287
Cyclomatic number, 307

D
Dag, see acyclic digraph
De Bruijn sequence, 43, 133
DECAUGGC, 477
DECEVGC, 476
Decision problem, 52
Decision tree, 515
Decomposition theorem, 236
Deficiency, 230
Deficiency version

of the marriage theorem, 230
Degree, 3

Degree matrix, 109

Degree sequence, 12

DELETEMIN, 86

Demand, 246

Demand function, 360

Demand restrictions, 360

Dense, 47

Dependent set, 139

Depth first search, see DFS

Depth index, 375

Descendant, 257

Determinism, 36

DFS, 255–257, 268

DFSM, 268

DHC, see directed Hamiltonian cycle

problem

DHP, see directed Hamiltonian path

problem

Diagonal, 235–238

non-zero, 235

positive, 235

Diameter, 95, 528

Digraph, 26–28, 49–51, 105–108, 130–133,

163, 239–242, 264–270, 295

acyclic, 49–51, 78, 82, 239, 266

associated, 26

complete, 26

condensation, 270

connected, 27

layered, 181

pseudosymmetric, 27

strongly connected, 27, 266–270

symmetric, 199

transitive, 92

transitive reduction, 93

DIJKSTRA, 83

DIJKSTRAPQ, 86

Dilworth number, 240

Dilworth’s theorem, 240

Dioid, 98

Directed cocycle, 309

Directed cycle, 26

Directed Euler tour, 26

Directed graph, see digraph

Directed Hamiltonian cycle, 55

Directed Hamiltonian cycle problem, 55

Directed Hamiltonian path, 151, 152

Directed Hamiltonian path problem, 152

Directed multigraph, 26

Directed path, 26

Directed trail, 26, 27

Directed tree, see arborescence

Discrete metric realization, 529

Index 665

Disjoint connecting paths problem, 223,
529

Disjoint paths problem, 223
Dissection, 239
Distance, 6, 66–71

Hamming, 348
to a partial tour, 503

Distance matrix, 68, 91
Dodecahedral graph, 15
Dominant requirement tree, 389
Dominating network, 394
Dominating set problem, 59, 529
Doubly stochastic matrix, 235
DS, 59, 529
Dual

geometric, 145
Dual greedy algorithm, 154
Dual linear program, 455
Dual linear programming problem, 455
Dual matroid, 144–146, 154
DUALGREEDY, 154
Duality theorem, 455
Dynamic flow, 346

E
Easy problem, 48, 52
Edge, 2, 26
m-fold edge connected, 271
Edge

ε-fixed, 330
admissible, 337
antiparallel, 26
back, 256, 265
backward, 26
connected, 271
critical, 171
cross, 265
current, 207, 337
forward, 26, 265
free, 363
most vital, 169
originating, 211
parallel, 13
residual, 200, 321
saturated, 164
tree, 256, 265
void, 164

Edge chromatic number, 282
Edge coloring, 282
Edge connectivity, 271
Edge disjoint paths, 219, 223, 529
Edge list, 39
Edge separator, 219
Edge set, 2

Effectiveness, 36
Efficiency, 36
Efficient, 48
Elementary circulation, 306, 309
Elementary contraction, 24
Elementary flow, 169
End vertex, 2, 5, 26
EPM, see exact perfect matching problem
Equality subgraph, 444
Equimatchable, 405
Equivalent flow tree, 381
Error, 348
Error pattern, 348
Euclidean Steiner problem, 122
Euclidean TSP, 501, 508
EULER, 42, 45
Euler tour, 13, 41–43

directed, 26
Eulerian cycle, see Euler tour
Eulerian graph, 13, 41–43
Eulerian multigraph, 13

spanning, 496
Eulerian trail, 13
Euler’s formula, 22
Evaluation problem, 53
Even path, 471
Even vertex, 414
Exact integer network synthesis problem,

395
Exact neighborhood, 509
Exact perfect matching problem, 474
Exact realization, 395
Excentricity, 95
Exchange axiom, 139, 141

strong, 159
Exposed vertex, 406
Extensibility axiom, 159

F
Face, 22
Factor, 4
1-factor theorem, 405
Factor

1-, 4
2-, 227
�-, 227
f -, 439
k-, 4
triangle, 227

Factorization, 4
1-, 4
2-, 227
k-, 4
oriented, 29–32

666 Index

FAREFINE, 338
FARIN, 503
Farthest insertion algorithm, 503
Feasibility condition, 163
Feasible circulation, 295, 320
Feasible flow, 246
Feasible network, 381
Feasible node-weighting, 443
Feasible set, 157
Fermat point, 122
FIFO preflow push algorithm, 207
FIFOFLOW, 207
Finiteness of description, 36
First active method, 338
First improvement, 505
Five color theorem, 290, 292
ε-fixed, 330
Float, 80
Flow, 163, 360

0-1-, 194
blocking, 181–193, 195
dynamic, 346
elementary, 169
feasible, 246
maximal, 164
minimal feasible, 305
multicommodity, 346, 395
optimal, 297, 315, 345
quickest, 346

Flow conservation condition, 164
Flow excess, 200
Flow function, 379
Flow network, 163

layered, 181–193, 195
Flow potential, 189
Flow with gain or loss, 346
FLOWTREE, 383
FLOYD, 91
For . . . do, 44, 45
FORDFULK, 167
Forest, 8, 106

alternating, 446
minimal spanning, 110

Forward edge
in a DFS, 265
in a directed path, 26
in a flow network, 165, 221

Four color conjecture, 292
Four color theorem, 293
Free matroid, 137

G
Gale-Ryser theorem, 248
Gallai-Edmonds decomposition, 435

Gallai-Edmonds theorem, 435
Generalized dihedral group, 288
Generating set, 140, 144
Geometric dual, 145
Geometric graph, 21
Geometric Steiner tree problem, 122
Girth, 22
GOBLIN, 369
GOLDBERG, 201
Good algorithm, 48
Gozinto graph, 102
Graph, 2

2-connected, 258–264
acyclic, 6
admissible, 337
arbitrarily traceable, 38
bipartite, 72, 110, 197, 224, 237, 247,

276, 417, 434, 442–452
symmetric, 434

block-cutpoint, 260
Cayley, 285
chordal, 281
comparability, 279
complementary, 5
complete bipartite Km,n, 2
complete Kn, 2
connected, 6, 72
contracted, 418
contractible, 24
cubic, 127
cyclic, 287
dense, 47
directed, see digraph
dodecahedral, 15
edge connected, 271
equality, 444
equimatchable, 405
Eulerian, 13, 41–43
factor-critical, 434
geometric, 21
gozinto, 102
Hamiltonian, 15
homeomorphic, 24
interval, 280
isomorphic, 21
k-connected, 222, 251–254
line, 14
m-fold edge connected, 271
mixed, 27
orientable, 27
perfect, 281
Petersen, 24, 227, 279, 285, 351, 577,

609
planar, 22–25

Index 667

Graph (cont.)

plane, 21
randomly matchable, 412
regular, 4
regular bipartite, 226
residual, 200, 321
separable, 258
sparse, 47
strongly regular, 4, 41
triangular Tn, 4
triangulated, 281
underlying, 26
unicyclic, 104
uniform, 390

Graph partitioning, 529
Graphic matroid, 137
Graphical code, 353
Greedoid, 158
GREEDY, 136, 158
Greedy algorithm, 136

dual, 154

H
Hadwiger’s conjecture, 279
Hajós’ conjecture, 279
Hamiltonian cycle, 15, 55

directed, 55
Hamiltonian cycle problem, 52, 530
Hamiltonian graph, 15
Hamiltonian path, 55, 152

directed, 151, 152
Hamiltonian path problem, 55, 530
Hamming distance, 348
Hard problem, 48
Harem theorem, 234
Hasse diagram, 93
HC, see Hamiltonian cycle problem
Head, 26
Head-partition matroid, 137
Heap, 86
Hereditary closure, 159
Heuristics, 502–504
Highest label preflow push algorithm, 209
Hitchcock problem, 345
HLFLOW, 209
Home-away pattern, 30
Homeomorphic, 24
HP, see Hamiltonian path problem
HUNGARIAN, 445
Hungarian algorithm, 443–452
Hyperplane, 140

I
Icosian game, 15

If . . . then . . . else, 44
ILP, see integer linear programming

problem
Incidence list, 39
Incidence map, 13
Incidence matrix, 105
Incident, 2, 26
Increasing the capacities, 400–403
Indegree, 26
Indegree matrix, 130
Independence number, 239
Independence system, 136
Independent set

in a matroid, 136
of vertices, 56, 239, 530

Independent set of cells, 234
Independent set problem, 59
Induced subgraph, 3
Induced subgraph problem, 530
Inf-section, 121
INMATCH, 413
Inner vertex, 414
Insertion algorithm, 502
Instance, 36
Integer linear program, 453
Integer linear programming problem, 453,

530
Integer network synthesis problem, 395
Integral flow theorem, 166
Intermediate node, 247, 345
Intersection of matroids, 150–152
Interval graph, 280
Intractable problem, 48
IS, see independent set problem
Isolated vertex, 6
Isomorphic, 21
Iteration, 44

K
k-connected, 222, 251–254
KAPPA, 253
Kirkman’s school girl problem, 227
KLEIN, 312
Knapsack problem, 67
Knight’s problem, 17
Königsberg bridge problem, 1
König’s lemma, 236
König’s theorem, 225
KRUSKAL, 116

L
Labelling, valid, 200
Labelling algorithm, 167, 310
Lagrange relaxation, 495

668 Index

Laplacian matrix, 109
Lattice, 460
Layered auxiliary network, 181
Layered digraph, 181
Layered flow network, 181–193, 195
Leaf, 8, 10
League schedules, 31–33
Legal circulation, 295
LEGCIRC, 301
Lemma of

König, 236
Minty, 308
Sperner, 241

Length, 5, 65
Level, 71
Line graph, 14
Linear program, 453

0–1, 453
dual, 455
integer, 453

Linear programming problem, see LP
Linear span, 460
List

adjacency, 40
backward adjacency, 40
color, 290
edge, 39
incidence, 39

List coloring, 290
List coloring number, 290
List of edges, 39
Literal, 52
Local search algorithm, 505
Long trajectory, 212
Longest cycle problem, 531
Longest path, 67
Longest path problem, 55, 531
Loop, 13, 44
Low point, 260
Lower capacity, 295, 360
Lower rank, 146
LP, 453

dual, 455
LP relaxation, 489
LPD, see dual linear programming

problem

M
m-fold edge connected, 271
Map, 290
Map coloring, 290
Marriage theorem, 229

deficiency version, 230
MATCH, 197

Matching, 137, 224
complete, 226
covering a set, 232, 439
maximal, 224
maximal weighted, 442
maximum, 224
near-perfect, 434
of maximal cardinality, 224
optimal, 442
perfect, 226, 405
product-optimal, 452
stable, 474
symmetric, 434
unextendable, 224, 405, 534

Matching matroid, 439
Matching polytope, 460
Mate, 406
Matric matroid, 139
Matrix

0-1-, 236, 238, 249
adjacency, 40
degree, 109
distance, 68, 91
doubly stochastic, 235
incidence, 105
indegree, 130
Laplacian, 109
permutation, 235
quasi-inverse, 100
reduced, 516
totally unimodular, 107

Matrix tree theorem, 108
Matroid, 136

dual, 144–146, 154
free, 137
graphic, 137
head-partition, 137
matching, 439
matric, 139
partition, 232
representable, 139
restriction, 439
tail-partition, 137
transversal, 231
uniform, 137
vectorial, 139

Matroid embedding axiom, 160
Matroid intersection problem, 152, 531
Max cut problem, 531
Max-flow min-cut theorem, 166
Max-flow problem, 296
MAX01FLOW, 583
MAXFLOW, 185
Maximal flow, 164

Index 669

Maximal matching, 224
Maximal spanning tree, 120–122
Maximal weighted matching, 442
MAXLEGFLOW, 593
MAXMATCH, 427
Maze, 257
MCFZIB, 369, 378
Mean weight (of a cycle), 324
MEANCYCLE, 327, 598
MERGE, 116
Metric space, 68
Metric Steiner network problem, 123
Metric travelling salesman problem, 483
Mimimum distance, 348
Mimimum weight, 349
Min cut problem, 531
Minimal counterexample, 225
Minimal cut, 164
Minimal network, 381
Minimal potential, 189
Minimal spanning forest, 110
Minimal spanning tree, 110–119, 487, 497,

532
k-, 129

Minimal Steiner tree, 123, 501
Minimal vertex, 189
Minimum cost circulation, 296
Minimum cost flow problem, 360
Minimum cycle mean, 325–327, 340
Minimum k-connected subgraph problem,

532
Minimum mean cycle canceling algorithm,

340
Minimum spanning tree problem, 532
MINTREE, 113
MINTY, 310
Minty’s painting lemma, 308
MIP, see matroid intersection problem
Mixed graph, 27
Mixed multigraph, 27
MKM-algorithm, 189–192
MMCC, 340
Monotonic, 140
Monotonic subsequence, 241
Most vital edge, 169
MsT, 487
MST relaxation, 486
Multi-terminal network flow, 395
Multicommodity flow, 346, 395
Multigraph, 13

directed, 26
Eulerian, 13
mixed, 27
orientable, 27

spanning Eulerian, 496
strongly connected, 27
underlying, 26

N
Nearest insertion algorithm, 504
NEGACYCLE, 96
Neighbor, 2
Neighborhood, 505

exact, 509
k-change, 505

Network, 65
0-1-, 194
auxiliary, 177
dominating, 394
feasible, 381
flow, 163
layered, 181–193, 195
layered auxiliary, 181
minimal, 381
symmetric, 379

Network flow, 532
Network reliability problem, 120, 532
Network synthesis, 379–403
Network synthesis problem, 389
Node

intermediate, 247, 345
transshipment, 247

Non-crossing cuts, 385
Non-saturating PUSH, 205, 334
Non-zero diagonal, 235
NP, 53
NP-complete problem, 48, 54
NP-hard problem, 56

O
Objective function, 453
Odd component, 406
Odd degree pattern, 353
Odd path, 471
Odd vertex, 414
k-opt, 505
2-OPT, 506
2-opt, 506
OPTCIRC, 328
OPTFLOW, 317
ε-optimal, 323
k-optimal, 505
Optimal circulation, 296, 321
Optimal flow, 297, 315, 345
Optimal flow problem, 297
Optimal matching, 442
Optimal pseudoflow, 321
Optimal realization, 69

670 Index

Optimal tour, 19, 482
Optimization problem, 53
Optimum communication spanning tree,

129
Optimum requirement spanning tree, 397
Optimum requirement tree, 129
OPTMATCH, 443, 613
or, 45
Ordered Abelian group, 451
Orientable, 27
Orientation, 26

complete, 26
transitive, 280

Oriented 1-factorization, 29–32
Originating edge, 211
Out-of-kilter algorithm, 314
Outdegree, 26
Outer vertex, 414

P
P, 53
Painting lemma, 308
Parallel class, 243
Parallel edges, 13
Parallelism, 243
Parametric budget problem, 400
Parametrized flowproblem, 214
Parity check extension, 356
Partial difference set, 289
Partial SDR, 230
Partial transversal, 230
Partially ordered set, 49, 240–242
Partition matroid, 232
Path, 5

alternating, 409
augmenting, 165, 367, 409
critical, 80
directed, 26
edge disjoint, 219
Eulerian, 13
even, 471
Hamiltonian, 55, 152
longest, 67
odd, 471
reliable, 532
shortest, 66
vertex disjoint, 219

Path algebra, 98
PATHNR, 583
Penalty, 491
Penalty function, 490
Perfect graph, 281
Perfect graph theorem, 281
Perfect matching, 226, 405

Perfect matching polytope, 460
Permanent evaluation problem, 532
Permanent (of a matrix), 237
Permutation matrix, 235
Petersen graph, 24, 227, 577, 609
Phase, 183, 208, 339, 411, 446
PIUPDATE, 378
Pivot cycle, 371
PIVOTCYCLE, 376
Planar graph, 22–25
Plane graph, 21
Platonic solids, 22
Point, 243

cut, 258
Steiner, 122
vertex, 189

Polyhedral combinatorics, 525
Polynomial algorithm, 48
Polynomial problem, 52
Polytope, 454
Poset, see partially ordered set
Positive diagonal, 235
Post-optimization, 504
Potential, 206, 307, 321
POTENTIAL, 324
Potential, 364
POTENTIAL, 598
Potential

minimal, 189
Potential difference, 307
Predecessor index, 375
Preflow, 200
Price function, 321
PRIM, 114
Primal-dual algorithm, 456
Priority, 86
Priority queue, 86
Problem

3-SAT, 53, 533
algebraic assignment, 452
assignment, 238, 297
asymmetric travelling salesman, 483,

516
bottleneck, 121, 160
bottleneck assignment, 238, 452
bounded diameter spanning tree, 128
cardinality matching, 441
caterer, 298
Chinese postman, 461, 527
chromatic index, 527
chromatic number, 527
clique, 59, 528
clique partition, 528
connected dominating set, 60

Index 671

Problem (cont.)

connector, 103

decision, 52

degree constrained spanning tree, 126

directed Hamiltonian cycle, 55

directed Hamiltonian path, 152

discrete metric realization, 529

disjoint connecting paths, 223, 529

disjoint paths, 223

dominating set, 59, 529

easy, 48, 52

Euclidean Steiner, 122

Euclidean travelling salesman, 501

evaluation, 53

exact integer network synthesis, 395

exact perfect matching, 474

geometric Steiner tree, 122

graph partitioning, 529

Hamiltonian cycle, 52, 530

Hamiltonian path, 55

hard, 48

Hitchcock, 345

independent set, 59, 530

induced subgraph, 530

integer linear programming, 453, 530

integer network synthesis, 395

intractable, 48

isomorphic spanning tree, 126

k-minimal spanning tree, 129

Kirkman’s school girl, 227

knapsack, 67

knight’s, 17

Königsberg bridge, 1

length restricted disjoint paths, 223,

529

linear programming, 453

longest cycle, 531

longest path, 55, 531

matroid intersection, 152, 531

max cut, 531

max-flow, 296

maximum leaf spanning tree, 126

metric Steiner network, 123

metric travelling salesman, 483

min cut, 531

minimal cost reliability ratio spanning

tree, 128

minimum k-connected subgraph, 532

minimum leaf spanning tree, 126

minimum spanning tree, 532

most uniform spanning tree, 121

network reliability, 120, 532

network synthesis, 389

NP-complete, 48, 54
NP-hard, 56
optimal flow, 297
optimization, 53
optimum communication spanning tree,

129
parametric budget, 400
parametrized flow, 214
permanent evaluation, 532
polynomial, 52
restricted Hamiltonian cycle, 510
restricted perfect matching, 473, 533
satisfiability, 52, 533
shortest cycle, 74, 533
shortest path, 298, 533
shortest total path length spanning

tree, 126
spanning tree, 533
stable marriage, 474
Steiner network, 123, 534
Steiner tree, 534
supply and demand, 246, 247
t-join, 476
transportation, 345
transshipment, 345
travelling salesman, 19, 482, 534
TSP suboptimality, 513
unextendable matching, 534
vertex cover, 56, 535
weighted diameter, 528
weighted matching, 441
zero-one linear programming, 453

Problem class, 36
Product-optimal matching, 452
Program, 35
Project evaluation and review technique,

79
Project schedule, 79–82
Prüfer code, 10
Pseudoflow, 216, 320

ε-optimal, 323
ε-tight, 324
optimal, 321

Pseudograph, 13
Pseudosymmetric, 27
Pseudovertex, 418
PULL, 190
PUSH, 190, 201, 332

admissible, 202, 333
non-saturating, 205, 334
saturating, 205, 334

Q
Quasi-inverse, 100

672 Index

Queue, 70
Quickest flow, 346

R
Ramification, 44
Randomly matchable graph, 412
RANK, 82
Rank

in a digraph, 82
in a matroid, 139

lower, 146
upper, 146

Rank quotient, 147
Rate of growth, 47
Realization, 381
Realizationexact, 395
Redéi’s theorem, 241
Reduced cost function, 321, 364
Reduced matrix, 516
Reduction, transitive, 93
REFINE, 327–339
Regular automorphism group, 286
Regular bipartite graph, 226
Regular graph, 4
RELABEL, 202, 333

admissible, 202, 333
Relaxation, 484

assignment, 485, 523
Lagrange, 495
LP, 489
MST, 486
s-tree, 487–489

Reliable path, 532
Repeat . . . until, 44
Representable, 139
Request function, 381
RESIDUAL, 321, 598
Residual capacity, 200, 321
Residual edge, 200, 321
Residual graph, 200, 321
Resolution, 4
Restricted Hamiltonian cycle, 510
Restricted perfect matching, 473, 533
Restriction of a matroid, 439
Return arc, 296
RHC, see restricted Hamiltonian cycle
Root, 27, 105
RPM, see restricted perfect matching

problem

S
3-SAT, 53
SAT, see satisfiability problem
3-SAT, 533

Satisfiability problem, 52, 533
Saturated edge, 164
Saturated vertex, 406
Saturating PUSH, 205, 334
Scatter number, 234
Schedule

league, 31–33
project, 79–82
tournament, 29–33
train, 88–91

SDR, 229
partial, 230

Separable graph, 258
Separator

edge, 219
vertex, 219, 221

Set
Berge-Tutte, 434
closed, 140
dependent, 139
dominating, 56
feasible, 157
generating, 140, 144
independent, 56, 136, 239, 530
of edges, 2
partial difference, 289
partially ordered, 49, 240–242
stable, 56, 239

Set system, 157
accessible, 157

Shortest cycle problem, 74, 533
Shortest path, 66
Shortest path problem, 298, 533
Shortest path tree, see directed

Hamiltonian path problem, see
SP-tree

Sink, 163, 360
Six color theorem, 290
Skeleton, 523
Slack, 80
Source, 163, 360
SP-tree, 75, 97
Space complexity, 46
Span, 140

linear, 460
Span operator, 141
Spanning arborescence, 75, 130–133, 256
Spanning Eulerian multigraph, 496
Spanning forest

minimal, 110
Spanning subgraph, 3
Spanning tree, 71, 108, 509, 533

maximal, 120–122
minimal, 110–119, 487, 497

Index 673

Spanning tree problem, 533
Spanning tree with restrictions, 125–129
Sparse, 47
Sperner’s lemma, 241
SPTREE, 554
SRG, see strongly regular graph
Stable marriage problem, 474
Stable matching, 474
Stable roommates problem, 475
Stable set, 56, 239
Stack, 262
Star, 11
Start vertex, 5, 26
State, 290
Steepest descent, 505
STEINER, 124
Steiner network problem, 123, 534
Steiner point, 122
Steiner points, 123
Steiner ratio conjecture, 122
Steiner tree, 122–125, 534

minimal, 123, 501
Steiner tree problem, 534
Stem, 423
Step (in an algorithm), 46
Strong component, 266–270
Strong duality theorem, 455
Strong exchange axiom, 159
Strong extensibility axiom, 160
Strong perfect graph theorem, 282
STRONGCOMP, 268
Strongly connected, 27, 266–270
Strongly polynomial, 315
Strongly regular graph, 4, 41
Subdivision, 23
Subfamily

critical, 229
Subgradient, 495
Subgradient optimization, 490
Subgraph, 3

equality, 444
even, 349
induced, 3
odd, 349
spanning, 3

Submodular, 140
Suboptimal, 513
Subtour elimination constraints, 489
Supply, 246, 360
Supply and demand problem, 246, 247
Supply and demand theorem, 247
Support, 169
Sylvester’s conjecture, 246
Symmetric bipartite graph, 434

Symmetric digraph, 199
Symmetric matching, 434
Symmetric network, 379
System of distinct representatives, see

SDR
System of representatives, 228

common, 233

T
Tail, 26
Tail-partition matroid, 137
Term rank, 234
Terminal, 223, 529
Termination, 36
Theorem

1-factor, 406
augmenting path, 165, 409
basis completion, 140
circulation, 304
decomposition, 236
five color, 292
four color, 293
Gallai-Edmonds, 435
harem, 234
integral flow, 166
marriage, 229
matrix tree, 108
max-flow min-cut, 166
perfect graph, 281
strong duality, 455
supply and demand, 247
total dual integrality, 457

Theorem of
Baranyai, 243
Birkhoff, 236
Brooks, 278
Cauchy and Binet, 108
Cook, 54
Dilworth, 240
Euler, 13
Ford and Fulkerson, 165, 166
Gale and Ryser, 248
König, 225
Kuratowski, 24
Menger, 219–223
Phillip Hall, 226
Redéi, 241
Robbins, 27
Stern and Lenz, 287
Tutte, 406
Vizing, 283
Wagner, 24
Whitney, 223, 251

Thread index, 375

674 Index

ε-tight, 324
TIGHT, 327, 600
Time complexity, 46
Time cycle, 88
Topological sorting, 49
TOPSORT, 50
Total dual integrality theorem, 457
Totally dual integral, 457
Totally unimodular, 107
Tour, 19, 482

Euler, 13
k-optimal, 505
optimal, 19, 482
suboptimal, 513

Tournament, 241
schedules, 29–33

TRACE, 42, 45
Trail, 5, 26

closed, 5
directed, 26, 27
Eulerian, 13

Train schedule, 88–91
Trajectory, 211

long, 212
Transitive closure, 92
Transitive digraph, 92
Transitive orientation, 280
Transitive reduction, 93
Transportation problem, 345
Transshipment node, 247, 360
Transshipment problem, 345
Transversal, 229

common, 233
partial, 230

Transversal index, 230
Transversal matroid, 231
Travelling salesman problem, 19, see TSP
Tree, 8, 27, 103
s-tree relaxation, 487–489
Tree

alternating, 414
cut, 396–399
directed, see arborescence
dominant requirement, 389
equivalent flow, 381
maximal spanning, 120–122
minimal spanning, 110–119, 487, 497,

532
rooted, 105
s-, 487
shortest path, 75
SP-, 75, 97
spanning, 71, 108, 509, 533

with restrictions, 125–129

Steiner, 122–125, 534
minimal, 123, 501

uniform, 390
Tree algorithm, 497
Tree edge, 256, 265
Tree graph, 119
Tree indices, 375
Tree solution, 362
Tree structure, 364

admissible, 364
degenerate, 371
nondegenerate, 371
optimal, 364
strongly admissible, 371

Triangle factor, 227
Triangle inequality, 68
Triangular graph, 4
Triangulated, 281
TSP, 534

Δ, 483
asymmetric, 483
Euclidean, 501, 508
metric, 483

TSP suboptimality, 513

U
Underlying graph, 26
Underlying multigraph, 26
Unextendable matching, 534
Unextendable matching problem, 534
Unicyclic graph, 104
Uniform graph, 390
Uniform matroid, 137
Uniform tree, 390
Upper capacity, 295, 360
Upper rank, 146

V
Valid labelling, 200
Value (of a flow), 164
Van der Waerden’s conjecture, 237
VC, 56, see vertex cover problem
Vectorial matroid, 139
Vertex, 2, 26

accessible, 27
active, 201, 332
covered, 406
current, 337
end, 2, 5, 26
even, 414
exposed, 406
inner, 414
isolated, 6
odd, 414

Index 675

Vertex (cont.)

of a polytope, 454
outer, 414
pseudo-, 418
saturated, 406
start, 5, 26

Vertex capacities, 169
Vertex cover, 56, 535
Vertex cover problem, 56, 535
Vertex disjoint paths, 219, 223, 529
Vertex separator, 219, 221
Vertex set, 2, 26
Vizing’s theorem, 283
Void edge, 164

W
Walk, 5

closed, 5

Weakly polynomial, 315

Weight, 19, 110, 136, 348, 442

Weight enumerator, 351

Weighted matching problem, 441

while . . . do, 44

Whitney’s theorem, 223, 251

Width (of a matrix), 235

Word, 43

Z

Zero-one linear program, 453

Zero-one linear programming problem, 453

Zero-one matrix, 236, 238, 249

Zero-one-flow, 194

Zero-one-network, 194

ZOLP, see zero-one linear programming

problem

	Appendix A: Some NP-Complete Problems
	Appendix B: Solutions
	B.1 Solutions for Chap. 1
	B.2 Solutions for Chap. 2
	B.3 Solutions for Chap. 3
	B.4 Solutions for Chap. 4
	B.5 Solutions for Chap. 5
	B.6 Solutions for Chap. 6
	B.7 Solutions for Chap. 7
	B.8 Solutions for Chap. 8
	B.9 Solutions for Chap. 9
	B.10 Solutions for Chap. 10
	B.11 Solutions for Chap. 11
	B.12 Solutions for Chap. 12
	B.13 Solutions for Chap. 13
	B.14 Solutions for Chap. 14
	B.15 Solutions for Chap. 15

	Appendix C: List of Symbols
	C.1 General Symbols
	Sets
	Mappings
	Numbers
	Matrices
	Sets of numbers and algebraic structures
	Miscellaneous

	C.2 Special Symbols
	Graphs and networks
	Objects in graphs
	Parameters for graphs
	Mappings on graphs and networks
	Matroids and independence systems
	Matrices
	Codes
	Miscellaneous

	References
	Index

