Aula 17 - Reduções polinomiais

Luís Felipe

UFF

25 de Outubro de 2023

O problema do Caixeiro Viajante

CAIXEIRO VIAJANTE

Dados: Conjunto de cidades $C = \{c_1, c_2, ..., c_n\}$, inteiro k e custo $c(c_i, c_i)$ para cada par c_i, c_i de C.

Questão: C admite um percurso que passe por cada uma das cidades sem repetição, exceto a cidade inicial pois devemos concluir onde começamos, de custo $\leq k$?

O custo total do percurso caixeiro viajante é dado por: $\sum_{i=1}^{n-1} c(c_{p_i}, c_{p_{i+1}}) + c(c_{p_n}, c_{p_1})$, onde $c_{p_1}, c_{p_2}, \ldots, c_{p_n}$ é um percurso caixeiro viajante, isto é, uma permutação das cidades de C.

Vamos mostrar que CAIXEIRO VIAJANTE é \mathcal{NP} -completo a partir do problema \mathcal{NP} -completo CICLO HAMILTONIANO (HC).

Luis Feilipe

Teorema. CAIXEIRO VIAJANTE é NP-completo.

Prova: CAIXEIRO VIAJANTE está em NP. Seja G uma entrada genérica do HC. Vamos construir uma instância particular do CAIXEIRO VIAJANTE da seguinte forma:

- Cidades: Cada vértice de G é uma cidade.
- Custos: Se $v_iv_j\in E(G)$, então $c(c_i,c_j)=0$. Caso contrário, $c(c_i,c_j)=1$
- k: 0

Resta mostrar que G tem ciclo hamiltoniano sse existe percurso caixeiro viajante em C com custo 0.

Luis Felipe

- (\rightarrow) Se G tem ciclo hamitoniano, então existe um percurso caixeiro viajante que, por construção, tem custo total 0.
- (\leftarrow) Se existe um percurso caixeiro viajante com custo total 0, então temos uma permutação das cidades de C de modo Que, neste permutação, cidades consecutivas são vértices adjacentes de G, por construção. Além disso, também existe aresta entre os vértices correspondentes a c_{p_n} e c_{p_1} . Logo, existe um ciclo hamiltoniano em G. \square

Reduções para problemas polinomiais

- Até o momento vimos algumas reduções polinomiais e utilizamos deste recurso para provar a NP-completude de alguns problemas.
 - $ightharpoonup Y \propto X$ onde $Y \notin \mathcal{NP}$ -completo e X será mostrado \mathcal{NP} -completo
- Podemos, entretanto, utilizar reduções polinomiais para mostrar que um problema é solucionável em tempo polinomial.
 - $ightharpoonup X \propto Y$ onde X é o problema que queremos mostrar ser polinomial e Y é o problema solucionável em tempo polinomial.

2-coloração versus 2-SAT

- 2-coloração é um problema solucionável em tempo polinomial.
 - ► Um grafo é 2-colorível sse é Bipartido.
- Contudo, vamos mostrar que 2-col é polinomial fazendo uma redução de 2-col para 2-SAT.

2-coloração x 2-SAT

Teorema. 2-col é solucionável em tempo polinomial.

Prova: Seja G uma instância genérica do 2-col. Vamos construir uma instância particular do 2-SAT da seguinte forma:

- Variáveis: Cada vértice v gera uma variável x_v
- Cláusulas: Se $vw \in E$, então temos a conjunção de duas cláusulas: $(x_v \lor x_w), (\overline{x_v} \lor \overline{x_w})$. Isto faz com que $x_v = \overline{x_w}$.

Resta mostrar que $G \notin 2$ -col sse $(X, C) \notin satisfazível$.

Luis Felipe

- (→) Vamos exibir uma atribuição para as variáveis de X Baseada na 2-coloração de G. Se o vértice recebeu cor 1 então a variável recebe verdadeiro, caso contrário, recebe falso. Neste caso, por construção, cada cláusula tem um literal verdadeiro e um falso, sendo, portanto, satisfeita.
- (\leftarrow) Vamos 2-colorir G a partir da atribuição que satisfaz (X,C). Se a variável $x_v:V$, então v recepe cor 1. Caso contrário, recepe cor 2. Note que todos os vértices de G foram coloridos e, como vértices adjacentes estão associados a variáveis que têm valor ló gico opostos, quando (X,C) é satisfazível, então vértices adjacentes recepem cores distintas. Logo, G é 2-colorível.

us come 1510/13 MAXSAT

- MAXSAT: Variante de SAT
- Quer-se determinar se existe uma atribuição às variáveis que satisfaça pelo menos k cláusulas de C.
- Especificamente, vamos mostrar que MAX 2-SATé
 NP-completo através de uma redução polinomial a partir do problema CLIQUE.

Lus Feilpe 25/10/23

MAY 2-SAT

MAX 2-SAT

Dados: (X,C), onde: |X|=p e cada cláusula tem exatamente 2

literais, e um inteiro k, $1 \le k < p$.

Questão: Existe uma atribuição às variáveis de X que satis-

faça pelo menos k cláusulas de C simultaneamente?

OBS.: 2 SAT é poli. Observe que se k=p o problema seria solucionável em tempo polinomial.

MAY 2-SAT

Teorema MAY 2-SATÉ NP-completo.

Prova: MAY 2 -SATestá em NP. Considerando uma instância genérica do problema CLIQUE, vamos construir uma instância particular para o problema MAY 2-SAT da seguinte forma:

- Variáveis:
 - uma variável auxiliar z
 - ightharpoonup para cada vértice v_i , uma variável x_i
- Cláusulas:
 - $ightharpoonup (x_i \lor \overline{z}), (x_i \lor \overline{z})$
 - lacktriangle para cada não aresta $v_i v_j$, a cláusula $(\overline{x_i} ee \overline{x_j})$
- $k': |V| + |K| + |\overline{E}|$, onde K é a clique de tamanho pelo menos k do problema CLIQUE, e \overline{E} é o conjunto de não arestas de G

Existe clique de tamanho pelo menos k sse existe uma k dáusulas de (X,C).

 (\rightarrow) A partir da clique K, vamos determinar uma atribuição para as variáveis de X:

Se a variável corresponde a um vértice em K, então ela recebe verdadeiro. Caso contrário, falso.

Faça a variável z verdadeira.

Vamos mostrar que pelo menos $|V|+|K|+|\overline{E}|$ cláusulas são satisfeitas.

De fato, com esta atribuição, satisfazemos |V| cláusulas pois as cláusulas $(x_i \lor z)$ são satisfeitas (z recebeu verdadeiro); satisfazemos |K| cláusulas, pois as cláusulas $(x_i \lor \overline{z})$ são satisfeitas $(x_i$ recebeu verdadeiro); e $|\overline{E}|$ cláusulas, pois as cláusulas $(\overline{x_i} \lor \overline{x_j})$ são satisfeitas em casos de não arestas. Pois, não arestas $x_i x_j$ são dos seguintes tipos:

i) vértice na clique (v_i) com vértice fora da clique (v_j) . Neste caso, $x_i = V$ e $x_j = F$ e assim $(\overline{x_i} \vee \overline{x_j}) = V$; ii) vértice fora da clique (v_i) com vértice fora da clique (v_j) . Neste caso, $x_i = F$ e $x_i = F$ e assim $(\overline{x_i} \vee \overline{x_j}) = V$. Exibamos clique de tamanho $\geq k$ com base na atribuição reque satisfaz pelo menos $k'=|V|+k+|\overline{E}|$ cláusulas de (X,C).

Façamos K como o conjunto dos vértices v_i cujas variáveis associadas x_i receberam V.

Se K for uma clique, então alcançamos o objetivo e $|K| \ge k$. Se K não for clique, existe um par $v_i v_j$ de não arestas em K cujos valores de x_i e x_i foram V.

Faça $x_i:F$, neste caso. Note que continuamos satisfazendo uma cláusula dentre $(x_i \vee z), (x_i \vee \overline{z})$, mas perdemos uma cláusula.

Entretanto, observe que passamos a satisfazer a cláusula $(\overline{x_i} \vee \overline{x_j})$. Logo, empatamos no total de cláusulas satisfeitas.

Outras cláusulas envolvendo $\overline{x_i}$ (v_i participando de não-aresta), também passam a ser satisfeitas, e, pelo mesmo argumento, o número de cláusulas que satisfazemos é pelo menos igual ao anterior.

Esse processo se repete até que não tenhamos não arestas em K. Logo, K é clique. Note que $|K| \ge k$ pelo conjunto K tomado inicial de tamanho $\ge k$ e as substituições não diminuírem o número de cláusulas satisfeitas. \square