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ABSTRACT

ConformalLayers are sequential Convolutional Neural Networks (CNNs) that use activation
functions defined as geometric operations in the conformal model for Euclidean geometry.
Such construction turns the layers of sequential CNNs associative, leading to a significant
reduction in the use of computing resources at inference time. After the layer’s association,
both the processing time and memory used per batch entry become independent (i.e., con-
stant) of the network’s depth. They depend only on the size of the input and output. The
cost of conventional sequential CNNs, on the other hand, presents linear growth. This paper
evaluates the robustness of the classification of ConformalLayers-based CNNs against different
kinds of corruptions typically found in natural images. Our results show that the mean top-1
error rates of vanilla CNNs are smaller than ConformalLayer-based CNNs on clean images.
Still, our approach outperforms other optimization techniques based on network quantization,
and the relative difference to vanilla networks tends to reduce in the presence of image cor-
ruptions. Furthermore, we show that processing time and CO2 emission rates are much lower
for ConformalLayer-based CNNs with a depth greater than seven and two, respectively.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

The pervasive usage of neural networks in our day-to-day life has significantly required improvement concerning the

robustness to noise, blur, weather conditions, and lossy compression. Factors that lead to corrupted images impact

the accuracy of neural networks in critical tasks like object detection for autonomous car driving (Milyaev and Laptev,

2017) and facial recognition for surveillance (Reina et al., 2021). Unfortunately, adopting complex models to increase

robustness to corruptions can also increase energy consumption and CO2 emissions.

The associative design of ConformalLayers networks developed in our previous work (Sousa et al., 2021) is suitable

for the proposition of sequential network models to be deployed in edge devices, like autonomous cars. The most exciting

features of ConformalLayers are their low memory footprint and reduced inference time. In our previous paper, we show
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that the computing resources used by the model at inference time are constant regardless of the depth of the neural

network.

In this work, we present an analysis of the robustness of ConformalLayers-based networks to common corruptions

found in natural images, including, but not limited to, variations of brightness, contrast, compression, and several cases

of noise and blurring. Specifically, we use the CIFAR-10-C benchmark (Hendrycks and Dietterich, 2019) to assess

the robustness of classification networks. Additionally, we compare ConformalLayers-based and conventional CNNs with

varying depth concerning inference time and CO2 emission. Our results show that networks built using ConformalLayers,

despite having lower top-1 accuracy than the conventional implementation of the same architectures, present less relative

degradation in the classification accuracy of corrupted images, outperform neural network quantization approaches,

and have advantages on inference time and CO2 emission. Regarding processing time, the new implementation of

ConformalLayers proved to be more advantageous on networks with more than eight layers and less polluting on CNNs

with more than two layers. In the previous work, we observed advantages from the ninth layer.

Our main contributions are: (1) The evaluation of the robustness of ConformalLayers concerning common corruptions

in natural images; and (2) The analysis of inference time and energy consumption on networks with varying depths.

2. Related Work

This section presents a brief literature review on strategies for improving the robustness of neural networks against

noise.

Adversarial Training. Szegedy et al. (2014) presented that small data noise may trick neural network models, leading to

misclassifications even in models with high accuracy. Szegedy’s et al. ideas led to using adversarial training to improve

the robustness of the models. Kireev et al. (2021) demonstrated that using a selected parameter in an adversarial training

context could provide a baseline against common corruptions and improve the model robustness. Addepalli et al. (2021)

presented a training-time approach for adversarial training, which can outperform state-of-the-art techniques.

Data Augmentation. Yin et al. (2019) performed an analysis of the model robustness improvement obtained by data

augmentation and adversarial training-based approaches under a frequency domain perspective. This allowed them to

check which frequencies the robustness reduction occurred, proposing data augmentation driven towards mitigating this

issue. Rusak et al. (2020) and Lopes et al. (2020), on the other hand, focused on a specific kind of noise with guided data

augmentation. The former presented an approach for robustness improvement of neural network models that include

small portions of Gaussian and speckle noise in the training set. The latter proposed a data augmentation scheme to
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deal with the trade-off between accuracy and robustness by adding Gaussian noise to randomly selected patches in the

training set. The data augmentation approach proposed by Hendrycks et al. (2020) is guided by the dataset distribution

to enhance the robustness to common corruptions.

The idea of changing the policies for data augmentation was introduced by Lyzhov et al. (2020), with the Greedy

Policy Search. Their approach uses the test dataset as a reference to learn a policy for data augmentation that increases

the robustness of the model in the following train steps.

Model Tuning. Lee et al. (2020) achieved good results related to the model accuracy and robustness to common cor-

ruptions by implementing a model ensemble-based approach. The authors claim that there is only a small drawback

on inference throughput despite the usage of such model aggregation. Benz et al. (2021) relied on batch normalization

adjustments to fix the data distribution and improve the model’s resiliency, also considering the corrupted datasets.

Corruption Benchmarks. Hendrycks and Dietterich (2019) provided a benchmark to compare multiple neural network

architectures concerning the robustness to the common types of corruptions in natural images. In this work, we use the

Hendrycks and Dietterich’s dataset in our experiments.

3. ConformalLayers

ConformalLayers is a new paradigm presented by Sousa et al. (2021) for building sequential Convolutional Neural

Networks (CNNs) using layers in which operations are associative. By associativity we refer to the mathematical property

of a binary operation ◦ on a set S to satisfy the associative law:

(x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ S. (1)

The central idea of ConformalLayers is: given that the layers are associative, then after training, they can be combined,

simplifying the operation to be applied to the data at inference time. Such simplification leads to fewer arithmetic

operations and reduces the number of intermediate feature maps produced by conventional processing, significantly

reducing the processing time, energy consumption, and memory footprint.

Layers typically adopted in CNNs, such as max-pooling and popular activation functions such as ReLU, cannot be

associated with convolutional layers or linear (i.e., fully connected) layers, among others.

In Section 3.1, we present the associative activation function proposed by Sousa et al. (2021). Section 3.2 shows how

ConformalLayers can be defined through products and sums of tensors, exploring the associativity of those operations.

We discuss the test-bed implementation of ConfomalLayers in Section 3.3. Table 1 presents the notation conventions

used in this section.
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3.1. ReSPro

ReSPro stands for Spherical Reflection, Scaling, and Projection. Those are the operations applied to the point

x encoding the input feature map of the ReSPro activation function, producing a new point y that corresponds to

the resulting feature map. Each coordinate of these points corresponds to a coefficient of the data. For example, a

feature map with 10× 10 pixels and 3 channels is a point x = (x1, x2, · · · , xd) with d = 300 coordinates, which after

being transformed by ReSPro maps to y = (y1, y2, · · · , yd). The x-to-y mapping involves one non-linear and two linear

transformations applied to x. Fig. 1 illustrates the mapping performed by ReSPro assuming d = 1.

Let z and x be two points lying on the ed axis, distant, respectively, α and δ units from the origin, for 0 ≤ δ ≤ α. In

Fig. 1, we deliberately added the extra dimension ed+1 to the Cartesian space and placed the hypersphere S (a circle, in

this example) with radius α and center c = (0, α). In this new space, z = (zd, zd+1) = (−α, 0) and x = (xd, xd+1) = (δ, 0).

The addition of the dimension ed+1 to the Cartesian coordinate system is key for defining the non-linear transformation

in ReSPro as the spherical reflection of points on S. The spherical reflection maps z and x to, respectively, z′ and x′.

Spherical reflection causes points outside the hyperspherical mirror to produce images inside the mirror. The distance

of the imaged point to the center of the hypersphere decreases non-linearly as the distance of the original point to the

center increases. Notice in Fig. 1 that the distance between points z′ and c is smaller than the distance between x′ and

c since z is more distant from c than x. At the limit, points at infinity map to c, while points on the hypersphere remain

unchanged. By construction, we do not have to care about the reflection of points inside the hyperspherical mirror

because S is tangent to the space spanned by {e1, e2, · · · , ed}, and all input points lie in this space (i.e., the coordinate

for ed+1 is zero).

Two linear transformations are applied after spherical reflection. The first is isotropic scaling by a factor of 2/α,

which maps z′ and x′ to z′′ and x′′, respectively. The second transformation is the orthogonal projection to the original

d-dimensional Cartesian space. As can be seen in Fig. 1, z′′ projects to (−1, 0) while x′′ projects to y = (yd, 0). The

Table 1: Notation conventions.

Symbol Description

x, y, p Points in Cartesian d-dimensional space.
xi, yi, pi The i-th coordinate of points x, y, and p.
X, Y , P Vectors encoding points x, y, and p in the (d+ 3)-dimensional space of the conformal model of geometry.
x′
o, y

′
o Homogeneous coefficient of vectors X and Y , such that x′

o ̸= 0 and y′
o ̸= 0.

x′
i, y

′
i The i-th coefficient of vectors X and Y , such that xi = x′

i/x
′
o and yi = y′

i/y
′
o.

α Radius of the hypersphere used in the ReSPro.
FM Diagonal matrix of size (d+ 1)× (d+ 1) used in the tensor representation of the ReSPro.
FT Rank-3 tensor of size (d+ 1)× (d+ 1)× (d+ 1) used in the tensor representation of the ReSPro.
U Matrix encoding a sequence of linear operations.
L The conformal layer function.
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reasoning for performing scaling followed by projection is to map points that are α units away from the origin of the

Cartesian space to points 1 unit away from the origin. The projection also makes the coordinate associated with the

extra dimension ed+1 equal to zero, which can be removed from the resulting point since it is constant. Formally, ReSPro

is a mapping

f : x → y, subject to ∥x∥2 ∈ [0, α] and ∥y∥2 ∈ [0, 1] , (2)

where x, y ∈ Rd are, respectively, the input and output data represented as points in Cartesian d-dimensional space, ∥·∥2

denotes the L2-norm, and α is the radius of the hypersphere used in the reflection.

ReSPro is non-linear, differentiable, invertible, and associative to the linear functions typically used in CNNs. We use

the geometric algebra of the conformal model for Euclidean geometry (Dorst et al., 2010) to perform spherical reflection

as orthogonal transformation (hence, a linear transformation) and combine it with isotropic scaling and orthogonal

projection. The representational space of the conformal model has two extra dimensions and a degenerate metric (Dorst

et al., 2010). By definition, we also include one extra dimension (ed+1) to the Cartesian space with basis vectors

{e1, e2, · · · , ed}. Hence, the (d+ 1)-dimensional Cartesian space is embedded in a (d+ 3)-dimensional space with basis

vectors {e1, e2, · · · , ed+1, eo, e∞}. The extra dimensions eo and e∞ are geometrically interpretable in the conformal model

as the point at the origin and the point at infinity, respectively. In the conformal model, a finite point with coordinates

p = (p1, p2, · · · , pd, pd+1) is encoded by the (d+ 3)-dimensional vector:

P = γ

(
p1, p2, · · · , pd, pd+1, 1,−

1

2

d+1∑
i=1

(pi)
2

)⊺

, (3)

where ⊺ denotes matrix transposition and the scalar γ ̸= 0 does not change the practical interpretation of P as the

point p. Please refer to Dorst et al. (2010) for a comprehensive explanation of how to represent geometric entities and

Euclidean transformations in the conformal model of geometry.

The algebraic manipulation that takes the ReSPro function from its formulation in geometric algebra to tensor

algebra is quite involved, and it is presented by Sousa et al. (2021). Here, it is sufficient to show that, in tensor form, a

d-dimensional point x = (x1, · · · , xd) encoding input data will be represented by the (d+ 1)-dimensional vector:

X = (x′
1, · · · , x′

d, x
′
o)

⊺
, (4)

such that xi = x′
i/x

′
o and x′

o ̸= 0, for i ∈ {1, 2, · · · , d}. Vector X is mapped to Y by the ReSPro function as:

Y = (y′1, · · · , y′d, y′o)
⊺
=

(
x′
1, · · · , x′

d,
α

2
x′
o +

1

2α

d∑
i=1

(x′
i)

2

)⊺

(5)

such that yi = y′i/y
′
o and y′o ̸= 0, for i ∈ {1, 2, · · · , d}.
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Fig. 1: Mapping performed by the ReSPro function.

In (3), P is a vector that encodes any finite point p according to the convention of the conformal model of geometry.

Like P , X and Y are vectors that follow the same convention. However, these are, respectively, the input and output

of the ReSPro function. Furthermore, in (4) and (5), X and Y are simplified version of P . They do not include the

coefficient related to ed+1, since this coefficient is always zero at the beginning and the end of the mapping, nor the

coefficient related to e∞, because it can be computed from the other coefficient. The x′
o and y′o coefficients act as

homogeneous coordinates. By dividing X by x′
o and Y by y′o, one obtains the coordinates as points x and y, respectively.

Activation functions can affect the learning rate and training time, or lead to vanishing/exploding gradients. We

did not notice ReSPro suffering from these issues during our experiments. We believe that the reason is that ReSPro

behaves like an element-wise activation followed by normalization, which would give some stability to the training.

3.2. Tensor Representation of ConformalLayers

The tensor representation of (5) is:

Y = (y′1, · · · , y′d, y′o)
⊺
= (FM + FTX)X, (6)

where

FM =


1 · · · 0 0
...

. . .
...

...
0 · · · 1 0
0 · · · 0 α

2

 and FTX =


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
x′
1

2α · · · x′
d

2α 0

 .
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FM is a (d+ 1)× (d+ 1) diagonal matrix, and FT is a rank-3 tensor of size (d+ 1)× (d+ 1)× (d+ 1) filled with zeros,

except for the slice at the bottom, which is the diagonal matrix:

FT [d+1] =


1
2α · · · 0 0
...

. . .
...

...
0 · · · 1

2α 0
0 · · · 0 0

 .

Recall that X in (6) represents a finite point x ∈ Rd, whose coordinates are the coefficients of some feature map

produced by some CNN layer. It is well known that linear functions are typically used in layers and their configurations

can be written in matrix form and applied to vectors by matrix multiplication. For instance, Toeplitz matrices encode

n-dimensional discrete-time convolutions and can be modified to encode valid cross-correlation (Goodfellow et al., 2016);

average pooling is the mean filter (Gonzalez and Woods, 2008), a particular case of convolution with constant weights;

and configurations such as padding, dilation, and stride can be encoded by matrices composed of zeros and ones (see

Sousa et al. (2021) for details). By writing these and other operations in the matrix form, the associativity of the matrix

product allows the composition of operations to produce matrices U which, when multiplied by a vector X, produce the

vector Z = UX representing the output of a sequence of linear layers. By replacing X in (6) by Z and combining U

with FM and FT , we write:

Y = L(X) = (FM + FT (UX)) (UX)

= (FMU + (U⊺F ⊺
TU)⊺X)X,

(7)

where L is the conformal layer function, a sequence of linear operations applied to X, followed by the application of

the ReSPro activation function. Here, ⊺ denotes the transposition of the first two dimensions of tensors and matrix

transposition.

A sequence of k conformal layers applied to X is written as:

Y (k) = L(k)(L(k−1)(L(k−2)(· · · ))), (8)

where L(0) = X. In L(l), the upper index identifies the l-th conformal layer, X =
(
x′
1, · · · , x′

din
, x′

o

)⊺
encodes the in-

put data, and Y (k) =
(
y
′(k)
1 , · · · , y′(k)dout

, y
′(k)
o

)⊺
encodes the output of the k-th layer, whose actual coefficients as point

coordinates can be computed as yj = y
′(k)
j /y

′(k)
o , for j = {1, 2, · · · , d(k)out}.

We expand (8) to model a sequence of k conformal layers applied to X using tensor form:

Y (k) =
(
L
(k)
M + L

(k)
T X

)
X, (9)

where

L
(k)
M = F

(k)
M U (k)F

(k−1)
M U (k−1) · · ·F (1)

M U (1) (10)
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is a (d
(k)
out + 1)× (din + 1) sparse matrix, and

L
(k)
T =

k∑
l=1

(
F

(k)
M U (k)F

(k−1)
M U (k−1) · · ·F (l+1)

M U (l+1)
)

(
U (1)⊺U (2)⊺ · · ·U (l)⊺F

(l)⊺
T U (l) · · ·U (2)U (1)

)⊺
(11)

is a (d
(k)
out + 1)× (din + 1)× (din + 1) tensor filled with zeros, except for the slice at the bottom, which is a sparse

(din + 1)× (din + 1) matrix. The Supplementary Material of Sousa et al. (2021) shows how to turn (8) into (9).

Notice that the L
(k)
M and L

(k)
T components of (9) do not depend on the input data X, and they encode a complete

sequence of k conformal layers. Therefore, after the weights of the CNN be adjusted through the training process,

L
(k)
M and L

(k)
T can be computed once by associativity using (10) and (11), and applied afterward to any X to perform

inference.

3.3. Implementation of ConformalLayers

The source code of the ConformalLayers is available at https://github.com/Prograf-UFF/ConformalLayers/. We

have implemented it as an nn.Module of PyTorch 1.9. The cl.ConformalLayers module behaves like an nn.Sequential

module, and its current version accepts submodules that mimic the behavior of nn.Conv1d, nn.Conv2d, nn.Conv3d,

nn.AvgPool1d, nn.AvgPool2d, nn.AvgPool3d, nn.Dropout, nn.Flatten, and nn.Identity, in addition to the cl.ReSPro

module. The configuration of existing modules includes stride, zero padding, dilation, and channel grouping whenever

necessary. We plan to include complementary modules such as nn.ConvTransposeN d and nn.Linear, and arguments

like bias in future versions of our library.

During the training process, the cl.ConformalLayers module uses the native PyTorch implementation of supported

submodules to compose the network. The only exception is the cl.ReSPro module, which is implemented according

to (5), and the computation of the coefficient y
′(k)
o in all submodules. Once the training process is completed, the

cl.ConformalLayers module builds an internal cache containing the sparse matrix L
(k)
M (10) and the sparse matrix

representing the slice at the bottom of L
(k)
T (11). This cache has to be updated only if the user decides to retrain the

model. Due to the sparse nature of L
(k)
M and L

(k)
T , the expression in (9) is evaluated using only two sparse matrix-vector

multiplications, one dot product of vectors, one addition, and one multiplication. As the value of y
′(k)
o can be different

from 1, the result of (9) needs to be divided by y
′(k)
o to obtain the correct result.

The calculation of sparse tensors U (l) used in the computation of L
(k)
M and L

(k)
T is implemented using the Minkowski

Engine 0.5.4 (Choy et al., 2019), as PyTorch 1.9 does not implement most of its modules to process sparse tensors.

The module cl.ReSPro accepts the user to explicitly enter the value of its α(l) argument while defining the network
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architecture or leave it for the cl.ConformalLayers module estimate the α(l) value. For doing so, we need to keep the

tracking of the maximum distance from the origin the point interpretation of the result of the linear operations in the

l-th conformal layer may have. Before applying the U (l) matrix (which encodes the linear operations), it is reasonable

to assume that the L2-norm of the layer’s input point is 1, as long as we set the x′
o coordinate of the input data to

the Euclidean distance of x to the origin. By doing so, all input vector X will encode a point 1 unit away from the

origin, and, by definition, the vector resulting from the application of ReSPro in the previous layer (i.e., Y (l−1), for

l > 1) encodes points distant up to 1 unit from the origin. But after applying U (l), the maximum distance of the point

given to the cl.ReSPro module may change from 1 to any value, depending on the composition of U (l). Therefore, our

implementation progressively updates α(l) to the upper limit for the L2-norm that each operation may produce.

For nn.AvgPoolN d, nn.Dropout, and nn.Flatten, the upper limit for the distance of the resulting point to the origin

is equal to the upper limit given as input. For nn.ConvN d without bias, Young’s inequality (Young, 1912) defines the

boundaries of the convolution operator ∗ as:

∥g ∗ h∥r ≤ ∥g∥p ∥h∥q, subject to
1

p
+

1

q
=

1

r
+ 1, (12)

where g and h denote two discrete signals, and ∥·∥t denotes the Lt-norm. In our case, we use p = 2, q = 1, and r = 2

for estimating the upper bound for the L2-norm of the output.

The usage of ConformalLayers is transparent to PyTorch users, as can be seen in Fig. 2. We were careful to keep the

same signature for the supported modules.

4. Materials and Methods

In this section, we characterize the environment and the metrics used in our experiments for the assessment of two

aspects of ConformalLayers: (i) processing time and energy consumption, here presented as the amount of CO2 emitted

at inference; and (ii) robustness to common corruptions in natural images.

Hardware. We run our experiments in an Intel Xeon 8160 CPU with 2.10GHz, 376Gb of RAM, and 4 GPUs NVIDIA

Tesla V100 with 32Gb of memory each. We have executed all experiments inside a Docker container with RAM limited

to 32Gb and the number of visible GPUs set to one.

Performance Measurement. For measuring inference time, we have performed forward propagation while processing

batches of 64 images in DkNet and DkNetCL networks (Sousa et al., 2021). These networks have k layers that receive

and produce feature maps with the same resolution (see Fig. 3). They were specially designed for measuring the
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import torch
import cl

class SomeNet(torch.nn.Module):
def __init__(self):

super(SomeNet , self).__init__ ()
self.features = torch.nn.Sequential(

torch.nn.Conv2d(3, 6, kernel_size =5),
torch.nn.ReLU(),
torch.nn.AvgPool2d(kernel_size =2, stride =2),
torch.nn.Conv2d(6, 16, kernel_size =5),
torch.nn.ReLU(),
torch.nn.AvgPool2d(kernel_size =2, stride =2),

)
self.classifier = ...

...

class SomeCLNet(torch.nn.Module):
def __init__(self):

super(SomeCLNet , self).__init__ ()
self.features = cl.ConformalLayers(

cl.Conv2d(3, 6, kernel_size =5),
cl.ReSPro (),
cl.AvgPool2d(kernel_size =2, stride =2),
cl.Conv2d(6, 16, kernel_size =5),
cl.ReSPro (),
cl.AvgPool2d(kernel_size =2, stride =2),

)
self.classifier = ...

...

Fig. 2: Code snippet comparing the use of conventional PyTorch modules (top) and ConformalLayers modules (bottom).

DkNet DkNetCL
Input (32× 32 RGB image)

k × Conv o=32 k=3 p=1 b=on Conv o=32 k=3 p=1 b=off
ReLU ReSPro

Flatten
Linear o=10 b=on

BaseReLUNet BaseReSProNet
Input (32× 32 RGB image)

Conv o=32 k=3 b=on Conv o=32 k=3 b=off
ReLU ReSPro

AvgPool k=2 s=2
Flatten

Linear o=10 b=on

LeNet LeNetCL LeNetBinary LeNetMasked
Input (32× 32 RGB image)

Conv o=6 k=5 b=on Conv o=6 k=5 b=off Conv o=6 k=5 b=on Conv o=6 k=5 b=on
ReLU ReSPro HardTanh ReLU

AvgPool k=2 s=2
Conv o=16 k=5 b=on Conv o=16 k=5 b=off Conv o=16 k=5 b=on Conv o=16 k=5 b=on

ReLU ReSPro HardTanh ReLU
AvgPool k=2 s=2

Flatten
Linear o=120 b=on Linear o=120 b=on Linear o=120 b=on Linear o=120 b=on

ReLU ReLU HardTanh ReLU
Linear o=84 b=on Linear o=84 b=on Linear o=84 b=on Linear o=84 b=on

ReLU ReLU HardTanh ReLU
Linear o=10 b=on

Fig. 3: Networks’ configuration. Here, o is the number of output channels, k is kernel size, p denotes padding, s is stride, and b indicates the
use of bias.

computing resources required concerning the depth of the network since the only changing variable here is k. As we

increase the k-value, we can assess the impact of the depth on inference time.

We also assess the CO2 emission rate of DkNet and DkNetCL networks during the inference step. For that, we have

relied on the CodeCarbon toolset (Schmidt et al., 2021).

The classification accuracy is not important for the experiment involving performance measurement. Therefore, we

have not trained those models, and we have used uniformly distributed random data as input. The analyzes consider
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the average of measurements over 50 executions of each network. We use Welch’s t-test (Welch, 1947) to compare mean

values. It does not assume equal population variance to test the null hypothesis that two populations have equal means.

The alternative hypothesis is that the means of the distributions are unequal. We have assumed a significance level

α = 0.05. Therefore, we reject the null hypothesis if the p-value is less or equal to 0.05.

Datasets. For the robustness assessment, we rely on the well-known corruptions dataset CIFAR-10-C, provided by Hendrycks

and Dietterich (2019), which consists of 19 different types of corruptions applied to natural images originally from the

CIFAR-10 dataset (Krizhevsky, 2009). Each type of corruption has 5 different levels of severity. The CIFAR-10-C

dataset includes 10,000 test images for each combination of corruption type and severity level, while CIFAR-10 has a

training set of 50,000 images and a test set of 10,000 images.

Robustness Assessment. The metrics used for robustness assessment are the Mean Corruption Error (mCE), which

measures the error by aggregating the top-1 error rates under different levels of corruption severity, and Relative mCE,

which measures how the classification degrades in the presence of corruptions. They were proposed together with the

CIFAR-10-C dataset by Hendrycks and Dietterich (2019).

To calculate the mCE, let Ef
s,c denote the error rate obtained by the network f associated to the corruption c at

severity level s. The Corruption Error value is:

CEf
c =

(
5∑

s=1

Ef
s,c

) / (
5∑

s=1

EBaseline
s,c

)
. (13)

In (13), EBaseline
s,c is a normalization term considering the error in a baseline architecture. Hendrycks et al. (2020) used

AlexNet (Krizhevsky et al., 2012) as baseline. As they do not impose restrictions on which network should be used as

baseline, in this work, we consider LeNet-5 (Lecun et al., 1998) and BaseReLUNet (Sousa et al., 2021) for normalization

because those are the vanilla networks. The average of the Corruption Error values is the mCE metric:

mCEf =
1

19

19∑
c=1

CEf
c . (14)

The Relative CE is calculated as:

RCEf
c =

(
5∑

s=1

Ef
s,c − Ef

Clean

) / (
5∑

s=1

EBaseline
s,c − EBaseline

Clean

)
, (15)

where Ef
Clean refers to the error associated with an architecture f in a dataset without corruptions, i.e., the test subset

of the CIFAR-10 dataset. Thus, the Relative mCE is given by:

Relative mCEf =
1

19

19∑
c=1

RCEf
c . (16)
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Fig. 3 presents the configuration of the networks used for robustness assessment. We designed the BaseReLUNet and

BaseReSProNet architectures to analyze the influence of ReSPro on the classification problem considering a straight-

forward network with a single layer. We also compare the vanilla LeNet against the ConformalLayers-based version

(LeNetCL) and two LeNet-based networks that apply compression strategies from the literature. The LeNetBinary uses

the concepts presented by Hubara et al. (2016), which described an approach to mitigate resource and energy usage of

neural networks by binarizing the network’s weights. The LeNetMasked uses the masking criteria presented by Zhou

et al. (2019) to assess which weights should be pruned to find a simpler network according to lottery ticket hypothesis.

The reason for using LeNet-based models for comparison is that LeNet is a well-known architecture, as it has already

been extensively studied in the literature.

For each CNN, we’ve performed hyperparameter optimization via a Bayesian approach (Bergstra et al., 2013) assum-

ing validation accuracy as metric and Hyperband (Li et al., 2017) as stopping criteria, with arguments min iter = 10

and η = 3. Please refer to the Supplementary Material for the hyperparameter search space and the hyperparameter

values selected for each CNN. In all experiments, we set the ConformalLayers to automatically estimate the α values

used by the ReSPro activation functions. The networks were trained with a random and balanced subset of 40,000

images and validated with the remaining 10,000 images from the CIFAR-10 training set. We have compared the mean

top-1 error rates using Welch’s t-test (Welch, 1947) with α = 0.05.

5. Experiments and Results

In the first analysis, we assess the mean execution time and mean CO2 emission rate of CNNs with varying depth.

Fig. 4 summarizes the performance of DkNet, a network built in a non-associative way using ReLU, and DkNetCL, a

network built with ConformalLayers, and hence, using ReSPro. The first notable observation about processing time

(Fig. 4, top) reveals that DkNetCL presents constant behavior, regardless of the number of layers. DkNet, on the

other hand, presents monotonically non-decreasing cost, i.e., as we increase the depth of the network the inference

time also increases. Notice that DkNet is almost 3× faster than DkNetCL for k = 1. As the neural networks become

deeper (k ≥ 8), however, DkNetCL becomes more advantageous. For k = 7, the p-value is 0.49. For all other cases, it

is less than 0.05. The implementation of the cl.ConformalLayers module used by Sousa et al. (2021) includes steps

that were simplified in the current version, and the PyTorch version is also different. These modifications resulted in a

performance improvement. Sousa et al. (2021) reported advantages in using ConformalLayers for k ≥ 9.

Considering the CO2 emission rate plot in Fig. 4 (bottom), we also have constant behavior for DkNetCL. In contrast,

the emission rates of DkNet per batch increase as the neural network becomes deeper. This time, however, the mean
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Fig. 4: Mean processing time and CO2 emission rates for batches of size 64.

emission rate of ConformalLayers-based networks becomes more advantageous for k ≥ 3. Here, the p-value of 0.44 shows

a tie for k = 2. For all other cases the p-value is less than 0.05.

The second analysis aims to evaluate and compare the robustness of classification networks in the presence of common

corruptions found in natural images. Fig. 5 summarizes the mean top-1 error rates (i.e., 1
5

∑5
s=1 E

f
s,c, in %) computed

on the five levels of severity of each type of corruption for two sets of networks: BaseReLUNet vs. BaseReSProNet

and LeNet vs. LeNetCL vs. LeNetBinary vs. LeNetMasked. Notice that the standard deviations of quantization-based

networks (LeNetBinary and LeNetMasked) are smaller, which in practical terms, means that changing the severity level

impacts less on those approaches. Such approaches, however, present the highest error rate in the experiments. The

ConformaLayers-based approaches, on the other hand, present a sweet spot between robustness to corruption severity and

error rate, which can be seen when comparing BaseReLUNet vs. BaseReSProNet and LeNet vs. LeNetCL. Also, notice

that the distance between the red and blue dots are smaller for LeNet-based networks than for single-layer networks,

which means that as the network became more elaborate (i.e., from BaseReSProNet to LeNetCL), the difference between

the errors became smaller. According to the Welch’s t-test, the null hypothesis that two populations have equal mean

top-1 error rates is not rejected for corruptions Contrast (p = 0.77), Fog (p = 0.06), and Impulse Noise (p = 0.06) for

BaseReLUNet and BaseReSProNet, and Contrast (p = 0.80), Fog (p = 0.40), Gaussian Blur (p = 0.20), Motion Blur
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Fig. 5: Mean top-1 error rate (%) with confidence interval of one standard deviation of the networks f applied on corruption c with severity
level 1 ≤ s ≤ 5.

(p = 0.39), and Zoom Blur (p = 0.05) for LeNet and LeNetCL. It means that for one layer and LeNet-based networks,

the mean error rates are virtually the same for, respectively, three and five kinds of corruption.

An interesting analysis comes from the fact that, although the ConformalLayers-based approach presents higher

error rates than LeNet for corrupted images, they do not change much compared to the clean dataset’s error rate. We

deep dive into this characteristic by looking at Table 2, which presents the evaluation of the neural networks under the

metrics mCE (14) and Relative mCE (16). Our first observation is that neural networks built with a single layer using

ConformalLayers tend to misclassify more that the vanilla LeNet model. As can be seen, when using BaseReLUNet

as a baseline network and moving from BaseReSProNet to LeNetCL, we notice the reduction of the mCE by 17.12%.

When moving from BaseReLUNet to LeNet, under the same baseline, we observe a decrease of 2.59%. Notice that the

mCE distance between the vanilla LeNet and the LeNetCL networks (15.33 percentage points) is smaller than the mCE

distance of the single-layer networks (36.04 percentage points). Therefore, the increase in complexity of networks built

with ConformalLayers suggests more beneficial for corruption tolerance than on networks with non-associative layers. A

similar result is observed using LeNet as the baseline network. For the quantization-based networks (LeNetBinary and
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Table 2: Mean Corruption Error (mCE) and Relative mCE, in %.

Network

Baseline Network

BaseReLUNet LeNet

mCE Relative mCE mCE Relative mCE

BaseReLUNet 100.00 100.00 102.89 186.27
BaseReSProNet 136.04 27.53 139.70 36.68

LeNet 97.41 67.17 100.00 100.00
LeNetCL 112.74 35.77 115.70 46.54

LeNetBinary 189.14 1.03 194.39 0.32
LeNetMasked 149.99 31.37 153.97 32.38

LeNetMasked), one can notice the higher mCE values (89.14 and 49.99 percentage points from the BaseReLUNet as

baseline, respectively). These higher mCE values reveal a drawback of these approaches in LeNet-based architectures,

while the smaller Relative mCE values show that they suffer less as we add corruption to the data.

When looking at the Relative mCE column of Table 2, one should notice the considerably smaller values for

ConformalLayers-based architectures when compared to vanilla LeNet. Since this metric describes how the classifier

degrades in the presence of noise, relatively to the error on a clean dataset, we can state that the approaches based on

ConformalLayers are more robust to these kinds of corruptions present in CIFAR-10-C than conventional approaches,

with relative mCE ranging from 27.53% to 35.77% using BaseReLUNet as the baseline and from 36.68% to 46.54%

using LeNet as the baseline. These results show that, despite ConformalLayers presented a higher mean corruption error

when compared to the standard non-associative approach, the classifier degrades proportionally less in the presence of

corruption than the vanilla non-associative approaches when we compare to the error on the clean dataset.

6. Conclusion and Future Work

This paper extends our previous work in three ways: (i) by presenting an updated analysis of the processing time

of ConformalLayers-based CNNs with varying depth; (ii) by discussing their performance regarding CO2 emission rates;

and (iii) by assessing the robustness of single layer and LeNet-based models to common corruptions found in natural

images.

We believe that there are several directions to be explored to analyze the impact of ConformalLayers in the design of

sequential neural networks as solution to open problems in deep learning. The purpose of this work is to illustrate one of

these directions, which is to assess the robustness of ConformalLayers-based networks to corruption in natural images.

In a complementary direction, we show that our approach leads to lower CO2 emission rates and requires fewer

computational resources. We hope this observation motivates the community to investigate further applications of

ConformalLayers.
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