
Ontology and Context

Isabel Cafezeiro
Departamento de Ciência da Computação

Universidade Federal Fluminense
Niterói - RJ, Brazil
isabel@dcc.ic.uff.br

Edward Hermann Haeusler,
Alexandre Rademaker

Departamento de Informática
Pontifı́cia Universidade Católica

Rio de Janeiro, Brazil
hermann,rademaker@inf.puc-rio.br

Abstract

This paper considers a formal framework to contextu-
alize ontologies and presents a formal algebra to manipu-
late these entities providing several ways of composing on-
tologies, contexts or both. The algebra gives the flexibility
that is required to model applications where the meaning
of an entity depends on environment constraints or where
dynamic changes in the environment must be considered.

Ontologies are used in computer science to describe real
world things by hierarchically organizing concepts and en-
riching this hierarchy with relationships among concepts.
A real word entity to be represented is always related to
a context: a semantically consistent body of information in
which the entity makes sense. The need of contexts is grow-
ing with the adoption of new paradigms of computation
where information concerning either physical or computa-
tional environment is required, as in Computer-Aware Mo-
bile Applications, where the environment suffer dynamic
re-configurations [8].

In this paper we propose an algebra for manipulate Con-
textualized Ontologies. We adopt an homogeneous descrip-
tion of entities and contexts and define maps that consis-
tently link entities and contexts. This framework gives the
required flexibility, making possible the combination of en-
tities or contexts in several ways, the changing and inheri-
tance of context by an entity, and other useful operations.
We consider a few basic formal concepts what makes it
accessible even for those that are not familiar with formal
methods. The formal approach for the proposed algebra not
only gives a rigorous definition of Contextualized Ontolo-
gies, but also gives insights to sound implementation of en-
vironments. In addition, it is abstract enough to make possi-
ble the replacement of ontologies by other kind of technique
for representing knowledge allowing the use of the same al-
gebra in a large class of domains.

This paper is organized as follows: Section 1 gives an

overview of the approach. Section 2 presents the complete
algebra. Section 3 presents the formal basis and justifies the
adopted formal method. Section 4 concludes the paper.

1 Contextualized Entities

Entities are described by three parts: the entity itself, a
context, and a link between the entity and its context. As
both entity and context are ontologies, an entity can be the
context of other entity. The context, gives general informa-
tion about the entity or about the environment wherein the
entity operates. Any context is linked to a (meta)context.
The link between the entity and its context, plays the role of
ensuring that the entity and its context are coherent, that
is, the context respects (preserves) information concern-
ing the nature of the entity. For example, suppose that
an entity E has parts e1, e2 related by f . Then a link F
from E to its context C must respects the parts and inter-
nal relationships of E. Thus, F : E → C is such that
F (f(e1, e2)) = F (f)[F (e1), F (e2)].

In order to avoid violating internal constitution of enti-
ties, few constraints are stated about links: (i) any entity
must have an identity link, that maps the entity to itself, and
thus the entity may be viewed as a (non-informative) con-
text of itself; (ii) an entity is called domain of a link, while a
context is called codomain of a link; (iii) links can be com-
posed in an associative way if the codomain of the first is the
domain of the second. A triple (entity, link, context), also
represented by e → c, will be named contextualized entity.
If the entity, or context, is represented by ontologies, we use
the name contextualized ontology. We will use the symbol
“◦” to denote composition of contextualized entities.

In the sequel we present modular constructs that can be
applied to contextualized entities, in order to coherently
combine entities, contexts or both. We divide the operations
in three classes: Entity Integration, Context Integration and
Combined Integration.



2 The Algebra of Contextualized Entities

2.1 Entity Integration

Operations in this class have the purpose of integrating
entities that share the same context. As entities are coherent
with respect to their context, an operation of this class is
guided by the context and results a new entity that is also
attached to that context. Figure 1, part (a) shows entities
E1 and E2 that share the context C. The right diagram of
part (a) shows the produced entity, named E.

(a) C

E2E1

���
e2

���e1

C

E2E1

���
e2

���e1

E

���e′1 ��� e′2

(b)

C2C1

E

���e1 ���e2

C

C2C1

���e′2���
e′1

E

���e1 ���e2

Figure 1. (a) Integration of entities sharing the
same context. (b) Integration of contexts of a
same entity.

The original entities play the role of context to the pro-
duced entity. By transitivity, the original context is also a
context for the produced entity.

whole plant growth stage

�
�

���
is-a

�
is-a

vegetative stage

reproductive stage

�
���is-a

flowering

�
is-a

fruit formation

life stages

�
is-a

active
�

�
��

is-a

innative
�is-a

fertile

�

is-a

unproductive

is-a

�

mature

�

reproductive

�

pre-fertile

�

�

�

�
�

Figure 2. Whole Plant Growth Stage contex-
tualized by Life Stages.

In order to correctly define E, we consider that right di-
agram of part (a) of Figure 1, has the following two prop-
erties: (i) The diagram is commutative, that is, from each
component of E, the same component in C is reached by
following the E1 path or the E2 path in the diagram. This
property ensures the coherence of E1, E2 and E with re-
spect of the context. (ii) The bottom entity E is the more
complete entity that makes the diagram commute. By more
complete we mean that all components of E1 and E2 that
are linked to the same element in C have a corresponding
in E, and nothing more than this is present in E. There is
a unique entity constructed in this way that makes the dia-
gram commutes (see Section 3). This unique entity is the

semantic intersection of E1 and E2 with respect to the con-
text. Thus, if E1 and E2 give different approaches about a
subject C, then E express their agreement with respect to
C.

human

�
��� is-a�is-a

gestative stage

pos-partum

�
���

is-a

first age

�
is-a

second age

�

is-a

third age

life stages

�

is-a

active

�
���

is-a
innative

�is-a

fertile

�� is-a
unproductive

is-a�

mature

�
reproductive

�pre-fertile

�

�

�

�
�

�

Figure 3. Human contextualized by Life
Stages.

Example: Figures 2, 3 and 4 show contextualized entities: at left,
the entity, at right, the context. Figure 4 shows the semantic inter-
section of contextualized entities of Figures 2 (about plant [7]) and
3 (about human being). Both are contextualized by an ontology
that describes life stages. The result of the integration (Figure 4)
embodies the semantic intersection of “plant” and “human”. Both
plant and human ontologies could also be viewed as context to the
resulting entity. As stated by (i), components of the entity in Fig-
ure 4 correspond to those of “plant” and “human” that are linked
to the same component of “life stage”. As stated by (ii), all the
components that satisfies (i) are present in the entity of Figure 4.
In this way, hierarchy is preserved by the resulting links. Note also
that it is the net formed by the links that gives the meaning of each
entity, as it establishes the general context of entities.

Definition 1 (Entity Integration) Given two contextualized enti-
ties sharing the same context e1 : E1 → C and e2 : E2 → C,
the integration of E1 and E2 with respect to C is the contextual-
ized entity E → C, such that, (i) There exists e′1 : E → E1 and
e′2 : E → E2 such that e1 ◦ e′1 = e2 ◦ e′2, and, (ii) For any other
other entity E′′, with links e′′1 : E′′ → E1 and e′′2 : E′′ → E2

there exists a unique link ! : E′′ → E with e′1◦! = e′′1 and
e′2◦! = e′′2

The existence of links e′1 : E → E1 and e′2 : E → E2

ensures the semantic relationship of all components of E
with those of E1 and E2. The commutative condition is
(i). Condition (ii) expresses that E embody the complete
intersection, and not part of it: if there exists another entity
(E′′) that could also be put in the place of E, then it could
be semantically mapped in E.

Following, we present an algorithm that implements the
operation. The first loop constructs the set of concepts CE

of the resulting ontology E, respecting the partial order
(HC) of E1, E2 and C. The second loop constructs the set



of relations RE , respecting the relationships rel of E1, E2

and C. For concepts, the algorithm considers concepts x1

in CE1 that are linked to the same concept in CC as a con-
cept x2 in CE2 , that is: fe1(x1) = fe2(x2). The image of
fe1(x1) (or fe2(x2)) will compose the set of concepts CE

of the new entity E. The components fe′
1

and fe′
2

of e′1
and e′2 are defined for each concept added to CE linking the
added concept to the inverse image of it by fe1 in CE1 , or
by fe2 in CE2 . For relations, the algorithm acts in a similar
way. The algorithm returns the composite e1 ◦ e′1 (could be
e2 ◦ e′2), which is the link E → C.

Algorithm. (Entity Integration)

Input: e1 : E1 → C and e2 : E2 → C Output: E → C

Notation: xi are variables for concepts of entities and yi are variables for relations of

entities. (CE, RE , HC
E , relE) identify the components of an entity E. fe is component

f of a link e and ge is component g of a link e. The symbol �→ denotes the association

by a function of the element at the left to the element at the right of the symbol �→.

Initial conditions: CE , RE are empty sets and fe′1
, fe′2

, ge′1
, ge′2

are empty functions.

For all x1 ∈ CE1

If there is x2 ∈ CE2 with fe1 (x1) = fe2(x2)

CE := CE ∪ fe1(x1)

fe′1
:= fe′1

∪ (fe1(x1) ∈ CE) �→ x1

fe′2
:= fe′2

∪ (fe2(x2) ∈ CE) �→ x2

For all y1 ∈ RE1

If there is y2 ∈ RE2 with ge1(y1) = ge2(y2)

RE := RE ∪ ge1(y1)

ge′1
:= ge′1

∪ (ge1(y1) ∈ CE) �→ y1

ge′2
:= ge′2

∪ (ge2(y2) ∈ CE) �→ y2

return (fe1 , ge1) ◦ (fe′1
, ge′1

)

life stages

�
���is-a

innative

�

is-a

mature

�

is-a

reproductive

life stages

�
is-a

active
�

�
��

is-a

innative
�is-a

fertile

�

is-a

unproductive

is-a

�

mature

�

reproductive

�

pre-fertile

�

�

�
�

Figure 4. The semantic intersection between
contextualized entities of Figures 2 and 3.

2.2 Context Integration

In Section 2.1 we showed an operation that results in an
entity with more than one context. This situation happens
not only as a consequence of that operation, but also in mod-
eling many real world aspects, where a single entity can be
viewed in different ways. This motivates the definition of
a class of operations that act in the contexts of a single en-
tity. A new context is produced as a result of combining
and integrating given contexts. The resulting context must
be coherent with respect to the corresponding entity.

Part (b) of Figure 1 shows entity E with two contexts
C1 and C2, meaning that all components of that entity can
be understood both as concepts of C1 or as concepts of C2.
The right diagram of part (b) of Figure 1 shows the pro-
duced context C. All components of the original contexts
will be represent in the new context, as the resulting links
have the original contexts as domain. Thus this operation
is a summation (amalgamation) of contexts. The commuta-
tivity of the diagram ensures that it is a coherent sum with
respect to the entity: a component of the entity is mapped
into (different) concepts in C1 and C2, and then, mapped
to the same concept in C. The top context C is the less
informative context that makes the diagram commute. By
less informative we mean that all elements of C1 and C2 are
represent in C, and nothing more than this. It can be proved
that there is a unique context constructed in this way that
makes the diagram commute.

whole plant growth stage

���is-a

vegetative stage

reproductive stage

�
is-a

whole plant growth
stage

���is-a

vegetative stage

�is-a
germination

��part-of

imbibition
�� part-of

seeding growth

���part-of

radicle
emergence

��� part-of

shoot
emergence

reproductive stage

�
is-a

�

�

Figure 5. Part of Whole Plant Growth Stage ontol-
ogy.

Example: A plant growth stage ontology is composed by two
separate parts: vegetative stage (Figure 5) and reproductive stage
(Figure 6). These parts can be developed in separate and glued
later to form the complete plant growth stage. In the glue process
part of the ontology (the glue points) must be contextualized by
the ontologies containing the new parts. The integration of these
contexts results the whole plant growth stage ontology.

Definition 2 (Context Integration) Given two contextualiza-
tions of the same entity e1 : E → C1 and e2 : E → C2,
the context integration of C1 and C2 with respect to E is
the contextualized entity E → C, such that, (i) There exists
e′1 : C1 → C and e′2 : C2 → C such that e′1 ◦ e1 = e′2 ◦ e2, and,
(ii) For any other other context C′′, with maps e′′1 : C1 → C′′

and e′′2 : C2 → C′′ there exists a unique map ! : C → C′′ with
! ◦ e′1 = e′′1 and ! ◦ e′2 = e′′2 .

The existence of maps e′1 : C1 → C and e′2 : C2 →
C ensures that all components of contexts C1 and C2 are
semantically mapped to the new context C, and thus, C is
a kind of semantic union of C1 and C2. The commutative
property is (i). Condition (ii) expresses that C is the less



whole plant growth stage

�
�

���
is-a

vegetative stage

reproductive stage

�

is-a

whole plant growth stage

�
�

���
is-a

�
is-a

vegetative stage

reproductive stage

�
���is-a

flowering

�

is-a

fruit formation

�

�

�

Figure 6. Another part of Whole Plant Growth
Stage ontology.

informative context that can represent the union of C 1 or
C2.

Algorithm. (Context Integration)

Input: e1 : E → C1 and e2 : E → C2 Output: E → C

Notation: similar of Entity Integration.

Initial conditions: CE is the empty set and fe′1
, fe′2

are empty functions.

(i) For all x ∈ CE

CC := CC ∪ x

fe′1
:= fe′1

∪ (fe1(x) ∈ CC1) �→ (x ∈ CC)

fe′2
:= fe′2

∪ (fe2(x) ∈ CC2) �→ (x ∈ CC)

(ii) For all x ∈ CE1 that is not in the image of fe1

CC := CC ∪ x

fe′1
:= fe′1

∪ (x ∈ CC1) �→ (x ∈ CC)

(iii) For all x ∈ CE2 that is not in the image of fe2

CC := CC ∪ x

fe′2
:= fe′2

∪ (x ∈ CC2) �→ (x ∈ CC)

return fe′1
◦ fe1

The algorithm shows how to construct the set of con-
cepts and the partial order of concepts (H C) of the resulting
ontology. The set relations R and the function rel is con-
structed in the same way and is not shown. The first step
(loop (i)) adds concepts from E in C. The image of these
concepts by fei is collapsed in C. The loops (ii) and (iii)
add CC the concepts of CE1 and CE2 that are not in the
image of fe′

1
or fe′

2
. Then f ′

e1
or f ′

e2
are defined for these

concepts. The compositions (fe′
1
, ge′

1
) ◦ (fe1 , ge1) ensure

that each concept of C is either a collapsed element from
C1 and C2 or an element of C1 and C2 that does not come
from E.

2.3 Combined Integration

We defined ways of operating contextualized entities by
combining entities (2.1) or contexts (2.2). In this section
we show how to operate contextualized entities as a whole,
considering both entity and context. We present the moti-
vation for the operations and the formal definitions. We do
not present the algorithms due to limitation of space.

The commutative square C2
c←−C1

e1←−E1
e′−→E2

c−→C2

defines a map between contextualized entities ensuring the
coherence of entities and contexts. Following the left way
(c ◦ e1), we ensure that C2 is coherent with C1, and thus,
is also a context for E1. Following the right way (e2 ◦ e′),
we ensure that C2 is a context for E2, and as E2 is also a
context for E1, C2 is a context for E1.

Definition 3 (Map Between Contextualized Entities) Given
two contextualized entities E1

e1−→C1 and E2
e2−→C2, a pair

contextualized entities (C1
c−→C2, E1

e′−→E2) is a map from e1

to e2 if E1
c◦e1−→C2 = E1

e2◦e′−→C2 is a contextualized entity.

2.3.1 The Relative Intersection

The relative intersection gives commonalities among enti-
ties with different contexts. It is the coherent intersection
of two given contextualized entities with respect to a third
contextualized entity, and is performed in three contextual-
ized entities, as in the diagram CE1 → CE ← CE2. The
result is a contextualized entity defined by the commuta-
tive diagram of Figure 7 (a): a contextualized entity (CE ′)
mapped into contextualized entities (CE1, CE2) which are
mapped into the upper contextualized entity (CE). Thus,
CE′ is the more informative contextualized entity that is
coherent with CE1 and CE2 with respect to CE.

The relative intersection is a parallel operation acting
both on contexts and entities, as shows Figure 7 (b). The
vertical arrows are contextualized entities. The pairs of
links between entities (down square) and between contexts
(upper square) are maps between contextualized entities.
By definition of maps between contextualized entities, all
the lateral squares of the cube in Figure 7(b) commute. The
relative intersection will be defined in such a way that en-
sures that the bottom and top squares of the cube also com-
mute.

(a)

CE

CE2CE1

��� m2
���

m1

CE′
��� m′

2���m′
1

(b)

E

E2E1

������

E′
��� ���

C

C2C1

������

C′
��� ���� �

�

�

(c)

UFF

Prog. Lang.
Computer
Science

������

E′
��� ���

University

SpecializationGraduation

������

C′
��� ���� �

�

�

Figure 7. (a, b) Relative Intersection. (c) An
example.

Definition 4 (Relative Intersection) Given two maps between
contextualized entities m1 : CE1 → CE and m2 : CE2 → CE,
the relative intersection of CE1 and CE2 with respect to CE is



the contextualized entity CE′, with maps m′
1 : CE′ → CE1 and

m′
2 : CE′ → CE2 such that, (i) m1 ◦ m′

1 = m2 ◦ m′
2, and,

(ii) For any other other contextualized entity CE′′, with maps
m′′

1 : CE′′ → CE1 and m′′
2 : CE′′ → CE2 there exists a

unique map ! : CE′′ → CE′ with m′
1◦! = m′′

1 and m′
2◦! = m′′

2 .

2.3.2 The Collapsing Union

The collapsing union of contextualized entities acts both in
context and entity of contextualized entities and results the
union of them, possibly collapsing some components. In a
dual way of subsection 2.3.1, it is performed in three con-
textualized entities forming a diagram as CE1 ← CE →
CE1. The result is a contextualized entity defined by the
commutative diagram of Figure 8 (b): a contextualized en-
tity CE′ that is the target of links of both contextualized
entities CE1 and CE2, thus any concept in CE1 or CE2

is mapped a component in CE ′. Moreover, the concepts
of CE are mapped to the same concept of CE ′ via links
through CE1 or CE2. Thus, CE ′ is the less informative
contextualized entity that is coherent with CE1 and CE2.
Collapsed components of CE ′ are defined by CE. As well
as the relative intersection, the collapsing union is a parallel
operation acting both on contexts and entities (Figure 8 (b).

(a)

CE′

CE2CE1

��� m′
2���

m′
1

CE

��� m2���m1

(b)

E′

E2E1

������

C

��� ���

C′

C2C1

������

E

��� ���� �

�

�

(c)

E′

Prog.Lang.
Computer
Science

������

Func.Ling.

��� ���

C′

SpecializationGraduation

������

F irstY ear

��� ���� �

�

�

Figure 8. (a, b) The Collapsing Union. (c) An
example.

Definition 5 (Collapsing Union) Given two maps between con-
textualized entities m1 : CE → CE1 and m2 : CE → CE2,
the collapsing union of CE1 and CE2 with respect to CE is the
contextualized entity CE′, with maps m′

1 : CE1 → CE′ and
m′

2 : CE2 → CE′ such that, (i). m′
1 ◦ m1 = m′

2 ◦ m2, and,
(ii). for any other other contextualized entity CE′′, with maps
m′′

1 : CE1 → CE′′ and m′′
2 : CE2 → CE′′ there exists a unique

map ! : CE′ → CE′′ with ! ◦ m′
1 = m′′

1 and ! ◦ m′
2 = m′′

2 .

Examples: Consider that CE, CE1 and CE2 model Universities
and Courses. CE has as context an ontology modeling Universi-
ties and as entity, the instance of university named “UFF”. CE1

has as context an ontology modeling Graduation Courses and as
entity, the instance of Graduation Course “Computer Science”. Fi-
nally, CE2 has as context an ontology modeling Specialization
Courses and, as entity, the instance “Programming Language”.

Figure 7 (c) shows the diagram that sketches the relative intersec-
tion of CE1 and CE2 with respect to CE. In CE′, the resulting
contextualized entity, C′ expresses what the concepts “Gradua-
tion” and “Specialization” have in common, under the scope of
“University”. E′ expresses the commonalities of “Computer Sci-
ence” and “Programming Language” while courses of the Uni-
versity “UFF”. The commutativity of the whole diagram ensures
that “Computer Science”, “Programming Language”, “UFF” and
their intersection are coherent with Graduations, Specializations
and Universities. In Figure 8 (c), CE identifies “Functional Lan-
guages” as a first year discipline, and the mappings CE → CE1

and CE → CE2 indicate that it occurs in both Graduation in
Computer Science and in Specialization in Programming Lan-
guages. The result of the collapsing union on this diagram pro-
duces a new course of graduation with emphasis in Programming
Languages, where equivalent disciplines of both courses (as func-
tional languages) are not duplicated.

3 The Formal Approach: Category Theory

The algebra of contextualized ontologies is an applica-
tion of Category Theory. We avoided making explicit use of
categorical terms to make the paper more readable for those
who do not know this theory. In this section, we justify
the use of Category Theory and show the correspondence
between the concepts presented here and categorical con-
cepts. The reader can find in the appropriated literature (for
example, [6]) the proofs that the operations presented here
are well defined. To complete the formal approach, in [5]
the reader can see in that the adopted mechanism to struc-
turally compose and decompose ontologies is accompanied
by a model-theoretic and syntactic mechanism.

Category Theory provides a great power of integration
and interoperability of heterogeneous entities because of the
focus that is put in relationship (categorical morphisms) and
not in the “things” being represented (categorical objects).
“Things” are described abstractly, accordingly to their inter-
actions. It is possible to define several categories (according
to the kinds of “things” to be described) that can be related
by relationships between categories (categorical functors).
Functors that preserve properties of categories making pos-
sible the co-existence of heterogeneous “things”. Category
Theory offers a set of ways of combining entities, some of
which (as colimits) are traditionally used to integration. It
has been successfully used in situations where interoper-
ability is a crucial point, as in formal specification of sys-
tems [11], software architecture [3, 4], and, more recently,
in ontology integration [2, 10, 1]. In Context Aware Appli-
cations, Category Theory contributes not only formalizing
the object of study, but also giving good directions to oper-
ationalize the concept and facilitating implementations.

Let C be a category with objects o and morphisms m.
We cal C a domain of knowledge. The objects of C are en-



tities over which the domain of knowledge is constructed,
and the morphisms of C are the mappings between these
entities. When modeling an application, o is the concept
over which the application is about and m express ways
of relating this concept. A contextualized entity is an ob-
ject of the category C→, that is, the category that has as
objects morphisms of C and as morphisms pairs of C mor-
phisms (m, m′) that defines commutative squares on C, as
in Definition 3. A map between contextualized entities is a
morphism in C→. The operation entity integration (Defini-
tion 1) is a pullback in C. In order to ensure that any dia-
gram of the form o1 → o ← o2 has a pullback it is proved
that C is finitely complete[5]. The operation context integra-
tion (Definition 2) is a pushout in C. In order to ensure that
any diagram of the form o1 ← o → o2 has a pushout it is
proved that C is finitely cocomplete[5]. The combined oper-
ations are performed in C→, which is also finitely complete
and cocomplete, as a consequence of completeness and co-
completeness of C [6]. The relative intersection (Definition
4) and collapsing union (Definition 5) are respectively the
pullback and pushout in C→.

4 Conclusion

Considering that contexts are essential to clarify the
meaning of entities, and that applications that consider dy-
namic changes of the environment require new forms of
representing the context, we present in this paper an alge-
bra to support the representation of contexts and to empha-
size its relationships with entities. Abstraction, modularity
and reuse are important properties that guide this approach,
which are achieved by the uniform representation of enti-
ties and contexts and by the compositional definitions of
operations. The role of an object (as entity or context) is
given by the net of links from or to this object. Thus, the
meaning of an entity is dependent of its relationships. This
abstract framework gives a sound basis for implementing
systems where contexts play a central role. It also reaches
the 5 properties raised in [9] for a formal model of context-
awareness. It is expansive as the transitive composition of
links makes possible to express how a distant entity can af-
fect an agent’s behavior. Specificity is ensured by the flex-
ibility in the combination of context. The notion of con-
text is explicit and separated from the entity what ensures
control over its context. Maintenance of context is trans-
parent to the entity, that is free of knowing internal details
of the context. We add to these properties interoperabil-
ity of heterogeneous descriptions. This framework support
the coexistence of different kinds of categories defined over
different techniques of knowledge representation, as long as
each category is finitely complete and co-complete.

References

[1] T. Bench-Capon and G. Malcolm, Formalizing Ontolo-
gies and their Relations, in: K. V. Andersen, J. K.
Debenham, R. Wagner, eds., Proceedings of 16th Inter-
national Conference on Database and Expert Systems
Applications (1999).

[2] I. Cafezeiro and E. H. Haeusler, Semantic Interoper-
ability via Category Theory, Conferences in Research
and Practice in Information Technology, Vol. 83. J.
Grundy, S. Hartmann, A. H. F. Laender, L. Maciaszek
and J. F. Roddick, Eds. 26th International Conference
on Conceptual Modeling, ER 2007, Auckland, New
Zealand.

[3] I. Cafezeiro and E. H. Haeusler, Categorical Limits
and Reuse of Algebraic Specifications, in Advances in
Logic, Artificial Intelligence and Robotics, Eds J. Mi-
horoAbe and J. Silva, IOS Press, Amsterdan, (2002)
216–233.

[4] I. Cafezeiro and E. H. Haeusler, Algebraic Framework
for Reverse Engineering on Specifications, to appear in
Proceedings of the The 6th Congress of Logic Applied
to Technology, LAPTEC2007, SP, Brazil.

[5] I. Cafezeiro and E. H. Haeusler, Description Logics as
Institutions, Universidade Federal Fluminense, Niteroi,
Brasil. (2007).

[6] S. MacLane, Categories for the Working Matematician,
Berlin: Springer Verlag(1997).

[7] A. Pujar and others, Whole-Plant Growth Stage
Ontology for Angiosperms and Its Application
in Plant Biology, Plant Physiology - Ameri-
can Society of Plant Biologists, Avaiable at
http://www.plantphysiol.org/cgi/content/full/142/2/414
(2006)

[8] A. Ranganathan, R. E. McGrath, R. H. Campbell and
M. D. Mikunas, The Use of Ontologies in a Pervasive
Computing Environment, The knowledge Engeneering
Review, 18:3 (2004) 209-220.

[9] G. C. Roman, C. Julien, J. Payton, A Formal Treatment
of Context Awareness, Proceedings of FASE’04 Vol.
928-1, LNSC. (2004).

[10] M. Schorlemmer, and Y. Kalfoglou, Progressive On-
tology Alignment for Meaning Coordination: An
Information-Theoretic Foundation, in ‘ Proceedings of
the 4th AAMAS’05’, Utrecht, Holland.

[11] A. Tarlecki and D. Sannella, Algebraic preliminaries,
in: E. Artesiano, Ed., Algebraic Foundations of Systems
Specification, (Berlin, 1999) 13-30.


