
From Diagram to Code via Attribute Grammar

Isabel Cafezeiro
isabel@lmf-di.inf.puc-rio.br

Edward Hermann Häusler
hermann@inf.puc-rio.br

Armando Haeberer
armando@inf.puc-rio.br

PUC-RioInf. MCC03/97 March, 1997

Abstract
This report describes within a formal approach how to generate code from a graphical
description based on diagrams. The method is general enough not to consider a specific
methodology nor a specific target programming language. The essence of the method
consists of combining Object Oriented ideas to capture the generality of diagrams and
Attributed Grammars to solve the context-sensitive feature. A case study is presented.

Resumo
Este relatório descreve, em uma abordagem formal, como gerar código a partir de uma
descrição gráfica baseada em diagramas. O método é suficientemente geral de modo a não
fixar nem uma metodologia específica, nem uma linguagem de programção específica. A
essência do método consiste em combinar idéias de Orientação a Objetos para alcançar a
generalidade dos diagramas e Gramáticas de Atributos para resolver a sensibilidade ao
contexto. Um estudo de casos é apresentado.

From Diagram to Code via Attribute Grammar

Isabel Cafezeiro
1

Edward Hermann Heausler
2

Armando Haeberer
3

1. INTRODUCTION...3

2. PLAINA: AN OVERVIEW ..3

3. THE ATTRIBUTE GRAMMAR...4

3.1 BASIC CONCEPTS ...4
3.2 GRAMMAR NODES: THEIR ATTRIBUTES AND THEIR BEHAVIOUR ...7
3.3 A FEW WORDS ABOUT DIALOGUE BOXES AND VISUAL INFORMATION ...14
3.4 THE GRAMMAR ..15

3.4.1 Class Diagram..15
3.4.1.1 Abstract Syntax...15
3.4.1.2 Description of the attribute grammar ..15
3.4.1.3 Example..16

3.4.2 Object Diagram..16
3.4.2.1 Abstract syntax and attribute description..16
3.4.2.2 Description of the attribute grammar ..20
3.4.2.3 Example..21

3.4.3 Connecting the diagrams ...21
3.4.3.1 Connecting the examples..22

4. A DEGREE OF ABSTRACTION: FROM A DIAGRAM TO A CODE ...23

4.1 ABSTRACT SYNTAX AND ATTRIBUTE DEFINITION..23
4.2 DESCRIPTION OF THE ATTRIBUTE GRAMMAR ..26
4.3 PROOF OF STRONG NON-CIRCULARITY..28
4.4 THE RECURSIVE EVALUATOR ...33
4.5 HOW TO CONSTRUCT THE PARSER ..35

1 isabe@lmf-di.inf.puc-rio.br
2 hermann@inf.puc-rio.br
3 Armando@inf.puc-rio.br

Introduction

It is well known that people spend more efforts to understand written information than the ones that
are organised in pictures. This fact is largely explored in computers, and particularly in descriptions
of systems. Since the seventies graphs were used in software development. But at that time, the
visual information played only the passive role of documenting the system. Nowadays, in addition
of presenting a useful graphic notation to describe a system, the named CASE Tools (Computer
Added System Engineering) are expected to play the active role of generating some code. So, there
must be a correspondence between the entities that are put in the graph and mechanisms of the
programming language in which the system will be implemented. Of course, this correspondence is
attached to the level of abstraction been described: the more abstract the description, the more
incomplete the code to generate. The purpose of this text is to use attribute grammars to describe
how to make such a connection.

The approach to be followed here is formalise the correspondence between the diagram and the
programming language used, in order to put the results general enough so that most of the existing
CASE Tools can be formalised in this way.

The next section is a brief explanation of the CASE Tool selected. After this section, we begin with
the formal description. The last section is the general formal description.

Plaina: An overview

PLAINA is a CASE tool designed to support object oriented methodologies4. It has as underlying
concept the idea that there are two important viewpoints when developing a system: the users
viewpoint, and the systems viewpoint. The later concerns implementational aspects: how reality is
represented in a computer. The former concerns the aspects that the user has to manipulate when
defining the logical structure of the system, i.e. concepts that are not related with files, directories,
etc. This report will feature the users viewpoint to present a formal description of Plaina
environment. So, let us briefly describe the PLAINA elements considering the users viewpoint.

In order to develop a system, the user has to write a project of it. The project is a set of diagrams

that describes the system in its various levels of abstraction. We have five different kinds of
diagrams in PLAINA: entity, class, object, state and time diagrams. All these diagrams are
related, and, in some way, each one of them contributes to the generation of DDL class codes. DDL
(Design Description Language) is an object oriented programming language created to represent
OO designs. The complete set of DDL classes will be the implementation of the system. PLAINA
also has a library which contains the class codes, and a module that translates DDL code in C++
code.

The construction of an OO system involves activities as defining the system domain; the analysis

phase, the design phase, and the programming phase. The first phase consists in identifying the
subject of the system, that is, to delimit its scope. The second is concerned with identifying the
entities and their relationships. In the design phase, the system gets the form to be implemented in.

4 See 2GOOD:
A Tool for Second Generation Object Oriented Development

Finally, the programming phase is when code is written. In some way, we can reflect this activities
in the diagram construction. For example, the analysis phase can be associated with the
construction of entity diagrams. In the entity diagram, the entities are represented by boxes and
their relations are established by means of directed and labelled arrows - the label shows the nature
of the relation, i.e., whether it is an inheritance relation, or composition relation, etc. In the entity
diagram, entities are described in a great degree of abstraction, as been part of the application
domain. The state diagram can represent the states of this entities and state changes. Passing from
analysis to design, the class diagram is the description of these entities, but in a detailed view, as
requires the implementation domain. Besides, the object diagram reflects the instanciation and
service requests, that will be necessary to compose the final code. Time diagrams represent object
life cycles.

As we do not identify a strong frontier separating these activities, we claim that there is not a
predefined order which has to be followed to construct the system. Instead, the system is a result of
a sequence of reviews and refinements in each activity. For this reason, PLAINA does not
determine an order of making the diagrams. The user can draw pieces of incomplete and
disconnected diagrams, and later, connect them providing a sense to the full diagram. This
possibility is assured by two features that lead us to think of PLAINA as a reactive environment:

• Each action the user makes has an effect in the class codes,

• At every moment, the generated code reflects the exact movements of the user.

PLAINA is able to generate code even in the non-sense steps. Having this feature PLAINA
provides the user with the ability of dealing with incomplete diagrams.

When this report was beeing written PLAINA was not completed yet. Because of this, we are
considering here only a small part of the environment.

The attribute grammar

Basic Concepts

Because of its natural characteristic of describing proper nesting5, context free grammars (CFG)
have been successfully used as a mechanism for describing structured languages6. A common
notation for CFG is the Backus-Naur form (BNF), where productions are expressed as

< E > ::= < E > + < E >
< E > ::= (< E >)
< E > ::= id

The symbols in bold face are the symbols of the language (terminals). The others between “<” and
“>” are called “non terminal”. If they appear at the right side of each production they are to be
replaced by the right side of a production having the same symbol at the left side. The symbol “::=
” is to indicate this rewriting. Thus, we can say that an occurrence of < E > can be replaced by < E
> + < E >, following the first rewritting rule. By the same mechanism, and the third rewritting rule,
we can say taht < E > can be replaced by id, generating id + id. This is the derivation of a simple
addition:

5 By “proper nesting” we are referring to some kind of sentences that begins with a pattern and ends with this
pattern but in reversed order. Examples are “abcdcba” or (((id))).
6 By “structured languages” we mean the ones which sentences can be described by a tree structure.

< E > ⇒ < E > + < E > ⇒ id + < E > ⇒ id + id

BNF is a creation of ________________________________ in 19_____ and is even nowadays
largely used in programming language description. In the above example we have a grammar to
generate expressions like “a”, “a+a”, “(a+a)”, ...

Despite of presenting very clear notations, and of being powerful enough to describe syntactical
features of structured languages, context free formalisms are not able to express some possible
dependence among parts of a structure that are not related in the same production. This kind of
relation we call “context dependent”.

To express context dependent features we have to add context dependent productions like

α1 A α2 ::= α1 β α2

with α1, α2 , β, being a non empty string of grammar symbols and A a non terminal. According to

this production, A can be rewritten by β only in the context of α1 and α2. Context dependent
features can not be represented in a BNF notation.

Context free notations like BNF are very useful in the implementation of programming language
because they have an efficient model of implementation. So, there must be a solution on how to add
context dependent features to context free notations, or, in other words, how to transform BNF-like
descriptions in context dependent formalisms without loosing its clarity, and without causing big
changes on the implementation model.

The solution can be achieved by attribute grammars.

Attribute grammar is a context free grammar augmented with attribute rules. Consider that each
node of the grammar has an associated set of attributes. The rules will compute the value of these
attributes.

An attribute can be synthesised or inherited. The synthesised are the ones that belong to a non
terminal at the right side of the production and whose value is used to compute an attribute of the
non terminal at left side of the rule. For example, consider the grammar production

(i) < E1 > ::= < E2 > + < E3 >

that has the attribute rule

< E1 >.value := < E2 >.value + < E3 >.value.

The subscript numbers are to distinguish the non terminal with the same names and allow
references of each one in the attribute rule.

The attribute value of non terminal < E > is synthesised because it depends on attributes of non
terminals at the right side of the rule. Do not matter if the of non terminals at the right side of the
rule are also < E >. These occurrences of < E > will also be computed by the same rule, or, to make
recursion ends, by a rule like

< E1 >.value := value of (id)

of the production < E > ::= id.

Looking to a syntactic tree, we can see that synthesised attributes goes up the tree.

The attributes that are not synthesised are inherited. These one have their value computed on the
value of attributes of the left side of the rule, or on the right side of the rule. Thus, considering the
production (i), we can have the followings rules:

< E2 >.type := < E1 >.type
< E3 >.type := < E2 >.type.

Inherited attribute goes down the syntactic tree.

Two restriction are needed to an attributed grammar:

1) An attribute of a non terminal must be or inherited or synthesised (exclusive or).
2) A rule of a production must not reference attributes of a symbol out of the production.

Observing these two restriction we can ensure that values will walk up or down the tree, level by
level, without performing “jumps”. This fact is very important because it ensures the simplicity of
the implementation.

As a last remark, we have to say that a good attribute definition do not have cycles, i.e., there is not
an attribute whose value has to be computed on values that depends directly or indirectly of itself.

To finish our brief exposition of attribute grammars, we have to say that it is a creation of
___________________________ knuth, 1968, on ____________ .
More about this topic can be find on references _______________________________

Grammar Nodes: their attributes and their behaviour

 E1

 E2 E3 +

 id id

E3.value

value of (id)

E2.value

value of (id)

 E1

 E2 E3 +

 id id

E1.typeE1.type

Let us begin with the description of the class diagram. For each visual entity in PLAINA’s
environment there will be a terminal node in the syntactic tree. In class diagrams we have classes
and arrows. Basically, the role of the terminal nodes is to generate code in the related class, and to
be displayed on the screen. To provide this last issue, the terminal nodes that represent classes will
have as attribute a frame record, that is, a record containing left upper and right bottom co-
ordinates, and colour.

Frame for class:

As a class is always represented by boxes, thus two co-ordinates are sufficient to describe its view
on the screen. The attribute colour is due to the fact that classes marked to be deleted get red
colour. To be able of generating code, we have to put as classes attributes the name of the class and
a kind of pattern that contains the almost empty code of the class: at the first moment the code
contains only the class name and its nature. Thus, name and pattern are classes attribute

Arrow in the diagram will represent relationship between classes. So, let us name the terminal to
represent this node relationship.

In case of relationship, we will also have as attribute the frame record, but at this time it will be
composed only by source point and target point (the visual points of connection with the arrow and
the boxes) and colour (again, unmarked are black, marked are red).

Frame for relationship:

Another attribute called nature will be necessary to complete the class code with the reserved word
that this relationship represents.

We mark with an empty bullet the attributes whose contents are filled by means of an auxiliary
dialogue window.

Using PLAINA notation to describe the class diagrams, we have

left upper

src point

right bottom

tgt point

colour

color

The above hierarchy shows some of PLAINA classes and possible relationships between them. As
we can see, the node class is an abstract description of a class. Abstract and concrete nodes inherit
all the features that are described in class. They also have some particular features, as they describe
the actual implementations of classes. The same is valid to relationship: the node relationship
describes the abstraction, and the lower nodes describe the actual implementation.
Considering, now, the reaction of the system to user’s actions, we have to define two basic
behaviours for class and relationship, that correspond to the action of placing those entities on the
screen. So, beginning by class, we define create as virtual7 behaviour of classes:

create; { for abstract }
BEGIN
name := Input by dialogue box
frame := Result of placing the mouse on the screen
pattern := “ABSTRACT CLASS” || name || [inheritance clause] ||

[contains clause] || [pool structure] ||
[object structure] || [class state] || “END CLASS”

END

create; { for concrete }
BEGIN
name := Input by dialogue box
frame := Result of placing the mouse on the screen
pattern := “CLASS” || name || [inheritance clause] ||

[object structure] || [class state] ||
[contains clause] || [class body] || “END CLASS”

7Virtual, in the sense that it exist in all inheritance hierarchy, but are only described in the leafs. The purpose
of been virtual is the assurance that whenever we add a new node, we will have to define this behaviour for it.

terminal
node

class relationship

abstract concrete

is

object

state

pool

contains

is is

is is
is

is

is is

is

has

has

src point

tgt point

color

name°

pattern

has

left
upper

right
botom

color

has

has

nature

END

The symbol || indicates concatenation of strings.

In the case of relationship we will also have a virtual behaviour:

connect; { for is }
BEGIN
frame := Result of placing the mouse on the screen
nature := “is”
END

connect; { for state }
BEGIN
END

connect; { for object }
BEGIN
frame := Result of placing the mouse on the screen
nature := “object”
END

connect; { for contains }
BEGIN
frame := Result of placing the mouse on the screen
nature := “contains”
END

connect; { for pool }
BEGIN
frame := Result of placing the mouse on the screen
nature := “pool”
END

Before showing the grammar, we will explain the role of non terminal nodes that will be used.

The non terminal class diagram is responsible for grouping relationships. Below a class diagram
node in a syntactic tree, we can find the set of relationship that this node has, or in other words, all
the arrows that leave it. Class diagram has a synthesised attribute class name, which contents is
inputted by user and comes to their node via terminal class. An inherited attribute called target of
will keep the name of the source of the relation at which this node is connected. If the class is not
target of any relationship, the content of this attribute will remain empty. Remember that a node
class diagram can be target of a unique relation, as we are using trees for representing relations. If a
class is target of more then one relation, it’s corresponding node class diagram will be replicated.

Set of relations is the non terminal responsible for grouping relationships. It has the attribute source
that will keep the name of the class that is source of the relation. Its contents is inherited from class
diagram.

Finally, we have relation, the non terminal that associates to the source class a relationship and
another class. The inherited attribute source will permit the lower node class diagram to complete
its target of information. We have also target, a synthesised attribute that will keep the name of the
class below this node. It is the non terminal that collects all existent information about relations of
a class. Note that any relation belonging to this set has the same source: the class connected to the
class diagram above this relation. The set of attributes inheritance clause, contains clause, object
structure and pool structure are to keep in separate each structure of the class. This attributes are
filled by synthesised information.

Each non terminal will have attributes entry list, class view and code table. The first one, an
inherited attribute, will collect a set of entries to update the others. Thus, each entry in entry list
will have the following format:

name pattern class frame relationship
frame

relationship
target

where pattern and relationship target are to fill in code table, and class frame and relationship
frame are to fill in class view. Entry list is a list of the above records:

name pattern class frame relationship frame relationship target

name pattern class frame relationship frame relationship target

name pattern class frame relationship frame relationship target

We will use the word insert to denote the action of inserting in entry list a new record containing
only the information about classes: class name, class pattern and class frame.

entry list ← insert (name, pattern, frame).

As information about relationships comes later, we use the word update target and update frame to
fill in an entry the relationship frame, and the relationship target. In case of pattern, it is necessary
to add the newer structures or clauses to the code in entry list. So, we have update pattern to
perform this task. The name of the class is needed to do the search in entry list.

entry list ← update target (name, target)
inserts in the entry of the class named “name”
entry it’s corresponding relationship target name.

entry list ← update frame (name, target)
inserts in the entry of the class named “name”
entry it’s corresponding relationship frame.

entry list ← update pattern (name, nature, target)
In the component pattern of entry list there are special places (underscored
in the following code) to put clauses or structures. Clauses are unique, so
having inserted one, there will not be any place to insert another of the

.

..

same type. Structures can be composed by a set of components, thus after
inserting a structure, an empty place is created to put another, like is
showed in the following code:

if nature is “is” then inheritance clause := “is ” || target
if nature is “state” then
if nature is “object” then object struct := object struct || target
if nature is “contains” then contains clause := “contains ” || target
if nature is “pool” then pool struct := pool struct || target

In update target, let us consider that if class name is empty, no action occurs. This is a simple way
of handling with the fact that the first class (the roof of the tree) is not target of any class.

The code table is indexed by class name, and keeps some information about classes code. Think in
code table as a list as:

name pattern

The class view, also indexed by the name of the class, will have a more complicated format:

name frame list

class frame relationship list

relationship frame target

As a class can appear more then one time at the diagram, we can have more than one frame for it.
As an occurrence of a class on the diagram can have one ore more relationships leaving it, we will
have a component relationship list that is a list of relationship frame (a record containing all the
relevant information to draw the relationship), and target, the name of the class at the end of the
relationship.

Let us use the name insert to denote the action of putting all entries in a new entry list in a table.
The reverse operation, i.e., getting all the information from the table, and putting them in an entry
list we will call get. Thus,

code table ← insert (entry list)

class view ← insert (entry list)

entry list ← get (code table)

 entry list ← get (class view)

It is also necessary to define an operation to complete the pattern of a class with the key words
indicating the beginning and ending of structures. This operation will act directly on the component
pattern of an entry indexed by “name” of code table:

.

..

.

.. .
..

code table ← finish pattern (name);
if object struct is not empty then

object struct := “object”|| object struct || “end object” ;
if contains clause is not empty then

contains clause := “contains”|| contains clause ;
if pool struct is not empty then

pool struct := “pool”|| pool struct ;

Finally, we have an operation to join structure of the same nature:

code table ← join (code table)

class view ← join (class view)

We can think in the hole code table structure as a global environment, and the entry attribute from
each non terminal as subtables that will compose the code table and the class view.

A Few words about dialogue boxes and visual information

It is necessary to consider that there are a lot of information that must be passed to the environment
via dialogue boxes instead of graphical tools8. As simple examples, we can mention the names of
classes, or components of classes. But it is also possible that, in order to avoid making
incomprehensible diagrams, the user prefers to define class components by means of the inspector

box. In spite of the fact that some of this information do not appear in the graphical interface, they
are important to the code generation. As, our main goal in this formal description is to retract how
to pass from diagrams to code, we will ignore the these constructions that do not came from the
graphical tool. In section 0 we will see that there is a global structure that is responsible for keeping
the code of classes. This structure will be the unique one affected by this kind of action. So,
consider that there is a way of relating parts of the environment (like the inspector) with this
structure, that ensures the consistence of the code.

8 In the last section we used the empty bullet to emphasise them.

non
terminal

inheritance
clause

relation

set of
relations

is

is

class
diagram

class name

is

has

has

target of target

nature

has

has

has
contains
clause

object
structure

pool
structure

has

code table

has

has

entry list

has
class view

has

source

source

has

has

The grammar

Class Diagram

Abstract Syntax

We list below the abstract syntax of class diagrams.

< class diagram> ::= Class < set of relations >
< set of relations > ::= < relation > < set of relations >

< set of relations > ::= λλ
< relation > ::= Relationship < class diagram >

The figure below shows na example of a tree and its corresponding diagram.

Description of the attribute grammar

Now, we describe the attribute grammar. Considering that all the names we will use above are
names of the attribute grammar, we will forget the underscores used to remark this names in the

text, and pass to a usual notation. The symbol “:=” means attribution and “←”mean application of
an operation.

< class diagram > ::= Class < set of relations >

< class diagram >.class name ← Class.name

< class diagram >.entry list ← insert (Class.name, Class.pattern, Class.frame)
< set of relations >.source := < class diagram >.class name
< set of relations >.entry list := < class diagram >.entry list

< class diagram >.entry list ← update target (< class diagram >.target of,
 Class.name)

< class diagram >.code table := < set of relations >.code table
< class diagram >.class view := < set of relations >.class view

< class diagram > .code table ← finish pattern(< class diagram >.class name)

< set of relations1 > ::= < relation > < set of relations2 >
< relation >.entry list := < set of relations1 >.entry list
< relation >.source := < set of relations1 >.source
< set of relations2 >.source := < set of relations1 >.source

< set of relations2 >.entry list ← get (< relation >.code table)

< set of relations2 >.entry list ← get (< relation >.class view)

< set of relations1 >.code table ← join (< set of relations2 >.code table)

< set of relations1 >.class view ← join (< set of relations2 >.class view)

< set of relations > ::= λλ
< set of relations >.code table ← insert (< set of relations >.entry list)

< set of relations >.class view ← insert (< set of relations >.entry list)

< relation > ::= Relationship < class diagram >
< relation >.nature := Relationship.nature
< class diagram >.target of := < relation >.source

< relation >.entry list ← update frame(< relation >.source,
Relationship.frame)

< relation >.entry list ← update pattern(< relation >.source,
Relationship.nature,
Relationship.target)

< class diagram >.entry list := < relation >.entry list
< relation >.code table := < class diagram >.code table
< relation >.class view := < class diagram >.class view

Example

Object Diagram

Briefly, we resume what is the object diagram.

Object diagrams consists of ellipses representing objects connected by arrows representing
operations. The ellipse at the origin of the arrow is the object that requests the operation, and the
ellipse at the end is the object that has to respond to the invocation. So, when the user connect two
ellipses by an arrow, we have to create in the class of target object the code of the applied
operation. The code consists only of the header, and possibly, the body of the operation. This
information are passed via dialogue windows. The class of the source object will remains the same
because the diagram do not offer sufficient information to decide where to put the request
instruction, and where to define the created object (it can be local to an operation, local to the class
representation, shared, etc.).

Abstract syntax and attribute description

Now, we return for the task of describing the attribute grammar. Beginning by the abstract syntax,
we can see that the structure of the diagram is the same as the class diagram. There, we had boxes
connected by arrows, and here, we have ellipses connected by arrows. Thus, let us use:

< object diagram > ::= Object < set of relations >
< set of relations > ::= < relation > < set of relations >

< set of relations > ::= λλ
< relation > ::= Operation < object diagram >

The object terminal node has the attribute frame that is a record containing centre point, big ray,
little ray and colour.

Frame for object:

We have to keep in this terminal the name of the class this object belongs. This is informed by the
user through a dialogue box at the moment the object is placed at the screen. So, let us add an
attribute class. Finally, we will keep the name of the object in the attribute name.

The terminal operation is almost the same as the class relationship. It has the same attribute frame,
a record that contains source point, target point and colour, as shows the picture below.

Frame for operation:

As operations can be procedure, message, exception, coroutine, or iterator, the terminal operation
has an attribute nature. The attribute signature keeps the signature of each operation, and body
keeps the code.

Following, we have the hierarchical description:

terminal
node

object operation

procedure

coroutine

message

iterator

exception

tgt point
colour

is is

is

is

is is

is

has

has

has

nature

centre point

src point

big ray

little ray

colour

has

signature°

name°

class°

has

has

has

body°

center
point

big ray

litle ray

color

src point

tgt point

color

The virtual behaviours that describes the effect of placing one of this entities on the screen are
create, for objects, and connect for operations:

create; { for object }
BEGIN
name := Input by dialogue box
frame := Result of placing the mouse on the screen
class := Input by dialogue box
END

connect; { for operation }
BEGIN
frame := Result of placing the mouse on the screen
nature := “is”
signature := Input by dialogue box
body := Input by dialogue box
END

Passing to the non terminals nodes, the non terminal object diagram has, as attributes class, name,
code table, object view, entry list, nature, signature, body, target class and target of. The first,
synthesised, is the name of the class of the object. The second is the name of the object. The third
is the same table of the class diagram. This is an inherited attribute. Later, when defining the
connection of class and object diagrams, we will clarify how it is passed from class diagram to the
object diagram. The fourth attribute, object view, also synthesised, is similar to class view from
the class diagram. It keeps information about how the object are drawn:

name frame list

obj frame operation list

operation frame target

 Entry list is an inherited list of records like the one below, where object frame and operation
frame will be used in object view, and nature, signature and body will be used in code table.

class name object frame nature signature body operation frame

The component class is a key to find the correct class entry in the code table, and name is a key to
find the correct object entry in object view. Having found the entry, its pattern will be completed
with the information about the operation. We will use insert operation to denote these actions9:

9 In The Design Description Language we can see that [class body] can have the following optional
components: [pool structure], [object structure], [class state], [class messages], [class exceptions], [class
constants] and [object behaviour]. This last one is composed by [class operation], which is by [procedure
declaration] or [message handler declaration] or [coroutine declaration] or [iterator declaration].

.

..

.

..

code table ← insert operation (entry list) means:
For all entries in entry list, search the class in code table

in the component pattern:
if nature = “procedure” then

replace [procedure declaration]
by signature || “begin” || body || “end” || [procedure declaration]

else if nature = “message” then
.

.

.

The same will be done to put information of entry list in the object view table

object view ← insert (entry list).

Also for these two structures, it is necessary to define how to make the union of two structures of
the same kind. So, let us define a join operation:

code table ← join (table)

object view ← join (view)

For the attribute entry list it will be necessary to describe how to put an entry, or entries
information in the list. We have to define three operations, the first, using the object class and the
object name, is responsible for creating the entry. The second, to update the entry. We are using
two separated operations because in case of the root of the tree, that is not target of any operation,
the update will have no effect (the arguments will be empty). Finally, the third operation is to
update the frame part of entry list of an object that has an operation defined: as its target will be
defined in lower nodes, it is necessary to search in entry list the incomplete entry with class named
“class” and object name “incomplete obj” and complete its target object component name with
“name”.

entry list ← insert (class, name)

entry list ← update (class, name, nature, signature, body)

entry list ← update target (class, incomplete obj, name).

When it is necessary to recover information from code table and object view for entry list we will
use:

entry list ← get (code table).

entry list ← get (object view).

To finish the description of the attributes of non terminal object diagram, the attributes nature,
signature and body are to be inherited from relation, when this object diagram is the target of an
operation. Target of is the name of the object of which this object diagram is the target of an
operation. Target class is its class name.

In the non terminal set of relations keeps the name of the class in the inherited class, and the name
of the object in the inherited name. Other attributes are object view, code table and entry list that
make possible the arrival of these information in all the nodes .

In relation we have nature, signature, class and frame. All of them are passed from the terminal
operation and will be inherited for the non terminal object diagram below this node. We have also
object view, code table and entry list.

The figure below shows a three and its corresponding diagram.

Description of the attribute grammar

Following, we can see the attribute grammar

< object diagram > ::= Object < set of relations >
< object diagram >.class := Object.class
< object diagram >.name := Object.name

< set of relations >.class ← < object diagram >.class

< object diagram >.entry list ← insert (< object diagram >.class,
< object diagram >.name)

< object diagram >.entry list ← update (< object diagram >.class,
< object diagram >.name,
< object diagram >.nature,
< object diagram >.signature,
< object diagram >.body)

< object diagram >.entry list ← update target (
< object diagram >.target class,
< object diagram >.target of,
< object diagram >.name)

non
terminal

relation

set of
relations

is

is

object
diagram

class

is

has

has

nature

signaturehas

class

name

has

has

has

code table

entry list

has
object view

has

nature

signature

name
has

has

has

class
has

name
has

target class

target of

has

has

< set of relations >.entry list := < object diagram >.entry list
< object diagram >.code table := < set of relations >.code table

 < object diagram >.object view := < set of relations >.object view

< set of relations1 > ::= < relation > < set of relations2 >
< relation >.entry list := < set of relations1 >.entry list
< relation >.class := < set of relations1 >.class
< relation >.name := < set of relations1 >.name
< set of relations2 >.class := < set of relations1 >.class
< set of relations2 >.name := < set of relations1 >.name

< set of relations2 >.entry list ← get (< relation >.code table)

< set of relations2 >.entry list ← get (< relation >.object view)

< set of relations1 >.code table ← join (< set of relations2 >.code table)

< set of relations1 >.object view ← join (< set of relations2 >.object view)

< set of relations > ::= λλ
< set of relations >.code table ← insert operation(< set of relations >.entry list)

< set of relations >.code view ← insert (< set of relations >.entry list)

< relation > ::= Operation < object diagram >
< relation >.nature := Operation.nature
< relation >.signature := Operation.signature
< relation >.body := Operation.body
< object diagram >.nature := < relation >.nature
< object diagram >.signature := < relation >.signature
< object diagram >.body := < relation >.body
< object diagram >.target of := < relation >.name
< object diagram >.target class := < relation >.class

< relation >.entry list ← update frame (< relation >.class,
< relation >.nature,
Operation.frame)

< object diagram >.entry list := < relation >.entry list
< relation >.code table := < object diagram >.code table
< relation >.object view := < object diagram >.object view

Example

No exemplo, chamar atenção para o fato de que as informaçoes que entram na classe entram no
nível do object diagram. Elas são sintetizadas até este nó. Aí e´que se sabe, pelo objeto, qual é a
classe em que isto vai entrar.

Connecting the diagrams

In the last sections we defined two levels of abstraction of PLAINA: the class diagram and the
object diagram. These two diagrams are completely independent as visual entities: if the user
chooses the option to construct object diagram he will not be able to add visual features in the class

diagram. The same occurs if he selects the option to construct class diagram: object diagram
remains the same. But if the matter is code generation, it is clear that the two diagrams must be
related: when we add an object to a class, it is obvious that we want this object to belongs to the
code of that class. Thus, we can think in the code table as the actual global environment that has to
be visible to all abstraction level. We can even say that the code table transcend this attribute
grammar, as it must incorporate information that comes from different media, not only from the
diagrams (see section 0 - A Few words about dialogue boxes and visual information).

Thinking in code table as the actual global environment, we have to ensure that it is inherited by
object diagram in a consistent way. If there exist some classes defined, they have to be already in
code table. If there is not any class defined yet, the action of defining one object must be preceded
by a class creation. As we are not interested in information that comes from outside of diagrams, let
us describe only the way of passing the code table constructed by class diagram to object diagram.
We are, thus, considering that the class diagram is to be constructed first, although it is not real in
PLAINA environment.

At the end of the process of computing attributes of class diagram, the synthesised attribute code
table is completed, and available at the root. We have to pass this attribute to object diagram. To be
more precise, code table has to be passed to the root of object diagram: an object diagram non
terminal. But as even in object diagram, the attribute code table is synthesised, it is necessary to
extract information of it and transfer to an inherited attribute, so that it can go down the syntactic
tree and arrive at the leafs, where, with other information coming from different parts of the tree,
they will compose the updated code table. To finish this process, the new code table will be
synthesised to at the root.

Let us define a new non terminal called diagrams to connect the two diagrams and make possible to
transfer information. Below, we list the new abstract syntax (the unique new line is the first):

< diagrams> ::= < class diagram> < object diagram >

< class diagram> ::= Class < set of relations >
< set of relations > ::= < relation > < set of relations >

< set of relations > ::= λλ
< relation > ::= Relationship < class diagram >

< object diagram > ::= Object < set of relations >
< set of relations > ::= < relation > < set of relations >

< set of relations > ::= λλ
< relation > ::= Operation < object diagram >

Following, we have the attributed rules related to the new line:

< diagrams > ::= < class diagram > < object diagram >

< object diagram >.entry list ← get (< class diagram >.code table)

Connecting the examples

A degree of abstraction: from a diagram to a code

Let us consider now that we have only a diagram. A diagram is composed by nodes that have its
semantics determined by its visual form. From each node we can have a set of arrows leaving it and
connecting it to other nodes. The semantics of arrows is determined by its nature. We do not know
at this time which is the semantic to be related to each symbol, i.e., which is the code to be
generated for each entry. We do not even know how is the visual representation of each node. So,
our aim now is only to construct the more abstract structure that can describe how to generate code
from a diagram (or a collection of diagrams).

Abstract syntax and attribute definition

Looking at a diagram as a set of nodes, each one having a set of arrows, connecting it to another
node, the abstract grammar to describe the diagram is showed below:

< diagram > ::= Node < set of relations >
< set of relations > ::= < relation > < set of relations >

< set of relations > ::= λλ
< relation > ::= Arrow < diagram >

If it is the case of describing levels of abstractions within a language, we can use a set of different
diagrams, each one of a level, all of them having the same structure. It may be necessary to
communicate some attributes between them.

We want this description the more abstract as possible, so in the following sections we will say
nothing about particularities of nodes or arrows. The description will be complete enough to
describe general entities that may be node of a diagram or that may connect nodes.

Using the same approach as before, let us start the description of this diagram by the terminal nodes
node and arrow. We can group the attributes of the terminal nodes into two different domains: the
visual domain, which contains attributes related to visual representation, and semantic domain, that
keeps attributes that will participate in the semantic of the entity. The former we will call frame.
Thus, frame is a record containing such visual information as co-ordinates, colour, kind of
geometric figure, etc. Let us call semantic the record that contains information coming as a result of
an users action, as positioning an entity on the screen, inserting a name via keyboard. Information
that comes from the keyboard can be the name of an entity, some indicator of the kind of action that
this entity performs, an item to explicitly compose the entity’s code, like the body of an operation.

Despite of the fact that the attributes mentioned above have the same name for each terminal
(semantic for node and for arrow, frame for node and for arrow) and that they play the same role (a
semantic role or a visual role), they are essentially different in their internal structure. This is
expected, as the information needed, for example, to draw an arrow can not be of the same kind of
the ones to draw a box. To emphasise the semantic role it would be a good solution to place these
attributes at the more abstract level terminal node, as “virtual attributes”10 and let them be inherited
by node and arrow, were they would be specialised. But as we want to give our structure the
capacity of been infinitely specialised, we wont say that node and arrow are leafs of this hierarchy.
Instead of this, we want the user to define entities that will be specialisation of node and arrow. If
we add specialised nodes of node and arrow, maintaining semantic and frame as virtual, we will

10 Virtual entities are specified at the leafs.

delegate to this new leafs the task of defining semantic and frame. Let us define semantic and
frame at the level of node and arrow as virtual nodes, and let the leafs specify details. The attribute
grammar will be written in term of the abstract role of semantic and frame. Particular features will
appear only in the body of the operations that deal with these attributes.

As we did before, it is necessary to define some operations that must be performed at the moment
that a terminal node is placed on the screen. These operations will set frame co-ordinates, colour,
etc., and will also make the request of user inputting information. Consider, thus,

create; { for node }
connect; { for arrow }

two behaviours, whose code depends on the application considered.

The non terminal node and arrow will have three common attributes named entry list, code table
and view. The first attribute is an inherited one and has the role of collecting information from the
upper parts of the syntactic tree, making them available in the lower nodes. This information can
belong to the semantic domain, or visual domain. Entry list acts like a bus of information, and it’s
internal structure is completely dependent on the application.

The two other attributes code table and view, are a kind of environment attributes. But, as code
table is the one that belongs to the semantic domain, it is the actual global environment attribute.
As a consequence it has to be passed to the other diagrams, if they exist. Information belonging to
visual domain are local to a diagram and do not have to be passed. Code table and view are filled
with information extracted form entry list and are synthesised attributes.

For these three attributes, we can define a set of operations that will make clear the description of
the hole attribute grammar:

entry list ← insert (name)
creates a new record in the list with a key “name”

entry list ← update component (name, component)
update a specific component named component of all the entries having “name” as key.
This is actually a set of operations.

entry list ← get (code table)
for all entries in code table extract the components that are used in entry list.

terminal
node

node arrow

is issemantic

frame

has

has

semantic

frame

has

has

 entry list ← get (view)
for all entries in view extract the components that are used in entry list.

code table ← update component (name , component)
update a specific component named component of all the entries having “name” as key.
As in entry list, this is a set of operations.

code table ← join (table)
makes the union of two code tables

code table ← insert (entry list)
for all entries in entry list extract the components that are used in code table.

code table ← finish (name)
make the last adjustments in the code of the class named “name”.

view ← insert (entry list)
for all entries in entry list extract the components that are used in view.

view ← join (view)
makes the union of two views

Particular non terminals have particular attributes according to their physical connection to
terminals. For example, diagram has a closely connection with node, and as so, it has to have some
attributes to receive semantic and visual information from this terminal and pass it to entry list. The
attributes frame and semantic of the non terminal are defined in a very similar way of the same
ones of the terminal nodes. There is no need to maintain the attribute frame in the non terminal set
of relation because visual information is not to be transformed during the walking in the tree. They
begin and finish at the same way as they entered by the terminal node.

Description of the attribute grammar

< diagram > ::= node < set of relations >

1. < diagram >.semantic ← collect (node.semantic)

2. < diagram >.frame ← collect (node.frame)
3. < set of relations >.semantic := < diagram >.semantic

4. < diagram >.entry list ← insert (< diagram >.semantic ← get component)

5. < diagram >.entry list ← update component (

< diagram >.semantic ← get component,

< diagram >.semantic ← get component)

6. < diagram >.entry list ← update component (

< diagram >. semantic ← get component,

< diagram >.frame ← get component)
7. < set of relations >.entry list := < diagram >.entry list
8. < diagram >.code table := < set of relations >.code table
9. < diagram >. view := < set of relations >.view

1,2) The semantic/visual information coming from node will be necessary to fill entry list. The
operation collect make them available in diagram, where they can be passed to entry list. Note that
semantic is a set of attributes. At this step, part of this attribute is filled by node information. The
other part is left empty, or preserve inherited contents.

3) The semantic information must also be passed to set of relation to be available to lower parts of
the tree.

4) Among semantic component of diagram.semantic, there must be a specific one that serve as key
to all the structures that walks in the three. An specific operation get component, where the

non
terminal

relation

set of
relations

is

is

diagram

is

has

code table

entry list

has
view

has

semantichas
semantic

frame

has

has

semantic

frame

has

has

component will be one that act as a key, will return a name and the first entry for it will be created
in entry list.

5,6) A set of operation (one for each component) is performed. Some components of entry list are
filled with specific components of diagram.semantic and other are filled with specific components
of diagram.frame. The first argument of update component must be a key for indexing entry list.

7) The inherited entry list is passed to lower parts of the tree.

8,9) Having been already completed with synthesised information, code table and view arrive in
diagram. As this non terminal represents a complete class diagram it may be necessary to make the
last adjustments in the code. This is the task of finish.

< set of relations1 > ::= < relation > < set of relations2 >
1. < relation >.entry list := < set of relations1 >.entry list
2. < relation >.semantic := < set of relations1 >.semantic
3. < set of relation2 >.semantic := < set of relations1 >.semantic

4. < set of relations2 >.entry list ← get (< relations >.code table)

5. < set of relations2 >.entry list ← get (< relations >.class view)

6. < set of relations1 >.code table ← join (< set of relations2 >.code table)

7. < set of relations1 >.view ← join (< set of relations2 >.view)

1,2,3) The attributes entry list and semantic are passed down to relation. The lower set of relation
also receives semantic, but not entry list. This last attribute will be modified by the relations and
classes below relation before be passed to the right set of relation.

4,5) Having computed all operations below relation, code table and view will be ready to be passed
to the right side of the tree, the node set of relation. The right side of the tree is beginning to be
computed.

8,9) Finally, the right side is already computed, and the newer information arriving in code table
and view by the right side are joined with the ones coming from the left side.

< set of relations > ::= λλ
1. < set of relations >.code table ← insert (< set of relations >.entry list)

2. < set of relations >. view ← insert (< set of relations >.entry list)

1,2) This is the and of the way down the tree. Attributes will begin to be inherited. It is necessary to
extract information from entry list and pass them to the correct structures.

< relation > ::= arrow < diagram >

1. < relation >.semantic ← collect (arrow.semantic)

2. < relation >.frame ← collect (arrow.frame)
3. < diagram >.semantic := < relation >.semantic

4. < relation >.entry list ← update component(

< relation >.semantic ← get component,

< relation >.semantic ← get component)

5. < relation >.entry list ← update component(

< relation >.semantic ← get component,

< relation >.frame ← get component)

6. < diagram >.entry list := < relation >.entry list
7. < relation >.code table := < diagram >.code table
8. < relation >. view := < diagram >.view

1,2,3) Another time, collect will make available for the non terminals the information coming from
terminal nodes.

4,5) The operation update component will transfer the semantic and visual information to entry list.
The first get component will return a component of semantic to serve as key for indexing entry list.
The second get component is to return the desired component.

6) The inherited entry list continue its way down the tree.

7,8) The synthesised code table and view continue its way up the tree.

Proof of strong non-circularity

Following we will construct the proof of strong non-circularity that ensures that we can evaluate
attributes according to some partial order. Having defined the order, a recursive procedure can be
constructed to compute the attribute grammar.

For each non terminal of the grammar we will define a graph, dependence graph of the symbol,
that will show the dependence among attributes of the same symbol.

For each rule of the abstract syntax we will construct another graph, the dependence graph of the

rule. This graph has as nodes the non terminals of the rule and directed arrows from linking two
nodes if an attribute of the target node depends on an attribute of the source node to be computed.
The dependence graph of the rule will be used to show the dependence among attributes of the
non terminal at the left side of the rule and attributes of non terminals at the right side of same rule.
This graph will be modified to form the augmented dependence graph of the rule, that will show
the dependence among attributes of the non terminal at left side of the rule and the attributes of non
terminals at the right side of same rule, but involving the others rules of the grammar.

Beginning by the dependence graph of the symbol, we have, initially none arrows connecting the
attributes of the symbols:

Considering, now, the dependence graph of the rule, we have for each rule:

diagram

set of relation

relation
entry
list

code
table

viewsemanticframe

entry
list

code
table

viewsemantic

entry
list

code
table

viewsemanticframe

< diagram > ::= Node < set of relations >

< set of relations > ::= < relation > < set of relations >

< set of relations > ::= λλ

< relation > ::= Arrow < diagram >

Now, we can match the two graphs using the following steps:

i) For each dependence graph of the rule:

Considering A, the non terminal at the left side of the rule, add an arrow from x to y
in dependence graph of the symbol A if x and y are attributes of A, and there is a path from x to y
in dependence graph of the rule.

set of relation
entry list code

table
viewsemantic

entry
list

code
table

viewsemantic
set of relation

relation

entry
list

code
table

viewsemantic

entry
list

code
table

viewsemanticframe
diagram

frame entry
list

code
table

viewsemantic

set of relation

entry
list

code
table

viewsemanticframe
relation

diagram entry
list

code
table

viewsemanticframe

entry
list

code
table

viewsemantic

ii) For each dependence graph of the symbol:

If an arrow from x to y was added in dependence graph of the symbol for the non
terminal A, add an arrow from x to y in dependence graph of the rule for each rule having A in the
right side.

iii) Repeat the above steps until none arrow is added.

This process is showed bellow. The first column is the dependence graph of the rule, and the
second is the dependence graph of the symbol.

 (i) Each black arrow in the dependence graph of the symbol represents a path in the
dependence graph of the rule that has this symbol as left non terminal. The path has as source an
attribute of the symbol and as target another attribute of the same symbol.

< diagram > ::= Node < set of relations >

< set of relations > ::=
 < relation > < set of relations >

entry list code
table

viewsemanticentry list code
table

viewsemantic

entry list code
table

viewsemantic

set of relation

relation

entry
list

code
table

viewsemanticframe

entry
list

code
table

viewsemanticframe

diagram

diagram

set of relation

entry list code
table

viewsemantic

set of relation

< set of relations > ::= λλ

< relation > ::= Arrow < diagram >

(ii) Each dependence graph of the symbol is reverted to each dependence graph of the rule

that has this symbol as right non terminal.

< diagram > ::= Node < set of relations >

entry
list

entry
list

code
table

viewsemanticframe

code
table

entry
list

code
table

viewsemanticframe

view

entry
list

code
table

viewsemanticframe

semantic

relationrelation

set of relation

diagram

diagram

set of relation

entry
list

entry list

code
table

code
table

view

view

semantic

semantic

frame

entry
list

code
table

viewsemantic
set of relation

< set of relations > ::=
 < relation > < set of relations >

< set of relations > ::= λλ

< relation > ::= Arrow < diagram >

(iii) Considering the dependence graph of the rule, there is not any different path from an
attribute of a left non terminal to another attribute of the same non terminal. Thus there is not any
node to add on the graphs. The process is concluded.

As we can not find a cycle in any graph, we can say that the attribute grammar is strong
noncircular. An order of evaluation for the attributes for each node can be directly deduced from
the possible paths in each graph. Below we show one possible order:

set of relation

relation set of relation

entry
list

code
table

viewsemantic

entry
list

code
table

viewsemanticframe

relation

diagram

entry
list

code
table

viewsemanticframe

set of relation

entry list code
table

viewsemantic

entry list code
table

viewsemantic

entry list code
table

viewsemanticframe

< diagram > ::= Node < set of relations >
< diagram >.semantic
< diagram >.frame
< set of relations >.semantic
< diagram >.entry list
< set of relations >.entry list
< set of relations >.code table
< set of relations >.view
< diagram >.code table
< diagram >.view

< set of relations1 > ::= < relation > < set of relations2 >
< set of relations1 >.entry list
< set of relations1 >.semantic
< relation >.entry list
< relation >. semantic
< set of relations2 >.semantic
< relation >.frame
< relation >.code table
< relation >.view
< set of relations2 >.entry list
< set of relations2 >.code table
< set of relations2 >.view
< set of relations1 >.code table
< set of relations1 >.view

< set of relations > ::= λλ
< set of relations >.semantic
< set of relations >.entry list
< set of relations >.code table
< set of relations >.view

< relation > ::= Arrow < diagram >
< relation >.semantic
< relation >.frame
< diagram >.semantic
< relation >.entry list
< diagram >.frame
< diagram >.entry list
< diagram >.code table
< diagram >.view
< relations >.code table
< relations >.view

The recursive evaluator

In section 0, we showed how to extract a partial order to evaluate attributes from the dependence
graph. Considering this order, it is easy to construct a procedure to evaluate the grammar: a
recursive evaluator. This procedure is a walking in the syntactic tree, where the path is determined

by the order. In some case it may be necessary to visit a node more than one time, each time a set of
attributes will be ready to be calculated. The recursive evaluator must have an extra parameter to
indicate the current visit. In the grammar presented in the above sections, this is not needed.

Consider a recursive procedure wich has as parameters the node being visited and the number
mentioned above. The body of the procedure will be a selection structure that, depending on the
current node, computes the local attributes - the ones whose attributes are already disponible in the
node or in its children nodes - and makes recursive calls to it´s children to compute values that have
to go up from lower nodes to the current one. The procedure will be called having the root of
syntactic tree as first node. When going down the tree, inherited attibutes can be evaluated and
when going up the tree, synthesised attributes are evaluated. Attributes that depends on others
attributes that are not yet computed are delayed to a next visit.

Below, we list the code of a recursive evaluator for the grammar described above. Let us use the
name “pt” to denote a pointer to a node of the syntactic tree. Each node of the syntact tree has the
form

left child rule entry list frame semantic code table view right child

where rule is the number of the rule that expands a nonterminal. If the rule has two symbols at the
right side, the first one will be pointed by left child, and the second one by right side. If the rule has
a unique child, rigth child will be null. For simplicity, we are considering the same representation
for all the grammars nodes, althougt some of them do not have all these attributes.

The procedure will be first called at the root of syntactic tree.

Procedure evaluate(pt)
case pt.rule = 1 then /* pt points to a diagram node */

pt.semantic ← collect(pt.left_child.semantic)

pt.frame ← collect(pt.left_child.semantic)
pt.right_child.semantic := pt.semantic

pt.entry_list ← insert (pt.semantic ← get component)

pt.entry_ist ← update component (pt.semantic ← get component,

 pt.semantic ← get component)

pt.entry_list ← update component (pt.semantic ← get component,

 pt.frame ← get component)

pt.entry_list ← insert (pt.semantic ← get component)
pt.right_child.entry_list := pt.entry_list
evaluate(pt.right_child) /* to compute synthesised attributes */
pt.code_table := pt.right_child.code_table
pt.view := pt.right_child.view

case pt.rule = 2 then /* pt points to a set of relation node */
pt.left_child.entry_list := pt.entry_list
pt.left_child.semantic := pt.semantic
pt.right_child.semantic := pt.semantic
evaluate(pt.left_child) /* to compute synthesiseded attributes from relation*/

pt.right_child.entry_list ← get (pt.left_child.code_table)

pt.right_child.entry list ← get (pt.left_child.class view)
evaluate(pt.right_child) /* synthesiseded attributes from set of relation */

pt.code_table ← join (pt.right_child.code_table)

pt.view ← join (pt.right_child.view)

case pt.rule = 3 then /* pt points to a set of relation node */

pt.code_table ← insert (pt.entry_list)

pt.view ← insert (pt.entry list)

case pt.rule = 4 then /* pt points to a relation node */

pt.semantic ← collect (pt.left_child.semantic)

pt.frame ← collect (pt.left_child.frame)
pt.right_child.semantic := pt.semantic

pt.entry_list ← update component(pt.semantic ← get component,

 pt.semantic ← get component)

pt.entry_list ← update component(pt.semantic ← get component,

 pt.frame ← get component)
pt.right_child.entry_list := pt.entry_list
evaluate(pt.right_child) /* synthesiseded attributes from diagram */
pt.code_table := pt.right_child.code_table
pt.view := pt.right_child.view

Recursive evaluators are to be applied to a constructed syntactic tree. Because of this, we can say
that the attribute grammar is independent of the parser. This independence is very important to our
case, where the entity beeing parsed is not a text, but a graph. It is easy to see that the grammar
specified above is ambiguous, and as so, can not be parsed by the usual techniques. An special way
of doing the parsing is explained on the next section, where the order of construction will be
considered to eliminate the ambiguity.

How to construct the parser

The grammar described above is able to generate sequences of altenating nodes and arrows. The
output generated by this grammar does not gives the idea of a diagram. But if we analise the
syntactic tree that is the result of expanding rule by rule we can see that this tree is able to describe
a graph. The problem is that, given a graph, there is more than one tree that can represent it. For
example, consider the graph

We represent this graph in each one of the two trees described below, and both of them are derived
from the grammar.

has
node 1 node 2

node 3

is

diagram

Node 1 set of relation

relation set of relation

Note that these two trees are very simple because node 2 and node 3 do not have any relationship.
But when others relationships are considered, we can have very different trees representing the
same graph.

As we are giving semantics to an interative constructed diagram, and as it is not possible for the
user to insert two entities of a graph at the same time, the obivious way of selecting the tree that
will represent the diagram is to consider the order of construction. We can also think about the
possibility of having two incomplete diagrams that can be connected by an arrow. Also in this case,
each diagram will have its order of construction, so, the tree to be generated by the connected
diagram is a junction of their trees.

Bellow, we represent the process of generating the tree for a graph. The actions of the user are
considering on the right box, and on the left we represent the effect of these actions on the tree that
is being created.

First, there is a screen providing
all the tools to construct diagrams,
but without any diagram: the user
will define the first one.

The tree is empty.

diagram

Node 1 set of relation

relation

has diagram

set of relation

Node 2 set of relation

λ

relation set of relation

is diagram

Node 3 set of relation

λ

λ

He begins by inserting a node
picture (to begin with an arrow, he
would have to insert the source
and target that do not exist yet).
He selects a node picture,
specifying its semantics attributes,
say the name, and place it on the
screen.

In the tree we have the creation of a terminal node.

But, as the trees begin by a non terminal < diagram >, this sigle
node is transformed in:

The user wants, now, to make a
relationship. But for doing this, he
will have to define another node.

Now we have two trees:

diagram

node 1 set of relations

λ

node 1

node 2

 diagram

set of
relations

λ

diagram

node 1 set of
relations

λ

At this time, the user can
stablishes a relationship: he puts
an arrow from node 1 to node 2.

After this step, if it is the case of
inserting one more relationship,
another diagram will be creater as
effect of placing the target of the
relationship on the screen. If the
new node has to have as source
the node 1, the tree will be
expanded bellow the dotted < set
of relation >. But if the source is
node 2, the tree will grow bellow
the lower < set of relation >.

The part of the tree created as an effect of putting the new arrow
is remarked with dotted line.

diagram

node 2

node 1 set of
relations

set of
relations

relation λ

diagram

set of
relations

λ

arrow

