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Abstract: We start from the analysis of how Alan Turing proceeded to build the notion of computability in his famous 1936
text  ‘On  computable  numbers,  with  an  application  to  the  Entscheidungsproblem’.  Looking  in   detail  at  his  stepwise
construction, which starts from the materialities to  achieve a satisfactory level of abstraction, we will demonstrate how his
way of doing mathematics was one that constructs mathematical knowledge by evading a definite separation between matter
and form; in this  way, making the world and language come together. Following the same  line of reasoning, the abstract and
the concrete, the deduction and the  induction, the technical and the social as well as the objective and the subjective are
unthinkable as pure entities. By considering the controversies and discussions from the mid-nineteenth century until now, we
can  indicate  local  (social)  elements  that  necessarily  participate  in  what  is  usually  considered  ‘technical  content’  or
‘objectivity’.  While  Alan Turing  was  a  precursor  of  what  today  might  be  said  to  be  an  ‘anthropological  approach to
mathematical  culture’,  unveiling  and reviving  approaches  that  enable  the  axis  of  authority  for  mathematics,  logic  and
computing to be shifted, he also opened different paths for the construction of a  variety of mathematical knowledge as well.

Key words: Computability, Alan Turing, Knowledge Construction

1. Introduction 

The  practice  in  the  field  of  mathematics  often

attributes the soundness and completeness of results to

purely  deductive  reasoning,  and  the  criterion  of

truthfulness as well as the applicability of results are

usually dependent upon confidence in proof. Hence, in

the  so  called  ‘objective  discourse’,  inductive

reasoning,  tests  and  empirical  approaches  are  often

rejected.  Computer science suggests that  this should

be  open  to  discussion  since  abstract  (formal)

knowledge  becomes  directly  embodied  in  computer

programs,  and  therefore  would  seem  to  make

‘immediate’ (that is, without mediation) contact with

the  ‘only  real  world,  the  one  that  is  actually  given

through  perception,  that  is  ever  experienced  and

experienceable  -  our  every-day  life-world’  (Husserl,

1954:48-49). For Alan Turing, the empirical question

and inductive thought seemed to have been clear from

the start. Turing’s way of doing mathematics contrasts

with that of those who, at this time in the 1930s, were

engaged  in  questions  regarding  computability.  The

prevailing view was that mathematical deduction was

the guarantee of correct thinking. Hence, a study of
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Turing’s  way  of  working  draws  attention  to

approaches  that  consider  diverse  factors  of  diverse

natures, these being on the same scale or order as what

is  usually  indicated  as  ‘objective  factors’  in  the

construction of the ‘objective’ facts of science. These

approaches may shed new light on questions about the

neutrality  and  universality  of  mathematical

knowledge. 

In the following, we describe the organization of this

paper:

In section 2 we address conformities between Turing's

way of doing math and the techniques and strategies

that  are  used  in  anthropology.  In  respect  to  staying

close to the materiality of the situation, one could say

that Turing’s goals aimed at mathematical abstractions

were  completely  adverse  of  the  goals  of

ethnographers.  Nevertheless,  we  show  that  Turing

enacted an empirist attitude and worked in a way that

was  very  similar  to  that  of  the  ethographers  when

addressing a social group: ethnographers underlie their

research  on  an  intimate  experience  of  living  and

detailed  observation  of  the  social  group  concerned.

Likewise,  Alan  Turing  justified  every  step  of  his

mathematical abstraction based on the details of the

experience of calculating.

In section 3 we point out that Turing’s justification of

his reasoning in the conception of the Turing machine

matches  very  well  with  certain  epistemological

alternatives based on links between reasoning and the

materialities  of  the  world  where  the  scientist  lives

(William James, Bruno Latour). These epistemologic

(semiotic)  alternatives  recognizes  scientific

knowledges as historical and local constructions, that

is, as ‘situated knowledges’. 

In  section 4 we discuss the notion of  mathematical

objectivity. We argue that mathematical knowledge is

locally situated. We provide examples of situations to

show that extra-mathematical factors, that is, factors

of a given place in a given time, act definitely in the

conformation  of  mathematics,  in  contrast  with  the

impotence of ‘purely mathematical content’ to resolve

certain issues by itself.

Section  5  concludes  the  paper  by  invoking  the

inseparability  of  what  is  usually  considered  to  be

technical  from  what  is  usually  considered  to  be

nontechnical. 

2. The  mathematics  of  Turing  and  its
approximations  to  the  methods  of
anthropology

2.1 Acting as an ethnographer

In 1936, the mathematician Alan Turing designed a

machine, and proposed it  as a formal counterpart to

the  intuitive  notion  of  mechanical  procedure

(algorithm). His proposition was readily accepted by

mathematicians.  ‘What  are  the  possible  processes

which  can  be  carried  out  in  computing  a  number?’

was the starting question of Turing (1936). He made

the (imagined) experiment of following a human actor

in  the  process  of  calculating.  In  order  to  provide  a

convincing  argument  for  what  is  understood  by  the

term ‘mechanical’ Turing held closely to the material

processes  observed  in  the  act  of  calculating  and

defined  an  extremely  simple  device  based  on  the

materiality  of  the  assemblage  (human  +  pencil  +

paper).  This  approach  reenacts  the  process  that  a

human actant, equipped with pencil and paper, enacts

to  perform  a  calculation.  Turing’s  approach  relates

directly to the ethnographic approaches developed by

anthropologists  to  identify relevant  information,  this

commonly being disguised behind everyday practices.

Ethnographers collect and record information to yield

analysis. ‘[T]he good ethnographer is capable not only

of good description but of recognizing what elements

most warrant attention when ethnography (...)  is the

intended  outcome’  (Wolcott,  1987:39).  To  make

explicit the tacit knowledge ethnographers ‘are rightly

accused  of  making  the  obvious  obvious’  (Wolcott,

1987: 41-42).  In  order  to  achieve this,  the  observer

and  observed  remain  so  close  that  it  is  sometimes

difficult to identify who is who. As an ethnographer
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who follows traces and behaviour,  Turing took into

account  the  details  of  the  activity  of  the  computer:

‘We may now construct a machine to do the work of

this  computer’  (Turing,  1936) The word ‘computer’

was  the  term  adopted  by  him  to  describe  the

assemblage  (human +  pencil  +  paper)  in  the  act  of

calculation. The 1936 paper shows how Turing held

obsessively  close  to  materiality  as  he  observed  and

traced each step in  the process of  a  calculation.  He

literally  stated  that  the  abstract  machine  he  had

conceived  possessed  all  the  materiality  that

corresponded with  the  materiality  of  the  calculating

activity of a person with a pencil and paper: ‘We may

compare  a  man in  the  process  of  computing  a  real

number to a machine which is only capable of a finite

number  of  conditions’  (Turing,  1936).  This

correspondence  is  accurate  enough  to  consider

situations where the man takes a break, so interrupting

calculations  to  resume  them  later  on:  ‘It  is  always

possible for the computer to break off from his work,

to go away and forget all about it, and later to come

back and go on with it. If he does this, he must leave a

note of instructions (written in some standard form)

explaining how the work is to be continued. This note

is  the counterpart  of  the “state  of  mind” ’.  (Turing,

1936).  This  process  resulted  in  an  ‘abstract’

conception  (apparently  devoid  of  materiality)  which

is,  nevertheless,  clearly  embodied  in  the  computer

machines which emerged shortly afterwards. Although

Turing  never  mentioned  this  anthropological

technique, his approach to the issues of mathematics,

and particularly the question of what is ‘calculable’ or

‘computable’ is precisely ethnographic. Twenty years

later, Turing reinforced the ethnographic character of

his work. In ‘Computing Machinery and Intelligence’

(Turing, 1950), he proposed a game where a man and

a machine have their roles confused as players: ‘What

will happen when a machine takes the part of A in this

game? Will the interrogator decide wrongly as often

when the game is played like this as he does when the

game is played between a man and a woman?’ The

ethnographic nature of this approach is explained by

(Cohen  &  Court,  2003):  ‘[T]he  ultimate  test  of  an

ethnographer  would  be  for  a  naive  member  of  a

specific  culture  to  ask  both  an  ethnographer  and  a

member  of  that  culture  to  respond  to  specific

questions  and  perform  certain  actions.  If  the  judge

failed to determine who is the genuine member and

who  is  the  “imposter”  ethnographer,  this  would

indicate that the ethnographer has fully identified the

characteristics of the group’. Turing’s commitment to

the  notion of  materiality  is  also visible  in  the 1950

paper where he takes into account new elements for a

new time: ‘He has also an unlimited supply of paper

on which he does his calculations. He may also do his

multiplications and additions on a “desk machine” ’ .

For  Turing,  more  than  just  a  style  of  writing,

adherence to empirical facts, inductive reasoning and

local conjunctures were a way of thinking. 

2.2 Reasoning as an empiricist

In the mid-nineteenth century, John Stuart  Mill

argued that knowledge initiates with experience. For

Mill, an empiricist, the foundations of all of sciences

come from experience and observation, and thus, all

sciences  are  inductive,  including  mathematics (Mill,

1848: 148). A few years later, the argument of Mill

was  severely  criticized  by  philosophers  and

mathematicians,  for  example,  Gottlob  Frege  (1950).

When looking for sound foundations for mathematics

in  the  late  nineteenth  and  early  twentieth  century,

these critics attributed supreme power to mathematical

truth through an attempt at a purification process. This

sought to eliminate from deductive sciences any trace

of subjectivity: ‘mathematics has become a court of

arbitration, a supreme tribunal to decide fundamental

questions on a concrete basis on which everyone can

agree and where every statement  can be controlled’

(Hilbert,  1925).  In  this  context,  philosophers  and

mathematicians took any evidence of experience and

observation as a threat to the authority of science or

even,  as  a  mere  joke:  ‘all  Münchhausen’s  tales  are
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empirical  too;  for  certainly all  sorts  of  observations

must  have  been  made  before  they  could  be

invented’(Frege, 1950:12). Despite the criticisms, the

empirical  ideal  resisted  throughout  the  twentieth

century, with new contributions and questions being

posed.  About  one  hundred  years  after  Mill’s  ‘A

System  of  Logics’,  the  empiricist  Quine  rejected

dichotomies  in  the  understanding  of  science,

indicating  the  need  to  consider  science  as  a  single

body, where truth values depend on experience only

as  border  conditions,  and  are  therefore  constantly

subject  to  revisions  (Quine,1951:39-40).  He  also

rejected ‘the belief that each meaningful statement is

equivalent to some logical construct upon terms which

refer  to  immediate  experience’.  As  for  Quine

(1951:20), experiences were peripheral conditions and

not attached to statements. 

‘This is in accordance with experience’ wrote Turing

(1936) when concluding that the machine should take

into  account  one  symbol  at  a  time,  since  a  human

would  not  be  able  to  decide  at  a  glance  if  the  two

sequences 9999999999999999 and 999999999999999

are the same. It is clearly evident here that even before

Quine,  Turing  seems  to  have  realized  that

mathematics  and  a  kind  of  immediate  experience

overlap only in a limited way: the inequality between

99 and 999, for example, would be ‘immediately’ (i.e.

without mediation) perceived. 

The  Turing  machine  is  perhaps  the  most  famous

characterization  of  a  formal  counterpart  to  the

informal  notion  of  algorithm.  The  equivalence

between  the  Turing  machine  and  several  other

characterizations  that  have  been  proposed  suggests

that  mathematicians  were  in  agreement  about  what

they  thought  was  calculability.  However,  as  Rogers

(1967:20)  observes:  ‘The  claim  that  each  of  the

standard formal characterizations provides satisfactory

counterparts to the informal notions of algorithm and

algorithmic  function  cannot  be  proved.  It  must  be

accepted or rejected on grounds that are, in large part,

empirical’. By adopting an empirical attitude, Turing

faced the problem of formalizing an intuitive notion:

‘All arguments which can be given are bound to be,

fundamentally, appeals to intuition, and for this reason

rather  unsatisfactory  mathematically.  (.  .  .  )  The

arguments which I shall use are of three kinds. a. A

direct appeal to intuition. b. (. . . ) c. Giving examples

of large classes of  numbers which are  computable.’

(Turing, 1936). What emerged in Turing’s approach

was the empiricist nature of knowledge construction,

which he reached through ethnographic research.

3. The mathematics of Turing and models of
knowledge construction

Occasionally  in  the  process  of  knowledge

construction,  the  proximity  between  the  material

(matter,  thing,  object)  and the form is  no longer so

evident.  Once the  links to  the  materialities  are  lost,

there is a sense of the ‘abstract’, of ideas that come out

of ‘no things’. The pragmatist William James explains

this  process  of  purification  that  produces  an

epistemological gap between matter (thing/object) and

form  (idea):  ‘For  we  first  empty  idea,  object  and

intermediaries  of  all  their  particularities,  in  order to

retain only a general scheme, and then we consider the

latter only in its function of giving a result, and not in

its character of being a process. In this treatment, the

intermediaries shrivel into the form of a mere space of

separation, while the idea and object retain only the

logical  distinctness  of  being  the  end-terms  that  are

separated’  (James,  1907:VI).  James  defines  his

approach to knowledge construction as ambulatory, in

the sense that it considers the intermediate steps that

characterize knowledge in every real case, as opposed

to the  saltatory approach which describes results that

are only abstractly attained. By highlighting the bridge

between  object  and  idea,  he  undoes  the  separation

between the concrete and the abstract, and brings back

to  the  scene  all  the  particularities  and  local

contingencies  that  the  process  of  abstraction

eradicates. 

According  to  Latour  (1999:69),  knowledge  is
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constructed by means of  a chain of  short  reversible

steps;  he  named  these  the  ‘circulating  reference’.

Here,  Latour’s  conception  of  reference  differs  from

Frege’s (1892), for whom the reference is a pointer to

something in the exterior world: 'It is natural, now, to

think of there being connected with a sign (...), besides

that to which the sign refers, which may be called the

reference of the sign, also what I should like to call the

sense of the sign, wherein the mode of presentation is

contained. (...)  The reference of 'evening star' would

be  the  same  as  that  of  'morning  star,'  but  not  the

sense.”  (Frege,  1948:24). For  Latour,  each

intermediate  step  in  the  chain  of  knowledge

construction  is  only  a  small  gap  between  matter

(thing)  and form,  and what serves as  matter  (thing,

world) in one step becomes form in the next step. In

this chain, what remains invariant when going forward

or backward is the reference. Thus, the world and the

language are not isolated domains that are linked by

the reference. Instead, the chain is a continuum where

thing  and  form  are  very  close:  ‘If  the  chain  is

interrupted in any point, it ceases to transport truth –

ceases, that is, to produce, to construct, to trace, and to

conduct  it.  The  word  “reference”  designates  the

quality  of  the  chain  in  its  entirety,  and  no  longer

adequatio rei et intellectus. The truth values circulates

here  like  electricity  through a  wire,  so  long  as  this

circuit is not interrupted’ (Latour,1999:69). 

Turing (1936) enables one to circulate the small

steps in the chain  (human+pencil+paper) ↔ state of

mind ↔ note of instructions ↔ instruction table back

and forth. What is originally thing (matter) is also idea

(form) when a  (small)  step is  taken in  the chain of

knowledge construction. Thus, the materiality of the

amalgamation  (human+pencil+paper) becomes  the

form  of  the  state  of  mind,  which  then  becomes  as

concrete as a materia to inspire the form of a note of

instructions. As Turing explains: ‘If he does this [the

computer  breaks  off]  he  must  leave  a  note  of

instructions  (written  in  some  standard  form)

explaining how the work is to be continued. This note

is the counterpart of the “state of mind”.’ Ultimately,

the note of instructions took the form of a table with a

shape closer to a program for the computing machines

which came about a few years later: ‘q1 S0 PS1, R q2

q2 S0 PS0, R q3 q3 S0 PS0, R q4 q4 S0 PS0, R q1’.

Again,  the form serves as  thing in  the current  step.

Along  this  chain  from  the  (human+pencil+paper)

computer  to  the  computing  machine,  something

remains  unchanged;  this  makes  a  tracing  back  and

forward possible, which occurs step by step, and from

the  most  abstract  representation  of  computability  to

the original materiality. What then remains unchanged

here  despite  the  transformations  is  the  reference.

James’s approach is resumed in Latour’s concept of

circulating reference,  and can also be seem in Alan

Turing’s work. Here we will not pursue the kinds of

models of construction put forward by authors such as

James and Latour,  but  these models  will  lead to  an

understanding  of  any  knowledge,  including

mathematical  knowledge,  as  historical  and  local

constructions, as ‘situated knowledge’. 

4.  The  ‘objectivity’  of  mathematical
discourse and its social character

If it is recognized that mathematical knowledge,

like any other form of knowledge, is locally produced

and kept attachable  (by circulating reference) to  the

conditions of its construction, it begins to make sense

to talk about the sociology of mathematics: ‘Everyone

accepts that it is possible to have a relatively modest

sociology  of  mathematics  studying  professional

recruitment,  career  patterns  and  similar  topics.  This

might justly be called the sociology of mathematicians

rather  than  of  mathematics.  A  more  controversial

question  is  whether  sociology  can  touch   the  very

heart of mathematical knowledge. Can it explain the

logical necessity of a step in reasoning or why a proof

is in fact a proof’ (Bloor, 1976:84). Such an approach

helps to bring out asymmetric power relations which

are  manifested  and  strengthened  in  mathematics.

These  asymmetries  are  performative,  that  is  to  say,
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they determine mathematical configurations which are

often  presented  and  justified  by  mathematicians  as

purely  technical  options.  Hence,  ‘the  argument  is:

although  mathematical  shapes  are  historically

acquired  and  learned,  they  are  subsequently

naturalized, apprehended, and widely used in enacting

the real world’ (Marques, 2004). 

In the following,  we provide examples of situations

to  show  that  extra-mathematical  factors,  that  is,

factors of a given place in a given time, act definitely

in the conformation of mathematics.

4.1 Formal verification of programs

Controversies about the use of formal specifications

of  software  for  ensuring  correctness  exemplify  how

the authority of what is said to be ‘objective’, coupled

with  its  naturalized  attributes  of  universality  and

neutrality,  serves  as  an  ultimate  guarantee  of

correctness, so preventing further questions. Computer

systems certification companies adopt standards that

ensure reliability in a broad spectrum of applications.

The vast majority of computer professionals are not

able  to  understand  the  complicated  proofs  of

correctness  of  systems  and  there  are  anecdotal

evidences that it is easier to understand the programs

themselves.  However,  in  practice,  if  the  software is

‘certified’, it is generally accepted that it is ready to be

used even in extremely high risk situations. In 1999,

an arrangement  of  international  organizations  called

Common Criteria (CC) created a basis for evaluating

the security of information technology products. The

CC defined seven levels of assurance, establishing a

degree of trust directly proportional to an adherence to

formal  methods.  To  earn  certification  the  developer

chooses  and  formalizes  the  properties  he  considers

indispensable  for  safety,  provides  a  formal

specification of the parts of the software he considers

critical and proof that the chosen properties meet the

specification. The last step is then to prove that the

program is indeed a refinement (an implementation)

of  the  given  specification,  and  thus  meets  the

properties  proved  at  the  formal  level.  These

documents  are  then  analysed  by  the  ‘evaluation

authority’ – a team of specialists whose name reveals

the  sense  of  authority  provided  by  mathematics.  A

closer  examination  of  the  process1 will  reveal,

however,  that  arbitrariness,  convention,  and  hence

‘subjectivity’  are  inevitably  present  in  the  initial

stages,  when  several  choices  are  made  by  the

developer. Being unable to eliminate subjectivity, the

formal method, stealthily propagates it throughout the

entire  process.  Therefore,  what  prevails  here  is  not

purely deductive thinking where mathematical entities

are said to be built, but the strength of the discourse of

true and universal knowledge and a ‘centered reality’.

This authorizes statements such as ‘IT products and

protection  profiles  which  earn  a  Common  Criteria

certificate can be procured or used without the need

for  further  evaluation’

(http://www.commoncriteriaportal.org/ccra/). 

The  myth  of  security  arising  out  of  the

mathematization of software that remains until today

had  its  origins  in  the  discussions  sponsored  by  the

North  American  Department  of  Defense  in  the

seventies  (Makenzie,1996).  However,  even  then  the

confidence in  formal methods was not  a consensus:

‘[L]et  us  suppose  that  the  programmer  gets  the

message  ‘VERIFIED.’  (.  .  .  )  What  does  the

programmer  know?  He  knows  that  his  program  is

formally,  logically,  provably,  certifiably  correct.  He

does not know, however, to what extent it is reliable,

dependable,  trustworthy,  safe;  he  does  not  know

within  what  limits  it  will  work;  he  does  not  know

what happens when it exceeds those limits. And yet he

has that mystical stamp of approval: “VERIFIED.” ’

(DeMillo, et al.,1979). Hence, subjectivity was clearly

pointed  out,  but  was  insufficient  to  shake  the

confidence that rested solely on formal methods, and

even applies today.

1 For an example, see the approach of Heitmeyer (2008) to 
support a CC evaluation of the separation kernel of an 
embedded software system. See also the report CCMB- 2009-
07-003:229 available on the CC web page. 
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4.2 Social processes for software correctness

A sociology of mathematics allows for explanations

of  mathematical  facts  (such  as  proved  theorems)

which  distance  themselves  from  explanations  of  a

more absolutist flavor prevailing among the majority

of mathematicians. For the Social Studies of Science

and Technology, where the universality of knowledge

is understood as a mechanism to ensure authority and

science is viewed as a local phenomenon, objectivity

is addressed in its interweaving with the social;  this

makes  it  possible  that  other  elements  besides  those

considered  as  ‘technical’  come  into  play  in  the

composition of the facts regarded as ‘mathematical’.

An intertwined approach could possibly have placed

more light on the exposure of software to collective

processes  as  an  additional  mechanism  to  ensure

correctness;  this  has  been  argued  by  researchers  in

1970's, but was not considered by their peers. 

‘What  elements  could  contribute  to  making

programming more like engineering and mathematics?

One mechanism that can be exploited is the creation

of general structures whose specific instances become

more reliable as the reliability of the general structure

increases.  This  notion  has  appeared  in  several

incarnations, of which Knuth’s insistence on creating

and understanding generally useful algorithms is one

of the most important and encouraging. Baker’s team-

programming methodology  is  an  explicit  attempt  to

expose  software  to  social  processes.  If  reusability

becomes a criterion for effective design, a wider and

wider  community  will  examine  the  most  common

programming  tools.’(DeMillo,  et  al.,  1979).

Researchers  cited  generally  useful  algorithms  that

took  the  form  of  the  present  design  patterns,  team

programming methodologies that nowadays have been

improved by the collaborative capabilities introduced

through  the  internet  and  reusabily,  which  is  a  key

issue  in  the  conception  of  modern  program

environments.  Finally,  there  is  currently  a

proliferation of software development methodologies

which rely on social collaboration for secure software

development. This starts from the assumption that the

collective creation negotiation, discussion and review

by  multiple  agents,  among  other  mechanisms  of

participation, tend to maximize the chances of success

in building a product, especially software.

4.3 The IEEE Standard for Floating-Point Arithmetic:

The pursuit of a consensual arithmetic

The  discussions  on  the  issues  of  the  mathematical

foundations  at  the  end  of  nineteenth  and  early

twentieth centuries provided space for an alternative

form of  mathematics  that  would  be  able  to  survive

incompleteness.  This  trend  was  reinforced  by  the

materialization of formal systems on computers  that

appeared in the second half of the twentieth century.

Now  computers  are  present  in  almost  all  of  the

everyday life. Computing machines therefore require

constant  negotiation  with  mathematics  to  meet  the

new conformations  of  material  requirements  and  to

highlight  the  reconfigurations  resulting  from  the

coming together of what would be taken as theory and

things of life. An example of this are the controversies

giving  rise  to  the  IEEE Standard  for  Floating-Point

Arithmetic:  The  attempts  to  define  computer

arithmetic in the 1970s failed miserably as regards the

‘objectivity’  of  arithmetic  in  solving  life-world

problems. The core issue was the confrontation of the

infinite  expansion  of  certain  real  numbers  and  the

finite  size  of  computational  representation,  which

certainly requires some form of truncation. Different

algorithms were  used by different  companies (IBM,

Digital,  HP,  Intel,  Texas)  which  generated  different

results for the same purpose. A comparison between

them showed that  there  were  many  decisions  to  be

taken:  ‘One  specialist  cite[d]  a  compound-interest

problem producing four different answers when done

on  calculators  of  four  different  types:  $331,667.00,

$293,539.16,  $334,858.18  and  $331,559.38.  He

identifie[d] machines on which a/1 is not equal to a

(as, in human arithmetic, it always should be) and eπ
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−πe  is  not  zero.’  (MacKenzie,  1996:168)  Hence,

negotiating arithmetic proved to be a long process. A

committee  began  to  work  in  1977  but  IEEE  754,

Numbers  Fractional  Binary  Arithmetic,  was  not

adopted until 1985. The crucial point here, is that the

stable,  consensual  human  arithmetic  against  which

computer arithmetic could be judged was insufficient

to  determine  the  best  form  of  computer  arithmetic.

(Mackenzie,  1996:182)  Following  this,  extra-

mathematical factors emerged and the negotiation of

an  agreement  overlapped  with  the  authority  of

mathematics,  resulting  in  the  arithmetic  of

overwhelmingly  prevalent  use  now.  These

‘negotiations’ and ‘reconfigurations’ resonate with the

hypotheses  of  James  (1907:  VI)  concerning  the

‘vulgar  fallacy  of  opposing  abstractions  to  the

concretes from which they are abstracted’, causing a

nuisance to those who seek in mathematics a field free

of  uncertainties  that  would  be  able  to  provide  a

rigorous foundation for  other  fields of  pure science.

Life  runs  its  course  and  in  its  flux  requires

mathematics to be able to act in uncertainty, to abide

creativity,  and  not  to  be  paralyzed  when  facing

incompleteness. We therefore claim that in some ways

Turing opened a path to  this  ‘new’ mathematics;  as

early as 1939, he introduced the notion of an oracle

attached  to  a  computation  and  inaugurated  a

mathematical intimacy between of what is formal and

what cannot be formalized: ‘Let us suppose that we

are supplied with some unspecified means of solving

number-theoretic  problems;  a  kind  of  oracle  as  it

were. We shall not go any further into the nature of

this  oracle  apart  from  saying  that  it  cannot  be  a

machine. With the help of the oracle we could form a

new  kind  of  machine  (...),  having  as  one  of  its

fundamental processes that of solving a given number-

theoretic  problem.’(Turing  1939:172-173).  Later,  in

1960,  Computer  Science  showed  a  case  where  the

mathematical accuracy and requirements of life were

actually  mediated  by  an  oracle.  This  is  our  next

example.

4.4 Errors among algorithm certitude

In  1960,  the  computer  scientist  Michael  Rabin,

worked with probabilistic  automata,  employing  coin

tosses in order to decide which state transition to take.

As a result,  he achieved an exponential reduction in

the number of states of automata. In 1975, he again

used  the  same  idea  for  adapting  a  primality  test

algorithm which, although deterministic, depended on

an  unproven  assumption:  ‘With  the  idea  of  using

probability and allowing the possibility of error, I took

[this]  test  and  made  it  into  what  is  now  called  a

randomized algorithm’ (Rabin, 2010) Even replacing

an unproved statement, the possibility of error caused

discussions  among  mathematicians.  Rabin  showed

that the number 2400 − 593 passes his test and hence is

a  prime  ‘for  all  practical  purposes’  (Kolata,1976).

Disputes  about  algorithmic  techniques  declined  in

terms of the definition of what constituted ‘practical

purposes’.  ‘Of  Rabin’s  contention  that  probabilistic

methods of proof are necessary, Weinberger answers,

“I’m  willing  to  be  convinced.  Just  show  me  one

substantial  example.”  ’  (Kolata,1976)  Despite

criticisms and rejections, Rabin asserted that research

in  Randomized  Algorithms  was  growing  as  an

important  branch  in  Computer  Science  (Shasha,

2010).   In  the life-world, the mathematics fitted the

new  realities  and  became  useful  for  ‘practical

purposes’.

Given that it is ‘unspecified’, the use of an ‘oracle’

means  recognizing  that  the  ‘objectivity’  of

mathematics cannot control everything. Moreover, the

harmonic  coexistence  of  unruliness  and  formalized

mathematics, as it happens in Turing work, indicates a

possibility  of  mathematical  action  with  incomplete

knowledge,  allowing  mathematics  to  reach  out  to

other domains. 

4.5 Metabiology

The  Metabiology  proposed  by  Chaitin  (2011)

provides  a  description of  a  biologic  organism in its

essential features, making DNA into a programming
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language that computes the fitness of an organism. In

order to model life, and considering all the possible

configurations  of  biological  organisms,  metabiology

employs  the  space  of  all  possible  algorithms,  these

being written in a fixed programming language. In the

analogy of life as an evolving software, what accounts

for  biological  creativity  is  randomness,  which

represents the generation of organism mutations that,

being  eventually  fitter,  replaces  the  previous

organisms. ‘[A]nd that is sufficiently simple to permit

rigorous  proofs  or  at  least  heuristic  arguments  as

convincing as those that are employed in theoretical

physics.’(Chaitin  2011,  p.51).  Here,  metabiologia

moves  away from a  ‘realistic’  fidelity  to  biological

processes,  and  thus  simultaneously  deprives  and

releases mathematics of its role as a spokesman of a

pregiven  world.  Employing  mathematical  apparatus

over  an  inspiration  in  biology,  metabiology

undermines the dichotomy ‘subjective’/‘objective’ and

enriches  both  biology  and  mathematics  in  an

interweaving of knowledge. 

The authority of the ‘objectivity’, contrasted with its

powerlessness  in  solving  particular  problems  in

everyday  life,  had  to  give  way  to  new  forms  of

mathematics which closely reflect local requirements.

The  negotiation  between  the  consensual  deductive

reasoning  and  the  new  conformations  imposed  by

local  constraints  thereby  gave  rise  to  new

‘objectivities’.  Although  not  always  widely

recognized this emergent and negotiated mathematics

remains in use, as in the world of life, it is what makes

things working. 

5. Conclusions

In his famous 1936 paper ‘On Computable Numbers

with an application to the entscheidungproblem’ Alan

Turing makes a detailed description of the process that

set  up  his  proposal  for  a  formal  counterpart  to  the

intuitive  notion  of  computability.  In  a  meticulous

observation  of  materialities  and  mechanisms  of  the

arrangement man+pencil+paper, Turing conceived an

idealization  of  the  process  of  computing.  As  if

narrating his mental  construction, he explained each

option adopted in the construction of a formal model,

always  leaving  apparent  the  passage  from  a

representation  to  a  more  abstract  one.  His  way  of

doing  mathematics  is  in  line  with  knowledge

constructions in which the bridges between things and

ideas  are  always  made  visible,  evading  thus  the

establishment of a definite separation between matter

and form, keeping apparent that world and language

come together.  Once it  is  accepted that  the abstract

and concrete, deduction and induction,  the technical

and  the  social  as  well  as  the  objective  and  the

subjective  are  unthinkable  as  pure  entities,  one  can

inquire: what is the objectivity of mathematics? What

is  the  nature  of  those  entities  that  appear  in

mathematical discourse as if they were autonomous?

Ludwik  Fleck,  a  historian  of  science,  argued in  the

1930s (Fleck, 1935:93) that these entities have their

existence  in  the  context  of  a  collective  agreement.

This  agreement enacts  a communicable  thought that

effaces  the  ties  with  the  material  issues.  It  is  what

James referred to as salto mortale: schematic thinking

configures  what  need  not  be  explained,  and  then,

under  use,  becomes  naturalized  (accepted  without

further  questioning).  Thus,  objectivity is  a  social

construction.  ‘Objectivity’, as  a  synonym  of

universality,  neutrality  and  accuracy,  is  built  on  a

chain of representations and re-representations (forms

over  forms).  At  each  stage  of  this  chain,  material

things that initially served as models are abandoned as

a result of the abstraction process. Underscoring the

form  (representation)  and  therefore  obscuring  the

thing  (instances,  content),  this  process  produces

distanced  knowledge,  considered  neutral,  universal,

and trustable, regardless of local circumstances.
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