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1 Introduction

To talk about things that are put together one can use the product operator.

Such operator (to simplify, the binary product) provides a way of thinking about

two separate entities as a single one. The operation is reversible: the �rst and

second projections can break the product restoring the individuality of each

entity. The reversion is possible because, when put together, the entities do not

interact.

But if the question is to put two entities together in a way that a component

of one is fused with a component of the other, then the product operator does
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not �t the purpose any more. Furthermore, there is not a `natural' way of

de�ning the projections because part of one entity becomes part of the other.

This situation seems to be very tricky but, in fact, it happens all the time

in computer science. For instance, two programs can run in parallel sharing

resources; in syntax analysis, two productions can be applied in parallel, having

both left sides matching the same symbols.

Wondering about this operation, we promptly realise that something has to

be known about the composition of each entity, as the component to be fused

is internal.

A �rst way of dealing with this question is to de�ne the operation considering

the kind of component to share. This approach is supported by the fact that

things to be shared must have something in common. Since entities that have a

common part must be treated together, it makes sense to de�ne one operation

to each of these groups. We have, then, several groups, say, categories, in which

the sharing can be performed. The next step is to provide ways of passing from

one group to another in other to make all the entities to interact.

A second way would be to adopt a level of abstraction by parameterizing,

that is, de�ning one operation where the information about the entities' internal

components is another operand.

The strong reason for which we prefer the �rst approach to the second is

that it makes the de�nitions categorised, using the informal meaning of this

word. That is, one can have the vision of the whole collection of groups, but

one can also perform a kind of zoom, and see how entities of a particular group

interact themselves. The weak reason is that parameterizing would make the

operator de�nition awkward, as operands would have very distinct nature, one

being part of the other.

The above remark is about the sharing itself, or how the sharing information

should be presented in order to perform the operation. Prior to that point is

the way that the entities must be structured to make the operation possible.

Concerning this, three questions must be raised:

� what is to be shared?

� where do these things reside?

� how connect the what and the where?

The what question characterises the elements that will be fused. The op-

eration considers that the component to be shared belongs to a �xed class of

components. The idea is that we can vary the size, but not the type. As an

example, if memory is to be shared, then one can share as many components as

necessary, as long as they are memory positions.

The where question characterises the entities from which these elements are

components. As we are focusing in the components to be shared, the entities

must be described with respect to these components. So, we put in the same
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group entities that can be built with the same number of components. Again,

if memory is to be shared and we are considering programs, commands etc,

then programs, commands etc, that need n memory positions to be built, are

grouped together.

Finally, the how question is about the connection of both, sharing and en-

tities' descriptions. The point here is obvious: in a group of entities that are

built with n components, no more than n components can be shared.

Let us remark that in this informal presentation, we are using the names

class, type, group, etc, with their informal meanings, which refer to collections

of things.

From this point on, let us name this new operation sharing product, and

remark that the traditional product should appear as a particular case of the

sharing product.

2 The Formal Presentation

2.1 Brief Description of the Framework

Before starting the formal presentation, let us make an overview of the categories

involved.

The sharing product is de�ned considering a category that represents the

syntactical class of the entities. Let us call C this category, and refer to its

objects by the letters A;B;C;D; :::, using subscripts if necessary. Ordinary

morphisms of C will be noted by s, possibly with subscripts. Special morphisms

of C will be noted by the letters r and c, again with subscripts, if necessary.

Finally, id

A

; id

B

; will be used for the identities. The syntactical category must

have everything that is necessary to write a syntactical description. For the

moment, as we are not yet concerned to attach semantics to its entities, let

us say that C must have product and co-product for all objects, as well as the

terminal object, so that we can talk about elements. As C has products for all

objects, the family of objects V

i

; i < ! belongs to the category. As it might be

expected, the objects of C represent syntactical parts of a construction, that is,

the types of terms. The n-uples V

i

will be used to remark that a syntactical

construct can be built using i components V .

There are two situations that must be expressed over the features in C. The

next two paragraphs sketch both.

If it is possible to write a term using i components, the same term can also

be written using j components, where j > i, for we can always ignore the j � i

components. The reverse of this also makes sense: if a term is written using j

components, where j � i components are not used, then it can also be written

with i components. To cope with these reductions and expansions, we will

consider special morphisms of C that will be noted r.
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If a term is built with i components, and another one is built with j compo-

nents, then the two of them together are built with i+j components. But if one

component of the �rst must be the same as one component of the second then

the two of them together are built with i + j � 1 components. Let us call this

situation sharing, and use a pair (c

1

; c

2

) of C morphisms to express this fact.

Now, to describe entities we will use morphisms of C in the following way: if P

is an object of C, and P is built over i components V , then P is represented by a

morphism from V

i

to P . In some sense, it is as if we were detaching components

V of the description of the object. So, a subset of Hom

C

(V

i

; P ) gives a set of

terms of type P that can be constructed over, at most, i components. We say

at most because some components may not be used.

Considering all the objects of C that can be written using at most i compo-

nents, we have a category whose objects are subsets of Hom

C

(V

i

; A), for all A,

object of C, and whose morphisms are the usual morphisms between hom�sets,

when the �rst argument is �xed.

As we have several values of i, we have several of these categories. Using

the C morphisms r, we can de�ne natural ways of passing from one to another,

expanding or reducing the number of unused components. With all this, we

have a framework to represent all the terms.

Now, we turn to the formal presentation.

2.2 The Formal Presentation

Note : In the following, let us reserve the letters i; j; k; n;m to be variables for

natural numbers.

2.2.1 The Syntactical Category

De�nition 2.2.2 Category C

A syntactical category C is a locally small category with product, co-product and

terminal object.

De�nition 2.2.3 Reductor in C

Given C, a syntactical category, and V 2 Obj(C), a reductor r in C is a mor-

phism r : V

j

! V

i

de�ned over the algebra < fid

V

; 1

V

twg;�; �g >, where

id

V

: V ! V , is the identity morphism,

1

V

: V ! 1,

tw : V � V ! V � V

(v

1

; v

2

) 7�! (v

2

; v

1

),

� is the usual product within C and

� is the usual composition in C.

De�nition 2.2.4 Complementary in C

A pair of C � Morphisms (r

1

: V

i+j

! V

i

; r

2

: V

i+j

! V

j

) is said to be
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complementary if each morphism is a reductor, and, for 1 � n � i+j, (�

n

�r

1

=

id

V

and �

n

� r

2

= 1

V

), or (�

n

� r

2

= id

V

and �

n

� r

1

= 1

V

).

Example: r

1

and r

2

below are complementary

r

1

= id

V

� 1

V

� id

V

� 1

V

� id

V

r

2

= 1

V

� id

V

� 1

V

� id

V

� 1

V

that is, one preserves the components of V

5

that the other does not.

De�nition 2.2.5 Sharing in C

Given C, a syntactical category, and V 2 Obj(C), a sharing between V

i

and V

j

is a pair of reductor morphisms (c

1

: V

i+j�1

! V

i

; c

2

: V

i+j�1

! V

j

).

Given a sharing (c

1

; c

2

) and a pair (m;n) such that m � i and n � j, we

say that (c

1

; c

2

) shares (m;n) if �

m

� c

1

= �

n

� c

2

.

Example: The pair (c

1

; c

2

), where c

1

and c

2

are described below, share (2,2).

c

1

: V

6

�! V

4

c

1

= id

V

� id

V

� id

V

� id

V

� 1

V

� 1

V

< a; b; c; d; e; f >7�!< a; b; c; d >

c

2

: V

6

�! V

3

c

2

= (tw � id

V

) � (1

V

� id

V

� 1

V

� 1

V

� id

V

� id

V

).

< a; b; c; d; e; f >7�!< b; e; f >7�!< e; b; f >

2.2.6 The Functors H

V

i

Theorem 2.2.1 Functors H

V

i

Let V 2 Obj(C). H

V

i
is a family of functors de�ned by:

H

V

i
: C �! Set

A 7�! Hom

C

(V

i

; A), where A has zero operators

A�B 7�! H

V

i(A)�H

V

i(B)

A+B 7�! H

V

i
(A) +H

V

i
(B)

s : A! B 7�! H

V

i
(A)! H

V

i
(B)

f 7�! s � f

Proof: H

V

i
is a functor.

(i) H

V

i
preserves identities:

H

V

i
(id

A

) = H

V

i
(A)! H

V

i
(A) = H

V

i
(id

A

)! H

V

i
(id

A

) = id

H

V

i

(A)

f 7�! id

A

� f = f 7�! f

(ii) H

V

i
preserves composition: Let s

1

: A ! B and s

2

: B ! C be mor-

phisms of C.

H

V

i
(s

2

� s

1

) = H

V

i
(A)! H

V

i
(C) = H

V

i
(A)! H

V

i
(B)! H

V

i
(C) =

f 7�! s

2

� s

1

� f = f 7�! s

1

� f 7�! s

2

� s

1

� f

= H

V

i
(s

2

) �H

V

i
(s

1

)
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Proposition 2.2.2 H

V

i
(A) + H

V

i
(B) � Hom

C

(V

i

; A + B) and H

V

i
(A) �

H

V

i
(B) � Hom

C

(V

i

; A�B).

Proof: Let op be an abbreviation for + or �. Let us prove by induction on

the number of operators that

H

V

i
(A) op H

V

i
(B) � Hom

C

(V

i

; A op B)

For zero operators in A and B:

(i)H

V

i
(A) +H

V

i
(B) = Hom

C

(V

i

; A) +Hom

C

(V

i

; B) � Hom

C

(V

i

; A+B)

The last step is due to 4.0.5.

(ii)H

V

i
(A) �H

V

i
(B) = Hom

C

(V

i

; A)�Hom

C

(V

i

; B) = Hom

C

(V

i

; A�B) �

� Hom

C

(V

i

; A�B)

The third step is due to 4.0.2

Let the number of operators in A, B and op equals n, and H

V

i
(A) op H

V

i
(B) �

Hom

C

(V

i

; A op B).

Let the number of operators of C be zero, then H

V

i
(A op B) op H

V

i
(C) has

n+ 1 operators.

H

V

i
(A op B) op H

V

i
(C) = H

V

i
(A) op H

V

i
(B) op H

V

i
(C) �

� Hom

C

(V

i

; A op B) op Hom

C

(V

i

; C) � Hom

C

(V

i

; (A op B) op C)

The third step comes from H

V

i
(A) op H

V

i
(B) � Hom

C

(V

i

; A op B), and

the last step comes from 4.0.5 or 4.0.2

�

Note : What makes a functor H

V

i
di�erent from Hom

C

(V

i

;

�

) is precisely

the co-product line, as Hom

C

(V

i

; A) +Hom

C

(V

i

; B)

�

�

=

Hom

C

(V

i

; A+B) (see

4.0.5). The object H

V

i
(A+ B) does not contain morphisms from V

i

to A+B

that sends elements V

i

for both A and B.

Proposition 2.2.3 A reductor r : V

j

! V

i

in C de�nes a natural transforma-

tion � between the functors H

V

i
and H

V

j
, where each component is de�ned by:

�

A

: H

V

i
(A) ! H

V

j
(A)

f 7�! f � r

7



Proof: Given s : A! B, a morphism of C, recalling of the functors H

V

i
and

H

V

j
, we have,

H

V

i
(s) : H

V

i
(A) ! H

V

i
(B)

f 7�! s � f

H

V

j
(s) : H

V

j
(A) ! H

V

j
(B)

f 7�! s � f

Thus,

�

B

�H

V

i
(s) = H

V

i
(A) ! H

V

j
(B) = H

V

j
(s) � �

A

f 7�! s � f � r

That is, the following diagram commutes.

A

#

s

B

H

V

i
(A) H

V

j
(A)

!

�

A

#

H

V

i
(s)

#

H

V

j
(s)

H

V

i
(B) H

V

j
(B)

!

�

B

�

Note : When passing from H

V

i
(A) to H

V

j
(A) by such natural transforma-

tions, j � i variables are added to the domain of each entity, but they are not

used, as the following diagram commutes. That is, the meaning of the entity

remains the same.

V

i

r

 

V

j

#

f � r

A

@

@

@

@

@

@

&

f

De�nition 2.2.7 Given �, a natural transformation, 
 is the natural trans-

formation whose components are the inverse of �'s components. We call 
 the

inverse of �. For each object A of C,
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A

: �

A

(H

V

i(A)) ! H

V

i(A)

and




A

� �

A

= Id

H

V

i

(A)

:

2.2.8 Categories H

V

i
(C)

Theorem 2.2.4 Categories H

V

i
(C)

Each functor H

V

i
, for i < !, de�nes a category H

V

i
(C), whose objects are the

subsets of H

V

i
(A), for each A 2 Obj(C), and morphisms are as p below:

p : H

V

i
(A) ! H

V

i
(B)

f 7�! s � f

where s : A! B 2Morf(C)

Proof: H

V

i
(C) is a category.

(i) H

V

i
(C) has associative composition.

Let s

1

: A! B, s

2

: B ! C and s

1

: C ! D, morphisms of C, and,

p : a ! b

f 7�! s

1

� f

q : b ! c

g 7�! s

2

� g

t : c ! d

h 7�! s

3

� h

Where a � H

V

i
(A); b � H

V

i
(B); c � H

V

i
(C) and d � H

V

i
(D). Then,

t � (q � p) = t � (a! c) = a! d =

f 7�! s

2

� s

1

� f f 7�! s

3

� s

2

� s

1

� f

= (b! d) � p = (t � q) � p

g 7�! s

3

� s

2

� g

(ii) H

V

i
(C) has identity for each object:

Id

b

: b! b

f 7�! id

B

� f

where id

B

: B ! B 2Morph(C) and b satis�es the two properties below:

Property 1: For each a and p : a! b,

Id

b

� p = a! b! b = p

f 7�! s

1

� f 7�! id

B

� s

1

� f

9



Property 2: Likewise, for each c and q : b! c, q � Id

b

= q

�

Theorem 2.2.5 Given two functors H

V

i
and H

V

i+1
, and a natural transfor-

mation �

(i;i+1)

: H

V

i
! H

V

i+1
, there is a functor �

(i;i+1)

de�ned from the

image of H

V

i
to the image of H

V

i+1
in the following way:

For objects:

�

(i;i+1)

: H

V

i
(C) �! H

V

i+1
(C)

H

V

i
(A) 7�! cod(�

(i;i+1)

A

)

f 7�! f � r

where r : V

i+1

! V

i

is the reductor of the natural transformation �

(i;i+1)

. For

morphisms:

�

(i;i+1)

: H

V

i
(C) �! H

V

i+1
(C)

H

V

i
(A)! H

V

i
(B) 7�! cod(�

(i;i+1)

A

)! cod(�

(i;i+1)

B

)

f 7�! s � f 7�! f � r 7�! s � f � r

where r : V

i+1

! V

i

is the reductor of the natural transformation �

(i;i+1)

, and

s is a syntactical morphism s : A! B.

Proof: The proof is a consequence of 4.0.1.

�

Note (i): To extend theorem 2.2.5 to the categories H

V

i
(C) and H

V

i

+1

(C)

(instead of the image of functors), we consider for each subset X of H

V

i
(A) the

restriction of �

(i;i+1)

A

to X .

Note (ii): From this point on, the context will make clear weather � is the

functor or the natural transformation.

Proposition 2.2.6 �

(i;j)

preserves product and co-product

Let a � H

V

i
(A) and b � H

V

i
(B). Then, �

(i;j)

(a� b) = �

(i;j)

(a)��

(i;j)

(b), and

�

(i;j)

(a+ b) = �

(i;j)

(a) + �

(i;j)

(b):

Proof: From the product properties, for each f 2 a and g 2 b, we have

< f; g > �r =< f � r; g � r >. Similar for the co-product.

�

2.2.9 Isomorphism in H

V

i
(C)

De�nition 2.2.10 Isomorphism in H

V

i
(C)

A morphism p : a ! b is an isomorphism if exists a morphism q : b ! a

such that p � q = Id

b

and q � p = Id

a

. We call q the inverse of p.

10



De�nition 2.2.11 Isomorphic objects

An object a is isomorphic to another object b (we write a ' b) if there is an

isomorphism p : a! b.

Proposition 2.2.7 Let a � H

V

i
(A) and b � H

V

i
(B). Then, a ' b iif A ' B

Proof: Suppose that a ' b and p, q are the isomorphism and its inverse.

Then we have p � q(f) = Id

b

(f) for all f 2 b. Let s

p

and s

q

be the syntactical

morphisms that de�ne p and q. Then we have s

p

� s

q

�f = f , and thus s

p

� s

q

=

id

B

. Similar for q � p. Similar for the opposite direction.

�

2.2.12 The Co-limit H

V

!

(C)

De�nition 2.2.13 Co-limit of H

V

i
(C)

Consider the category whose objects are H

V

i
(C), and the morphisms are

induced by the natural transformation between the functors H

V

i
. H

V

!

(C) is

the co-limit of the diagram composed by the objects of this category and the

morphisms �

(i;i+1)

: H

V

i
(C)! H

V

i+1
(C).

Theorem 2.2.8 All objects of H

V

!

(C) come from a H

V

i
(C)

Let a 2 H

V

!

(C), then there exists a

0

and i such that a

0

2 H

V

i
(C) and a =

�

(i;!)

(a

0

)

Proof: Suppose that a 2 H

V

!

(C), and for all a

0

; i we have a 6= �

(i;!)

(a

0

). let

H be the following category:

Obj(H) = Obj(H

V

!

(C))� fag

Morph(H) =Morph(H

V

!

(C))� ff : Dom(f) = a or Cod(f) = ag

Both H and H

V

!

(C) are co-cones, but there is a unique � : H ! H

V

!

(C),

thus H would be the co-limit, instead of H

V

!

(C).

�

2.2.14 Examples

(i) To represent single variables, one can use singletons of element morphisms

in C. For example, given V 2 Obj(C), and a : 1! V 2Morph(C), fag is

the object of the category H

V

0

(C) that represents the variable a.

(ii) To represent the domain of all variables, identities can be used: id

V

: V !

V is the object of the category H

V

1

(C) that represents variables.

(iii) Expressions built over one variable can be expressed within the category

H

V

1
(C), for example,

11



�

f

1

: V �! E ; f

2

: V �! E ; :::

x 7�! x+ 1 x 7�! x+ 2

�

is a domain of expression with one variable.

(iv) The same domain can be viewed in the category H

V

2

(C), as the above

functions can be expressed with two variables:

�

f

0

1

: V � V �! E ; f

0

2

: V � V �! E ; :::

(x; y) 7�! x+ 1 (x; y) 7�! x+ 2

�

(v) The functor �

(1;2)

make possible this transference.

�

(1;2)

: H

V

1

(C)! H

V

2

(C)

H

V

1

(E)! H

V

2

(E)

f 7�! f � r

where r is the reductor id

V

� 1

V

.

(vi) The functor �

(i;!)

, that is, the ideal compositions :::��

(n;n+1)

� :::��

(2;3)

�

�

(1;2)

make possible to express any domain with functions `built over !

variables'.

(vii) Given the domain of variables and the domain of expressions, both con-

structed over the same number of variables, say 1, we can form the do-

main of commands built over one variable using the syntactical morphism

s : V �E ! C:

H

V

1

(V )�H

V

1

(E) = H

V

1

(V �E)

H

V

1

(V �E) �! H

V

1

(C)

f 7�! s � f

(viii) From the previous items, we can have a strati�ed view of the syntactical

category. The more abstract view is H

V

!

(C), where the number of used

variables is not important. The more concrete view is the smallest i that

we can have in H

V

i(C).

Note : Using programming language as motivation, let P 2 Obj(C) represent

programs and V 2 Obj(C) represent variables. H

V

!

(P ) is the object of H

V

!

(C)

that represents the possibility of a program to use as many variables as necessary,

since it uses a �nite number. So, H

V

!

(C) is the more accurate category to

represent programming language terms.

12



2.3 Brief Description of the Operations

Considering the framework presented in the previous sections, let us de�ne the

operations to be performed on it. As one might expect, all the operations that

can be performed in the syntactical category must also have an analogous here.

Thus, we have the product, which will be also referred to as conventional product,

the co-product, and the new ones, the sharing and non-sharing product. As we

have already commented, the conventional product turns out to be a special

case of the sharing product. We will make this point clear in this section.

Recall that, in the syntactical category, the operations are performed over

groups of entities (that is, syntactical classes), and not just over simple entities.

As an example, blocks in a programming language can be expressed as the class

of entities formed by the pairs (command,command), that is, members of the

product of syntactical class of commands and the syntactical class of commands.

The same situation is pictured in this new framework, since an object H

V

i
(A)

in a �xed category H

V

i
(C) denotes a subset of syntactical class of A: entities of

A that can be built with at most i variables.

Starting by the non-sharing product, and still using programming language

as motivation, let us consider, for example, C and V , as the objects of C that

represent the syntactical class of commands and variables. Let us also say that

C is C � C, or C

0

is C

1

� C

2

, to make references clear.

The point is, what is the non-sharing product of H

V

i
(C

1

) and H

V

i
(C

2

)

supposed to result? Although the functor H

V

i
says that H

V

i
(C

1

� C

2

) =

H

V

i
(C

1

) � H

V

i
(C

2

), there is nothing indicating that both C's use the same

variables. If one have a command constructed over i variables (ex: f : x !

x := x + 1) and another command constructed over i variables (ex: g : x !

x := x + 2), then, if both are put together (side by side), one will not have

a command constructed over i variables any more. The result should be a

command constructed over i+ i variables, as the variables used by the �rst can

be di�erent from those used by the second (not < f; g >: x!< x := x+1; x :=

x+2 >, but < f; g >:< x; y >!< x := x+1; y := y+2 >). So, the non-sharing

product is not exactly the usual product in subsets of Hom

C

(V

i

;

�

) (see 4.0.2

and 4.0.3 to make clear the product in hom-sets).

At �rst sight, this seems to be a problem: the `wanted' product of two objects

of H

V

i
does not belong to H

V

i
. However, we can always transfer the objects

we are dealing with to the category H

V

!

(C), as it has all, and no more than the

objects of H

V

i
(C), for all i.

Thus, we will perform the non-sharing product in the following way:

To have the non-sharing product of two objects constructed over i

components, look at each one of them as if they were constructed

over i+ i components and, then, use the conventional product to

operate them.

Note that this step of expanding the number of components of an object

13



from i to i+ i must be done in a way that does not change the size of the object.

That is, if the object is a class composed by two entities of i components, it has

to become a class composed by two entities of i+ i components.

This outlines the non-sharing product between objects with the same number

of components. The general case, di�erent numbers of components, is very

similar, so will be presented only in the Formal Presentation Section.

Bearing in mind that the non-sharing product works as putting entities side

by side, let us turn to the sharing product. The idea is the same, but components

of each entity that are to be shared must be overplaced, as shows the following

picture:

. . .

/ /

. . .

/ /

. . .

/ /

. . .

/ /

Non-sharing Sharing

i

+

i

i+ i� 1

Thus,

To have the sharing product of two objects constructed over i com-

ponents, look at each one of them as if they were constructed over

i + i � 1 components and, then, use the conventional product to

operate them.

Note that we are making possible the sharing of one component of one entity

with one component of the other.

Finally, the co-product. If the two arguments of the co-product are con-

structed over the same number of components, there is not much to be said

about the co-product, for the conventional co-product produces the expected

result. To make it clear, H

V

i
(A)+H

V

i
(B) = H

V

i
(A+B) is stating that if A is

constructed with i components, and B is constructed with i components then, if

one has i components, one can construct A or B. In the general case, however,

it will be necessary to make some adjustments in order to operate objects with

di�erent numbers of components.

2.4 The Formal Presentation

2.4.1 Non-Sharing Product

De�nition 2.4.2 Non-sharing product from a �xed category H

V

i
(C)

Given a; b 2 Obj(H

V

i
(C)), the non-sharing product a

ns

(i+i)

b is de�ned as the

following object of H

V

i+i
(C):

a

ns

(i+i)

b = �

(i;i+i)

(a)� �

0

(i;i+i)

(b),

14



where �

(i;i+i)

and �

0

(i;i+i)

are de�ned over complementary reductors r and r

0

.

The �rst projection is

p 


(i;i+i)

�

1

: (a

ns

(i+i)

b) �! �

i;i+i

(a) �! a

< f � r; g � r

0

> 7�! �

0

1

� < f � r; g � r

0

>= f � r 7�! f

where �

0

1

is the projection in the syntactical category C, and 


(i+i;i)

is the inverse

of �

(i;i+i)

.

The second projection is straightforward.

Note (i): As usual, � means the conventional product.

Note (ii): The requirement of using complementary reductors in C ensures

that the components used in one entity are not used in the other.

Note (iii): One can always omit the subscript of the operator as we can

deduce the category where the product will be performed from the category to

which the arguments belong. As a remark, however, we are going to preserve

the subscripts in this section.

2.4.3 Sharing Product

De�nition 2.4.4 Sharing product from a �xed category H

V

i
(C)

Given a; b 2 Obj(H

V

i
(C)), the sharing product a

s

(i+i�1)

b is de�ned as the

following object of H

V

i+i�1
(C):

a

s

(i+i�1)

b = �

(i;i+i�1)

(a)� �

0

(i;i+i�1)

(b),

where �

(i;i+i�1)

and �

0

(i;i+i�1)

are de�ned over a sharing pair (c; c

0

).

The �rst projection is

p 


(i;i+i�1)

�

1

: (a

s

(i+i�1)

b) �! �

i;i+i�1

(a) �! a

< f � c; g � c

0

> 7�! �

0

1

� < f � c; g � c

0

>= f � c 7�! f

where �

0

1

is the projection in the syntactical category C, and 


(i+i�1;i)

is the

inverse of �

(i;i+i�1)

.

The second projection is straightforward.

Note (i): As usual, � means the conventional product.

Note (ii): Sharing pairs ensures that one component is used by both en-

tities. The other components are either used in one entity or in the other.

Note (iii): Again, the subscript of the operator can be omitted.

15



2.4.5 Co-Product

De�nition 2.4.6 Co-product in a �xed category H

V

i
(C)

Given a � H

V

i
(A) and b � H

V

i
(B), the co-product a

co

b is de�ned as the object

a+ b with the usual injections.

2.4.7 Operations in the Co-limit Category

It can be noted from the previous de�nitions that the sharing and non-sharing

product of objects of a categoryH

V

i
(C) yield an object that considers a number

of components greater than i, that is, an object of a category H

V

j
(C) with

j > i. In order to have all the objects in the same category, we can get their

corresponding in the co-limit category H

V

!

(C). So, there are two possibilities.

The �rst is to transfer the objects to the category H

V

!

(C) and, then, to perform

the operation. The second is to perform the operation and, then, to transfer the

objects to the category H

V

!

(C). Both approaches are valid, since the functors

� preserve product and co-product (as proved in 2.2.6). We choose, however,

the second approach, as it is easier to handle objects with small numbers of

components, both in setting the de�nitions and in presenting examples.

Let us organise this presentation in the following way. First we generalise the

operators' de�nition in order to get, as operands, objects of di�erent categories.

To be more precise, operands belong to the same category as the operator, but

they may have been transferred from another category via the functors �. Then,

we re-de�ne the operators' de�nitions considering only the co-limit category.

Finally, we prove that the operations in co-limit are well de�ned, that is, one

may choose an object of the category H

V

i
(C) to operate, or its corresponding

in an H

V

j
(C), for any j. The result in H

V

!

(C) will be the same for i or j. Such

proof, however, will be presented only for the non-sharing product, as, for the

other operators it is straightforward.

De�nition 2.4.8 Non-sharing product from di�erent categories

Given a 2 Obj(H

V

i
(C)) and b 2 Obj(H

V

j
(C)), the non-sharing product a

ns

(i+j)

b

is de�ned as the following object of H

V

i+j
(C):

a

ns

(i+j)

b = �

(i;i+j)

(a)� �

(j;i+j)

(b),

where �

(i;i+j)

and �

(j;i+j)

are de�ned over complementary reductors r and r

0

.

The �rst projection is

p 


(i;i+j)

�

1

: (a

ns

(i+j)

b) �! �

i;i+j

(a) �! a

< f � r; g � r

0

> 7�! �

0

1

� < f � r; g � r

0

>= f � r 7�! f

where �

0

1

is the projection in the syntactical category C, and 


(i+j;i)

is the inverse

of �

(i;i+j)

.

The second projection is straightforward.
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De�nition 2.4.9 Non-sharing product in H

V

!

(C)

Given a; b 2 Obj(H

V

!

(C)), the non-sharing product a

ns

b is de�ned as the fol-

lowing object:

a

ns

b = �

(i+j;!)

(a

0

ns

(i+j)

b

0

),

where a

0

2 Obj(H

V

i
(C)), b

0

2 Obj(H

V

j
(C)) and �

(i+j;!)

is de�ned over a re-

ductor r

00

in C.

The �rst projection is




(i+j;!)

�

1

(i;i+j)

�

1

: (a

ns

b) �! a

0

ns

b

0

�! a

< f � r; g � r

0

> �r

00

7�! < f � r; g � r

0

> 7�! f

where �

0

1

(i+j)

is the projection de�ned in 2.4.8, and 


(i+j;!)

is the inverse of

�

(i+j;!)

:

The second projection is straightforward.

De�nition 2.4.10 Sharing Product from di�erent categories

Given a 2 Obj(H

V

i
(C)) and b 2 Obj(H

V

j
(C)), the sharing product a

s

(i+j�1)

b

is de�ned as the following object of H

V

i+j�1
(C):

a

s

(i+j�1)

b = �

(i;i+j�1)

(a)� �

(j;i+j�1)

(b),

where �

(i;i+j�1)

and �

(j;i+j�1)

are de�ned over complementary reductors r and

r

0

.

The �rst projection is

p 


(i;i+j�1)

�

1

: (a

ns

(i+j�1)

b) �! �

i;i+j�1

(a) �! a

< f � r; g � r

0

> 7�! �

0

1

� < f � r; g � r

0

>= f � r 7�! f

where �

0

1

is the projection in the syntactical category C, and 


(i+j�1;i)

is the

inverse of �

(i;i+j�1)

.

The second projection is straightforward.

De�nition 2.4.11 Sharing Product in H

V

!

(C)

Given a; b 2 Obj(H

V

!

(C)), the sharing product a

s

b is de�ned as the following

object:

a

s

b = �

(i+j�1;!)

(a

0

s

(i+j�1)

b

0

),

where a

0

2 Obj(H

V

i
(C)), b

0

2 Obj(H

V

j
(C)) and �

(i+j�1;!)

is de�ned over a

reductor r

00

in C.

The �rst projection is
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(i+j�1;!)

�

1

(i;i+j�1)

�

1

: (a

ns

b) �! a

0

ns

b

0

�! a

< f � r; g � r

0

> �r

00

7�! < f � r; g � r

0

> 7�! f

where �

0

1

(i+j�1)

is the projection de�ned in 2.4.10, and 


(i+j�1;!)

is the inverse

of �

(i+j�1;!)

:

The second projection is straightforward.

De�nition 2.4.12 Co-product from di�erent categories

Given a � H

V

i
(A) and b � H

V

j
(B), with j � i, the co-product a

co

j

b is de�ned

as the following object of H

V

j
(C):

a

co

j

b = �

(i;j)

(a) + b,

where �

(i;j)

is de�ned over a reductor r in C.

The �rst injection is

i

1

: a! �

(i;j)

(a)! a

co

j

b

f 7�! f � r 7�! i

0

1

� f � r

where i

0

1

: A! A+B is the injection in C.

The second injection is

i

2

: b! a

co

j

b

f 7�! i

0

2

� f

where i

0

2

: B ! A+B is the injection in C.

Note (i): The requirement of using reductor morphism in C is only a trick to

make both object belong to the same category.

Note (ii): Again, we can omit the subscript of the operator.

De�nition 2.4.13 Co-product in H

V

!

(C)

Given a � H

V

!

(A); b � H

V

!

(B), the co-product a

co

b is de�ned as the follow-

ing object:

a

co

b = �

(j;!)

(a

0

co

j

b

0

),

where a

0

2 Obj(H

V

i
(C)) and b

0

2 Obj(H

V

j
(C)), j � i and �

(j;!)

is de�ned

over a reductor r

0

in C.

The �rst injection is
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i

1

j

�

j;!

i

1

: a ! a

co

j

b ! a

co

b

f 7�! i

0

1

� f � r 7�! i

0

1

� f � r � r

0

where i

1

j

is the �rst injection de�ned in 2.4.12.

The second injection is

i

2

j

�

j;!

i

2

: a ! a

co

j

b ! a

co

b

f 7�! i

0

2

� f � r 7�! i

0

2

� f � r � r

0

where i

2

j

is the second injection de�ned in 2.4.12.

Theorem 2.4.1 Non-sharing product is well de�ned. Let k > j, a

0

2 Obj(H

V

i
(C)),

b

0

2 Obj(H

V

j
(C)) and c

0

= �

(j;k)

(b

0

). Then,

a

ns

b = �

(i+j;!)

(a

0

ns

b

0

) = �

(i+k;!)

(a

0

ns

c

0

)

Proof: To facilitate reading, we are underlining the part of the expression

that is changed from one step to the other.

a

ns

b =

= �

(i+j;!)

(a

0

ns

b

0

) by the de�nition of

ns

in H

V

!

(C)

= �

(i+j;!)

(�

(i;i+j)

(a

0

)��

(j;i+j)

(b

0

)) by the de�nition of

ns

in H

V

i+j
(C)

= �

(i+k;!)

��

(i+j;i+k)

(�

(i;i+j)

(a

0

)� �

(j;i+j)

(b

0

)) by the composition and j < k

= �

(i+k;!)

� (�

(i+j;i+k)

� �

(i;i+k)

(a

0

)� �

(i+j;i+k)

� �

(j;i+j)

(b

0

)) by 2.2.6

= �

(i+k;!)

� (�

(i;i+k)

(a

0

)� �

(j;i+k)

(b

0

)) by composition

= �

(i+k;!)

� (�

(i;i+k)

(a

0

)��

(k;i+k)

��

(j;k)

(b

0

)) by composition and j < k

= �

(i+k;!)

� (�

(i;i+k)

(a

0

)� �

(k;i+k)

(c

0

)) by the de�nition of c

0

= �

(i+k;!)

(a

0

ns

c

0

) by the de�nition of

ns

in H

V

i+k(C)

�

Theorem 2.4.2 Sharing product is well de�ned. Let k > j, a

0

2 Obj(H

V

i
(C)),

b

0

2 Obj(H

V

j
(C)) and c

0

= �

(j;k)

(b

0

). Then,

a

s

b = �

(i+j;!)

(a

0

s

b

0

) = �

(i+k;!)

(a

0

s

c

0

)

Theorem 2.4.3 Co-product is well de�ned. Let k > j, a

0

2 Obj(H

V

i
(C)),

b

0

2 Obj(H

V

j
(C)) and c

0

= �

(j;k)

(b

0

). Then,

a

co

b = �

(i+j;!)

(a

0

co

b

0

) = �

(i+k;!)

(a

0

co

c

0

)

The prooves of 2.4.2 and 2.4.3 are similar to 2.4.1.
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2.5 Example

Given a grammar, let us consider as Syntactical Category the category whose

objects are the non-terminals of the grammar, the terminal object 1 and the

ones resulting of products and co-products. Morphisms are the projections,

injections etc, and the syntactical morphisms shown in the table below:

BNF rules Abstract Syntax Syntactical Morphisms

1 P ::= C P = C s

1

: C ! P

2 C ::= C;C j C = (C � C)+ s

2

: C � C ! C

3 CjjC j (C � C)+ s

3

: C � C ! C

4 V := E (V �E) s

4

: V � E ! C

5 E ::= E �E j E = (E �E)+ s

5

: E �E ! E

6 V V s

6

: V ! E

By the third rule we want to express parallelism, but also state that sharing

of variables is possible. Usually, there would be one more rule for commands,

where the variables to be shared would be speci�ed, but we are omitting such

rule here, since we do not want to treat context sensitive information. What

we have in the third rule is not the simple product, but the sharing one. In the

table below, we re-write the productions using the notation and operators to

stress the sharing in the syntax.

Syntax expliciting sharing

1 P ::= �

i;!

(H

V

i
(C))

2 H

V

i+j
(C) ::= H

V

i
(C)

ns

H

V

j
(C)

co

3 H

V

i
(C)

s

H

V

j
(C); (m;n)

co

4 H

V

i
(V )

ns

H

V

j
(E)

5 H

V

i+j
(E) ::= H

V

i
(E)

ns

H

V

j
(E)

co

6 H

V

i
(E)

As usual the scope of names is restricted to the rule. This is also valid for

i; j;m; and n. The �rst rule means: a program is a command of i variables,

seen as a command over an in�nite number of variables. In line 2, as well

as in line 4, we have an object of the category H

V

i+j
(C) as result of these

non-sharing products. In line 3, the sharing product results an object of the

category H

V

i+j�1
(C). As the rule makes the co-product of them, we have the

�nal object in the category H

V

i+j
(C). Thus, the second rule means: a command

built over i + j variables is either the non-sharing product of a command of i

variables with a command of j variables, or the sharing product of a command

of i variables with a command of j variables, where the variables at positions m

and n, respectively, are being shared, or, �nally, the non-sharing product of a

variable built over i variables with an expression of j variables. The third rule

is straightforward.
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The next �gure shows an instance of the syntactic graph of this grammar.

The program pictured has two commands in parallel, the �rst one composed by

two attributions. The program shares the second variable of the �rst command

with the second variable of the second command.

::: := ::: ; ::: := ::: jj ::: := :::

P

H

V

5

(C)

�

�

@

@

H

V

4

(C) H

V

2

(C)

�

�

@

@

H

V

2

(C) H

V

2

(C)

�

�

@

@

H

V

1

(V ) H

V

1

(E)

�

�

@

@

H

V

1

(V ) H

V

1

(E)

�

�

@

@

H

V

1

(V ) H

V

1

(E)

H

V

1

(V )

H

V

1

(V )

Let us give more details about the construction of this syntactic graph.

In order to make the example simpler, we are going to consider the domain

of variables containing only a single function: the identity. As we start with

domains of size one, and make only products with them, we are going to end

with a domain of programs of size one. To be faithful to the formal presentation

we should get the whole Hom

C

(V; V ), but, simplifying in this way, we can have

an idea of the sequence of composition until the construction of the program.

We start with two subsets of H

V

1

(V ): fid

V

g, and fid

V

g. The second set

must become a subset of H

V

1

(E), in order to form the attribution. The mor-

phism H

V

1

(V ) ! H

V

1

(E) sends a function from V to V in the domain to a

function from V to E, using the syntactical morphism s

6

: V ! E. So, we

have fs

6

� id

V

g. Now, performing the non-sharing product of both sets, we

�rst transfer both for H

V

2

(C) and then use the product in sets. Thus we have

fid

V

�r

2

g�fs

6

� id

V

�r

1

g, where r

2

= id

V

�1

V

and r

1

= 1

V

� id

V

. This equals

f< id

V

� r

2

; s

6

� id

V

� r

1

>g. The morphism H

V

2
(V � E) ! H

V

2
(C) sends a

function from V

2

to V �E in the domain to a function from V

2

to C, using the

syntactical morphism s

4

: V �E ! C, what yields fs

4

� < id

V

�r

2

; s

6

�id

V

�r

1

>g.

At this point we have already built the following part of the syntax graph:
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H

V

2

(C)

H

V

2

(V � E)

�

�

@

@

H

V

2

(V ) H

V

2

(E)

H

V

1

(V ) H

V

1

(E)

H

V

1

(V )

that is summarised in the previous graph as the binary branch located in

the left.

Assume that another branch like this has been constructed, giving rise to

the following subset of H

V

2

(C): fs

4

� < id

V

�r

3

; s

6

�id

V

�r

4

>g, that is, another

attribution. Again, performing the non-sharing product of this and the previous

one, we �rst transfer both to H

V

4

(C) and then use the product in sets. Thus we

have fs

4

� < id

V

� r

2

; s

6

� id

V

� r

1

> �r

5

g� fs

4

� < id

V

� r

3

; s

6

� id

V

� r

4

> �r

6

g,

where r

5

and r

6

are complementary . This equals f< s

4

� < id

V

�r

2

; s

6

�id

V

�r

1

>

�r

5

; s

4

� < id

V

�r

3

; s

6

�id

V

�r

4

> �r

6

>g, a subset ofH

V

4

(C�C). The morphism

H

V

4

(C�C)! H

V

4

(C) uses the syntactical morphism s

2

: C�C ! C to send a

function from V

4

to C�C in the domain to a function from V

4

to C, what makes

fs

2

� < s

4

� < id

V

� r

2

; s

6

� id

V

� r

1

> �r

5

; s

4

� < id

V

� r

3

; s

6

� id

V

� r

4

> �r

6

>g.

Turning back to the syntax graph we have just built:

H

V

4

(C)

H

V

4

(V � E)

�

�

@

@

H

V

4

(C) H

V

4

(C)

H

V

2

(C) H

V

2

(C)

.

.

.

.

.

.

Now, let assume that we have another branch of attribution that is, a subset

of H

V

2

(C): fs

4

� < id

V

� r

7

; s

6

� id

V

� r

8

>g, and we are going to make the

sharing product of both, sharing the second variable of the �rst command with

the second variable of the second program. We �rst transfer both to H

V

5

(C)

and then use the product in sets. When passing from H

V

4

(C) and H

V

2

(C) to

H

V

5

(C) it must be used a pair of sharing morphisms. Let us use the following

pair:

c

1

: id

V

� id

V

� id

V

� id

V

� 1

V

c

1

: V

5

�! V

4
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< a; b; c; d; e >7�!< a; b; c; d >

c

2

: tw � (1

V

� id

V

� 1

V

� 1

V

� id

V

)

c

2

: V

5

�! V

4

< a; b; c; d; e >7�!< b; e >7�!< e; b >

So, the sets are, now, fs

2

� < s

4

� < id

V

� r

2

; s

6

� id

V

� r

1

> �r

5

; s

4

� <

id

V

� r

3

; s

6

� id

V

� r

4

> �r

6

> �c

1

g and fs

4

� < id

V

� r

7

; s

6

� id

V

� r

8

> �c

2

g,

that, after the product in sets, became f< s

2

� < s

4

� < id

V

� r

2

; s

6

� id

V

� r

1

>

�r

5

; s

4

� < id

V

� r

3

; s

6

� id

V

� r

4

> �r

6

> �c

1

; s

4

� < id

V

� r

7

; s

6

� id

V

� r

8

>

�c

2

>g, an object of H

V

5

(C � C). Note that the de�nition of < c

1

; c

2

> makes

the second variable of the �rst command equal to the second variable of the

second command. One more time, C � C is sent to c, by s

2

, then we have

fs

2

� < s

2

� < s

4

� < id

V

� r

2

; s

6

� id

V

� r

1

> �r

5

; s

4

� < id

V

� r

3

; s

6

� id

V

� r

4

>

�r

6

> �c

1

; s

4

� < id

V

� r

7

; s

6

� id

V

� r

8

> �c

2

>g, subset of H

V

5

(C). At last,

the functor �

(i;!)

expand the set of variables of this subset of H

V

5

(C) turning

it into a program.

2.6 Last Remarks

We conclude this presentation with two additional remarks. First, stating rela-

tions among the three kinds of products that we have mentioned in this section:

the conventional product (that is, product as sets), the non-sharing and the

sharing product. Second, commenting the closure under the de�ned operations.

2.6.1 The Conventional Product

Regarding hom� sets, we have:

Hom

C

(a; b)�Hom

C

(a; c) ' Hom

C

(a; b� c) (4.0.2),

Hom

C

(a; b)�Hom

C

(c; b) ' Hom

C

(a+ c; b) (4.0.3), and the simplest case

Hom

C

(a; b)�Hom

C

(a; b) ' Hom

C

(a+ a; b) ' Hom

C

(a; b� b) (4.0.4),

but we do not know a way of expressing the product of hom�sets Hom

C

(a; b)�

Hom

C

(c; d), for a 6= c and b 6= d, as a hom�set. As we do want to express within

H

V

i
(C); i < ! the product of sets of functions with di�erent domains and co-

domains, the conventional product itself is not adequate. It has to be increased

with mechanisms of moving operands to the same category. To the conventional

product plus this mechanism we give the name Non-Sharing Product.

2.6.2 Sharing and Non-Sharing Product

It is not possible to state the di�erences between sharing and non-sharing prod-

uct within the categories H

V

i
(C), since each operation will result an object in
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a di�erent category. However, it is always possible to analyse operands and

result as objects of H

V

!

(C). In order to have `easy-to-handle' objects, instead

of H

V

!

(C), let us choose the least category where we can �nd all the objects

we are interested in. So, given a � H

V

i
(C) and b � H

V

i
(C), let us compare

a

ns

i+j

b and �

i+j�1;i+j

(a

s

i+j�1

b). First of all, let us assume that functions

in a really use all the i components V , that is, no � functor has been applied.

The same assumption is made for b.

Although the number of functions in each object is the same (as operands

are the same), these objects are not isomorphic as the functions within each of

which are essentially di�erent. In a

ns

i+j

b functions use all the i+j components,

whereas in �

i+j�1;i+j

(a

s

i+j�1

b) there is an unused component among the i+j

ones. In fact, there is no way of having in H

V

i+j
(C) a morphism linking a

ns

i+j

b

and �

i+j�1;i+j

(a

s

i+j�1

b) as syntactical morphisms do not capture this feature.

Hence a

ns

i+j

b and �

i+j�1;i+j

(a

s

i+j�1

b) are isomorphic as sets, but not as

H

V

i+j
(C) objects.

2.6.3 Closure Under Sharing, Non-Sharing Product and Co-Product

Recall the de�nition of the functors H

V

i
, for i < !. Stating that H

V

i
(C

1

�

C

2

) = H

V

i
(C

1

) �H

V

i
(C

2

) this de�nition considers compound terms in C and

constructs sets of compound terms in H

V

i
(C). Although bringing the desired

closure for each category H

V

i
(C) under product and co-product, the de�nition

of H

V

i
is not compatible with the intuitive idea that, when sharing is not

intended, putting together two terms with i components yields a term with i+ i

components. For this reason, we ignore the conventional product and de�ne the

non-sharing producteven for operands belonging to the same category. When

sharing is intended, the conventional product is still not adequate, as it enforces

the sharing of all components (in H

V

i
(C

1

� C

2

) both C

1

and C

2

are written

with the same i components). So, we also need the sharing product.

Being faithful to the intuitive idea, the new products have to yield a term of

a di�erent category, what implies in the non-closure of each H

V

i
(C) under non-

sharing and sharing products. Similar situation also happens under co-product.

For this reason, when we refer to the closure under non-sharing, sharing and co-

products, the underline framework is not each H

V

i
(C), but all of them together.

The closure of H

V

!

(C) under non-sharing, sharing and co-products is enought

for making possible the construction of compound terms.

As H

V

!

(C) is the co-limit category and the morphisms �

(i;!)

, for i < ! can

lift objects and morphisms of each H

V

i
(C) to H

V

!

(C), the closure of H

V

!

(C)

under the de�ned operations is ensured if each operation results in any H

V

i
(C).

This is obivious from the de�nition of the operations, which use no more than

�, conventional product and conventional co-product.

Theorem 2.6.1 H

V

!

(C) is closed under non-sharing, sharing and co-products.
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3 Conclusions

As the motivation for de�ning the sharing product came from Denotational

Semantics, we reserve a little space in this section to talk about it. We describe

in general lines some of the solutions for sharing and, as parallelism and sharing

usually have an operational appeal, we comment some of the di�erences between

Operational and Denotational Semantics, justifying our preference for the latter.

We also compare the described solutions and comment how the sharing product

shall be used to cope with the problems reported.

3.1 The Denotational and the Operational Approaches

Denotational approach has been widely used as a clear mechanism to give seman-

tics to programming languages. The essence of this approach can be summarised

as a way of associating special kinds of objects to syntactical constructions. In

this sense, it can be remarked with the following slogan: denotational approach

tells what programs do. It is usually contrasted with the operational approach in

which an abstract machine is considered. Instead of giving the semantic object,

this latter emphasises the construction of the semantic object using instructions

of an abstract machine. The slogan, in this case, would be operational approach

tells how programs work.

Justi�cations for the use of one or another approach re
ect the essence of

both sides of this dichotomy, that is, the con
ict what� how. Operational ap-

proach tends to be better accepted by programmers. One of the reasons for this

is that the underlying machine is usually related to the paradigm of the pro-

gramming language being considered. For example, an abstract state machine

is convenient for giving Operational Semantics for imperative languages, as the

latter has store and updating store as mains concepts, and these notions are very

well expressed in terms of state and state changes. Likewise, application and

reduction rules can give rise to an appropriated Operational Semantics to the

functional language � � calculus

1

. From another point of view, as operational

descriptions are closely connected to a machine model, and not to the syntac-

tical parts of the language, they may not re
ect the way programmers reason

about programs.

3.2 The `Traditional' Denotational Approach

Sometimes referred to as the mathematical approach, Denotational Semantics

usually embodies a di�cult mathematical framework, what makes it awkward

to many users. But all this mathematics is important to capture the complex

nature of the objects that syntactical constructions denote. This is the case of

1

Milner remarks in [Mil89]: `In fact the lambda � calculus was the �rst language to be

de�ned by the method of Operational Semantics; the general methodology of Operational Se-

mantics stems from the few rules which de�ne the lambda-calculus'.
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the `traditional' Denotational Semantics, which is based in the Domain The-

ory. The following paragraph, in the preface of [VSHG94], puts in few words

the general ideas of domains. From this paragraph we can see how the step

by step computation is enclosed in a mathematical framework, and completely

dissociated from the semantic method.

`A domain is a structure modelling the notion of approximation

and computation. A computation performed using an algorithm

proceeds in discrete steps. After each step, there is more informa-

tion available about the result of the computation. In this way, the

result obtained after each step can be seen as an approximation of

the �nal result.'

A domain models the notion of data type, that is, a set of `things' together

with a set of operations that can be applied to them. The `things' that compose

the data type are organised in a domain according to how much de�ned they

are. A program is seen as a function from the data type it inputs to the data

type it outputs. Therefore, a morphism between domains. At the same time,

being itself a function, a program can also be modelled by a domain. To model

a function as a domain, we get the graph of this function, that is, set of points of

the Cartesian Plan. The empty set of points expresses the unde�ned function,

that is, the point of the execution where we have no information at all about

the program. Other sets of points are organised in domains according to the

amount of information they give about the program.

This brief intuitive explanation of the domains can give us an insight of how

denotational approach encourages descriptions free of implementation aspects:

the semantic method plays just the role of linking syntactic and semantic world.

Everything else is concerned to an attached theory. In the case of the `tradi-

tional' Denotational Semantics approach, the whole semantics is really free of

implementation aspects, as the semantic method is not concerned to describe

the semantic world, and the theory used to describe the semantic world is math-

ematical.

3.3 Essentials of the Denotational Approach

Let us stress the heart of the denotational approach:

� Denotational Semantics is Compositional: the mapping between syntax

and semantics respects the syntactical structure of the language. In other

words, the semantic function must be a homomorphism between the syn-

tactical world and the semantic world.

� Denotational Semantics is Extensional: the semantics of a syntactical part

is an object, something already constructed, that has its meaning by itself.

Di�erent denotational approaches will have di�erent frameworks within
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which these objects are constructed. From this point comes the what

that characterises the denotational approach: each syntactical part has

an object as its denotation.

Now, referring back to section 3.1, the comparison between Denotational and

Operational Semantics can be better stated. In opposition to the operational

approach, when using Denotational Semantics, programmers would not be in-

duced to adopt decisions persuaded by the abstract machine model

2

. Being free

of that concept of machine, denotational approach captures the very �rst idea

of programs. At the same time, it gives enough information to verify whether

a well-de�ned function exists for any program

3

. It seems to be suitable for

any kind of language, whatever the underlying paradigm is. Thus, despite its

usually sophisticated mathematical framework, the `traditional' Denotational

Semantics has played successfully the role of stating clearly and accurately the

meaning of programming languages.

3.4 Limitations of the Denotational Approach

There are, however, some features of imperative programming languages that

turn out to be very complicated to be expressed within the `traditional' Deno-

tational Semantics because of their intrinsically operational aspect. In [Mos92],

P. Moses argues that the concept of sequential execution becomes too much

complicated if expressed in terms of function composition, as usually done in

Denotational Semantics.

`... there are two main techniques for representing the basic con-

cept of sequential execution: strict composition of functions on

states, and reverse composition of functions on continuations. In

fact the functions composed typically have further arguments, rep-

resenting context-dependent information, such as the current bind-

ings; this makes the pattern of composition really quite complex,

even for representing something so simple as sequencing.'

In [Abr97], Abramsky lists what he calls de�nite limitations of the classical

denotational paradigm:

2

In some situations, however, this can be a wished feature. Although stressing some

problems as achieving a rigorous de�nition of the abstract machine and the need to consider

a particular program making it di�cult to characterise the well-de�nedness of any program

in the language, [Sto89] comments: `Operational de�nitions of semantics tend to suggest

techniques to compiler writers - this, indeed, may be one of their main bene�ts'.

3

Once again, a Stoy's commentary in [Sto89]: `To verify that such a well de�ned function

exists for any program in the language is a fundamental task of any mathematical theory of

semantics'.
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`... �ne-structural features of computation, such as sequentiallity,

computational complexity and optimality of reduction strategies.

[...] Neither concurrency nor \advanced" imperative features such

as local references have been captured denotationally in a fully

convincing fashion.'

Several approaches were born to cope with the inability of the `traditional'

Denotational Semantics to deal with the features pointed above. Some of them

are mainly operational approaches.

In what concerns shared resources, the main problem is that when we pass

an argument to a function, the changes in this argument are con�ned to the

internal scope of that function. We can't have an argument shared by two

functions in a way that a change within one scope would be re
ected in the

other function's scope. In this sense, functions are too well behaved stu�s!

The `traditional' semantics for parallel programs considers that `[...] in

a parallel program the execution of one portion of the program may be in-

terleaved with the execution of another at the end of any of the \indivisible

operations"'[MS76]. The concept of continuation, that is, the function that de-

scribes the part of the program that is to be executed after a given point, is

used to make possible this interleaving. The recursive de�nition below pictures

this technique.

R = X ! (X �R)

The domain X can be assumed to be the storage domain, and thus, R

represents the sequence of storage changes that will happen after a point.

To form what is nowadays called the resumption semantics [Sch86], these

ideas are connected with Plotkin's Power Domains. This later is the set of all

possible results that a function can output. This concept is used to express the

inherent non-determinism that arises from parallel programs. Thus, we have

R = X ! P(X �R)

In the above equation the operational `tasty' is delegated to the recursion,

and the solution of the recursive equation will express a kind of `history' of the

program behaviour, as the storage changes are being kept in a n-uple.

What we have, thus, is a way of expressing the parallel behaviour by serial-

ising it: parallel programs are considered a sequence of steps. These steps are

interleaved forming a serial execution. As there are several ways of interleaving

programs, a power set is used. The e�ect of shared resources is accomplished

by passing the context sensitive information to each of the (serial) possible be-

haviours in the power set. The �nal result is: extensionality and compositional-

lity are preserved, but we get very complicated semantic descriptions. Another

point is that the reader loses the feeling of `things occurring in parallel', as

executions are serialised.
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Stressing the point of describing programs by its behaviour, Milner [Mil89,

Mil19] proposes the Calculus of Communicating Systems, or CCS. Processes,

that is, the programs' behaviours, are the denotation of a program. Processes

can be characterised by transducers. Nevertheless, to keep the extensionality of

denotational de�nitions, the transducer itself is not considered, but the set of

all processes that it describes.

CCS is an algebra suitable to express parallel processes behaviour. As Milner

suggests in [Mil89], we can make an analogy between the role that �� calculus

plays with respect to sequential programs and the role that it plays with respect

to parallel programs.

As a purely formal system (symbols untied of any meaning and rules for

manipulating them), the ��calculus does not help much in giving semantics to

programming languages, but, considering an appropriated model [Sto89] (that

is, a semantic interpretation for each syntactical element), one can use any

consistent translation mechanism from the programming language to the � �

calculus, and thus, give semantics to the programming language via the � �

calculus.

Providing a notation powerful enough to express the competition of more

than one function for the same argument, CCS can express concurrence in a

convenient way. So, considering a model for CCS, semantics of concurrent pro-

gramming language can be done via CCS. In other words, CCS can act as a met-

alanguage, say, in a denotational approach, in the same way the � � calculus

does. It must be stressed, however, that processes are not proved to be do-

mains, so, this approach is not in harmony with the `traditional' Denotational

Semantics.

CCS is not a semantic approach in the sense that it does not attach mean-

ing to syntactical parts of the language, but it is a precise and easy method to

describe processes. In [Sch86], Schmidt presents a technique calling it \an alter-

native semantics for concurrency". It connects programs and their behaviours

within a denotational approach: each syntactical expression is mapped in a be-

haviour expression. Given in this way, semantics is extensional but, in some

sense, it fails to be compositional. Extensionality, as already mentioned, comes

from the fact that the machine model is not being considered.

To be compositional, however, the semantic approach should have, as back-

ground, the following slogan: give the semantics of the totality as a function

of the semantics of its parts. But when concurrent programs are considered,

one may interfere in the behaviour of the other, so semantics can not be done

independently. Usually, this context dependence appears in the names which

perform communication between the parts and a storage manager.

Another point is that a semantic element (storage manager, or communi-

cation manager) is often necessary. But this element is completely dissociated

from the syntactical world. Thus, it is not accurate to say that each semantic

part comes from a syntactical construction.
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We mentioned, thus, two approaches to cope with sharing. The �rst one is

truly Denotational Semantics, because it keeps extensionality and composition-

ality, but turns out to be very hard to deal with. The second one seems to be

easier to deal with, but loses compositionality.

Both approaches have in common the fact of solving the problem in the

semantic level. In our opinion, what makes the problem so hard to solve is

that the syntactic world is not presented in a way to stress the sharing. As a

consequence, the semantic part has to embody an extra elemnt to cope with

it. The bridge between syntax and semantics is not evident. The semantic

entity that is the denotation of a syntactic construction seems to be completely

dissociated from the original syntactical construction.

This paper presented our �rst ideas of an operator to syntactically express

sharing. Our further directions are to adjust this operator to deal with domains,

to experiment it in denotational descriptions, and �nally, to extend it to other

areas of computer science.

4 Appendix

Proposition 4.0.1 Given two functors F;G : A ! B, with F faithful, and a

natural transformation � : F (A)! G(A), there is a functor T de�ned from the

image of F in the image of T , in the following way:

T : F (A) �! G(A)

T (F (a)) = cod(�

a

) = G(a)

T (F (f : a! b)) = cod(�

a

)! cod(�

a

) = G(f)

Proof:

First of all, let us show that T act as a mapping. The fact that � is a natural

transformation ensures that each element of the domain of T is mapped in an el-

ement of the co-domain. The fact that F is faithful ensures that two components

of � will not have the same domain, thus, each a will be mapped to a unique

object in the image of G. The picture below illustrates the necessity of having F

faithful. Secondly, we show that T preserves identities and compositions.

A

a

#

b

C

G(a)

#

G(b)

F (a) = F (b)

�

�

�

�
















�

a

�

b

(i) T preserves identities: for a 2 Obj(A)
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T (Id

F (a)

) = T (F (Id

a

)) = G(Id

a

) = Id

G(a)

= Id

T (F (a))

(ii) T preserves composition: for f : a

1

! a

2

; g : a

2

! a

3

2Morph(A)

T (F (g)�F (f)) = T (F (g�f)) = G(g�f) = G(g)�G(f) = T (F (g))�T (F (f))

�

Proposition 4.0.2 Hom

C

(a; b)�Hom

C

(a; c) ' Hom

C

(a; b� c)

Proof: The proof consists in showing an isomorphism � from Hom

C

(a; b) �

Hom

C

(a; c) to Hom

C

(a; b� c). Thus,

� : Hom

C

(a; b)�Hom

C

(a; c) �! Hom

C

(a; b� c)

�

0

: Hom

C

(a; b� c) �! Hom

C

(a; b)�Hom

C

(a; c)

where � � �

0

= Id

Hom

C

(a;b�c)

, and �

0

� � = Id

(Hom

C

(a;b)�Hom

C

(a;c))

.

Let �

1

and �

2

be the projections of a� b. Then, � and �

0

are as follows.

� : Hom

C

(a; b)�Hom

C

(a; c) �! Hom

C

(a; b� c)

< f : a! b; g : a! c > 7�! h : a! b� c

such that �

1

�h = f and �

2

�h = g, where h is unique by the product properties.

�

0

: Hom

C

(a; b� c) �! Hom

C

(a; b)�Hom

C

(a; c)

h : a! b� c 7�! < h � �

1

; h � �

2

>

�

Proposition 4.0.3 Hom

C

(a; b)�Hom

C

(c; b) ' Hom

C

(a+ c; b)

Proof: Again, we need an isomorphism from Hom

C

(a; b) � Hom

C

(c; b) to

Hom

C

(a+ c; b), Thus,

Let i

1

and i

2

be the injections of a+ b. Then, � and �

0

are as follows.

� : Hom

C

(a; b)�Hom

C

(c; b) �! Hom

C

(a+ c; b)

< f : a! b; g : a! c > 7�! h : a+ c! b

such that h��

1

= f and h��

2

= g, where h is unique by the co-product properties.

�

0

: Hom

C

(a+ c; b) �! Hom

C

(a; b)�Hom

C

(c; b)

h : a+ c! b 7�! < h � �

1

; h � �

2

>

�

Proposition 4.0.4 Hom

C

(a; b) �Hom

C

(a; b) ' Hom

C

(a; b� b) ' Hom

C

(a +

a; b)

Proof: Direct from 4.0.2, with b = c, and 4.0.3, with a = c

�
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Proposition 4.0.5 Hom

C

(a; b) +Hom

C

(a; c)

�

�

Hom

C

(a; b+ c)

Proof: We need a morphism � from Hom

C

(a; b)+Hom

C

(a; c) to Hom

C

(a; b+

c), Thus,

Let i

1

and i

2

be the injections of b+ c. Then, � is as follows.

� : Hom

C

(a; b) +Hom

C

(a; c) �! Hom

C

(a; b+ c)

f : a! b 7�! �

1

� f

g : a! c 7�! �

2

� g

To show that

�

�

is not valid, suppose a = fa

1

; a

2

g; b = fb

1

g and c = fc

1

g.

The function h de�ned below belongs to Hom

C

(a; b+c), but not to Hom

C

(a; b)+

Hom

C

(a; c).

h : a ! b+ c

a

1

7�! b

1

a

2

7�! c

1

�
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