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ABSTRACT 

With the continuous increase of processing power, the graphic hardware – also called Graphic Processor Unit 

(GPU) – is naturally assuming most part of the rendering pipeline, leaving the Central Processor Unit (CPU) with 

more idle time. In order to take advantage of this when rendering relief textures, the present work proposes two 

approaches for the mapping of relief textures. Both methods are fully implemented on the CPU leaving the GPU 

responsible for the per-pixel shading effects. These approaches allow the use of CPU idle time and/or multi-

processed systems for the increase of real-time rendering quality and the inclusion of image-based 

representations. 
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1 INTRODUCTION 
In [Oli00], Oliveira introduces the concept of relief 

texture mapping as a technique to represent details of 

three-dimensional surfaces. While the traditional 

texture mapping technique [Cat74] does not consider 

view-motion parallax and, consequently, only reveals 

the two-dimensional nature of the texture, Oliveira’s 

approach supports the parallax mechanism and 

permits the user to have a 3D texture perception. 

However, as it does not store sufficient geometric 

information about the details that are being simulated, 

the technique proposed by Oliveira does not allow the 

correct representation of non-diffuse surfaces. 

Moreover, the overhead introduced by the pre-

warping step [Oli00] makes it difficult to be used in 

real-time rendering applications that require high 

frame rates, such as games. 

Some works have been proposed in order to improve 

the relief texture mapping technique. For instance, 

Fujita and Kanai [Fuj02] use the capability of the 

GPU programming to extend the relief texture 

mapping technique so that it can support per-pixel 

shading effects, such as normal mapping and 

reflection mapping. Although this approach achieves 

successful results by using shading effects, it does not 

appropriately work with high frame rate 

requirements. 

Policarpo et al. [Pol05] implement the original relief 

texture mapping on the GPU. In their approach, the 

view direction is transformed to the texture space and 

a linear search is performed in order to find an 

intersection between the view direction and the 

virtual surface (represented by a depth map). 

Moreover, this process is improved through a binary 

search. Their approach complies with real-time 

requirements and supports per-pixel shading effects. 

As the power of GPUs are rapidly increasing – in a 

faster pace than the power of CPUs – there is an 

inclination for them to assume almost the entire 

rendering pipeline processing work, leaving the CPU 

with more and more idle time. The objective of this 

work is to investigate the possibility of taking 

advantage of the CPU’s idle time when rendering 
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relief textures in order to obtain results as good as 

those obtained in the approach applied by Policarpo 

et al in [Pol05]. 

The contribution presented in this paper consists in 

two parallel approaches that optimize the processes 

involved in relief texture mapping. In some cases, the 

parallelization of the relief texture mapping algorithm 

represents an acceleration of up to 300% compared to 

the conventional technique. 

2 RELIEF TEXTURE MAPPING 
A relief texture is an image, obtained by an 

orthographic projection camera, which contains depth 

information. In a more formal way, a relief texture is 

a pair { }Ki, , where i is a digital image and K is an 

orthographic projection camera model associated 

with i. Each color element of i is augmented in order 

to include a scalar value that represents the distance 

(depth), in the Euclidean space, between the sample 

and a reference entity. Since K is an orthographic 

projection camera model, the reference entity is the 

projection plane of K.  

 

Figure 1. relief texture mapping process [Oli00]. 

At an implementation point of view, each element of i 

from a relief texture may be represented as a RGBA 

information, where RGB channels store color values 

while alpha channel stores depth values. The 

information about the camera model K may be 

represented as a 4x4 matrix. 

In 1997, Leonard Mcmillan introduced the concept of 

three-dimensional image warping [Mcm97], which is 

the basis for the relief texture mapping technique. 3D 

image warping consists of geometric information that 

maps a { }Ki ,1  source image with depth onto a 2i  

target image, allowing a correct visualization of the 

1i  image from several view points. 

It is important to notice that 3D image warping may 

be interpreted as a composition of two two-

dimensional transformations: a planar perspective 

transformation and a per-pixel shift in the direction of 

the epipole of the target view. Hence, the relief 

texture mapping can be seen as a factorization of a 

3D image warping into these two transformations. 

That factorization proposed by Oliveira [Oli00] 

allows the planar perspective transformation, which 

consists essentially in a texture mapping operation, to 

be applied after the per-pixel shift (pre-warping). So, 

through the factorization, it is possible to benefit 

from the texture mapping implemented in hardware in 

order to make the final transformation (Figure 1). 

More details about that process may be obtained in 

Oliveira’s Ph.D. thesis [Oli00]. 

2.1 Implementation 
As defined in Section 2, a relief texture is composed 

of color, depth and camera information. However, 

with only such information it is not possible to 

capture effects that depend on the view point and 

illumination direction. A feasible solution to 

represent such effects is to use normal maps in 

conjunction with relief texture mapping. 

Thus, normal information is merged with depth 

information in order to generate a normal map with 

depth, which is represented by an RGBA image, 

where the alpha channel stores a depth value and the 

color channels store the normal vector. The color 

information is stored in a conventional texture map, 

represented by an RGB image. 

The implementation approach used to perform the 

relief texture mapping consists of a five-step 

algorithm, which may be represented by the diagram 

of Figure 2. 

 

Figure 2. Diagram of the relief texture mapping 

algorithm. 

The algorithm input data are: the current observer 

position p, a quadrilateral q and a relief texture 

{ }11, Ki , where 1i  represents a normal map with 

depth information and a conventional texture map. 

Firstly, it is necessary to initialize image buffers and 

lookup tables. As the graphics application works in a 

loop fashion, in which the resultant image is updated 



every frame, this step becomes necessary in order to 

avoid reading the information generated during 

previous executions. 

When this step has finished, the parameters of the 

quadrilateral q are transformed according to the 

current viewing configuration. After that, some 

lookup tables are computed in order to avoid 

repetitive operations, hence optimizing part of the 

process. 

The next step, called pre-warping, is the core of the 

algorithm and is the step that consumes more time 

and computational resources. This step is responsible 

for creating an output image 2i  that represents a 

partial visualization of the mapping from { }11, Ki  

onto q viewed from p. 

Thus, the content of the image 2i  may be stored into 

the GPU texture memory and, finally, it may be 

mapped onto quadrilateral q in order to produce a 

correct visualization. More details about this 

implementation may be obtained at Fonseca’s MSc. 

dissertation [Fon04]. 

3 PARALLEL PROCESSING 
In the context of real-time graphics applications, the 

rendering pipeline is usually divided into three 

conceptual stages: application, geometry and raster 

[Möl02]. Nowadays, both second and third stages are 

fully implemented in the graphics hardware, while the 

first stage is implemented on the CPU. 

This division may also be used to represent the whole 

relief texture mapping computation. The diagram in 

Figure 3 illustrates the relief texture mapping pipeline 

stages according to the approach described in Section 

2.1. 

 

Figure 3. Conventional process for relief texture 

mapping. 

In this diagram, the application stage is executed in a 

sequential fashion and comprehends all the steps 

performed on the CPU. The geometry and raster 

stages are implicitly represented as texture mapping 

and shading steps, both executed on the GPU. 

By definition, the speed of a pipeline is determined 

by the slowest stage, independently how fast are other 

stages. In general, the slowest stage is known as the 

bottleneck. 

According to Akenine-Möller & Haines [Möl02], the 

first step of a pipeline optimization process consists 

in locating the bottleneck. This localization is 

accomplished by a set of tests, such as those 

described in [Möl02]. 

Analyzing the algorithm proposed in the Section 2.1, 

the strongest candidate to be the bottleneck of the 

relief texture mapping process is the application 

stage, since all texels of the normal and color maps 

are processed every frame. For this reason, it is 

decided to make the referred tests to the application 

stage. 

One way to verify if the application stage limits the 

rendering speed is to send data through the pipeline 

in such a way that the other stages perform little or no 

work. In OpenGL this can be achieved substituting 

every call to glVertex3f and glNormal3f by 

the call to glColor3f. By doing this, the work of 

sending data from the CPU remains unchanged, while 

the work of sending and receiving data on the 

geometry and raster stages are drastically reduced. If 

the performance does not improve, it is possible to 

affirm that the bottleneck is the application stage. The 

authors of the present paper applied this test to some 

input textures and verified that the application stage 

is actually the bottleneck. 

In the light of the above mentioned considerations, 

the present authors propose the implementation of 

two parallel approaches for the relief texture mapping 

computation. The next section describes, for each 

approach, the rationale of the implementation and the 

proposed methodology. 

3.1 Parallel Approach 
With the intention of optimizing the CPU process, a 

CPU thread is created. This thread has the capability 

of running the four first steps of the relief texture 

mapping algorithm. With the aid of the Hyper-

Threading technology [Mar03], this thread can be 

executed in parallel with the conventional CPU 

process and hence allowing a considerable time 

saving. The diagram of Figure 4 illustrates the new 

approach. 

 



Figure 4. Parallel approach diagram. 

In order to guarantee that the final result is correct, 

besides creating a CPU thread, it is necessary to 

synchronize it with the rest of the processes that are 

being executed. This synchronization is represented 

by the state machine illustrated in Figure 5. 

 

 

Figure 5. CPU thread state machine. 

At the moment of the thread creation, the thread state 

is set to initial. The transition between the initial state 

and executing warp state is done by the first warping 

operation followed by the transmission of the 

resultant image to the GPU texture memory. During 

the rest of the execution, the state machine stays in a 

loop between the execution warp and waiting states, 

except at the end of the program, when the CPU 

thread goes to the final state. The pre-warping 

operation is performed during the execution warp 

state. When it finishes, it changes to waiting state. In 

this state, the resultant new image is sent to the 

texture memory and its content is refreshed. As soon 

as the texture memory is updated, the state is set to 

executing warp and it indicates that a new warping 

operation must be performed. 

With the Hyper-Threading or similar technology, a 

processor may be exclusively assigned to the CPU 

thread, without affecting the rendering pipeline 

performance. 

The transition from initial state to the executing warp 

state occurs during the execution of the main draw 

function, performed once a frame. An algorithm that 

describes this process is presented below. 

algorithm draw() 

   1  Configure the OpenGL API rendering state; 

   2  Activate vertex program; 

   3  Activate fragment program; 

   4  If it is the first execution of draw then 

   5     Start resources; 

   6     Transform the quadrilateral; 

   7     Initialize lookup tables; 

   8     Perform pre-warping; 

   9     Send processed texture to the GPU; 

 10     stateThread ← EXECUTING_WARP; 

 11  else 

 12      If stateThread = WAITING then 

 13         Update texture on the GPU; 

 14         stateThread ← EXECUTING_WARP; 

 15       end-if 

 16  end-if 

 17  Draw quadrilateral with the processed texture; 

 18  Deactivate fragment program; 

 19  Deactivate vertex program; 

end 

At line 1, the OpenGL API rendering state is 

configured. This configuration consists in enabling 

operations such as blending, culling, and depth tests. 

In lines 2 and 3 the vertex and fragment programs are 

enabled in order to calculate per-pixel illumination. 

The first time that the draw function is executed, the 

four first steps of the relief texture mapping algorithm 

(lines 5 to 8) are performed and the resultant texture 

from the warping is sent to the graphics card, through 

the OpenGL glTexImage2D function. Once the 

texture is sent to the graphics card, the state changes 

from initial to executing warp (line 10). After the 

second execution of the draw function, it is 

necessary to verify (in each cycle) if the current state 

of the CPU thread is waiting. In that case, it means 

that the thread has executed a warping operation and, 

consequently, the texture in the graphics card must be 

updated (line 13). So, the update is achieved by the 

OpenGL glTexSubImage2D function. After that, 

the CPU thread changes from waiting to executing 

warp state and a new warping operation must be 

performed. Finally, at line 17, the quadrilateral with 

the mapped texture is drawn and, in lines 18 and 19 

the fragment and vertex programs are deactivated. It 

is important to notice that during every execution of 

the draw function, the CPU thread is executed in 

parallel. 

The remaining state transitions are described by the 

threadCPU algorithm. 

algorithm threadCPU() 

   1  While true do 

   2      If stateThread = EXECUTING_WARP then 

   3         Start resources; 

   4         Transform the quadrilateral; 

   5         Initialize lookup tables; 

   6         Perform pre-warping; 

   7         stateThread ← WAITING; 

   8     else if stateThread = FINAL then 

   9         return; 

 10     end-if 

 11  end-while 

end 



The algorithm is basically a loop: line 1 guarantees 

that the thread is being executed until its current state 

is modified to the final state. During this loop, if the 

current state is executing warp, the four first steps of 

the relief texture mapping algorithm are executed 

(lines 3 to 6) and the state is assigned to waiting (line 

7), which indicates that a texture updating operation 

must be performed. When the state is equals to final, 

the threadCPU function ends. 

3.2 Multi-Threaded Approach 
Besides the previous approach, the use of Hyper-

Threading technology allows the elaboration of a 

parallel process for different parts of input data. More 

specifically, it is possible to divide the { }11, Ki  input 

texture into two parts and to simultaneously execute 

the four first steps of the relief texture mapping 

algorithm for each part. Consequently, a post-

processing becomes necessary in order to unify the 

resultant textures into one unique texture that will be 

mapped into quadrilateral q. The diagram in Figure 6 

illustrates that process. 

 

Figure 6. Multi-Threaded process diagram. 

Firstly, it is necessary to divide the image buffer into 

two different parts. It is important to notice that the 

image buffer consists of a normal map, a depth map 

and a color map used as input data to the algorithm. 

Although it is not obvious, both resultant images of 

the division process must have the same dimension as 

the original one. For instance, the left half of the first 

resultant image will be filled with the left half of the 

original image content, while the right part of the 

resultant image will be filled with invalid values (i.e. 

values that represent background information, as 

illustrated in Figure 7). This is necessary because 

during the pre-warping process some texels could 

exceed the limits of the plane that supports the image. 

Consequently, the resultant images of the pre-warping 

process would contain an incomplete vision of the 

representation (see Figure 8). 

    

Figure 7. Illustration of the division process of the 

normal map. 

 

 

 

Figure 8. The incomplete vision of the represented 

surface occurs because texels that exceed the 

limits of the support plane during the warping are 

not considered. 

During the union process of both resultant images, 

some parts of the result may have overlapping texels 

in regions where the limits of the support plane of the 

image were exceeded. The algorithm will correct this 

problem discarding the texels that have invalid values 

in the places where this overlapping occurs. 

The draw function, described in Section 3.1, must be 

modified in order to correspond to that new 

approach: 

 

algorithm draw() 

   1  Configure the OpenGL API rendering state; 

   2  Activate vertex program; 

   3  Activate fragment program; 

   4  If it is the first execution of draw then 

   5     Execute the four first steps for left half; 

   6     Execute the four first steps for right half; 

   7     Unify the resultant images; 

   8     Send processed texture to the GPU; 

   9     stateThread1 ← EXECUTING_WARP; 

 10     stateThread2 ← EXECUTING_WARP; 

 11  else 

 12      If stateThread1 = WAITING and  

               stateThread2 = WAITING then 

 13         Unify the resultant images; 

 14         Update texture on the GPU; 



 15         stateThread1 ← EXECUTING_WARP; 

 16         stateThread2 ← EXECUTING_WARP; 

 17       end-if 

 18  end-if 

 19  Draw quadrilateral with the processed texture; 

 20  Deactivate fragment program; 

 21  Deactivate vertex program; 

end 

The differences from the function described in 

Section 3.1 are basically located between lines 5 and 

16. The first time that the draw function is executed 

the four first steps of the relief texture mapping 

algorithm (lines 5 and 6) are performed for both 

halves of the original image. Once the warping 

process is concluded, the union of the resultant 

images may be executed. After this, the resultant 

texture from that union is sent to the graphics card. 

As soon as the texture is sent, the transition from the 

initial state to the executing warp state can be made 

(lines 9 and 10) for each thread. In cases where the 

draw function is executed again, it is necessary to 

test if the current state of the CPU, for both halves, is 

waiting. It means that the tread completed a full 

warping operation and, consequently, the result of 

each warping may be unified so that the texture in the 

graphics card may be updated (line 14). Following it, 

the state of each CPU thread changes from waiting to 

executing warp and a new warping operation must be 

performed. 

4 RESULTS 
This section presents statistics of elapsed time of the 

implemented algorithms as well as the obtained visual 

results. These measures were made with an Intel 

Pentium IV PC with 2.66 GHz and 512 Mb of 

memory RAM and a graphics card GeForce FX 5600 

with 256 Mb of video memory. 

Three samples have been used, as shown in Figure 9 

at the end of the section. Table 1 presents some 

specifications for the used samples such as, resolution 

(in pixels) and the number of texels with invalid 

depth values (i.e. texels that represent background 

information). 

Table 2 presents the frame rate for each one of the 

implemented approaches. The sequential approach 

(S) represents the conventional technique of relief 

texture mapping, while the parallel (P) and the multi-

threaded (M) approaches are the algorithms proposed 

in this work. 

Sample Resolution Invalid Texels 

1 256x256 3800 (5,80%) 

2 256x256 3223 (4,92%) 

3 256x256 30484 (46,51%) 

Table 1. Samples information. 

 

Sample1 Sample2 Sample3 
 

FPS SD FPS SD FPS SD 

S 24.18 0.86 24.93 1.54 38.24 1.86 

P 97.97 4.50 96.45 5.01 103.64 4.88 

M 33.14 6.02 31.09 7.67 34.51 8.21 

Table 2. Frames per second average (FPS) and 

standard deviation (SD) for sequential (S), 

parallel (P) and multi-threaded (M) approaches. 

 

Analyzing Table 2, it is possible to conclude that the 

parallel approach is better than the sequential one. 

However, the sequential approach is the more stable 

method in relation to the frame rate average. It may 

be verified by the small dispersion of the data 

presented by the obtained standard deviation. 

Only in the case of sample 3 the multi-threaded 

approach is worse than the sequential one. There are 

two points that must be considered in order to explain 

that fact. The first one refers to the sample 3, which is 

a special kind of sample, where the number of invalid 

texels is large (see Table 1) and, therefore, the pre-

warping step effort is inferior in relation to samples 1 

and 2, since only valid texels need to be processed. 

The second point refers to the multi-threaded 

approach, which has an overhead of three processes 

being executed in a two processor system. So, it is 

possible to conclude that the inherent overhead 

related to the multi-threaded approach was superior 

to the gain obtained by the optimization of the pre-

warping step in the case of the sample 3, 

demonstrating the inferiority of the multi-threaded 

approach in relation to the sequential one in this 

specific case. 

It is important to notice that high frame rates per 

second obtained by the parallel approach do not 

reflect the number of times that a warping operation 

is being performed. These rates refer to the number of 

times that the images are being rendering per second, 

independently if a new warping operation is being 

executed or not. It occurs because the warping 

process is being executed in parallel to the rest of the 

pipeline and, consequently, sometimes it is possible 

to notice a progressive update in the rendered image 

when there are many camera movements. 

The superiority of the parallel approach in relation to 

the multi-threaded one was already expected, since 

the latter consumes a reasonable time during the 

realization of the texture union operation. 

The obtained visual results are presented in Figure 

10, which are the same for all approaches. 



     

 

Figure 9. Samples 1 (left image), 2 (right image) 

and 3 (bellow image). 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Visual results for sample 1, sample 2 

and sample 3. 

5 CONCLUSIONS AND FUTURE 

WORKS 
In order to optimize the relief texture mapping 

process, two new approaches have been 

implemented: 

• Parallel. In the parallel approach a CPU 

thread was created with the objective of resolving the 

first four steps of the relief texture mapping 

algorithm. Such thread is executed in parallel with the 

main CPU process, using for this propose the Hyper-

Threading technology. 

• Multi-Threaded: In this method, the input 

texture is divided into two parts with the objective of 

simultaneously running the four first steps of the 

relief texture mapping algorithm for each part. It 

becomes necessary a post-processing to unify both 

results into a single resultant image. 

It is possible to conclude that the parallelization of 

the relief texture mapping considerably speeds up the 

process in comparison to the conventional methods 

(up to 300%), i.e., with the parallelization the relief 

texture mapping may be implemented in real-time on 

the CPU and thus allowing the GPU to be used only 

for shading calculations. The performance and image 

quality of the proposed approach are similar to the 

ones obtained by Policarpo et al [Pol05]. 

In relation to future works, two possible 

optimizations could be incorporated: utilization of a 

pipeline of multi-processors in the relief texture 

mapping and a variant to the multi-threaded approach 

that processes rows and columns in parallel. 

Furthermore, a better analysis of the warping per 

second rate could be done in relation to the frame per 

second rate (where wps corresponds to the number of 

warpings that are being performed per second). This 

analysis could allow a more efficient implementation 

of the process (with less warping operations), in the 

case of the wps to be larger than the fps rate. 

Finally, an implementation that uses many CPU 

processors could be developed in order to take more 

advantages of the described techniques. 
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