
A Parallel Approach for Visualization of Relief

Textures

Francisco Fonseca
1
 Bruno Feijó

1
 Marcelo Dreux

2
 Esteban Clua1

Catholic Univ. of Rio de Janeiro
R. Marquês de São Vicente, 225

Gávea, Rio de Janeiro, RJ
 Brazil 22231-000

1
{ffonseca,bruno,esteban}@inf.puc-rio.br

2
dreux@mec.puc-rio.br

ABSTRACT

With the continuous increase of processing power, the graphic hardware – also called Graphic Processor Unit

(GPU) – is naturally assuming most part of the rendering pipeline, leaving the Central Processor Unit (CPU) with

more idle time. In order to take advantage of this when rendering relief textures, the present work proposes two

approaches for the mapping of relief textures. Both methods are fully implemented on the CPU leaving the GPU

responsible for the per-pixel shading effects. These approaches allow the use of CPU idle time and/or multi-

processed systems for the increase of real-time rendering quality and the inclusion of image-based

representations.

Keywords

Relief Textures, Image-Based Rendering, Parallel Processing, Real-Time Rendering.

1 INTRODUCTION
In [Oli00], Oliveira introduces the concept of relief

texture mapping as a technique to represent details of

three-dimensional surfaces. While the traditional

texture mapping technique [Cat74] does not consider

view-motion parallax and, consequently, only reveals

the two-dimensional nature of the texture, Oliveira’s

approach supports the parallax mechanism and

permits the user to have a 3D texture perception.

However, as it does not store sufficient geometric

information about the details that are being simulated,

the technique proposed by Oliveira does not allow the

correct representation of non-diffuse surfaces.

Moreover, the overhead introduced by the pre-

warping step [Oli00] makes it difficult to be used in

real-time rendering applications that require high

frame rates, such as games.

Some works have been proposed in order to improve

the relief texture mapping technique. For instance,

Fujita and Kanai [Fuj02] use the capability of the

GPU programming to extend the relief texture

mapping technique so that it can support per-pixel

shading effects, such as normal mapping and

reflection mapping. Although this approach achieves

successful results by using shading effects, it does not

appropriately work with high frame rate

requirements.

Policarpo et al. [Pol05] implement the original relief

texture mapping on the GPU. In their approach, the

view direction is transformed to the texture space and

a linear search is performed in order to find an

intersection between the view direction and the

virtual surface (represented by a depth map).

Moreover, this process is improved through a binary

search. Their approach complies with real-time

requirements and supports per-pixel shading effects.

As the power of GPUs are rapidly increasing – in a

faster pace than the power of CPUs – there is an

inclination for them to assume almost the entire

rendering pipeline processing work, leaving the CPU

with more and more idle time. The objective of this

work is to investigate the possibility of taking

advantage of the CPU’s idle time when rendering

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-86943-03-8

WSCG’2006, January 30-February 3, 2006

Plzen, Czech Republic.

Copyright UNION Agency – Science Press

relief textures in order to obtain results as good as

those obtained in the approach applied by Policarpo

et al in [Pol05].

The contribution presented in this paper consists in

two parallel approaches that optimize the processes

involved in relief texture mapping. In some cases, the

parallelization of the relief texture mapping algorithm

represents an acceleration of up to 300% compared to

the conventional technique.

2 RELIEF TEXTURE MAPPING
A relief texture is an image, obtained by an

orthographic projection camera, which contains depth

information. In a more formal way, a relief texture is

a pair { }Ki, , where i is a digital image and K is an

orthographic projection camera model associated

with i. Each color element of i is augmented in order

to include a scalar value that represents the distance

(depth), in the Euclidean space, between the sample

and a reference entity. Since K is an orthographic

projection camera model, the reference entity is the

projection plane of K.

Figure 1. relief texture mapping process [Oli00].

At an implementation point of view, each element of i

from a relief texture may be represented as a RGBA

information, where RGB channels store color values

while alpha channel stores depth values. The

information about the camera model K may be

represented as a 4x4 matrix.

In 1997, Leonard Mcmillan introduced the concept of

three-dimensional image warping [Mcm97], which is

the basis for the relief texture mapping technique. 3D

image warping consists of geometric information that

maps a { }Ki ,1 source image with depth onto a 2i

target image, allowing a correct visualization of the

1i image from several view points.

It is important to notice that 3D image warping may

be interpreted as a composition of two two-

dimensional transformations: a planar perspective

transformation and a per-pixel shift in the direction of

the epipole of the target view. Hence, the relief

texture mapping can be seen as a factorization of a

3D image warping into these two transformations.

That factorization proposed by Oliveira [Oli00]

allows the planar perspective transformation, which

consists essentially in a texture mapping operation, to

be applied after the per-pixel shift (pre-warping). So,

through the factorization, it is possible to benefit

from the texture mapping implemented in hardware in

order to make the final transformation (Figure 1).

More details about that process may be obtained in

Oliveira’s Ph.D. thesis [Oli00].

2.1 Implementation
As defined in Section 2, a relief texture is composed

of color, depth and camera information. However,

with only such information it is not possible to

capture effects that depend on the view point and

illumination direction. A feasible solution to

represent such effects is to use normal maps in

conjunction with relief texture mapping.

Thus, normal information is merged with depth

information in order to generate a normal map with

depth, which is represented by an RGBA image,

where the alpha channel stores a depth value and the

color channels store the normal vector. The color

information is stored in a conventional texture map,

represented by an RGB image.

The implementation approach used to perform the

relief texture mapping consists of a five-step

algorithm, which may be represented by the diagram

of Figure 2.

Figure 2. Diagram of the relief texture mapping

algorithm.

The algorithm input data are: the current observer

position p, a quadrilateral q and a relief texture

{ }11, Ki , where 1i represents a normal map with

depth information and a conventional texture map.

Firstly, it is necessary to initialize image buffers and

lookup tables. As the graphics application works in a

loop fashion, in which the resultant image is updated

every frame, this step becomes necessary in order to

avoid reading the information generated during

previous executions.

When this step has finished, the parameters of the

quadrilateral q are transformed according to the

current viewing configuration. After that, some

lookup tables are computed in order to avoid

repetitive operations, hence optimizing part of the

process.

The next step, called pre-warping, is the core of the

algorithm and is the step that consumes more time

and computational resources. This step is responsible

for creating an output image 2i that represents a

partial visualization of the mapping from { }11, Ki

onto q viewed from p.

Thus, the content of the image 2i may be stored into

the GPU texture memory and, finally, it may be

mapped onto quadrilateral q in order to produce a

correct visualization. More details about this

implementation may be obtained at Fonseca’s MSc.

dissertation [Fon04].

3 PARALLEL PROCESSING
In the context of real-time graphics applications, the

rendering pipeline is usually divided into three

conceptual stages: application, geometry and raster

[Möl02]. Nowadays, both second and third stages are

fully implemented in the graphics hardware, while the

first stage is implemented on the CPU.

This division may also be used to represent the whole

relief texture mapping computation. The diagram in

Figure 3 illustrates the relief texture mapping pipeline

stages according to the approach described in Section

2.1.

Figure 3. Conventional process for relief texture

mapping.

In this diagram, the application stage is executed in a

sequential fashion and comprehends all the steps

performed on the CPU. The geometry and raster

stages are implicitly represented as texture mapping

and shading steps, both executed on the GPU.

By definition, the speed of a pipeline is determined

by the slowest stage, independently how fast are other

stages. In general, the slowest stage is known as the

bottleneck.

According to Akenine-Möller & Haines [Möl02], the

first step of a pipeline optimization process consists

in locating the bottleneck. This localization is

accomplished by a set of tests, such as those

described in [Möl02].

Analyzing the algorithm proposed in the Section 2.1,

the strongest candidate to be the bottleneck of the

relief texture mapping process is the application

stage, since all texels of the normal and color maps

are processed every frame. For this reason, it is

decided to make the referred tests to the application

stage.

One way to verify if the application stage limits the

rendering speed is to send data through the pipeline

in such a way that the other stages perform little or no

work. In OpenGL this can be achieved substituting

every call to glVertex3f and glNormal3f by

the call to glColor3f. By doing this, the work of

sending data from the CPU remains unchanged, while

the work of sending and receiving data on the

geometry and raster stages are drastically reduced. If

the performance does not improve, it is possible to

affirm that the bottleneck is the application stage. The

authors of the present paper applied this test to some

input textures and verified that the application stage

is actually the bottleneck.

In the light of the above mentioned considerations,

the present authors propose the implementation of

two parallel approaches for the relief texture mapping

computation. The next section describes, for each

approach, the rationale of the implementation and the

proposed methodology.

3.1 Parallel Approach
With the intention of optimizing the CPU process, a

CPU thread is created. This thread has the capability

of running the four first steps of the relief texture

mapping algorithm. With the aid of the Hyper-

Threading technology [Mar03], this thread can be

executed in parallel with the conventional CPU

process and hence allowing a considerable time

saving. The diagram of Figure 4 illustrates the new

approach.

Figure 4. Parallel approach diagram.

In order to guarantee that the final result is correct,

besides creating a CPU thread, it is necessary to

synchronize it with the rest of the processes that are

being executed. This synchronization is represented

by the state machine illustrated in Figure 5.

Figure 5. CPU thread state machine.

At the moment of the thread creation, the thread state

is set to initial. The transition between the initial state

and executing warp state is done by the first warping

operation followed by the transmission of the

resultant image to the GPU texture memory. During

the rest of the execution, the state machine stays in a

loop between the execution warp and waiting states,

except at the end of the program, when the CPU

thread goes to the final state. The pre-warping

operation is performed during the execution warp

state. When it finishes, it changes to waiting state. In

this state, the resultant new image is sent to the

texture memory and its content is refreshed. As soon

as the texture memory is updated, the state is set to

executing warp and it indicates that a new warping

operation must be performed.

With the Hyper-Threading or similar technology, a

processor may be exclusively assigned to the CPU

thread, without affecting the rendering pipeline

performance.

The transition from initial state to the executing warp

state occurs during the execution of the main draw

function, performed once a frame. An algorithm that

describes this process is presented below.

algorithm draw()

 1 Configure the OpenGL API rendering state;

 2 Activate vertex program;

 3 Activate fragment program;

 4 If it is the first execution of draw then

 5 Start resources;

 6 Transform the quadrilateral;

 7 Initialize lookup tables;

 8 Perform pre-warping;

 9 Send processed texture to the GPU;

 10 stateThread ← EXECUTING_WARP;

 11 else

 12 If stateThread = WAITING then

 13 Update texture on the GPU;

 14 stateThread ← EXECUTING_WARP;

 15 end-if

 16 end-if

 17 Draw quadrilateral with the processed texture;

 18 Deactivate fragment program;

 19 Deactivate vertex program;

end

At line 1, the OpenGL API rendering state is

configured. This configuration consists in enabling

operations such as blending, culling, and depth tests.

In lines 2 and 3 the vertex and fragment programs are

enabled in order to calculate per-pixel illumination.

The first time that the draw function is executed, the

four first steps of the relief texture mapping algorithm

(lines 5 to 8) are performed and the resultant texture

from the warping is sent to the graphics card, through

the OpenGL glTexImage2D function. Once the

texture is sent to the graphics card, the state changes

from initial to executing warp (line 10). After the

second execution of the draw function, it is

necessary to verify (in each cycle) if the current state

of the CPU thread is waiting. In that case, it means

that the thread has executed a warping operation and,

consequently, the texture in the graphics card must be

updated (line 13). So, the update is achieved by the

OpenGL glTexSubImage2D function. After that,

the CPU thread changes from waiting to executing

warp state and a new warping operation must be

performed. Finally, at line 17, the quadrilateral with

the mapped texture is drawn and, in lines 18 and 19

the fragment and vertex programs are deactivated. It

is important to notice that during every execution of

the draw function, the CPU thread is executed in

parallel.

The remaining state transitions are described by the

threadCPU algorithm.

algorithm threadCPU()

 1 While true do

 2 If stateThread = EXECUTING_WARP then

 3 Start resources;

 4 Transform the quadrilateral;

 5 Initialize lookup tables;

 6 Perform pre-warping;

 7 stateThread ← WAITING;

 8 else if stateThread = FINAL then

 9 return;

 10 end-if

 11 end-while

end

The algorithm is basically a loop: line 1 guarantees

that the thread is being executed until its current state

is modified to the final state. During this loop, if the

current state is executing warp, the four first steps of

the relief texture mapping algorithm are executed

(lines 3 to 6) and the state is assigned to waiting (line

7), which indicates that a texture updating operation

must be performed. When the state is equals to final,

the threadCPU function ends.

3.2 Multi-Threaded Approach
Besides the previous approach, the use of Hyper-

Threading technology allows the elaboration of a

parallel process for different parts of input data. More

specifically, it is possible to divide the { }11, Ki input

texture into two parts and to simultaneously execute

the four first steps of the relief texture mapping

algorithm for each part. Consequently, a post-

processing becomes necessary in order to unify the

resultant textures into one unique texture that will be

mapped into quadrilateral q. The diagram in Figure 6

illustrates that process.

Figure 6. Multi-Threaded process diagram.

Firstly, it is necessary to divide the image buffer into

two different parts. It is important to notice that the

image buffer consists of a normal map, a depth map

and a color map used as input data to the algorithm.

Although it is not obvious, both resultant images of

the division process must have the same dimension as

the original one. For instance, the left half of the first

resultant image will be filled with the left half of the

original image content, while the right part of the

resultant image will be filled with invalid values (i.e.

values that represent background information, as

illustrated in Figure 7). This is necessary because

during the pre-warping process some texels could

exceed the limits of the plane that supports the image.

Consequently, the resultant images of the pre-warping

process would contain an incomplete vision of the

representation (see Figure 8).

Figure 7. Illustration of the division process of the

normal map.

Figure 8. The incomplete vision of the represented

surface occurs because texels that exceed the

limits of the support plane during the warping are

not considered.

During the union process of both resultant images,

some parts of the result may have overlapping texels

in regions where the limits of the support plane of the

image were exceeded. The algorithm will correct this

problem discarding the texels that have invalid values

in the places where this overlapping occurs.

The draw function, described in Section 3.1, must be

modified in order to correspond to that new

approach:

algorithm draw()

 1 Configure the OpenGL API rendering state;

 2 Activate vertex program;

 3 Activate fragment program;

 4 If it is the first execution of draw then

 5 Execute the four first steps for left half;

 6 Execute the four first steps for right half;

 7 Unify the resultant images;

 8 Send processed texture to the GPU;

 9 stateThread1 ← EXECUTING_WARP;

 10 stateThread2 ← EXECUTING_WARP;

 11 else

 12 If stateThread1 = WAITING and

 stateThread2 = WAITING then

 13 Unify the resultant images;

 14 Update texture on the GPU;

 15 stateThread1 ← EXECUTING_WARP;

 16 stateThread2 ← EXECUTING_WARP;

 17 end-if

 18 end-if

 19 Draw quadrilateral with the processed texture;

 20 Deactivate fragment program;

 21 Deactivate vertex program;

end

The differences from the function described in

Section 3.1 are basically located between lines 5 and

16. The first time that the draw function is executed

the four first steps of the relief texture mapping

algorithm (lines 5 and 6) are performed for both

halves of the original image. Once the warping

process is concluded, the union of the resultant

images may be executed. After this, the resultant

texture from that union is sent to the graphics card.

As soon as the texture is sent, the transition from the

initial state to the executing warp state can be made

(lines 9 and 10) for each thread. In cases where the

draw function is executed again, it is necessary to

test if the current state of the CPU, for both halves, is

waiting. It means that the tread completed a full

warping operation and, consequently, the result of

each warping may be unified so that the texture in the

graphics card may be updated (line 14). Following it,

the state of each CPU thread changes from waiting to

executing warp and a new warping operation must be

performed.

4 RESULTS
This section presents statistics of elapsed time of the

implemented algorithms as well as the obtained visual

results. These measures were made with an Intel

Pentium IV PC with 2.66 GHz and 512 Mb of

memory RAM and a graphics card GeForce FX 5600

with 256 Mb of video memory.

Three samples have been used, as shown in Figure 9

at the end of the section. Table 1 presents some

specifications for the used samples such as, resolution

(in pixels) and the number of texels with invalid

depth values (i.e. texels that represent background

information).

Table 2 presents the frame rate for each one of the

implemented approaches. The sequential approach

(S) represents the conventional technique of relief

texture mapping, while the parallel (P) and the multi-

threaded (M) approaches are the algorithms proposed

in this work.

Sample Resolution Invalid Texels

1 256x256 3800 (5,80%)

2 256x256 3223 (4,92%)

3 256x256 30484 (46,51%)

Table 1. Samples information.

Sample1 Sample2 Sample3

FPS SD FPS SD FPS SD

S 24.18 0.86 24.93 1.54 38.24 1.86

P 97.97 4.50 96.45 5.01 103.64 4.88

M 33.14 6.02 31.09 7.67 34.51 8.21

Table 2. Frames per second average (FPS) and

standard deviation (SD) for sequential (S),

parallel (P) and multi-threaded (M) approaches.

Analyzing Table 2, it is possible to conclude that the

parallel approach is better than the sequential one.

However, the sequential approach is the more stable

method in relation to the frame rate average. It may

be verified by the small dispersion of the data

presented by the obtained standard deviation.

Only in the case of sample 3 the multi-threaded

approach is worse than the sequential one. There are

two points that must be considered in order to explain

that fact. The first one refers to the sample 3, which is

a special kind of sample, where the number of invalid

texels is large (see Table 1) and, therefore, the pre-

warping step effort is inferior in relation to samples 1

and 2, since only valid texels need to be processed.

The second point refers to the multi-threaded

approach, which has an overhead of three processes

being executed in a two processor system. So, it is

possible to conclude that the inherent overhead

related to the multi-threaded approach was superior

to the gain obtained by the optimization of the pre-

warping step in the case of the sample 3,

demonstrating the inferiority of the multi-threaded

approach in relation to the sequential one in this

specific case.

It is important to notice that high frame rates per

second obtained by the parallel approach do not

reflect the number of times that a warping operation

is being performed. These rates refer to the number of

times that the images are being rendering per second,

independently if a new warping operation is being

executed or not. It occurs because the warping

process is being executed in parallel to the rest of the

pipeline and, consequently, sometimes it is possible

to notice a progressive update in the rendered image

when there are many camera movements.

The superiority of the parallel approach in relation to

the multi-threaded one was already expected, since

the latter consumes a reasonable time during the

realization of the texture union operation.

The obtained visual results are presented in Figure

10, which are the same for all approaches.

Figure 9. Samples 1 (left image), 2 (right image)

and 3 (bellow image).

Figure 10. Visual results for sample 1, sample 2

and sample 3.

5 CONCLUSIONS AND FUTURE

WORKS
In order to optimize the relief texture mapping

process, two new approaches have been

implemented:

• Parallel. In the parallel approach a CPU

thread was created with the objective of resolving the

first four steps of the relief texture mapping

algorithm. Such thread is executed in parallel with the

main CPU process, using for this propose the Hyper-

Threading technology.

• Multi-Threaded: In this method, the input

texture is divided into two parts with the objective of

simultaneously running the four first steps of the

relief texture mapping algorithm for each part. It

becomes necessary a post-processing to unify both

results into a single resultant image.

It is possible to conclude that the parallelization of

the relief texture mapping considerably speeds up the

process in comparison to the conventional methods

(up to 300%), i.e., with the parallelization the relief

texture mapping may be implemented in real-time on

the CPU and thus allowing the GPU to be used only

for shading calculations. The performance and image

quality of the proposed approach are similar to the

ones obtained by Policarpo et al [Pol05].

In relation to future works, two possible

optimizations could be incorporated: utilization of a

pipeline of multi-processors in the relief texture

mapping and a variant to the multi-threaded approach

that processes rows and columns in parallel.

Furthermore, a better analysis of the warping per

second rate could be done in relation to the frame per

second rate (where wps corresponds to the number of

warpings that are being performed per second). This

analysis could allow a more efficient implementation

of the process (with less warping operations), in the

case of the wps to be larger than the fps rate.

Finally, an implementation that uses many CPU

processors could be developed in order to take more

advantages of the described techniques.

6 ACKNOWLEDGEMENTS
The authors would like to thank Fabio Policarpo for

his help during the development of this work. The

first author thanks CAPES for the scholarship used

during the development of this work. Moreover, the

second author thanks the support for the research

projects under the following contracts: CNPq Grant

PQ No. 305982/2003-6, SEPIN-CNPQ-FINEP No.

01.02.0235.00 (Ref. 2425/02) and FINEP No.

01.04.0945.00 (Ref. 3110/04).

7 REFERENCES
[Cat74] Catmull, E. A Subdivision for Computer

Display of Curved Surfaces. December 1974.

Thesis (Ph.D in Computer Science). Department

of Computer Science, University of Utha, Utha,

1974.

[Fon04] Fonseca, F.M. A. Relief Textures using Per-

Pixel Illumination and Parallel Processing.

January 2004. Dissertation (MSc in Computer

Science). Department of Computer Science,

Catholic University of Rio de Janeiro, Rio de

Janeiro, 2004 (in portuguese).

[Fuj02] Fujita, M and Kanai, T. Hardware-Assisted

Relief Texture Mapping. In: European

Association for Computer Graphics

(EUROGRAPHICS). 2002. Proceedings of the

annual conference of the European Association

for Computer Graphics Saarbrücken, Germany,

2002.

[Mar03] Marr, D. T. et al. Hyper-Threading

Technology Architecture and Microarchitecture.

Intel Technology Journal. v. 6, n. 1, p. 4-152, fev.

2003.

[Mcm97] Mcmillan, L. An Image-Based Approach

toThree-Dimensional Computer Graphics. April

1997. Thesis (Ph.D in Computer Science).

Department of Computer Science, University of

North Carolina, Chapel Hill, 1997.

[Möl02] Akenine-Möller, T.; Haines, E. Real-Time

Rendering. 2. ed. Massachusetts: A K Peters,

2002. 482 p.

[Oli00] Oliveira, M. M. de. Relief Texture Mapping.

March 2000. Thesis (Ph.D in Computer Science).

Department of Computer Science, University of

North Carolina, Chapel Hill, 1997.

[Pol05] Policarpo, F.; Oliveira, M. M.; Comba, J. L.

D. Real-time relief mapping on arbitrary

polygonal surfaces. Proceedings of the

Symposium on Interactive 3D Graphics and

Games, Washington, District of Columbia, 2005.

