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Abstract

Real-world networks are often extremely polarized because the communication between different groups of
vertices can be weak and, most of the time, only vertices within the same group or sharing the same be-
liefs communicate to each other. In this work, we introduce the minimum-cardinality edge addition problem
(MinCEAP) as a strategy for reducing polarization in real-world networks based on a principle of minimum
external interventions. We present the problem formulation and discuss its complexity, showing that its deci-
sion version is NP-complete. We also propose three integer programming formulations for the problem and
discuss computational results on artificially generated and real-life instances. Randomly generated instances
with up to 1000 vertices are solved to optimality. On the real-life instances, we show that polarization can be
reduced to the desired threshold with the addition of a few edges. The minimum intervention principle and
the methods developed in this work are shown to constitute an effective strategy for tackling polarization
issues in practice in social, interaction, and communication networks, which is a relevant problem in a world
characterized by extreme political and ideological polarization.

Keywords: polarization; minimum-cardinality edge addition problem; polarized networks; complexity; integer program-
ming

1. Motivation

The issue of polarization has been discussed by politicians, media, and researchers (The Economist,
2015; New York Times, 2017). This subject has also attracted the attention of thinkers throughout
history. John Stuart Mill claimed that dialogue across lines of political difference is a key prereq-
uisite for sustaining a democratic citizenry (Mill, 1859). Hannah Arendt also asseverated that de-
bate is irreplaceable for forming enlightened opinions that reach beyond the limits of one’s own
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subjectivity to incorporate the standpoints of others (Arendt, 1968). From sociologists to
economists, many are interested in studying the behavior and interactions in social networks that
rule the opinion formation process.

According to the Oxford Dictionaries, polarization is the division into sharply contrasting groups
or sets of opinions or beliefs (Oxford Dictionaries, 2017). Academic articles, newspapers, and the
media in general constantly report the growth of fake news, misinformation spreading, and the
polarization of increasingly isolated groups of individuals (Ribeiro and Interian, 2020). These phe-
nomena are closely interrelated with each other. Fake news spread faster in polarized networks or
groups (Ribeiro et al., 2017). At the same time, fake and tendentious news can accentuate polariza-
tion within already existing echo chambers in social networks.

Recently, the causes of the proliferation of flat-earth believers, that is, people who believe that
the Earth is actually flat, were investigated by Landrum (2019), revealing the role of the video-
sharing platform YouTube on this proliferation. This work showed that the algorithms the plat-
form uses to guide people to topics that might interest them make it easier for a user to end
up in a misinformation echo chamber. The study concludes that the most effective instrument
to combat disinformation—that is, false information spread deliberately to deceive—is to provide
(or even “to flood”) users of the platform with high-quality information, to ensure that the pub-
lic also receives accurate, scientific or simply plural information when watching videos on some
subject.

Interian and Ribeiro (2018) have shown that many case-study real-world networks are extremely
polarized. A polarized network is one divided into two or more strongly connected groups, with few
edges between vertices belonging to different groups. Communication between different groups is
weak: there are many vertices for which all or most of its neighbors belong to the same group.
In practice, this corresponds to a situation where, most of the time, only same-group vertices
communicate to each other and most of the information that a vertex can receive comes from
inside the same group to which it belongs. These groups may correspond to large cliques or quasi-
cliques (Abello et al., 1999; Pinto et al., 2018; Ribeiro and Riveaux, 2018; Vogiatzis and Walteros,
2018; Walteros et al., 2019). In such graphs, there may be an important number of vertices that are
loosely connected to other groups, that is, there may be only intragroup edges adjacent to these
vertices. Consider, for example, a network of books about U.S. politics sold by Amazon.com (New-
man, 2017). Edges between books represent frequent co-purchasing of those books by the same
buyers. Most of the books are classified as conservative or liberal, and a small number of them as
neutral. There are 105 vertices in this instance and 56 of them are adjacent only to neighbors of
the same group, as shown in Fig. 1. Another example is that of a network of political blogs that
emerged during the 2004 U.S. presidential election (Adamic and Glance, 2005). Blogs are divided
into two groups: republican and democratic. Among the 1065 nonisolated vertices in this instance,
there are 572 blogs with links exclusively to blogs of the same political orientation, as shown in
Fig. 2.

Interian (2019) also showed that, in order to reduce polarization, networks can be treated
by external interventions. An intervention can be seen as any externally induced process that
modifies the structure of the network, such as a fact-checking campaign, a marketing cam-
paign, a regulatory action, or some direct manipulation that adds or removes vertices or edges
of the network. The process of adding new vertices is often difficult to be performed in real
networks. On the other hand, removing vertices or edges may be controversial because it can
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Fig. 1. Network of books about U.S. politics sold by Amazon.com. Red, green, and blue vertices represent, respectively,
conservative, neutral, and liberal books.

Fig. 2. Network of political blogs during the 2004 U.S. presidential election. Red and blue vertices represent republican
and democratic blogs, respectively.

be interpreted as the permanent exclusion or deletion of elements such as users, sites, or posts
from a social network. This kind of intervention has been widely used in moderation sys-
tems for inspecting or removing objectionable content at the discretion of the moderator. How-
ever, such exclusions are often seen as aggressions against freedom of expression in the digital
environment.

Suppose that we have a network formed by a set of vertices V partitioned into disjoint sub-
sets V1,V2, . . . ,Vk. Two vertices that belong to the same subset Vi are called same-type vertices,
while two vertices that belong to different subsets Vi and Vj , i �= j, are called different-type vertices.
We consider the addition of edges between different-type vertices of the network as a less inva-
sive treatment method. A typical example of the use of this kind of treatment in real networks is
the suggestion of new friendship relations in social networks. By adding edges between vertices of
different groups, a supergraph containing the original graph is built. There are more connections
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between different-type vertices inside this supergraph and, consequently, intergroup communica-
tion is improved.

A new optimization problem addressing the issue of polarization reduction by edge addi-
tions is presented in this work. Other optimization problems have already used the idea of
adding edges to a graph with the goal of improving specific performance measures. Constant-
factor approximation algorithms were developed in Demaine and Zadimoghaddam (2010) for
the problem of adding k shortcut edges to the graph in order to minimize its diameter. Yu et al.
(2020) studied the problem of finding an edge set that is added to the network to maximize
the influence spread of a given vertex set, showing that the problem is NP-hard and propos-
ing a greedy algorithm to solve it. A game that models the creation of a network by self-
ish agents that benefit from shortest paths to all destinations is analyzed in Fabrikant et al.
(2003), considering that the agents pay for the links they establish. Two variants of the diam-
eter minimization problem are studied in Li et al. (1992): the minimum cardinality bounded
diameter and the bounded cardinality minimum diameter edge addition problems, where it is
shown that both problems are NP-hard even if the value of the diameter is fixed to 2. Im-
proved approximation ratios of O(log n) and 2 were proposed in Bilò et al. (2012) for both
problems, respectively. Some results were also extended to the edge-weighted versions of the
problems.

Other works in the area of the analysis of social networks explored the idea of adding edges to
a graph in order to improve its ability to disseminate information. A problem addressing the mini-
mization of the average shortest path distance between all pairs of vertices was studied in Papagelis
et al. (2011), adding a limited number of additional “ghost edges” with the objective of improving
the network efficiency of information propagation. This approach prioritizes the shortest path dis-
tance between each pair of vertices, while in the present work the connectivity between groups of
vertices that represent different opinions, ideas, or beliefs will be considered.

A measure called characteristic path length was minimized in Papagelis (2015). The characteristic
path length is another name for the average shortest path distance between all pairs of vertices.
Some properties of the problem are proved and methods for computing the utility of all candidate
edges in large graphs are described and evaluated.

Another edge recommendation problem was introduced in Garimella et al. (2017). In this case,
the goal of the recommendation is to reduce the “controversy score” of the graph, using a metric
based on random walks (Garimella et al., 2018). The controversy score relies on how controversial
a topic is or, in other words, on how much polarization it generates. The probability of acceptance
of the recommended edge is also evaluated.

In this paper, we propose the minimal intervention principle, which consists of assuming that
the lowest number of changes should be made in the original network in order to attend any pro-
posed condition for polarization reduction. We formulate the minimum-cardinality edge addition
problem (MinCEAP) and discuss integer programming formulations for its solution. Approximate
results obtained for this problem by an iterated greedy heuristic were presented by Interian and
Ribeiro (2019), while preliminary results obtained by integer programming were discussed in In-
terian et al. (2020). This work is organized as follows. In the next section, we present the problem
formulation and its complexity. Integer programming models are presented in Section 3. Computa-
tional results on randomly generated and real-life instances are discussed in Section 4. Concluding
remarks are drawn in the last Section 5.
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2. Problem formulation and complexity

2.1. Basic assumptions

Let G = (V, E ) be an undirected graph defined by a set V = {v1, . . . , vn} of vertices and a set E ⊆
V × V of edges, not necessarily connected. We use the term group to refer to any subset of the
vertex set V .

We assume that the graph G is polarized to some extent and that it is necessary to solve by
edge additions the issue of insufficient communication between groups of vertices. Furthermore,
we also assume that one specific polarized group or even a collection of polarized groups in G
have been previously detected by an external algorithm, as in Figs. 1 and 2 and in other real-life
instances presented, for example, in Interian and Ribeiro (2018). Different polarization measures
are discussed and compared, for example, by Interian and Ribeiro (2018) and can be used for
the identification of the polarized groups. Alternatively, there are a number of excellent community
detection methods in the literature that can detect such polarized groups, including, for example, the
label propagation algorithm (Raghavan et al., 2007; Speriosu et al., 2011). Here, we are interested
specifically in reducing the existing polarization between the groups.

2.2. Approach

We proposed in Section 1 the idea of adding edges to a graph in order to reduce its polarization.
In practice, it can be unrealistic to add a large number of edges to each vertex, since this kind of
intervention should be minimal. We refer to this assumption as the minimal intervention principle.
It inspired us to consider an optimization problem in which, in order to reduce the polarization of
some group of vertices, we seek to add a minimum number of edges to the graph that minimize the
distances from vertices in this group to vertices that do not belong to it.

We remark that the optimization problem we proposed in this paper aims to reducing the polar-
ization of one specific group of vertices A ⊂ V with respect to the other vertices V \ A of the graph.
Nevertheless, our approach can also be used to reduce the polarization of the graph as a whole. To
achieve this goal, we must reduce the polarization of each group separately, and then integrate the
solutions for each group into one single set of edges that reduce the polarization of graph G. In
Section 4, we further illustrate this idea.

We observe that in many (or, maybe, even in most) practical cases, there are exactly two well-
separated polarized groups in the graph. However, our approach can also be applied to cases with
any number of polarized groups.

Formally, our goal to reduce the polarization of a proper vertex subset A ⊂ V with respect to
V \ A consists in minimizing the number of edges to be added to a polarized graph in order that
any vertex in A can reach some vertex of V \ A in the resulting graph by a path with a limited
number of edges. If we denote by dG(v,V ′) the number of edges in the shortest path from a vertex
v ∈ V to the closest vertex in V ′ ⊆ V , then this problem can be formulated as

Minimum-cardinality edge addition problem (MinCEAP)
Instance: Graph G = (V, E ), subset A ⊂ V , integer D.
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Fig. 3. Example of an instance of problem MinCEAP and its solutions for two groups of vertices. Edges in each
solution are represented in orange.

Goal: Find a minimum-cardinality set E ′ ⊆ (V × V ) \ E such that dG′=(V,E∪E ′ )(v,V \ A) ≤
D, ∀v ∈ A.

An instance of MinCEAP with D = 2 is shown in Fig. 3. The vertex set V of the graph is divided
into two disjoint subsets, represented by blue and red circles, as shown in Fig. 3a. Figure 3b depicts
the solution of problem MinCEAP when set A corresponds to the blue vertices and V \ A to the
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red vertices. Similarly, Fig. 3c depicts the solution of problem MinCEAP when set A corresponds
to the red vertices and V \ A to the blue vertices. In both cases, orange edges represent the edge set
E ′ to be added. In the case of Fig. 3b, |E ′| = 1, that is, only one edge must be added between blue
and red vertices to break the polarization of the set of blue vertices with respect to the red vertices.
Similarly, in the case of Fig. 3c, |E ′| = 3, that is, three edges must be added between red and blue
vertices to break the polarization of the set of red vertices with respect to the blue vertices. Each of
these two solutions depolarizes either the blue or the red vertex subset. They can be combined into
one single edge set that depolarizes the whole graph, as it will be illustrated in Section 4.2.

2.3. Complexity

Given an integer L as an additional parameter, the decision version of MinCEAP amounts to the
question: “Is there a set E ′ ⊆ (V × V ) \ E with at most L edges such that dG′ = (V,E∪E ′ )(v,V \ A) ≤
D, ∀v ∈ A?”

To prove that MinCEAP is NP-complete, we first define the eccentricity ε(v) of a vertex v ∈ V as
the longest of the shortest paths in G from v to all other vertices in V (Harary, 1969).

Bearing this definition in mind, we introduce the minimum cardinality bounded eccentricity edge
addition problem (MCBE) (Demaine and Zadimoghaddam, 2010), which consists in reducing the
eccentricity of some vertex v by adding edges to the graph the vertex belongs. More formally, its
decision version can be stated as

Minimum cardinality bounded eccentricity edge addition problem (MCBE)
Instance: Graph G = (V, E ), source vertex s ∈ V , integer p, integer B.
Question: Is there a supergraph G′ = (V, E ∪ E ′) of G with E ′ ⊆ (V × V ) \ E such that |E ′| ≤ p

and εG′ (s) ≤ B?

Lemma 2.1. There is a concise certificate for MCBE with all edges incident to vertex s.

Proof. Let E ′ be any concise certificate for MCBE. Consider the shortest path tree T in graph
G′ = (V, E ∪ E ′) rooted at s. Each edge in the tree is traversed in the direction of the shortest path
to s. Any edge (u, v) in E ′ ∩ T used in this direction can be replaced by edge (u, s), since all vertices
that use edge (u, v) in their shortest paths to s will not have their distance to s increased, therefore
creating a new concise certificate with all edges incident to the source vertex s. �

Although the NP-completeness of MCBE has been suggested by some authors (Demaine and
Zadimoghaddam, 2010; Perumal et al., 2013), to the best of our knowledge a formal proof does
not exist. We give a proof using a polynomial reduction from the set covering problem (Garey and
Johnson, 1990):

Set covering problem (SC)
Instance: Collection C = {S1, . . . , Sm} of subsets of a finite set S = {x1, . . . , xn}, integer k.
Question: Is there a cover C′ ⊆ C such that each element of S belongs to at least one member of

C′ and |C′| ≤ k?

Theorem 2.2. MCBE is NP-complete.

© 2020 The Authors.
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Fig. 4. Example of instance used in the proof of the NP-completeness of MCBE. The concise certificate
E ′ = {(s, v1), (s, v2), (s, u3)}, highlighted in blue, is replaced by the certificate E = {(s, u1), (s, u3)},

with edges (s, v1) and (s, v2) replaced by edge (s, u1).

Proof. MCBE is in NP, since for any of its instances defined by a graph G = (V, E ), a source vertex
s ∈ V , and integers p and B, the eccentricity of the source vertex s in a supergraph G′ = (V, E ∪ E ′)
of G can be calculated in polynomial time, where E ′ ⊆ (V × V ) \ E .

We show that any instance of set covering problem can be transformed into an instance of MCBE
with B = 2. Consider an instance of the set covering problem defined by subsets S1, . . . , Sm, with
|S1 ∪ . . . ∪ Sm| = n, and by an integer k that indicates the size of the target cover C′. Build an
instance of MCBE as follows. Let G be a graph with vertex set V = {u1, . . . , um, v1, . . . , vn, s, s′}.
There is an edge between vertices u j and vi if element xi belongs to Sj . Vertices s and s′ are connected
by an edge, and vertex s′ is connected by an edge with vertices u1, . . . , um. In addition, set B = 2
and p = k.

Figure 4 illustrates an example of the construction of an instance of MCBE with B = 2 and
p = 3. Note that ε(s) = 3 and let E ′ ⊆ (V × V ) \ E be a set with at most p edges such that ε(s) ≤ 2
in G′ = (V, E ∪ E ′), that is, E ′ is a concise certificate for MCBE for this instance.

The distance from vertex s to any vertex v1, . . . , vn in G is greater than 2. From Lemma 2.1,
without loss of generality, we may pick the certificate E ′ in such a way that all its edges are incident
to s. The other extremities of the edges in E ′ necessarily belong to either {v1, . . . , vn} or {u1, . . . , um}.

To build another set E with at most p edges such that all of them are incident to {u1, . . . , um},
we replace every edge (s, vi), i = 1, . . . , n, in E ′ by an edge (s, u j ) in E , with j : xi ∈ Sj . E remains
a concise certificate for MCBE, because the distance from s to vertex vi in G = (V, E ∪ E ) is still
less than 3 for any i = 1, . . . , n for which there is an edge (s, vi) ∈ E ′. Therefore, ε(s) in G is also at
most 2.

To conclude, we note that for each vertex vi there is a vertex u j such that there is an edge in E
from s to u j , because vi is at most at distance 2 from s in G. In consequence, the edges in E are
incident to at most k vertices, each one associated with a set Sj . These k sets represent a concise
certificate for the set covering instance. �

In order to prove the NP-completeness of MinCEAP, a polynomial transformation from MCBE
is used.

Theorem 2.3. MinCEAP is NP-complete.

© 2020 The Authors.
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Proof. The problem is in NP, since the distance from any vertex v ∈ A to any vertex in V \ A can
be calculated in polynomial time.

Now, consider an instance of MCBE defined by graph G, vertex s and integers p and B, and
build an instance of MinCEAP by setting A = V \ {s} as the proper vertex subset of V . Then,
V \ A = {s}. Set D = B and L = p.

Let E ′ ⊆ (V × V ) \ E be a set with at most L edges such that all vertices in A are at a distance of
at most D from s in G′ = (V, E ∪ E ′), that is, E ′ is a concise certificate to MinCEAP. Then, adding
E ′ to G reduces the eccentricity of s to at most B = D using at most p = L edges, since the graph
G′ = (V, E ∪ E ′) is undirected. Consequently, E ′ is also a concise certificate to MCBE. �

Exact integer programming formulations for MinCEAP are developed in the next section.

3. Integer programming formulations

Given a nonoriented graph G = (V, E ), a vertex subset A ⊂ V , and a nonnegative integer D, the
optimization version of MinCEAP amounts to finding a minimum-cardinality set E ′ ⊆ (V × V ) \
E such that dG′ = (V,E∪E ′ )(v,V \ A) ≤ D, ∀v ∈ A.

3.1. Instance transformation

There are no edges in an optimal solution E ′ to MinCEAP with both extremities in V \ A because
adding edges with both extremities in V \ A would not affect the distance from any vertex in A to
those in V \ A. The following proposition holds:

Proposition 3.1. Let E ′ be a solution to MinCEAP. Let (u, v) ∈ E ′ be an edge with u ∈ A and v ∈
V \ A. Then, (E ′ \ {(u, v)}) ∪ {(u, w)}, with w ∈ V \ A and w �= v, is also a solution to MinCEAP.

Proof. Replacing edge (u, v) by edge (u, w) does not change the distance from any vertex in A to
set V \ A. �

Given a nonoriented graph G = (V, E ), a source vertex s, and a nonnegative integer B, the opti-
mization version of MCBE amounts to finding a minimum-cardinality set E ′ ⊆ (V × V ) \ E such
that εG′ = (V,E∪E ′ )(s) ≤ B.

Then, consider the following transformation from an instance of MinCEAP defined on graph
G = (V, E ), as illustrated in Fig. 5a, which creates an instance of MCBE on graph H = (VH , EH ),
as illustrated in Fig. 5b. In the transformed MCBE instance, VH = A ∪ {v′}, s = v′, and B = D, with
the dummy vertex v′ representing the collapsed set V \ A. Furthermore, for any vertex u ∈ A such
that there is an edge between u and some vertex v ∈ V \ A in G, then there is an edge between u
and v′ in H . We also observe that while the number of vertices in G = (V, E ) is |V |, there are only
|A| + 1 vertices in the graph H = (VH , EH ) that defines the MCBE instance.

We make use of this transformation to find a solution for the transformed instance of MCBE,
which is then used to obtain a solution for the original instance of MinCEAP. Let E ′

H be an optimal
solution for the transformed MCBE instance. A solution E ′ for the original instance of MinCEAP
can be obtained as follows. Let e = (u, v) ∈ E ′

H . If both u, v ∈ A, then edge e = (u, v) also belongs

© 2020 The Authors.
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Fig. 5. Instance transformation.

to E ′. In case one of the extremities—say, extremity v—of edge e coincides with v′ /∈ A, then we
chose at random a vertex w ∈ V \ A, and substitute edge e = (u, v′) in E ′

H by edge e′ = (u, w) in E ′.
Therefore, by construction, the solution E ′ obtained for MinCEAP has |E ′| = |E ′

H |.

3.2. First formulation

Any optimal solution E ′
H to problem MCBE can be seen as an oriented spanning tree of the graph

H ′ = (VH , EH ∪ E ′
H ) rooted at vertex v′. The distance from any vertex in the tree to vertex v′ should

be at most D. The arcs of the oriented spanning tree indicate the paths from each vertex to the root
v′.

This formulation makes use of a variant of the Miller–Tucker–Zemlin constraints to avoid cy-
cles (Miller et al., 1960). They create an arborescence in which each vertex v is labeled with an
integer dv. The root is labeled with dv′ = 0 and the vertices in any tree arc (v1, v2) are labeled with
dv1 > dv2 .

The edges in the optimal solution are those associated with arcs that belong to the oriented
spanning tree and not to EH .

For each vertex u �= v, we define the following decision variable:

xuv =
{

1, if arc (u, v) ∈ A × (A ∪ {v′}), belongs to the oriented spanning tree,

0, otherwise.

)

The integer variable dv indicates the label of vertex v ∈ VH . The formulation makes use of weights
defined as wuv = 0 if the associated edge (u, v) ∈ EH , wuv = 1 otherwise:

min
∑
u∈A

∑
v∈A∪{v′}

wuvxuv (1)

© 2020 The Authors.
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subject to
∑

v∈A∪{v′},v�=u

xuv = 1, ∀u ∈ A (2)

xuv + xvu ≤ 1, ∀u, v ∈ A (3)

du ≥ xuv + dv − (1 − xuv)D, ∀u ∈ A, ∀v ∈ A ∪ {v′}, u �= v (4)

du ≤ D, ∀u ∈ A (5)

du ≥ 1, ∀u ∈ A (6)

dv′ = 0, (7)

du = 1, ∀u ∈ A, v′ ∈ NH (u) (8)

xuv′ = 1, ∀u ∈ A, v′ ∈ NH (u) (9)

xuv ∈ {0, 1}, ∀(u, v) ∈ A × (A ∪ {v′}) (10)

dv ∈ {0, . . . , D}, ∀u ∈ A ∪ {v′}, (11)

with NH (u) = {v ∈ A ∪ {v′} : (u, v) ∈ EH}.
The objective function (1) minimizes the number of edges, since the weights of edges in EH are

zero. Constraints (2) indicate that an arc must come out from every vertex of A, tracing the path
(i.e., the last vertex before) to vertex v′. Constraints (3) enforce that there is at most one arc between
any pair of vertices. Constraints (4) ensure that if xuv = 1, that is, arc (u, v) belongs to the oriented
spanning tree, then du > dv. On the other hand, if xuv = 0, that is, arc (u, v) does not belong to the
oriented spanning tree, then the constraint becomes du ≥ dv − D and is satisfied for any du, dv ∈
{0, . . . , D}. Constraints (5) and (6) indicate, respectively, upper and lower bounds to the vertex
labels. Constraint (7) sets the label of vertex v′ to zero. Constraints (8) set to one the labels of the
vertices of A that are adjacent to v′, while constraints (9) set to one the variables associated with the
vertices of A that are adjacent to v′. Constraints (10) and (11) are the integrality requirements.

We observe that although the model can be solved without constraints (8) and (9), they are added
to accelerate the solution process.

3.3. Second formulation

We recall that our formulation addresses the transformed instance of MCBE on graph H =
(VH , EH ), with v′ being the dummy vertex. From Lemma 2.1, we know that there is always a solu-
tion E ′

H with all edges having v′ as one of the extremities. Therefore, the problem can be solved by
considering only this particular subset of solutions and deciding, for each vertex u, if edge (u, v′)
should be added to the graph.

© 2020 The Authors.
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Demaine and Zadimoghaddam (2010) proposed a model solving the linear feasibility problem
associated to the MCBE. The adaptation of this model to an optimization problem is described
next. The following decision variables are defined:

yu =
{

1, if there is an edge between vertex u ∈ VH and v′,
0, otherwise;

)

tuv =
{

1, if the shortest path from vertex v ∈ VH to v′ makes use of edge (u, v′),
0, otherwise.

)

If the distance between v and v′ is greater than D, then a path from v will reach v′ using any of the
vertices that are at a distance from v′ that is smaller than D. Moreover, as noted in Demaine and
Zadimoghaddam (2010), vertex v cannot use edge (u, v′) if the distance between v and u is greater
than D:

min
∑

u∈VH :(u,v′ )/∈EH

yu (12)

subject to

tuv ≤ yu, ∀u, v ∈ A (13)
∑

u:dist(u,v)<D

tuv = 1, v ∈ A, dist(v, v′) > D (14)

yu ∈ {0, 1}, ∀u ∈ A ∪ {v′} (15)

tuv ∈ {0, 1}, ∀u, v ∈ A ∪ {v′}. (16)

The objective function (12) minimizes the number of edges adjacent to vertex v′ to be added.
Constraints (13) indicate that if vertex v j reaches v′ using edge (vi, v′), then vertex vi must be counted
in the objective function. Moreover, constraint (14) expresses that if the distance between v j and v′

is greater than D, then vertex j reaches v′ using exactly one of the vertices that are at a distance to
v′ that is smaller than D. Constraints (15) and (16) are the integrality requirements.

3.4. Third formulation

In this formulation based only on 0-1 variables, we also make use of Lemma 2.1 that establishes
that there is always a solution to MCBE with all edges incident to the source vertex v′. In addition
to the variables

yu =
{

1, if there is an edge between vertex u ∈ VH and v′,
0, otherwise;

)

already used in the previous formulation, we also define

dvk =
{

1, if there is an path of size k from vertex v to vertex v′,
0, otherwise.

)
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The problem may then be formulated as

min
∑

(u,v′ )/∈EH

yu (17)

subject to

D∑
k=1

duk = 1, ∀u ∈ A (18)

du0 = 0, ∀u ∈ A (19)

D∑
k=1

dv′k = 0, (20)

dv′0 = 1, (21)

duk ≤
∑

v∈NH (u)

dvk−1, ∀u ∈ A, k ∈ {2, . . . , D} (22)

du1 = yu, ∀u ∈ A, v′ /∈ NH (u) (23)

du1 = 1, ∀u ∈ A, v′ ∈ NH (u) (24)

yu = 0, ∀u ∈ A, v′ ∈ NH (u) (25)

yu ∈ {0, 1}, ∀u ∈ A ∪ {v′} (26)

dvk ∈ {0, 1}, ∀u ∈ A ∪ {v′}, ∀k ∈ {0, . . . , D}. (27)

The objective function (17) minimizes the number of edges adjacent to vertex v′ to be added.
Constraints (18) and (19) indicate that 1 ≤ dist(u, v′) ≤ D, ∀u ∈ A. Moreover, constraints (20) and
(21) express that the distance from vertex v′ to itself is zero. Constraints (22) indicate that if the
distance from vertex u ∈ A to vertex v′ is k ≥ 2, then the distance from one of its adjacent vertices
to v′ must be k − 1. Constraints (23) ensure that for each vertex u that is not adjacent to v′ in H ,
its distance to v′ will be equal to 1 in H ′ = (VH , EH ∪ E ′

H ) if there is an edge between u and v′ in
the optimal solution. Constraints (24) and (25) fix the variables of the vertices adjacent to v′ in H .
Constraints (26) and (27) are the integrality requirements.

We now observe that the following property holds:

Proposition 3.2. Let E ′
H be an optimal solution of the MCBE problem defined by a graph H =

(VH , EH ), a source vertex v′ and a constant D, and let u ∈ VH , u �= v′ be a vertex. If dH (u, v′) = d ≤ D,
then dH ′=(VH ,EH ∪E ′

H )(u, v′) ≤ d.

Proof. Since H ′ = (VH , EH ∪ E ′
H ) is a supergraph of H = (VH , EH ), it contains all paths from u to

v′ that already exists in H . Consequently, the distance from vertex u to v′ cannot increase in H ′. �
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Table 1
Integer programming formulations: number of variables and constraints

Variables Constraints All variables binary?

First formulation O(n2) O(n2) No
Second formulation O(n2) O(n2) Yes
Third formulation O(nD) O(nD) Yes

In other words, all vertices u �= v′ with d (u, v′) ≤ D cannot be, in the optimal solution, at a dis-
tance greater than their current distance to v′.

Therefore, constraints (18) can be replaced by the constraints below in an improved formulation:

D∑
k=1

duk = 1, ∀u ∈ A, d (u, v′) > D (28)

d (u,v′ )∑
k=1

duk = 1, ∀u ∈ A, d (u, v′) ≤ D (29)

D∑
k=d (u,v′ )+1

duk = 0, ∀u ∈ A, d (u, v′) ≤ D, (30)

where constraints (28)–(30) make use of the additional information about the distances from vertex
v′ to all other vertices in graph H .

Table 1 compares the three formulations in terms of their number of variables and constraints,
where n = |VH |.

4. Numerical results

The formulations were implemented and tested using version 12.7.1 of the CPLEX solver on an
Intel Core i7 machine with a 3.2 GHz processor and 8 GB of RAM, running under the Windows
10 operating system.

4.1. Randomly generated test problems

Several experiments were performed to assess the performance of the integer programming mod-
els presented in the previous section. We created two sets of instances: small- and medium-sized
instances. The instances were generated as random graphs with two parameters: the number of
vertices n and the number of randomly generated edges m inside set A. The parameter D of the
problem is set to a small value, which is a reasonable target in practice since we want very short
paths connecting vertices of A to those in V \ A. The instances are named indicating the values of n
and m. For example, the instance named “inst_200v_4x” has n = 200 vertices and m = n × 4 = 800
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Table 2
Results for small instances with D = 2

First formulation Second formulation Third formulation

Instance Edges Time (seconds) Solved? Edges Time (seconds) Solved? Edges Time (seconds) Solved?

inst_100v_1x 29 0.091 Yes 29 0.047 Yes 29 0.013 Yes
inst_100v_2x 19 0.285 Yes 19 0.174 Yes 19 0.049 Yes
inst_100v_4x 9 1.167 Yes 9 0.053 Yes 9 0.028 Yes
inst_100v_8x 3 1.029 Yes 3 0.037 Yes 3 0.024 Yes
inst_100v_16x 1 1.303 Yes 1 0.034 Yes 1 0.034 Yes

inst_200v_1x 75 0.310 Yes 75 0.145 Yes 75 0.005 Yes
inst_200v_2x 42 0.469 Yes 42 0.149 Yes 42 0.007 Yes
inst_200v_4x 17 6.754 Yes 17 0.391 Yes 17 0.110 Yes
inst_200v_8x 7 9.108 Yes 7 0.278 Yes 7 0.069 Yes
inst_200v_16x 1 27.874 Yes 1 0.103 Yes 1 0.021 Yes

inst_500v_1x 177 2.146 Yes 177 0.960 Yes 177 0.043 Yes
inst_500v_2x 100 8.139 Yes 100 1.024 Yes 100 0.067 Yes
inst_500v_4x 45 171.620 Yes 45 21.182 Yes 45 3.177 Yes
inst_500v_8x 20 101.572 Yes 20 6.104 Yes 20 0.324 Yes
inst_500v_16x 7 250.697 Yes 7 1.053 Yes 7 0.038 Yes

inst_1000v_1x 362 1690.160 Yes 362 4.335 Yes 362 0.057 Yes
inst_1000v_2x 253 3610.160 (No) 197 5.064 Yes 197 0.083 Yes
inst_1000v_4x 187 3607.410 (No) 97 166.762 Yes 97 9.414 Yes
inst_1000v_8x 53 3647.120 (No) 38 1963.990 Yes 38 50.929 Yes
inst_1000v_16x 17 3618.540 (No) 12 4.127 Yes 12 0.129 Yes

inst_1500v_1x 571 3642.440 (No) 544 11.897 Yes 544 0.058 Yes
inst_1500v_2x 425 3651.650 (No) 294 12.627 Yes 294 0.277 Yes
inst_1500v_4x 292 3688.460 (No) 141 3607.990 (No) 139 3602.090 (No)
inst_1500v_8x 201 3647.860 (No) 62 3611.450 (No) 62 3602.940 (No)
inst_1500v_16x 100 3654.160 (No) 15 9.635 Yes 15 0.132 Yes

inst_2000v_1x 875 3736.490 (No) 702 22.718 Yes 702 0.110 Yes
inst_2000v_2x 1800 3784.000 (No) 390 25.002 Yes 390 0.329 Yes
inst_2000v_4x 475 3677.580 (No) 186 3617.370 (No) 186 3601.790 (No)
inst_2000v_8x 1800 4301.730 (No) 83 3623.620 (No) 78 3601.030 (No)
inst_2000v_16x 492 3862.770 (No) 19 22.158 Yes 19 0.137 Yes

edges in set A. The number of vertices and edges outside set A is not relevant for the problem trans-
formation we considered, since all vertices in V \ A are replaced by a single vertex v′.

4.1.1. Experiments with D = 2
Tables 2 and 3 contain the experimental results with D = 2 for the small and medium instances,
respectively. For each instance and formulation, the tables display the number of added edges in
the best solution found by the solver, the running time in seconds, and an indication whether the
instance was solved to optimality or not within a time limit of 3600 seconds.

Table 2 shows that the third formulation outperforms the others, solving to optimality all small
instances with up to 1000 vertices in much smaller running times.

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



R. Interian et al. / Intl. Trans. in Op. Res. 28 (2021) 1242–1264 1257

Table 3
Results for medium-sized instances with D = 2

Second formulation Third formulation

Instance Edges Time (seconds) Solved? Edges Time (seconds) Solved?

inst_3000v_4x 286 3776.23 (No) 280 3600.78 (No)
inst_3000v_8x 118 3723.63 (No) 115 3600.71 (No)

inst_4000v_4x 384 3963.45 (No) 373 3600.53 (No)
inst_4000v_8x 157 4176.90 (No) 153 3600.59 (No)

inst_5000v_4x – – (No) 472 3600.57 (No)
inst_5000v_8x – – (No) 200 3600.57 (No)

inst_6000v_4x – – (No) 573 3600.42 (No)
inst_6000v_8x – – (No) 240 3600.32 (No)

inst_7000v_4x – – (No) 674 3600.56 (No)
inst_7000v_8x – – (No) 278 3600.46 (No)

inst_8000v_4x – – (No) 766 3600.62 (No)
inst_8000v_8x – – (No) 306 3600.47 (No)

inst_9000v_4x – – (No) 863 3600.66 (No)
inst_9000v_8x – – (No) 368 3600.49 (No)

inst_10000v_4x – – (No) 976 3600.86 (No)
inst_10000v_8x – – (No) 398 3600.72 (No)

Table 3 reports the results for the second and third formulations for the medium-sized instances
where the number of edges is four or eight times the number of vertices because for them the optimal
solution is not quickly reached. The third formulation obtains better results when the number of
vertices increases. We also observe that the memory space requirements of the second formulation
increase very quickly with the number of vertices, making it impractical on a machine with a limited
amount of memory space: not even feasible solutions were found for the instances with 5000 or
more vertices due to memory limitations.

Table 4 illustrates the variation of the linear relaxation gap for the instances with 1000 and 2000
vertices with the increase in the number of edges. For the same instances, Fig. 6 displays the evolu-
tion of the absolute gap when the number of edges increases. We observe that the largest absolute
gap values are reached when the number of edges is 5 or 6 times greater than the number of vertices.
For the same instances, the third—and the best—formulation takes the longest times to reach the
optimum. Therefore, instances with these densities seem to be the hardest to be solved by integer
programming techniques.

Another observation that can be drawn from Table 4 is that the higher is the density of each of
the polarized groups of vertices in a network, the smaller is the number of edges that should be
added in the optimal solution, which makes these problems easier to be solved in practice.

4.1.2. Experiments with D = 3
Tables 5 and 6 contain the experimental results with D = 3 for the small and medium-sized in-
stances, respectively, comparing the second and third formulations.
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Table 4
Linear relaxation gap on the instances with 1000 and 2000 vertices

Third formulation Third formulation, LP relaxation

Instance Edges Time (seconds) Solved? Edges Time (seconds) Solved? Gap = x−y�
x

inst_1000v_1x 362 0.057 Yes 362 0.027 Yes 0
inst_1000v_2x 197 0.148 Yes 196.29 0.034 Yes 0
inst_1000v_3x 130 15.463 Yes 127.44 0.043 Yes 0.015
inst_1000v_4x 97 9.488 Yes 93.84 0.041 Yes 0.031
inst_1000v_5x 72 779.852 Yes 66.79 0.058 Yes 0.069
inst_1000v_6x 59 3600.98 (No) 53.41 0.053 Yes 0.085
inst_1000v_7x 47 574.383 Yes 42.36 0.064 Yes 0.085
inst_1000v_8x 38 51.265 Yes 34.42 0.041 Yes 0.079
inst_1000v_9x 33 144.737 Yes 30.14 0.029 Yes 0.061
inst_1000v_10x 27 3.942 Yes 24.05 0.029 Yes 0.074
inst_1000v_11x 23 0.408 Yes 21.07 0.044 Yes 0.043
inst_1000v_12x 17 0.102 Yes 15.89 0.026 Yes 0.059
inst_1000v_13x 15 0.120 Yes 13.80 0.023 Yes 0.067
inst_1000v_14x 13 0.125 Yes 12.57 0.024 Yes 0
inst_1000v_15x 10 0.078 Yes 9.53 0.023 Yes 0
inst_1000v_16x 12 0.129 Yes 10.62 0.024 Yes 0.083

inst_2000v_1x 702 0.110 Yes 702 0.056 Yes 0
inst_2000v_2x 390 0.329 Yes 388.74 0.099 Yes 0.003
inst_2000v_3x 253 3603.000 (No) 247.14 0.195 Yes 0.020
inst_2000v_4x 186 3601.790 (No) 175.42 0.224 Yes 0.054
inst_2000v_5x 140 3601.060 (No) 127.42 0.273 Yes 0.086
inst_2000v_6x 117 3600.940 (No) 104.79 0.205 Yes 0.103
inst_2000v_7x 94 3601.130 (No) 84.51 0.146 Yes 0.096
inst_2000v_8x 78 3601.030 (No) 69.77 0.132 Yes 0.103
inst_2000v_9x 58 3601.710 (No) 52.59 0.099 Yes 0.086
inst_2000v_10x 50 459.184 Yes 45.72 0.078 Yes 0.080
inst_2000v_11x 46 3433.460 Yes 40.89 0.084 Yes 0.109
inst_2000v_12x 38 6.289 Yes 35.41 0.069 Yes 0.053
inst_2000v_13x 32 4.755 Yes 29.50 0.071 Yes 0.063
inst_2000v_14x 25 0.507 Yes 23.12 0.069 Yes 0.040
inst_2000v_15x 22 0.469 Yes 20.73 0.072 Yes 0.045
inst_2000v_16x 19 0.137 Yes 17.84 0.067 Yes 0.053

Although both formulations are able to solve to optimality all small instances with up to 1000
vertices, Table 5 shows that the third formulation outperforms the second, showing much smaller
running times.

Table 6 reports the results for the second and third formulations for the medium-sized instances,
where the number of edges is four or eight times the number of vertices. We recall that for these
instances the optimal solution was not quickly reached with D = 2. As before, the third formula-
tion obtains better results when the number of vertices increases. Once again, the memory space
requirements of the second formulation increase very quickly with the number of vertices: feasi-
ble solutions could not be found even for one of the instances with 4000 vertices due to memory
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Fig. 6. Variation of the absolute linear relaxation gaps with the increase in the number of edges: on horizontal axis, the
ratio m/n between the number of edges and vertices in set A.

limitations. On the other hand, the third formulation seems to scale well and is able to
exactly solve in less than two seconds even the largest—and the hardest—instances with
10,000 vertices.

4.2. Real networks and interpretation

We also applied the solution approach proposed in Section 2 to the two real-life instances that
appear in Figs. 1 and 2: books and blogs, respectively. The third formulation of problem MinCEAP
described in Section 3 was solved for both instances.
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Table 5
Results for small instances with D = 3

Second formulation Third formulation

Instance Edges Time (seconds) Solved? Edges Time (seconds) Solved?

inst_100v_1x 19 0.068 Yes 19 0.033 Yes
inst_100v_2x 6 0.054 Yes 6 0.030 Yes
inst_100v_4x 1 0.039 Yes 1 0.012 Yes
inst_100v_8x 0 0.022 Yes 0 0.029 Yes
inst_100v_16x 0 0.026 Yes 0 0.014 Yes

inst_200v_1x 51 0.154 Yes 51 0.047 Yes
inst_200v_2x 16 0.140 Yes 16 0.042 Yes
inst_200v_4x 0 0.080 Yes 0 0.023 Yes
inst_200v_8x 0 0.078 Yes 0 0.033 Yes
inst_200v_16x 0 0.077 Yes 0 0.014 Yes

inst_500v_1x 111 1.001 Yes 111 0.094 Yes
inst_500v_2x 30 1.159 Yes 30 0.122 Yes
inst_500v_4x 4 1.026 Yes 4 0.052 Yes
inst_500v_8x 0 0.465 Yes 0 0.076 Yes
inst_500v_16x 0 0.467 Yes 0 0.024 Yes

inst_1000v_1x 230 5.051 Yes 230 0.170 Yes
inst_1000v_2x 59 4.799 Yes 59 0.693 Yes
inst_1000v_4x 6 4.179 Yes 6 0.106 Yes
inst_1000v_8x 0 2.694 Yes 0 0.056 Yes
inst_1000v_16x 0 2.898 Yes 0 0.051 Yes

inst_1500v_1x 349 15.656 Yes 349 0.209 Yes
inst_1500v_2x 93 13.410 Yes 93 0.513 Yes
inst_1500v_4x 5 11.090 Yes 5 0.098 Yes
inst_1500v_8x 0 6.964 Yes 0 0.089 Yes
inst_1500v_16x 0 6.638 Yes 0 0.070 Yes

inst_2000v_1x 447 34.370 Yes 447 0.352 Yes
inst_2000v_2x 111 39.215 Yes 111 0.539 Yes
inst_2000v_4x 7 21.304 Yes 7 0.155 Yes
inst_2000v_8x 0 26.740 Yes 0 0.120 Yes
inst_2000v_16x 0 19.238 Yes 0 0.092 Yes

Table 7 shows the results. We note that the number of edges in the solution that solves optimally
each instance is very small in each case. The intervention associated with the addition of these edges
to the graph represents, indeed, a small increase of less than 1% in the number of edges. This fact
reflects the minimum intervention principle proposed in the problem formulation, showing that
polarization can be reduced by small modifications in the structure of the graph.

The political books instance of Fig. 1 (Newman, 2017) was used to illustrate the solution of
problem MinCEAP. The number of edge additions needed to solve MinCEAP for conservative
and liberal groups is equal to 1 and 2, respectively, as shown in Table 7. This implies that there
is one vertex (let it be vc

1) in the conservative group that will be connected to some vertex in the
liberal group, and that there are two vertices (let us say vl

1 and vl
2) in the liberal group that will

be connected to vertices in the conservative group. Consequently, the solution for the entire graph
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Table 6
Results for medium-sized instances with D = 3

Second formulation Third formulation

Instance Edges Time (seconds) Solved? Edges Time (seconds) Solved?

inst_3000v_4x 10 131.932 Yes 10 0.237 Yes
inst_3000v_8x 0 81.040 Yes 0 0.188 Yes

inst_4000v_4x – – (No) 12 0.367 Yes
inst_4000v_8x 0 180.414 Yes 0 0.300 Yes

inst_5000v_4x – – (No) 21 0.498 Yes
inst_5000v_8x – – (No) 0 0.379 Yes

inst_6000v_4x – – (No) 22 0.601 Yes
inst_6000v_8x – – (No) 0 0.510 Yes

inst_7000v_4x – – (No) 34 0.879 Yes
inst_7000v_8x – – (No) 0 0.608 Yes

inst_8000v_4x – – (No) 30 0.948 Yes
inst_8000v_8x – – (No) 0 0.750 Yes

inst_9000v_4x – – (No) 38 1.149 Yes
inst_9000v_8x – – (No) 0 0.916 Yes

inst_10000v_4x – – (No) 43 1.579 Yes
inst_10000v_8x – – (No) 0 1.040 Yes

Table 7
Results for real-life instances

Third formulation

Instance Group Vertices Edges Solution Time (seconds) Solved?

Books Conservative 50 420 1 0.006 Yes
Liberal 44 376 2 0.018 Yes
Neutral 14 44 0 0.014 Yes

Blogs Republican 637 9352 8 0.048 Yes
Democratic 589 8805 17 0.014 Yes

has two edges connecting vl
1 and vl

2 to two vertices in the conservative group, one of which is vc
1.

This solution is shown in Fig. 7. Conservative and liberal groups are represented by red and blue
vertices, respectively, and the two new orange edges represent the solution of problem MinCEAP
for conservative and liberal groups.

These results also illustrate that edge additions make it possible to break the isolation of polar-
ized groups by providing them with more plural information coming from other groups, as noted
in Landrum (2019).

5. Concluding remarks

The concerns about the increasing polarization of society, the lack of dialogue across groups with
different political sympathies, and the absence of debate in the face of the growing subjectivity of
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Fig. 7. Network of books about U.S. politics sold by Amazon.com with two new orange edges representing the solution
of problem MinCEAP for conservative and liberal groups.

the people and the media led us to set out this study of the polarization process that is taking place
in different countries of the world. As a result, we introduced the MinCEAP problem as a strategy
for reducing polarization in real-world networks.

We proved the NP-completeness of its decision version. We also proposed three new integer
programming formulations for the optimization version, discussing computational results on both
randomly generated and real-life instances. On the real-life instances, we showed that polarization
can be reduced to the desired threshold with the addition of a few edges, as established by the
minimum intervention principle that guided the problem formulation.

Another interesting conclusion is that in strongly polarized groups, there is often some easy way
of spreading polarization-breaking information. This is a consequence of the fact that the higher
the density of a polarized group of vertices in a network, the smaller is the number of edges in the
optimal solution, as previously observed in Section 4.1 from the results in Table 4.

This study also shows that using edge additions, completely isolated groups mentioned in Lan-
drum (2019) can start receiving more plural information, that is, information coming from more
than one group. Therefore, as suggested, disinformation can be broken by providing users a
way to encounter diverse views of those practiced by members of the same groups they are
trapped in.

Future work involves the study of graph properties that might lead to improvements in the ef-
ficiency of exact approaches, as well as the development of heuristic methods for handling hard
instances that cannot be solved by exact methods.

Issues such as capital punishment, abortion, and extremist political ideologies cause a deep divi-
sion in society. Today, we observe an almost total absence of dialogue between different worldviews,
which probably cannot explain, by themselves, the complexity of the real world.

In addition, the polarization in modern society is exacerbated by sophisticated recommenda-
tion systems, which lead us to believe even more in what we already believe. If someone fol-
lows some political trend, for example, and only receives publications, books, or friendships
recommendations, or even electoral advertising from candidates related to the same trend, he
or she will be increasingly convinced that this trend is the only legitimate one (Ribeiro and
Interian, 2020).
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A minimal regulation on social networks, such as proposed by the minimum intervention prin-
ciple that guided the approach proposed in this work, and the exact methods developed here con-
stitute an effective strategy for tackling polarization problems in real social, interaction, and com-
munication networks. Our methodology makes it possible to build concrete tools and strategies to
address these problems in practice, allowing the users to get out of the echo chambers created and
reinforced by polarization.
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