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Abstract. The problem of routing and wavelength assignment (RWA) in
wavelength division multiplexing (WDM) optical networks consists in routing

a set of lightpaths and assigning a wavelength to each of them, such that light-
paths whose routes share a common fiber are assigned different wavelengths.
This problem was shown to be NP-hard when the objective is to minimize the
total number of wavelengths used. We propose a genetic algorithm with ran-
dom keys for routing and wavelength assignment with the goal of minimizing
the number of different wavelengths used in the assignment. This algorithm
extends the best heuristic in the literature by embedding it into an evolution-
ary framework. Computational results show that the new heuristic improves
the state-of-the-art algorithms in the literature.

1. Introduction

Information is transmitted in optical networks through optical fibers as optical
signals. Each link operates at a speed in the order of terabits per second, which is
much faster than the currently available electronic devices for signal reception and
transmission. Wavelength division multiplexing (WDM) allows more efficient use of
the huge capacity of optical fibers, as far as it permits the simultaneous transmission
of different channels along the same fiber, each of them using a different wavelength.
An all-optical point-to-point connection between two nodes is called a lightpath. It
is characterized by its route and the wavelength with which it is multiplexed. Two
lightpaths may use the same wavelength, provided they do not share any common
fiber. Such networks require a large number of available wavelengths, especially
when wavelength conversion is not available.

Given an optical network and a set of lightpaths to be established, the problem
of routing and wavelength assignment (RWA) in WDM optical networks consists in
routing the set of lightpaths and assigning a wavelength to each lightpath, such that
lightpaths whose routes share a common fiber are assigned different wavelengths.
Variants of RWA are characterized by different optimization criteria and traffic
patterns, see e.g. [7, 29]. We consider the min-RWA offline variant, in which all
lightpath requests are known beforehand and no wavelength conversion is available,
i.e. a lightpath must be assigned the same wavelength on all fibers in its route.
The objective is to minimize the total number of wavelengths used. This problem
is also referred to as the path coloring problem. Erlebach and Jansen [9] showed
that min-RWA is NP-hard.
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We propose new heuristics for min-RWA that improve state-of-the-art approxi-
mate algorithms for small and medium size real instances and for large size artificial
instances that cannot be efficiently solved by exact algorithms found in the liter-
ature [19, 20] due to the large number of variables and constraints in the integer
programming formulations.

The paper is organized as follows. Related work is reviewed in Section 2. The
new heuristic is proposed in Section 3. Computational experiments are reported in
Section 4. Concluding remarks are drawn in the last section.

2. Related work

Different heuristics have been proposed for solving min-RWA. Some approaches
decompose the problem into two subproblems, the routing subproblem and the
wavelength assignment subproblem [3, 17, 22, 25], while others tackle the two sub-
problems simultaneously [23, 27]. A functional classification of RWA heuristics can
be found in [7].

Bannerjee and Mukherjee [3] tackled the problem in two phases. First, one
route is computed for each lightpath by a randomized rounding algorithm. Then,
a wavelength is assigned to each lightpath with a greedy heuristic for coloring
the conflict graph. This graph is built with one vertex corresponding to each
lightpath and an edge between every pair of vertices whose corresponding routes
share a common fiber in the network. Hyytiä and Virtamo [17] followed the same
decomposition strategy, but used different algorithms in each phase. The routes
are computed by a shortest path algorithm and several heuristics are applied to
solve the wavelength assignment subproblem. Their numerical results point to a
tabu search [16] heuristic as the best for wavelength assignment.

Manohar, Manjunath, and Shevgaonkar [23] developed Greedy-EDP-RWA, the
first heuristic to tackle both subproblems simultaneously. At each iteration, a sub-
set of lightpaths is selected and routed with edge disjoint paths by the BGAforEDP

heuristic for the maximum edge disjoint path (EDP) problem [21]. Then, all light-
paths in this subset are assigned the same wavelength, and the procedure is repeated
with the remaining lightpaths. The authors reported that their algorithm was much
faster than other algorithms in the literature and found solutions as good as those
obtained by the other algorithms.

Li and Simha [22] proposed another two-phase decomposition strategy for solv-
ing min-RWA. First, one or more candidate routes are computed for each lightpath.
Then, a precomputed route and a wavelength are assigned to each lightpath by solv-
ing an instance of the partition coloring problem (PCP) defined over a partitioned
conflict graph. Vertices in this graph correspond to candidate routes and there
is an edge between each pair of vertices whose associated routes share a common
fiber. The set of vertices is partitioned such that all vertices associated with the
same lightpath are placed in the same subset of the partition. The PCP consists in
selecting one vertex (route) from each subset of the partition and assigning a color
(wavelength) to each of the selected vertices, such that two selected vertices shar-
ing an edge have different colors and the total number of colors used is minimum.
Li and Simha [22] showed that the decision version of PCP is NP-complete. A
branch-and-cut algorithm for solving the partition coloring problem was proposed
in [10].
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Noronha and Ribeiro [25] followed the same decomposition scheme suggested by
Li and Simha [22], but proposed new algorithms for each phase. They call their
scheme 2-EDR+TS-PCP. First, at most two alternative routes are precomputed for
each lightpath by an EDP-based heuristic called 2-EDR. Then, a route (among those
precomputed) and a wavelength are assigned to each lightpath by the tabu search
heuristic TS-PCP. TS-PCP starts with a feasible initial solution S with D colors,
provided by the greedy heuristic onestepCD [22]. Then, a new (possibly infeasible)
solution S′ using D−1 colors is built from S. Next, TS-PCP attempts to restore the
feasibility of S′. If successful, the procedure is restarted from S′ and attempts to
improve the solution by removing another color. If a stopping criterion is satisfied
and solution S′ is still infeasible, the procedure halts and the best feasible solution
found is returned. Computational experiments show that, when compared with the
multi-start heuristic Greedy-EDP-RWA, 2-EDR+TS-PCP found better solutions within
the same computation times and was also more robust and stable.

Skorin-Kapov [27] proposed the current state-of-the-art heuristics for min-RWA.
Each wavelength is associated with a different copy of a bidirected graph G = (V, A)
that represents the physical topology of the optical network. Vertices in V and arcs
in A represent the network nodes and fibers, respectively. Lightpaths that are arc-
disjointly routed on the same copy of G are assigned the same wavelength. Copies
of G are associated with the bins and lightpaths with the items of an instance of
the bin packing problem. Therefore, min-RWA can be reformulated as the problem
of packing all the lightpath requests in a minimum number of bins.

Let T denote the set of lightpath requests and, for i = 1, . . . , |T |, let min-
length(i) be the number of hops in the path with the smallest number of arcs
between the endnodes of ligthpath i in G. The min-length values will only be used
for sorting the lightpaths in the heuristics described next, even though the light-
paths are not necessarily routed on shortest paths. This occurs because whenever
a lightpath is routed on a copy of G (or, equivalently, placed in the corresponding
bin), all arcs in its route are deleted from this copy to avoid that other lightpaths
use them. Therefore, the next lightpaths routed in this copy of G might be routed
on a path that is not a shortest path in the original graph G.

Four min-RWA heuristics based on classical bin packing heuristics were developed
in [27]: (i) FF-RWA, based on the first fit heuristic, (ii) BF-RWA, based on the best fit

heuristic, (iii) FFD-RWA, based on the first fit decreasing heuristic, and (iv) BFD-RWA,
based on the best fit decreasing heuristic. Computational results show that FFD-RWA
and BFD-RWA outperform Greedy-EDP-RWA [23]. However, as we note below, the
reported running times turned out to be high.

Noronha, Ribeiro, and Resende [24] studied algorithms and data structures for
the efficient implementation of the heuristics in [27] and reevaluated their behavior
on a broader set of test instances. The best results were obtained by BFD-RWA. The
longest running times of the best implementation of BFD-RWA took less than three
seconds, while the times reported for the same heuristic in [27] took up to eight
minutes on the same instances and the same Pentium IV 2.8 GHz hardware.

The pseudo-code of BFD-RWA is presented in Figure 1. The inputs are the graph
G, the set T of lightpath requests, a vector π = [ π(1), . . . , π(|T |) ] describing the
order in which the lightpaths are considered (π(i) ∈ {1, . . . , |T |} and π(i) 6= π(j),
for any i, j = 1, . . . , |T |), and the value d of the maximum number of arcs in each
route. This bound was introduced in [23] to avoid lightpath routes that use a
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large number of arcs in a given copy of G. As suggested in [27], the maximum
number of links in each route was set to be the maximum between the square root
of the number of links in the network and the diameter of G, defined as the longest
shortest path between any two nodes in G. The output is a set S of tuples (pi, ωi),
for i = 1, . . . , |T |, where pi is the route associated with lightpath i and ωi is the
wavelength with which it is multiplexed.

BFD-RWA is applied with the vector π = [ π(1), . . . , π(|T |) ] corresponding to the
lightpaths taken in non-increasing order of their min-length values, i.e., π(k) =
argmax{min-length(i) : i ∈ T \ {π(1), π(2), . . . , π(k − 1)}}, for any k = 1, . . . , |T |.
Ties between two lightpaths with the same min-length value are broken arbitrarily.
The intuition behind this ordering is that long lightpaths are harder to be routed
and therefore should be routed first. The sets S (pairs formed by the route and the
wavelength assigned to each lightpath) and Ω (copies of G or, equivalently, bins)
are initialized in line 1. The lightpaths are routed one at a time and assigned a
wavelength in lines 2 to 12. If there is no feasible path available for arc-disjointly
routing lightpath π(i) using at most d arcs in any of the copies of G in Ω, then a
new copy is created in line 5 and added to set Ω in line 6. The copy of the graph G
in which lightpath π(i) can be routed using the smallest number of arcs is found in
line 8. In line 9, lightpath π(i) is placed in route pπ(i) associated with the shortest
path between the endnodes of π(i) in this copy of G and assigned wavelength ωπ(i).
The pair (pπ(i), ωπ(i)) is added to the current partial solution in line 10 and all arcs
in route pπ(i) used by lightpath π(i) are deleted from this copy of G in line 11.

procedure BFD-RWA(G, T , d, π)
1. Set S ← ∅ and Ω← ∅;
2. for i = 1, . . . , |T | do

3. if there is no (arc-disjoint) path available for routing π(i) with less
than d arcs in any of the copies of G in Ω

4. then do

5. Create a new copy of G;
6. Add to Ω the new copy of G;
7. end-if

8. Find the copy of G in Ω where lightpath π(i) can be routed with the
smallest number of arcs;

9. Let pπ(i) be the shortest path between the endnodes of lightpath π(i)
in this copy of G and ωπ(i) be its corresponding wavelength;

10. S ← S ∪ (pπ(i), ωπ(i));
11. Delete all arcs in path pπ(i) from this copy of G;
12. end-for;
13. return S;
end BFD-RWA.

Figure 1. Pseudo-code of the BFD-RWA heuristic.

3. Biased random-key genetic algorithm

The biased random-key genetic algorithm [15] is based on Bean [4] and is mo-
tivated by its successful applications to many combinatorial optimization prob-
lems [5, 6, 8, 15, 11, 12, 13, 14]. The algorithm evolves a population of chromosomes
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that are used to break ties. These chromosomes are vectors of real numbers (called
keys) in the range [0, 1] that are randomly generated in the initial population. The
fitness of the chromosome is given by the cost of the solution found by a decoding
heuristic that receives the vector of random keys as input and outputs a feasible
solution with its corresponding cost.

We use the parameterized uniform crossover scheme proposed in [28] to combine
two parent solutions and produce an offspring solution. In this scheme the offspring
inherits each of its keys from the best fit of the two parents with probability 0.7
and from the least fit parent with probability 0.3. This genetic algorithm does not
make use of the standard mutation operator, where parts of the chromosomes are
changed with small probability. Instead, the concept of mutants is used. In each
generation, a fixed number of mutant solutions are introduced in the population.
They are generated in the same way as the initial population. As with mutation,
mutants play the role of helping the procedure to escape from local optima.

At each new generation, the population is partitioned into two sets: TOP and
REST . Consequently, the size of the population is |TOP | + |REST |. The best
solutions are kept in TOP while the others are placed in REST . As illustrated in
Figure 2, the chromosomes in TOP are copied, without change, to the population
of the next generation. The new mutants are placed in set BOT . The remaining
elements of the new population are obtained by crossover with one parent randomly
chosen from TOP and the other from REST . This distinguishes a biased random-
key GA from the random-key GA of Bean [4]. In the latter both parents are
selected at random from the entire population. Since a parent solution can be
chosen for crossover more than once in a given generation, elite solutions have a
higher probability of passing their random keys to the next generation. In this way,
|REST | − |BOT | offspring solutions are created. The sizes of sets TOP , REST ,
and BOT are parameters that must be tuned.

We refer to the biased random-key genetic algorithm for routing and wavelength
assignment as GA-RWA. In this algorithm, there is one key associated with each
lightpath. The decoding consists of two steps. First, the lightpaths are sorted in
non-increasing order of the sum of their min-length and key values. Therefore, the
relative order between lightpaths with the same min-length value is defined by their
keys. The resulting order is used as the vector π in BFD-RWA (see the pseudo-code
in Figure 1). The number of wavelengths found by BFD-RWA using this order is used
as the fitness of the chromosome. The algorithm stops when a maximum elapsed
time is reached or when a solution as good as a given target is found.

For sake of comparison with previous work in the literature, we propose a multi-
start variant of BFD-RWA. At each generation of the multi-start procedure, the
heuristic BFD-RWA is run with the permutation π of lightpath requests generated at
random. The algorithm we call MS-RWA stops when a maximum number of iterations
is reached. Through the evolutionary process, GA-RWA identifies the relationships
between keys and good solutions, converging to better solutions faster than MS-RWA

and the Tabu Search heuristic proposed in [25], as we will see in the next section.

4. Computational experiments

Three sets of test instances were used in the computational experiments. Sets Y
and Z correspond to the largest and most difficult instances proposed in [24], while
set W is a collection of the most studied realistic instances in the literature. All
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Figure 2. Illustration of the transitional process between con-
secutive generations of the genetic algorithm with random keys.
Current population is sorted from best to worst fitness. The best
fit individuals are place in set TOP while the other are placed in
set REST . Individuals in set TOP are copied unchanged to next
population. Mutant individuals are generated at random in a sim-
ilar way as the initial population is generated and are placed in set
BOT in the next population The remaining individuals of the next
population are generated by repeatedly applying the crossover op-
erator to randomly selected individuals from the set TOP in the
current population and randomly selected individuals from the set
REST in the current population.

network topologies are connected and each link corresponds to a pair of bidirected
fibers. The traffic matrices are asymmetric, i.e. there might be a lightpath request
from a node i to a node j, while not from j to i.

Set Y is formed by randomly generated instances with 100 nodes. The proba-
bility Pe that there is a link (a pair of bidirected arcs) between a pair of nodes is
equal to 0.03, 0.04, or 0.05, and the probability Pl that there is a lightpath request
between a pair of nodes is equal to 0.2, 0.4, 0.6, 0.8, or 1.0. The nodes in networks
generated with Pe equal to 0.04 or 0.05 have degree at least 2. The diameters of
the networks with Pe equal to 0.05, 0.04, and 0.03 are, respectively, 5, 6, and 7.
Fifteen groups with five instances each have been randomly generated combining
each possible value of Pe and Pl.

Set Z correspond to instances on n × m grids embedded on a torus. Each node
is connected only to its nearest four nodes. Figure 3 gives the example of a 3 × 4
grid. Five grid networks with approximately 100 nodes (10 × 10, 8 × 13, 6 × 17,
5 × 20, 4 × 25) each were generated. For each network, five traffic matrices were
randomly generated with probability Pl equal to 0.2, 0.4, 0.6, 0.8, or 1.0 that there
is a lightpath request between a pair of nodes.

We highlight the fact that even if it might be easy to find solutions for some
min-RWA instances using D wavelengths, it can be often very difficult to find a
better using only D − 1 wavelengths, in particular when D is close to the optimal
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number of wavelengths. Therefore, any reduction in the number of wavelengths
may be significant.

Figure 3. Example of a 3 × 4 grid topology.

Set W is a collection of the most studied instances derived from real networks.
Their topologies and traffic matrices follow the patterns and sizes of real telecom-
munication networks. The topology of the Finland network was obtained from [17]
and its traffic matrix was the same used in [25]. Instances EON, NSF, and NSF2 and
their respective traffic matrices have been downloaded downloaded from [18]. In-
stances ATT and ATT2 [24] resemble backbone networks of a large tier-1 Internet
Service Provider.

Heuristics 2-EDR+TSPCP [25], BFD-RWA [27], MS-RWA, and GA-RWA were imple-
mented in C++ and compiled with the gnu gcc compiler version 4.0.3 with no
compiler code optimization. The first and third batch of experiments were per-
formed on a 3.4 GHz Pentium IV, while the second batch was performed on a
1.5 GHz Intel Itanium 2. CPU times are reported in seconds. Solution quality
is displayed as the relative gap (ub-lb)/lb between the cost ub of the solution
provided by the heuristic and a lower bound lb for the optimal cost, calculated as
suggested in [3]. The lower bound is obtained by solving the linear relaxation of
a multicommodity flow formulation equivalent to min-RWA without the wavelength
continuity constraints. This formulation uses less variables than the traditional
RWA formulations [19, 20]: its linear relaxation is faster to compute and the lower
bounds are close to the optimal solution of min-RWA [3].

The first batch of experiments addresses the performances of the greedy heuristic
BFD-RWA and of the multi-start heuristic MS-RWA for all the 112 instances in sets Y ,
Z, and W . The stopping criterion of MS-RWA was set to 1000 iterations.

Numerical results for set Y are reported in Table 1. The first four columns
give the name, the number of nodes, the value of Pe, and the value of Pl for each
group of five instances. The next two columns present the average gaps and the
average execution times of BFD-RWA over five runs for each of the five instances,
with different seeds for the random number generator [26]. The same results are
reported for MS-RWA in the last two columns. We observe that, as expected, MS-RWA
improved solution quality with respect to BFD-RWA. The average gap obtained with
MS-RWA was only 6.5%, while the gap obtained with BFD-RWA was 8.4%. Moreover,
MS-RWA provided optimality certificates (i.e., solutions for which the lower and upper
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Table 1. Experimental results with BFD-RWA and MS-RWA for test
set Y .

BFD-RWA MS-RWA

Group nodes Pe Pl gap (%) time (s) gap (%) time (s)

Y.3.20 100 0.03 0.2 14.1 0.1 11.8 73.3
Y.4.20 100 0.04 0.2 14.7 0.1 11.1 59.7
Y.5.20 100 0.05 0.2 7.6 0.1 3.2 48.6
Y.3.40 100 0.03 0.4 11.3 0.2 9.3 174.8
Y.4.40 100 0.04 0.4 10.6 0.2 8.8 142.3
Y.5.40 100 0.05 0.4 5.0 0.1 2.7 108.0
Y.3.60 100 0.03 0.6 8.6 0.3 7.3 305.4
Y.4.60 100 0.04 0.6 8.9 0.3 7.8 245.2
Y.5.60 100 0.05 0.6 5.6 0.2 2.9 180.9
Y.3.80 100 0.03 0.8 7.3 0.5 6.1 455.5
Y.4.80 100 0.04 0.8 8.0 0.4 7.0 368.1
Y.5.80 100 0.05 0.8 5.3 0.3 3.4 263.0
Y.3.100 100 0.03 1.0 6.7 0.7 6.0 630.2
Y.4.100 100 0.04 1.0 8.0 0.5 6.9 500.7
Y.5.100 100 0.05 1.0 4.0 0.4 3.0 359.9

Average: 8.4 0.3 6.5 261.0

bounds match) for 36 of the 75 instances in set Y , while BFD-RWA found optimal
solutions for only 24 of them.

Table 2 presents numerical results for set Z. The first four columns give the
name, the number of nodes, the degree of the nodes, and the value of Pl for each
instance. The next two columns present the average gaps and the average execution
times over five runs of BFD-RWA. The same information is reported for MS-RWA in
the last two columns. Although the average solution gaps for set Z were smaller
than those for set Y , no optimality certificate was obtained by either heuristic.
For this set, the average improvement in solution quality observed for MS-RWA with
respect to BFD-RWA was only 1%. However, as mentioned before, any decrease in
the number of wavelengths is significant.

Numerical results for instance set W are reported in Table 3. The first three
columns give the name, the number of nodes, and the number of links for each
instance, while the next two columns give the total number of lightpath requests of
the instance and the maximum number of lightpath requests from the same node.
The sixth and seventh columns display the average gaps and the average compu-
tation times over five runs of BFD-RWA, respectively. The same data is reported
for MS-RWA in the last two columns. For this set of instances, the solution gaps
obtained with MS-RWA were almost half as large as those found by BFD-RWA. Fur-
thermore, MS-RWA provided optimality certificates for six out of the twelve instances
(EON, ATT2, NSF.48, NSF2.1, NSF2.3, and NSF2.48), while BFD-RWA found optimal
solutions only for two of them (EON and NSF2.48).

The second batch of experiments evaluates and compares the performances of
algorithms MS-RWA and GA-RWA. Six versions of algorithm GA-RWA were evaluated,
with different values for the population size and the number of chromosomes in
sets TOP , REST , and BOT . The three first versions (V1, V2, and V3) have their
population size equal to n, while the other versions (V4, V5, and V6) have their
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Table 2. Experimental results with BFD-RWA and MS-RWA for test
set Z.

BFD-RWA MS-RWA

Group nodes degree Pl gap (%) time (s) gap (%) time (s)

Z.4×25.20 100 4 0.2 4.5 0.1 3.0 99.9
Z.5×20.20 100 4 0.2 3.3 0.1 1.9 84.1
Z.6×17.20 102 4 0.2 6.8 0.1 4.5 73.2
Z.8×13.20 104 4 0.2 9.1 0.1 9.1 57.4
Z.10×10.20 100 4 0.2 19.3 0.1 18.5 46.2
Z.4×25.40 100 4 0.4 3.3 0.2 2.4 218.1
Z.5×20.40 100 4 0.4 4.4 0.2 3.0 184.8
Z.6×17.40 102 4 0.4 5.7 0.2 4.5 160.8
Z.8×13.40 104 4 0.4 7.9 0.1 6.3 124.4
Z.10×10.40 100 4 0.4 16.5 0.1 15.7 97.1
Z.4×25.60 100 4 0.6 3.1 0.4 2.1 371.1
Z.5×20.60 100 4 0.6 3.0 0.3 2.6 310.8
Z.6×17.60 102 4 0.6 4.8 0.3 3.9 272.2
Z.8×13.60 104 4 0.6 6.7 0.2 5.2 207.6
Z.10×10.60 100 4 0.6 15.6 0.2 14.3 159.2
Z.4×25.80 100 4 0.8 2.3 0.6 1.2 529.3
Z.5×20.80 100 4 0.8 2.9 0.5 2.0 446.5
Z.6×17.80 102 4 0.8 3.7 0.4 3.2 394.0
Z.8×13.80 104 4 0.8 5.3 0.3 4.2 300.3
Z.10×10.80 100 4 0.8 13.6 0.3 12.6 225.7
Z.4×25.100 100 4 1.0 2.7 0.7 2.2 703.2
Z.5×20.100 100 4 1.0 3.2 0.6 2.8 596.6
Z.6×17.100 102 4 1.0 3.7 0.6 3.2 526.9
Z.8×13.100 104 4 1.0 4.9 0.5 4.2 416.1
Z.10×10.100 100 4 1.0 14.7 0.3 13.5 295.1

Average: 6.8 0.3 5.8 276.0

Table 3. Experimental results with BFD-RWA for test set W .

Lightpaths BFD-RWA MS-RWA

Instance nodes links total max. gap (%) time (s) gap (%) time (s)

Finland 31 51 930 1 3.0 0.0 2.2 9.6
EON 20 39 374 2 0.0 0.0 0.0 2.1
ATT 90 137 359 5 32.0 0.0 24.0 19.8
ATT2 71 175 4456 34 2.1 0.2 0.7 140.8
NSF.1 14 21 284 3 6.4 0.0 4.5 0.9
NSF.3 14 21 258 3 8.2 0.0 4.5 0.8
NSF.12 14 21 551 6 8.9 0.0 4.7 1.8
NSF.48 14 21 547 6 3.4 0.0 2.0 1.8
NSF2.1 14 22 284 3 5.7 0.0 0.0 0.8
NSF2.3 14 22 258 3 6.7 0.0 0.0 0.8
NSF2.12 14 22 551 6 6.3 0.0 2.9 1.7
NSF2.48 14 22 547 6 1.5 0.0 0.0 1.7

Average: 7.0 0.0 3.8 15.2

population size equal to 2 × n, where n is the number of nodes in the network.
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Versions V1 and V4 have |TOP | < |BOT | (with |TOP | = 0.01 × n and |BOT | =
0.02 × n), while V2 and V5 have |TOP | > |BOT | (with |TOP | = 0.25 × n and
|BOT | = 0.05 × n). The other two versions V3 and V6 have |TOP | = |BOT | =
0.15 × n.

For the next experiments, a subset of the hardest among the 112 instances studied
were selected as follows. First, we increased the stopping criterion of MS-RWA to
10,000 iterations and performed five runs for each instance with different seeds of
the random number generator. The cost of the best solution found in the five runs
was set as the target cost. Then, we selected the instances for which MS-RWA could
not find a solution at least as good as the target within the first 1,000 iterations.
Thirty instances were selected: 14 from set Y , ten from set Z, and six from set
W . We notice that the remaining instances are not necessarily easy just because
MS-RWA could find a solution at least as good as the target within the first 1,000
iterations, since this target could still be far from the cost of an optimal solution.

MS-RWA and the six versions of GA-RWA were run 200 times on each instance with
different seeds of the random number generator. In this experiment, the heuristics
were made to stop whenever a solution with cost smaller than or equal to the target
was found. The computational results are presented in Table 4. The first column
presents the name of the instance. The next column gives the gap (target−lb)/lb.
The third column reports the average time for MS-RWA to find a solution at least
as good as the target. The average times to reach the target for the six versions
of GA-RWA are displayed in the last six columns as a percent deviation from the
corresponding MS-RWA time.

Among the six versions of GA-RWA, V2 resulted in the best choice of parameters.
This variant improved the performance of MS-RWA by 23% on average. For the
hardest instance (Z.4x25.60), MS-RWA took on average 13,583 seconds to reach the
target, while GA-RWA took only 60% of this time. Among the 30 instances tested,
BFD-RWAwas faster than V2 only on two instances (Z.10x10.20 and Finland). Con-
sidering only the set W of realistic instances, the time-to-target values of GA-RWA

were on average approximately two thirds of those of MS-RWA.
The same results can be observed in Figures 4 to 6, where we plotted the em-

pirical probability distributions of the time-to-target-solution-value observed for
MS-RWA and GA-RWA for six instances from those in Table 4. To plot the empirical
distribution for both heuristics, we followed the methodology described in [1, 2].
We associated with the i-th smallest running time ti a probability pi = (i− 1

2 )/200,
and plotted the points zi = (ti, pi), for i = 1, . . . , 200. The more to the left is a
plot, the better is the algorithm corresponding to it. We observe that GA-RWA out-
performs MS-RWA for all the instances plotted in Figures 4 to 6 except Z.10x10.20
(Figures 5b). However, the plots are very close for this instance, while GA-RWA is
much better than MS-RWA for the others.

The last experiments address the performances of algorithms 2-EDR+TS-PCP and
GA-RWA with a time limit of 10 minutes on the computation time. For each instance,
Table 5 displays its name, the lower bound for the cost of the optimal solution, and
the minimum, average, and maximum solution gaps obtained with 2-EDR+TS-PCP

and GA-RWA over five runs with different seeds for the random number generator.
The average gaps observed with GA-RWAwere smaller than those of 2-EDR+TS-PCP

for 29 out of the 30 instances. The average gap over all instances in Table 5 is only
9.3% for GA-RWA, which almost doubles to 17.1% in the case of 2-EDR+TS-PCP.
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Table 4. Time-to-target experiment for MS-RWA and different ver-
sions of GA-RWA.

target MS-RWA GA-RWA/MS-RWA (%)
Instance gap (%) time (s) V1 V2 V3 V4 V5 V6

Y.4.20.4 5.3 118.0 97.2 96.4 99.3 90.5 91.0 90.4
Y.3.40.5 11.3 2913.4 86.8 75.3 81.7 84.0 90.8 81.7
Y.3.60.5 11.7 1307.4 92.8 91.8 95.0 98.3 88.6 95.8
Y.4.60.5 18.4 233.6 96.7 97.2 103.0 86.9 103.6 100.6
Y.5.60.1 9.1 2262.7 90.3 73.6 80.3 86.9 68.8 74.2
Y.3.80.1 15.1 3036.2 87.9 78.3 102.8 97.3 90.2 93.0
Y.3.80.5 8.7 632.4 89.4 84.3 87.3 95.3 87.9 99.9
Y.4.80.1 55.3 194.1 75.8 78.3 78.9 89.0 88.1 85.8
Y.4.80.5 15.4 981.1 73.4 62.4 84.7 82.9 88.0 83.5
Y.5.80.1 9.3 3066.4 62.8 41.8 59.0 52.2 42.1 50.5
Y.5.80.2 0.0 8538.7 66.8 53.1 60.8 63.1 45.4 59.8
Y.4.100.1 18.4 238.3 93.8 89.1 98.9 75.8 80.7 84.3
Y.5.100.1 5.5 754.7 81.5 80.1 77.4 86.8 79.7 81.2
Y.5.100.2 1.4 1330.4 62.2 54.3 64.7 64.7 62.9 67.2

Z.10x10.20 14.8 329.6 120.5 118.5 119.0 110.6 102.2 98.2
Z.6x17.40 3.6 388.8 104.3 82.9 98.2 89.0 83.8 95.1
Z.4x25.60 1.6 13583.2 65.8 59.8 70.3 67.3 68.1 65.8
Z.10x10.60 13.0 1282.3 90.1 94.1 95.7 91.4 90.6 92.9
Z.4x25.80 1.2 739.9 76.4 72.7 78.2 75.3 86.5 82.7
Z.5x20.80 2.0 145.6 81.3 77.1 86.6 89.6 91.7 87.2
Z.6x17.80 2.9 422.8 69.5 72.5 70.9 76.8 73.7 75.2
Z.8x13.80 3.9 604.9 94.1 76.4 84.6 91.5 78.6 98.6
Z.10x10.80 11.7 6522.1 89.7 94.7 94.1 90.0 94.2 83.6
Z.5x20.100 2.4 3181.5 101.4 96.6 89.4 102.3 105.9 112.5

Finland 0.0 237.0 89.3 101.7 100.0 94.7 98.6 95.2
ATT 20.0 24.9 74.9 64.8 63.6 65.7 63.4 65.9
ATT2 0.0 1584.6 62.2 54.5 63.7 72.4 53.1 73.0
NSF.3 0.0 355.7 110.5 78.8 86.3 81.9 78.0 87.7
NSF.12 2.6 32.8 97.2 62.6 70.4 57.4 50.3 58.1

NSF2.12 0.0 1370.3 83.5 46.4 64.0 52.3 31.9 42.9

Average: 8.8 1880.4 85.6 77.0 83.6 82.1 78.6 82.1

GA-RWA converges faster and finds better solutions than 2-EDR+TS-PCP, specially
on the largest instances. This is due to the fact that the number of nodes in the
conflict graph that must be colored by TS-PCP grows with the number of lightpaths
requests. Instances in sets Y and Z have up to 9, 900 lightpath requests. Since
procedure 2-EDR selects up to two alternative routes for each request, the conflict
graphs that must be colored by heuristic TS-PCP have up to 19,800 nodes. If we
consider the average gaps on the instances from set W , which are much smaller
than those in sets Y and Z, the average for 2-EDR+TS-PCP is 4.5%, while the same
value for GA-RWA is 4.0%.
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Figure 4. Time-to-target plots for two instances in set Y : (a) instance Y.5.80.1 with target gap equal to 9.3%, and
(b) instance Y.5.100.2 with target gap equal to 1.4%.
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Figure 5. Time-to-target plots for two instances in set Z: (a) instance Z.4x25.60 with target gap equal to 1.6%,
and (b) instance Z.10x10.20 with target gap equal to 14.8%.
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Figure 6. Time-to-target plots for two instances in set W : (a) instance ATT with target gap equal to 20.0%, and (b)
instance ATT2 with target gap equal to 0.0%.
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Table 5. Minimum, average, and maximum solution gaps in per-
cent for GA-RWA and 2-EDR+TS-PCP using 10 minutes of processing
time. The number of lightpaths used by each heuristic can be
calculated as UB = (1 + gap) · LB.

2-EDR+TS-PCP GA-RWA

Instance LB min (%) avg (%) max (%) min (%) avg (%) max (%)

Y.4.20.4 19 10.5 13.7 15.8 5.3 6.3 10.5
Y.3.40.5 53 13.2 14.7 15.1 11.3 12.8 13.2
Y.3.60.5 77 13.0 15.1 16.9 11.7 12.5 13.0
Y.4.60.5 49 24.5 25.3 26.5 18.4 18.4 18.4
Y.5.60.1 33 18.2 21.2 24.2 9.1 9.7 12.1
Y.3.80.1 106 17.9 18.7 20.8 15.1 15.5 16.0
Y.3.80.5 104 12.5 12.7 13.5 8.7 8.8 9.6
Y.4.80.1 47 63.8 65.1 68.1 55.3 55.3 55.3
Y.4.80.5 65 21.5 22.2 23.1 15.4 16.0 16.9
Y.5.80.1 43 20.9 21.9 23.3 9.3 11.2 11.6
Y.5.80.2 59 6.8 8.1 8.5 1.7 1.7 1.7
Y.4.100.1 76 38.2 40.0 43.4 18.4 18.4 18.4
Y.5.100.1 55 23.6 30.5 36.4 5.5 5.5 5.5
Y.5.100.2 73 16.4 21.1 30.1 1.4 1.6 2.7

Z.10x10.20 27 22.2 25.2 25.9 14.8 15.6 18.5
Z.6x17.40 84 7.1 7.6 8.3 3.6 4.0 4.8
Z.4x25.60 192 5.7 5.9 6.3 1.6 2.0 2.1
Z.10x10.60 77 20.8 21.3 22.1 13.0 13.2 14.3
Z.4x25.80 257 9.7 10.5 11.3 1.2 1.3 1.6
Z.5x20.80 205 14.6 15.5 17.6 2.0 2.0 2.0
Z.6x17.80 171 15.2 16.8 19.3 2.9 3.0 3.5
Z.8x13.80 129 14.7 15.8 17.1 3.9 3.9 3.9
Z.10x10.80 103 26.2 27.6 29.1 11.7 12.4 12.6
Z.5x20.100 250 2.8 8.6 15.6 2.8 2.8 2.8

Finland 46 2.2 2.2 2.2 0.0 0.4 2.2
ATT 20 10.0 11.0 15.0 20.0 20.0 20.0
ATT2 113 0.9 1.1 1.8 0.0 0.0 0.0
NSF.3 22 4.5 4.5 4.5 0.0 0.9 4.5
NSF.12 38 2.6 4.2 7.9 2.6 2.6 2.6

NSF2.12 35 2.9 4.0 5.7 0.0 0.6 2.9

Average: 15.4 17.1 19.2 8.9 9.3 10.1

5. Concluding remarks

We proposed a simple, robust, and efficient genetic algorithm for min-RWA. It
extends the best heuristics in the literature, 2-EDR+TS-PCP and BFD-RWA, by em-
bedding the latter into a multi-start and evolutionary framework. The numerical
results showed that the new heuristic improved the state-of-the-art algorithms in
the literature.

We observed in the computational experiments that the multi-start heuristic
MS-RWA was able to improve the results of BFD-RWA. Finally, we also observed that
the genetic algorithm GA-RWA identifies the relationships between keys and good
solutions, converging to better solutions in 23% less time on average than MS-RWA.
The average solution gap observed with GA-RWA was almost 50% of that presented
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by 2-EDR+TS-PCP. The experiments also illustrated the robustness of the genetic
algorithm, since all versions of GA-RWA (using different parameter settings) obtained
good and similar results.
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