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Abstract Real-world networks are often extremely polarized, because the
communication between different groups of vertices can be weak and, most of
the time, only vertices within the same groups or sharing the same beliefs com-
municate to each other. In this work, we introduce the Minimum-Cardinality
Balanced Edge Addition Problem (MinCBEAP) as a strategy for reducing
polarization in real-world networks based on a principle of minimum external
interventions. We present the problem formulation and discuss its complexity,
showing that its decision version is NP-complete. We also propose three integer
linear programming formulations for the problem and discuss computational
results on artificially generated and real-life instances. Randomly generated
instances with up to 1000 vertices are solved to optimality. On the real-life
instances, we show that polarization can be reduced to the desired threshold
with the addition of a few edges. The minimum intervention principle and the
methods developed in this work are shown to constitute an effective strategy
for tackling polarization issues in practice in social, interaction, and commu-
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nication networks, which is a relevant problem in a world characterized by
extreme political and ideological polarization.

Keywords Polarization · Minimum-cardinality balanced edge addition
problem · Polarized networks · Complexity · Integer programming

1 Motivation

The issue of polarization has been discussed by politicians, media, and re-
searchers [8,25]. This subject has also attracted the attention of thinkers
throughout history. John Stuart Mill, an important philosopher and politi-
cal theorist, claimed that dialogue across lines of political difference is a key
prerequisite for sustaining a democratic citizenry [16]. Hannah Arendt also
asseverated that debate is irreplaceable for forming enlightened opinions that
reach beyond the limits of one’s own subjectivity to incorporate the stand-
points of others [4]. From sociologists to economists, many are interested in
studying the behavior and interactions in social networks that rule the opinion
formation process.

According to the Oxford Dictionaries, polarization is the division into
sharply contrasting groups or sets of opinions or beliefs [7]. Academic arti-
cles, newspapers, and the media in general constantly report the growth of
fake news, misinformation spreading, and polarization of increasingly isolated
groups of individuals. These phenomena are closely interrelated with each
other. Fake news spread faster in polarized networks or groups [24]. At the
same time, fake and tendentious news can accentuate polarization within al-
ready existing echo chambers in the social networks.

Recently, the causes of the proliferation of flat-earth believers, i.e., people
who believe that the Earth is actually flat, were investigated by Landrum [14],
revealing the role of the video-sharing platform YouTube on this prolifera-
tion. This work showed that the algorithms the platform uses to guide people
to topics that might interest them makes it easier for a user to end up in
a misinformation echo chamber. The study concludes that the most effective
instrument to combat disinformation – i.e., false information spread deliber-
ately to deceive – is to provide (or even “to flood”) users of the platform with
quality information, to ensure that the public also receives accurate, scientific
or simply plural information when watching videos on some subject.

Interian and Ribeiro [13] have shown that many case-study real-world net-
works are extremely polarized. A polarized network is divided into two or
more strongly connected groups, with few edges between vertices belonging to
different groups. Communication between different groups is weak: there are
many vertices for which all or most of its neighbors belong to the same group.
In practice, this corresponds to a situation where, most of the time, only same-
group vertices communicate to each other and most of the information that
a vertex can receive comes from inside the same group to which it belongs.
These groups may correspond to large cliques or quasi-cliques [1,2,22,23,26,
27].
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Interian and Ribeiro also showed in [13] that in order to reduce polariza-
tion, networks can be treated by external interventions. An intervention can
be seen as any externally-induced process that modifies the structure of the
network, such as a fact-checking campaign, a marketing campaign, a regula-
tory action or some direct manipulation that adds or removes vertices or edges
of the network. The process of adding new vertices is often difficult to be per-
formed in real networks. On the other hand, removing vertices or edges may
be controversial, because it can be interpreted as the permanent exclusion or
deletion of elements such as users, sites, or posts from a social network. This
kind of intervention has been widely used in moderation systems for inspecting
or removing objectionable content at the discretion of the moderator and such
exclusions are often seen as aggressions against freedom of expression in the
digital environment.

Suppose that we have a network formed by a set of vertices V partitioned
into disjoint subsets V1, V2, . . . , Vk. Two vertices that belongs to the same sub-
set Vi are called same-type vertices, while two vertices that belong to different
subsets Vi and Vj , i 6= j, are called different-type vertices. We consider the ad-
dition of edges between different-type vertices of the network as a less invasive
treatment method. A typical example of the use of this kind of treatment in
real networks is the suggestion of new friendship relations in social networks.
By adding edges between vertices of different groups, a super-graph containing
the original graph is built. There are more connections between different-type
vertices inside this super-graph and, consequently, inter-group communication
is improved.

A new optimization problem addressing the issue of polarization reduc-
tion by edge additions is presented in this work. Other optimization prob-
lems have already used the idea of adding edges to a graph with the goal of
improving specific performance measures. Constant-factor approximation al-
gorithms were developed in [6] for the problem of adding k shortcut edges
to the graph in order to minimize its diameter. A game that models the
creation of a network by selfish agents that benefit from shortest paths to
all destinations is analyzed in [9], considering that the agents pay for the
links they establish. Two variants of the diameter minimization problem are
studied in [15]: the minimum-cardinality-bounded-diameter and the Bounded-
cardinality-minimum-diameter edge addition problems, where it is shown that
both problems are NP-hard even if the value of the diameter is fixed to 2.
Improved approximation ratios of O(log n) and 2 were proposed in [5] for both
problems, respectively. Some results were also extended to the edge-weighted
versions of the problems.

Other works in the area of analysis of social networks explored the idea of
adding edges to a graph in order to improve its ability to disseminate infor-
mation. A problem addressing the minimization of the average shortest path
distance between all pairs of vertices was studied in [20], adding a limited num-
ber of additional “ghost edges” with the objective of improving the network
efficiency of information propagation. This approach prioritizes the shortest
path distance between each pair of vertices, while in the present work the con-
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nectivity between groups of vertices that represent different opinions, ideas, or
beliefs is analyzed.

A measure called characteristic path length was minimized in [19]. The
characteristic path length is another name for the average shortest path dis-
tance between all pairs of vertices. Some properties of the problem are proved
and methods for computing the utility of all candidate edges in large graphs
are described and evaluated.

Another edge recommendation problem was introduced in [11]. In this case,
the goal of the recommendation is to reduce the “controversy score” of the
graph, using a metric based on random walks. The controversy score relies
on how controversial a topic is or, in other words, on how much polarization
it generates. The probability of acceptance of the recommended edge is also
evaluated.

In this article, we propose the minimal intervention principle, which con-
sists in assuming that the lowest number of changes should be made in the
original network in order to attend any proposed condition for polarization re-
duction. We formulate the minimum-cardinality balanced edge addition prob-
lem and discuss integer programming formulations for its solution. This work
is organized as follows. In the next section, we present the problem formulation
and its complexity. Integer programming models are presented in Section 3.
Computational results on randomly generated and real-life instances are dis-
cussed in Section 4. Concluding remarks are drawn in the last Section 5.

2 Problem formulation and complexity

Let G = (V,E) be a graph defined by a set V = {v1, . . . , vn} of vertices and a
set E ⊆ V × V of edges. We use the term group to refer to any subset of the
vertex set V .

We assume that graph G is polarized to some extent and it is necessary to
solve the issue of insufficient communication between the groups. The reduc-
tion of the polarization in a polarized graph can be treated and formulated as
a mathematical optimization problem is discussed next.

2.1 Minimum-cardinality balanced edge addition problem

Interian and Ribeiro [13] observed that, in many graphs, there may be an im-
portant number of vertices that are not connected to other groups, i.e., there
may be only intra-group edges adjacent to these vertices. Consider, for exam-
ple, a network of books about U.S. politics sold by Amazon.com [18]. Edges
between books represent frequent copurchasing of those books by the same
buyers. Most of the books are classified as conservative or liberal, and a small
number of them as neutral. There are 105 vertices in this instance and 56 of
them are adjacent only to neighbors of the same group, as shown in Figure 1.
Another example is that of a network of political blogs that emerged dur-
ing the 2004 U.S. presidential election [3]. Blogs are divided into two groups:
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republican and democratic. Among the 1065 non-isolated vertices in this in-
stance, there are 572 blogs with links exclusively to blogs of the same political
orientation, as shown in Figure 2.

Fig. 1: Network of books about U.S. politics sold by Amazon.com. Red, green,
and blue vertices represent, respectively, conservative, neutral and liberal
books.

Fig. 2: Network of political blogs during the 2004 U.S. presidential election.
Red and blue vertices represent republican and democratic blogs, respectively.

In practice, it can be unrealistic to add an expressive number of edges for
each vertex, since this kind of intervention should be minimal. We refer to this
assumption as the minimal intervention principle. These statement led us to
consider the following optimization problem, in which we seek to minimize the
number of edges to be added to a polarized graph in order that any vertex in
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a proper vertex subset A ⊂ V can reach some vertex of V \A in the resulting
graph by a path with a limited number of edges. If we denote by dG(v, V ′) the
minimum number of edges in a path from a vertex v of graph G to any vertex
in V ′ ⊆ V , then this problem can be formulated as:

Minimum-cardinality Balanced Edge Addition Problem (MinCBEAP)
Instance: Graph G = (V,E), subset A ⊂ V , integer D.
Goal: Find a minimum-cardinality set E′ ⊆ (V × V ) \ E such that

dG′=(V,E∪E′)(v, V \A) ≤ D, ∀v ∈ A.

Given an integer L as an additional parameter, the decision version of
MinCBEAP amounts to the question: “Is there a set E′ ⊆ (V × V ) \ E with
at most L edges such that dG′=(V,E∪E′)(v, V \A) ≤ D, ∀v ∈ A?”

To prove that MinCBEAP is NP-complete, we first define the eccentricity
ε(v) of a vertex v ∈ V as the longest of the shortest paths in G from v to all
other vertices in V [12].

Bearing this definition in mind, we introduce the Minimum-cardinality-
bounded-eccentricity edge addition problem [6] (MCBE), which consists in
reducing the eccentricity of some vertex v by adding edges to the graph the
vertex belongs. More formally, its decision version can be stated as:

Minimum-cardinality-bounded-eccentricity edge addition prob-
lem (MCBE)

Instance: Graph G = (V,E), source vertex s ∈ V , integer p, integer B.
Question: Is there a supergraph G′ = (V,E ∪ E′) of G with E′ ⊆ (V ×

V ) \ E such that |E′| ≤ p and εG′(s) ≤ B?

Lemma 1 There is a concise certificate for MCBE with all edges incident to
vertex s.

Proof Let E′ be any concise certificate for MCBE. Consider the shortest-path
tree T in graph G′ = (V,E∪E′) rooted at s. Each edge in the tree is traversed
in the direction of the shortest path to s. Any edge (u, v) in E′∩T used in this
direction can be replaced by edge (u, s), since all vertices that use edge (u, v)
in their shortest paths to s will not have their their distance to s increased,
therefore creating a new concise certificate with all edges incident to the source
vertex s.

Although the NP-completeness of MCBE has been suggested by some
authors [6][21], to the best of our knowledge a formal proof does not exist.
We give a proof using a polynomial reduction from the set covering problem
[10]:

Set covering problem (SC)
Instance: Collection C = {S1, . . . , Sm} of subsets of a finite set S =

{x1, . . . , xn}, integer k.
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Question: Is there a cover C ′ ⊆ C such that each element of S belongs to
at least one member of C ′ and |C ′| ≤ k?

Theorem 1 MCBE is NP-complete.

Proof MCBE is in NP, since for any of its instances defined by a graph G =
(V,E), a source vertex s ∈ V , and integers p and B, the eccentricity of the
source vertex s in a supergraph G′ = (V,E ∪ E′) of G can be calculated in
polynomial time, where E′ ⊆ (V × V ) \ E.

We show that any instance of set covering problem can be transformed into
an instance of MCBE with B = 2. Consider an instance of the set covering
problem defined by subsets S1, . . . , Sm, with |S1∪. . .∪Sm| = n, and by an inte-
ger k that indicates the size of the target cover C ′. Build an instance of MCBE
as follows. Let G be a graph with vertex set V = {u1, . . . , um, v1, . . . , vn, s, s′}.
There is an edge between vertices uj and vi if element xi belongs to Sj . Vertices
s and s′ are connected and vertex s′ is connected with vertices u1, . . . , um. In
addition, set B = 2 and p = k.

Figure 3 illustrates an example of the construction of an instance of MCBE
with B = 2 and p = 3. Note that ε(s) = 3 and let E′ ⊆ (V × V ) \ E be a
set with at most p edges such that ε(s) ≤ 2 in G′ = (V,E ∪ E′), i.e., E′ is a
concise certificate for MCBE for this instance.

Fig. 3: Example of instance used in the proof of the NP-completeness of MCBE.
The concise certificate E′ = {(s, v1), (s, v2), (s, u3)}, highlighted in blue, is
replaced by the certificate E = {(s, u1), (s, u3)}, with edges (s, v1) and (s, v2)
replaced by edge (s, u1).

The distance from vertex s to any vertex v1, . . . , vn in G is greater than 2.
From Lemma 1, without loss of generality, we may pick the certificate E′ in
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such a way that all its edges are incident to s. The other extremities of the
edges in E′ necessarily belong to either {v1, . . . , vn} or {u1, . . . , um}.

To build another set E with at most p edges such that all of them are
incident to {u1, . . . , um}, we replace every edge (s, vi), i = 1, . . . , n, in E′ by
an edge (s, uj) in E, with j : xi ∈ Sj . E remains a concise certificate for
MCBE, because the distance from s to vertex vi in G = (V,E ∪E) is still less
than 3 for any i = 1, . . . , n for which there is an edge (s, vi) ∈ E′. Therefore,
ε(s) in G is also at most 2.

To conclude, we note that for each vertex vi there is a vertex uj such that
there is an edge in E from s to uj , because vi is at most at distance 2 from s
in G. In consequence, the edges in E are incident to at most k vertices, each
one associated with a set Sj . These k sets represent a concise certificate for
the set covering instance.

In order to prove the NP-completeness of MinCBEAP, a polynomial trans-
formation from MCBE is used:

Theorem 2 MinCBEAP is NP-complete.

Proof The problem is in NP, since the distance from any vertex v ∈ A to any
vertex in V \A can be calculated in polynomial time.

Now, consider an instance of MCBE defined by graph G, vertex s and
integers p and B, and build an instance of MinCBEAP by setting A = V \{s}
as the proper vertex subset of V . Then, V \A = {s}. Set D = B and L = p.

Let E′ ⊆ (V ×V )\E be a set with at most L edges such that all vertices in
A are at a distance of at most D from s in G′ = (V,E∪E′), i.e., E′ is a concise
certificate to MinCBEAP. Then, adding E′ to G reduces the eccentricity of s
to at most B = D using at most p = L edges, since the graph G′ = (V,E∪E′)
is undirected. Consequently, E′ is also a concise certificate to MCBE.

Exact integer programming approaches for the Minimum-cardinality bal-
anced edge addition problem are developed in the next section.

3 Integer programming formulations

Given a non-oriented graph G = (V,E), a vertex subset A ⊂ V , and a non-
negative integer D, the optimization version of MinCBEAP amounts to finding
a minimum cardinality set SG ⊆ (V ×V )\E such that dG′=(V,E∪SG)(v, V \A) ≤
D, ∀v ∈ A.

3.1 Instance transformation

There are no edges in an optimal solution SG to MinCBEAP with both ex-
tremities in V \A, because adding edges with both extremities in V \A would
not affect the distance from any vertex in A to those in V \A.

The following proposition holds:
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Proposition 1 Let SG be a solution to MinCBEAP. Let (u, v) ∈ SG be an
edge with u ∈ A and v ∈ V \A. Then, (SG\{(u, v)})∪{(u,w)}, with w ∈ V \A
and w 6= v, is also a solution to MinCBEAP.

Proof Replacing edge (u, v) by edge (u,w) does not change the distance from
any vertex in A to set V \A.

Given a non-oriented graph G = (V,E), a source vertex s, and a non-
negative integer B, the optimization version of MCBE amounts to finding a
minimum cardinality set SH ⊆ (V × V ) \ E such that εG′=(V,E∪SH)(s) ≤ B.

Then, consider the following transformation from an instance of MinCBEAP
defined on graph G = (V,E), as illustrated in Figure 4a, that creates an in-
stance of MCBE on graph H = (VH , EH), as illustrated in Figure 4b. In the
transformed MCBE instance, VH = A ∪ {v′}, s = v′, and B = D, with the
dummy vertex v′ representing the collapsed set V \ A. Furthermore, for any
vertex u ∈ A such that there is an edge between u and some vertex v ∈ V \A
in G, then there is an edge between u and v′ in H. We also observe that while
the number of vertices in G = (V,E) is |V |, there are only |A|+ 1 vertices in
the graph H = (VH , EH) that defines the MCBE instance.

(a) Instance of MinCBEAP on G = (V,E)
(b) Transformed instance of MCBE on H =
(VH , EH)

Fig. 4: Instance transformation.

We make use of this transformation to find a solution for the transformed
instance of MCBE, which is then used to obtain a solution for the original
instance of MinCBEAP. Let SH be an optimal solution for the transformed
MCBE instance. A solution SG for the original instance of MinCBEAP can be
obtained as follows. Let e = (u, v) ∈ SH . If both u, v ∈ A, then edge e = (u, v)
also belongs to SG. In case one of the extremities – say, extremity v – of edge
e coincides with v′ /∈ A, then we chose at random a vertex w ∈ V \ A, and
substitute edge e = (u, v′) in SH by edge e′ = (u,w) in SG. Therefore, by
construction, the solution SG obtained for MinCBEAP has |SG| = |SH |.
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3.2 First ILP formulation

Any optimal solution SH to problem MCBE can be seen as an oriented span-
ning tree of the graph H ′ = (VH , EH ∪ SH) rooted at vertex v′. The distance
from any vertex in the tree to vertex v′ should be at most D. The arcs of the
oriented spanning tree indicate the paths from each vertex to the root v′.

This formulation makes use of a variant of the Miller-Tucker-Zemlin con-
straints to avoid cycles [17]. They create an arborescence in which each vertex
v is labeled with an integer dv. The root is labeled with dv′ = 0 and the
vertices in any tree arc (v1, v2) are labeled with dv1 > dv2 .

The edges in the optimal solution are those associated with arcs that belong
to the oriented spanning tree and not to EH .

For each vertex u 6= v, we define the following decision variable:

xuv =

{
1, if arc (u, v) ∈ A× (A ∪ {v′}), belongs to the oriented spanning tree,
0, otherwise.

The integer variable dv indicates the label of vertex v ∈ VH . The formula-
tion makes use of weights defined as wuv = 0 if the associated edge (u, v) ∈ EH ,
wuv = 1 otherwise:

min
∑
u∈A

∑
v∈A∪{v′}

wuvxuv (1)

subject to: ∑
v∈A∪{v′},v 6=u

xuv = 1, ∀u ∈ A (2)

xuv + xvu ≤ 1, ∀u, v ∈ A, (3)

du ≥ xuv + dv − (1− xuv)D, ∀u ∈ A,∀v ∈ A ∪ {v′}, u 6= v (4)

du ≤ D, ∀u ∈ A (5)

du ≥ 1, ∀u ∈ A (6)

dv′ = 0, (7)

du = 1, ∀u ∈ A, v′ ∈ NH(u) (8)

xuv′ = 1, ∀u ∈ A, v′ ∈ NH(u) (9)

xuv ∈ {0, 1}, ∀(u, v) ∈ A× (A ∪ {v′}) (10)

dv ∈ {0, ..., D}, ∀u ∈ A ∪ {v′}, (11)

with NH(u) = {v ∈ A ∪ {v′} : (u, v) ∈ EH}.
The objective function (1) minimizes the number of edges, since the weights

of edges in EH are zero. Constraints (2) indicate that an arc must come out
from every vertex of A, tracing the path (i.e., the last vertex before) to vertex
v′. Constraints (3) enforce that there is at most one arc between any pair of
vertices. Constraints (4) ensure that if xuv = 1, i.e., arc (u, v) belongs to the
oriented spanning tree, then du > dv. On the other hand, if xuv = 0, i.e.,
arc (u, v) does not belong to the oriented spanning tree, then the constraint
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becomes du ≥ dv −D and is satisfied for any du, dv ∈ {0, . . . , D}. Constraints
(5) and (6) indicate, respectively, upper and lower bounds to the vertex labels.
Constraint (7) sets the label of vertex v′ to zero. Constraints (8) set to one
the labels of the vertices of A that are adjacent to v′, while constraints (9) set
to one the variables associated with the vertices of A that are adjacent to v′.
Constraints (10) and (11) are the integrality requirements.

We observe that although the model can be solved without constraints (8)
and (9), they are added to accelerate the solution process.

3.3 Second ILP formulation

We recall that our formulation addresses the transformed instance of MCBE
on graph H = (VH , EH), with v′ being the dummy vertex. From Lemma 1,
we know that there is always a solution SH with all edges having v′ as one of
the extremities. Therefore, the problem can be solved by considering only this
particular subset of solutions and deciding, for each vertex u, if edge (u, v′)
should be added to the graph.

Demaine and Zadimoghaddam [6] proposed a model solving the linear fea-
sibility problem associated to the MCBE. The adaptation of this model to an
optimization problem is described next. The following decision variabes are
defined:

yu =

{
1, if there is an edge between vertex u ∈ VH and v′,
0, otherwise;

tuv =

{
1, if the shortest path from vertex v ∈ VH to v′ makes use of edge (u, v′),
0, otherwise.

If the distance between v and v′ is greater than D, then a path from v
will reach v′ using any of the vertices that are at a distance from v′ that is
smaller than D. Moreover, as noted in [6], vertex v can not use edge (u, v′) if
the distance between v and u is greater than D:

min
∑

u∈VH :(u,v′)/∈EH

yu (12)

subject to:

tuv ≤ yu, ∀u, v ∈ A (13)∑
u:dist(u,v)<D

tuv = 1, v ∈ A, dist(v, v′) > D (14)

yu ∈ {0, 1}, ∀u ∈ A ∪ {v′} (15)

tuv ∈ {0, 1}, ∀u, v ∈ A ∪ {v′} (16)

The objective function (12) minimizes the number of edges adjacent to
vertex v′ to be added. Constraints (13) indicate that if vertex vj reaches v′

using edge (vi, v
′), then vertex vi must be counted in the objective function.
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Moreover, constraint (14) expresses that if the distance between vj and v′ is
greater than D, then vertex j reaches v′ using exactly one of the vertices that
are at a distance to v′ that is smaller than D. Constraints (15) and (16) are
the integrality requirements.

3.4 Third ILP formulation

In this formulation based only on 0-1 variables, we also make use of Lemma
1 that establishes that there is always a solution to MCBE with all edges
incident to the source vertex v′. In addition to the variables

yu =

{
1, if there is an edge between vertex u ∈ VH and v′,
0, otherwise;

already used in the previous formulation, we also define

dvk =

{
1, if there is an path of size k from vertex v to vertex v′,
0, otherwise.

The problem may then be formulated as:

min
∑

(u,v′)/∈EH

yu (17)

subject to:

D∑
k=1

duk = 1, ∀u ∈ A (18)

du0 = 0, ∀u ∈ A (19)
D∑

k=1

dv′k = 0, (20)

dv′0 = 1, (21)

duk ≤
∑

v∈NH(u)

dvk−1, ∀u ∈ A, k ∈ {2, ..., D} (22)

du1 = yu, ∀u ∈ A, v′ /∈ NH(u) (23)

du1 = 1, ∀u ∈ A, v′ ∈ NH(u) (24)

yu = 0, ∀u ∈ A, v′ ∈ NH(u) (25)

yu ∈ {0, 1}, ∀u ∈ A ∪ {v′} (26)

dvk ∈ {0, 1}, ∀u ∈ A ∪ {v′},∀k ∈ {0, ..., D} (27)

The objective function (17) minimizes the number of edges adjacent to
vertex v′ to be added. Constraints (18) and (19) indicate that 1 ≤ dist(u, v′) ≤
D, ∀u ∈ A. Moreover, constraints (20) and (21) express that the distance from
vertex v′ to itself is zero. Constraints (22) indicate that if the distance from
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vertex u ∈ A to vertex v′ is k ≥ 2, then the distance from one of its adjacent
vertices to v′ must be k − 1. Constraints (23) ensure that for each vertex u
that is not adjacent to v′ in H, then its distance to v′ will become equal to
1 in H ′ = (VH , EH ∪ SH) if there is an edge between u and v′ in the optimal
solution. Constraints (24) and (25) fix the variables of the vertices adjacent to
v′ in H. Constraints (26) and (27) are the integrality requirements.

We now observe that the following property holds:

Proposition 2 Let SH be an optimal solution of the MCBE problem defined
by a graph H = (VH , EH), a source vertex v′ and a constant D, and let u ∈ VH ,
u 6= v′ be a vertex. If dH(u, v′) = d ≤ D, then dH′=(VH ,EH∪SH)(u, v

′) ≤ d.

Proof Since H ′ = (VH , EH ∪ SH) is a supergraph of H = (VH , EH), then it
contains all paths from u to v′ that already exists in H. Consequently, the
distance from vertex u to v′ can not increase in H ′.

In other words, all vertices u 6= v′ with d(u, v′) ≤ D can not be, in the
optimal solution, at a distance greater than their current distance to v′.

Therefore, constraints (18) can be replaced by the constraints below in an
improved formulation:

D∑
k=1

duk = 1, ∀u ∈ A, d(u, v′) > D (28)

d(u,v′)∑
k=1

duk = 1, ∀u ∈ A, d(u, v′) ≤ D (29)

D∑
k=d(u,v′)+1

duk = 0, ∀u ∈ A, d(u, v′) ≤ D, (30)

where constraints (28), (29) and (30) make use of the additional information
about the distances from vertex v′ to all other vertices in graph H.

Table 1 compares the three formulations in terms of their number of vari-
ables and constraints, where n = |VH |.

Table 1: ILP formulations: number of variables and constraints.

Variables Constraints All variables binary?
First formulation O(n2) O(n2) No
Second formulation O(n2) O(n2) Yes
Third formulation O(nD) O(nD) Yes

4 Numerical results

The models were implemented and tested using version 12.7.1 of the CPLEX
solver on an Intel Core i7 machine with a 3.2 GHz processor and 8 GB of
RAM, running under the Windows 10 operating system.
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4.1 Ramdomly generated test problems

Several experiments were performed to assess the performance of the integer
programming models presented in the previous section. We created two set
of instances: small and medium sized instances. The instances were generated
as random graphs with two parameters: the number of vertices n and the
number of randomly generated edges m inside the set A. The parameter D of
the problem was set to 2, which is a reasonable target in practice. The instances
are named indicating the values of n and m. For example, the instance named
“inst 200v 4x” has n = 200 vertices and m = n× 4 = 800 edges in set A.

Tables 2 and 3 contain the experimental results for the small and medium
instances, respectively. For each instance and formulation, the tables display
the number of added edges in the best solution found by the solver, the run-
ing time in seconds, and an indication whether the instance was solved to
optimality or not within a time limit of 3600 seconds.

Table 2 shows that the third formulation outperforms the others, solving
to optimality all small instances instances with up to 1000 vertices in much
smaller running times.

Table 3 reports the same experimental results for the second and third
formulations for the medium-sized instances, but exclusively for those where
the number of edges is four or eight times the number of vertices, because
for them the optimal solution is not quickly reached. The third formulation
obtains better results when the number of vertices increases. We also observe
that the memory space requirements of the second formulation increase very
quickly with the number of vertices, making it impractical on a machine with
a limited amount of memory space: not even feasible solutions were found for
the instances with 5000 or more vertices due to memory limitations.

Table 4 illustrates the variation of the linear relaxation gap for the instances
with 1000 and 2000 vertices with the increase in the number of edges. For the
same instances, Figure 5 displays the evolution of the absolute gap when the
number of edges increases. We observe that the largest absolute gap values are
reached when the number of edges is 5 or 6 times greater than the number of
vertices. For the same instances, the third – and best – formulation takes the
longest times to reach the optimum. Therefore, instances with these densities
seem to be the hardest to be solved by integer programming techniques.

Another observation that can be drawn from Table 4 is that the higher is
the density of each of the polarized groups of vertices in a network, the smaller
is the number of edges that should be added in the optimal solution, which
makes these problems easier to be solved in practice.
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Table 3: Results for medium-sized instances.

Instance
Second formulation Third formulation

Edges Time (s) Solved? Edges Time (s) Solved?
inst 3000v 4x 286 3776.23 (no) 280 3600.78 (no)
inst 3000v 8x 118 3723.63 (no) 115 3600.71 (no)
inst 4000v 4x 384 3963.45 (no) 373 3600.53 (no)
inst 4000v 8x 157 4176.90 (no) 153 3600.59 (no)
inst 5000v 4x - - (no) 472 3600.57 (no)
inst 5000v 8x - - (no) 200 3600.57 (no)
inst 6000v 4x - - (no) 573 3600.42 (no)
inst 6000v 8x - - (no) 240 3600.32 (no)
inst 7000v 4x - - (no) 674 3600.56 (no)
inst 7000v 8x - - (no) 278 3600.46 (no)
inst 8000v 4x - - (no) 766 3600.62 (no)
inst 8000v 8x - - (no) 306 3600.47 (no)
inst 9000v 4x - - (no) 863 3600.66 (no)
inst 9000v 8x - - (no) 368 3600.49 (no)
inst 10000v 4x - - (no) 976 3600.86 (no)
inst 10000v 8x - - (no) 398 3600.72 (no)

4.2 Real networks and interpretation

We also applied the solution approach proposed in Section 2 to the two in-
stances recovered from Interian and Ribeiro [13] that appear in Figures 1 and 2:
books and blogs, respectively. The third formulation of problem MinCBEAP
described in Section 3 was solved for both instances.

Table 5 shows the results. We note that the number of edges in the solution
that solves optimally each instance is very small in each case. The intervention
associated with the addition of these edges to the graph represents, indeed, a
small increase of less than 1% in the number of edges. This fact reflects the
minimum intervention principle proposed in the problem formulation, showing
that polarization can be reduced by small modifications in the structure of the
graph.

These results also illustrate that edge additions make it possible to break
the isolation of polarized groups by providing them with more plural informa-
tion coming from other groups, as noticed in [14].

5 Concluding remarks

In this work, we introduced the Minimum-Cardinality Balanced Edge Addi-
tion Problem as a strategy for reducing polarization in real-world networks.
We proved the NP-completeness of its decision version. We also proposed three
new integer linear formulations for the optimization version, discussing com-
putational results on both randomly generated and real-life instances. On the
real-life instances, we showed that polarization can be reduced to the desired
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Table 4: Linear relaxation gap on the instances with 1000 and 2000 vertices.

Instance name
Third formulation Third formulation, LP relaxation

Gap =
x−dye

xEdges Time (s) Solved? Edges Time (s) Solved?
inst 1000v 1x 362 0.057 yes 362 0.027 yes 0
inst 1000v 2x 197 0.148 yes 196.29 0.034 yes 0
inst 1000v 3x 130 15.463 yes 127.44 0.043 yes 0.015
inst 1000v 4x 97 9.488 yes 93.84 0.041 yes 0.031
inst 1000v 5x 72 779.852 yes 66.79 0.058 yes 0.069
inst 1000v 6x 59 3600.98 (no) 53.41 0.053 yes 0.085
inst 1000v 7x 47 574.383 yes 42.36 0.064 yes 0.085
inst 1000v 8x 38 51.265 yes 34.42 0.041 yes 0.079
inst 1000v 9x 33 144.737 yes 30.14 0.029 yes 0.061
inst 1000v 10x 27 3.942 yes 24.05 0.029 yes 0.074
inst 1000v 11x 23 0.408 yes 21.07 0.044 yes 0.043
inst 1000v 12x 17 0.102 yes 15.89 0.026 yes 0.059
inst 1000v 13x 15 0.120 yes 13.80 0.023 yes 0.067
inst 1000v 14x 13 0.125 yes 12.57 0.024 yes 0
inst 1000v 15x 10 0.078 yes 9.53 0.023 yes 0
inst 1000v 16x 12 0.129 yes 10.62 0.024 yes 0.083
inst 2000v 1x 702 0.110 yes 702 0.056 yes 0
inst 2000v 2x 390 0.329 yes 388.74 0.099 yes 0.003
inst 2000v 3x 253 3603.000 (no) 247.14 0.195 yes 0.020
inst 2000v 4x 186 3601.790 (no) 175.42 0.224 yes 0.054
inst 2000v 5x 140 3601.060 (no) 127.42 0.273 yes 0.086
inst 2000v 6x 117 3600.940 (no) 104.79 0.205 yes 0.103
inst 2000v 7x 94 3601.130 (no) 84.51 0.146 yes 0.096
inst 2000v 8x 78 3601.030 (no) 69.77 0.132 yes 0.103
inst 2000v 9x 58 3601.710 (no) 52.59 0.099 yes 0.086
inst 2000v 10x 50 459.184 yes 45.72 0.078 yes 0.080
inst 2000v 11x 46 3433.460 yes 40.89 0.084 yes 0.109
inst 2000v 12x 38 6.289 yes 35.41 0.069 yes 0.053
inst 2000v 13x 32 4.755 yes 29.50 0.071 yes 0.063
inst 2000v 14x 25 0.507 yes 23.12 0.069 yes 0.040
inst 2000v 15x 22 0.469 yes 20.73 0.072 yes 0.045
inst 2000v 16x 19 0.137 yes 17.84 0.067 yes 0.053

Table 5: Results for real-life instances.

Instance name Group Vertices Edges
ILP Model 3

Solution Time Solved

books
Conservative 50 420 1 0.006 yes
Liberal 44 376 2 0.018 yes
Neutral 14 44 0 0.014 yes

blogs
Republican 637 9352 8 0.048 yes
Democratic 589 8805 17 0.014 yes

threshold with the addition of a few edges, as established by the minimum
intervention principle that guided the problem formulation.

Another interesting conclusion is that in strongly polarized groups, there
is often some easy way of spreading polarization-breaking information. This is
a consequence of the fact that the higher is the density of a polarized group
of vertices in a network, the smaller is the number of edges in the optimal
solution, as previously observed in Section 4.1 from the results in Table 4.
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Fig. 5: Variation of the absolute linear relaxation gaps with the increase in
the number of edges: on horizontal axis, the ratio m/n between the number
of edges and vertices in set A.

This study also shows that by using edge additions, completely isolated
groups mentioned by Landrum [14] can start receiving more plural information,
i.e., information coming from more that one group. Therefore, as suggested,
disinformation can be broken by providing users a way to encounter diverse
views of those practiced by members of the same groups they are trapped in.

Future work involves the study of graph properties that might lead to
improvements in the efficiency of exact approaches, as well as the development
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of heuristic methods for handling hard instances that can not be solved by
exact methods.

The minimum intervention principle that guided the approach proposed in
this work and the exact methods developed here constitute an effective strategy
for tackling polarization problems in real social, interaction, and communica-
tion networks. They make it possible to build concrete tools and strategies to
address polarization issues in practice, since this is a relevant problem in a
world characterized by extreme political and ideological polarization.
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