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Abstract

Many sports leagues organize their competitions as round-robin tournaments. This tournament design has a
rich mathematical structure that has been studied in the literature over the years. We review some of the main
properties and fundamental scheduling methods of round-robin tournaments. Special attention is given to
extra-mural tournaments in which each team in the competition has its venue. Teams play either at home or
away in such tournaments in each round. The surge of breaks in the perfect alternation of home and away
breaks is studied in detail.

Keywords: sports scheduling; tournament scheduling; round robin; circle method; combinatorial optimization; graph
theory

1. Introduction

Mathematical models based on theoretical graph concepts help to formulate and solve fundamen-
tal scheduling problems. We discuss some elementary sports scheduling problems and concentrate
on graph theoretical and other combinatorial structures involved in their models and solution ap-
proaches. In practical situations where tournament schedules of sports leagues have to be con-
structed, the organizers will have various additional requirements to consider.

The basic combinatorial models will often need extensions to produce by themselves schedules
that may be used in such situations. However, the problem representation using graphs or other
combinatorial structures will still be crucial to developing adequate and sometimes intricate proce-
dures that can handle the many constraints in the real scheduling problem.
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The main problem in sports scheduling is tournament scheduling, in which we are interested in
determining the date and venue for each game of a tournament. Applications are found in schedul-
ing tournaments of sports such as football, baseball, basketball, cricket, handball, and ice hockey.
Different exact and approximate approaches, including integer programming, constraint program-
ming, metaheuristics, and hybrid methods, have been applied to these problems. Of particular rele-
vance is the scheduling of round-robin tournaments, a design common to many leagues and sports.
An excellent presentation of the discrete mathematics structures related to tournament construc-
tion appears in Anderson (2006). The reader is referred to Rasmussen and Trick (2008) for a survey
of round-robin scheduling, to Kendall et al. (2010) for an annotated bibliography of sports schedul-
ing problems, and to Ribeiro (2012) for a tutorial on sports scheduling. The book by Ribeiro et al.
(2023) details the theory and practice of combinatorial models for scheduling sports tournaments.

This tutorial is organized as follows. The next section presents the main elements of graph theory.
Section 3 presents the definition of single round-robin tournaments and the basic graph model used
for their representation. It also presents the circle method for constructing timetables. Section 4 in-
troduces premature sets and discusses how not to construct a schedule. Section 5 defines home
and away games and the concept of home-away patterns to advance from timetables to schedules.
It also defines the concept of breaks in the perfect alternation of home and away games on each
team’s schedule. Section 6 discusses the structure of schedules with a minimum number of breaks.
Section 7 extends the definition of single round-robin tournaments to multiround-robin tourna-
ments. Section 8 introduces two decomposition approaches for constructing schedules. Section 9
addresses minimizing the number of rounds where breaks occur. Fairness is another criterion for
scheduling sports tournaments, and Section 10 considers schedules where all teams should have the
same number of breaks. Section 11 shows that minimizing the total number of travels is equivalent
to maximizing the total number of breaks. Section 12 considers balanced tournaments, in which
there are shared venues that impose special requirements. Section 13 considers a scheduling prob-
lem related to assigning referees to games. The minimization of carryover effects is discussed in
Section 14. Finally, Section 15 shows how to find general edge colorings. Concluding remarks are
drawn in the last section.

2. Elements of graph theory

This section introduces graph theory’s main definitions and results, which are the essential ingredi-
ents for understanding the models and algorithms presented in this tutorial. For more definitions,
results, and applications of graph theory and algorithms, we refer the reader to Berge (1985), Gould
(1988), or Diestel (2010).

A graph G = (V, E ) consists of a set V of nodes and a set E of edges. Each edge e = [u, v] is an
unordered pair of distinct nodes. The nodes u, v ∈ V are the endpoints of edge e. An edge e = [u, v]
may be given an orientation, say from u to v: in this case, it becomes an arc a = (u, v).

A simple graph has neither loops (edges whose endpoints coincide) nor parallel edges (multiple
edges between the same pair of endpoints). A multigraph may have more than one edge connecting
the same pair of nodes.

The degree dG(v) of a node v ∈ V in G is the number of edges having v as an endpoint (i.e.,
the number of edges adjacent to v). A graph G = (V, E ) is complete if there is an edge in E

© 2023 The Authors.
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between every pair of nodes u, v ∈ V , with u �= v. We denote by Kn the complete graph with n = |V |
nodes. The graph G is d-regular if dG(v) = d for every node v ∈ V . A cycle is a sequence of edges
[u1, u2], [u2, u3], . . . , [up−1, up], [up, u1], where u1, u2, . . . , up−1, up are nodes of V .

A graph G = (V, E ) is bipartite if its node set V may be partitioned into two subsets V1 and V2

such that no edge in E has both endpoints in V1 or in V2. If every possible edge between V1 and V2

exists in the graph, then G is a complete bipartite graph. The complete bipartite graph with n nodes
in one subset and m nodes in the other is denoted by Kn,m. A graph is bipartite if and only if it has
no odd cycle (i.e., a cycle with an odd number of edges).

A subset F ⊆ E spans the graph G = (V, E ) if every node v ∈ V is the endpoint of at least one
edge in F . In this case, F is called a factor of G. F is an �-factor of G if every node v ∈ V is an
endpoint of exactly � distinct edges in F .

A subset F ⊆ E such that no two edges in F have a common node is called a matching. In a
perfect matching F (also called a 1-regular matching), each node v ∈ V is adjacent to exactly one
edge in F . We notice that a perfect matching is equivalent to a 1-factor.

A partition of the edge set E into matchings is an edge coloring of graph G. If all matchings in an
edge coloring are perfect (i.e., 1-factors), then the edge coloring is a 1-factorization.

The minimum number of matchings in an edge coloring of graph G is its chromatic index χ ′(G).
Clearly, χ ′(G) ≥ �(G), where �(G) is the largest node degree in G.

Two 1-factorizations F = {F1, . . . , Fk} and H = {H1, . . . , Hk} of G are called isomorphic if
there exists a bijective function ϕ from the node set V of G onto itself such that {F ϕ

1 , . . . , F ϕ

k } =
{H1, . . . , Hk}. Here, F ϕ

i denotes the set of all edges [ϕ(x), ϕ(y)] where [x, y] is an edge in Fi. The
concept of isomorphic 1-factorizations can also be extended to isomorphic edge colorings.

A 1-factorization is said to be perfect when the edges in Fi ∪ Fj form a Hamiltonian cycle for each
pair of distinct 1-factors Fi and Fj .

Remark 1. In a complete graph K2n, any 1-factorization is equivalent to a minimum cardinality
edge coloring.

This remark highlights that 1-factorizations are a special case of edge colorings. We prefer to use
the term 1-factorization. When the coloring does not have the characteristics of a 1-factorization,
we use the term edge coloring.

Remark 2. Formally, there is no order on the 1-factors of the 1-factorization F = {F1, . . . , Fk} (or
on the colors of an edge coloring). We refer to the ordered 1-factorization F = (F1, . . . , Fk) as an
ordered sequence whenever the order in which the 1-factors (or colors) are taken is relevant.

This second remark and the notation defined therein are relevant because, in the context of sports
scheduling, the order of the factors of a 1-factorization matters. By analogy, we could also refer to
an ordered edge coloring.

3. Single round-robin tournaments: basic graph model

In the sports scheduling problems described in this tutorial, we assume that 2n teams (or competi-
tors) form a league that plays one or more tournaments. The case of an odd number of teams may
be handled by adding a dummy team to the league.

© 2023 The Authors.
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Algorithm 1. Circle method

A single round-robin tournament between 2n teams is one in which each team plays precisely once
with every other team in the tournament.

It is quite natural to associate the 2n teams, numbered 1, . . . , 2n, with the nodes of a graph. Each
game to be played by teams i and j will be represented by an edge [i, j].

There is a one-to-one correspondence between ordered 1-factorizations and single round-robin
timetables. To construct a timetable for the games of a single round-robin tournament, we have to
find an edge coloring of the edges of a complete graph K2n with 2n nodes. Since K2n is (2n − 1)-
regular, any timetable will require at least 2n − 1 rounds, assuming each team plays at most one
game in each round. Indeed, one can always construct a timetable using exactly 2n − 1 rounds (i.e.,
χ ′(K2n) = 2n − 1). Let F = (F1, . . . , F2n−1) be such an edge coloring, where Fi is the 1-factor whose
edges correspond to the games played in round i = 1, . . . , 2n − 1. F is indeed a 1-factorization of
K2n since each team has to play exactly one of its 2n − 1 games during each one of the 2n − 1 rounds
of the timetable.

Properties and variations of edge colorings are found in Fiorini and Wilson (1977), Folkman and
Fulkerson (1969), and Gabow et al. (1985). One-factorizations are discussed in Akiyama and Kano
(1985) and Mendelsohn and Rodney (1994).

The circle method (or polygon method) described in Algorithm 1 was proposed originally by
Kirkman (1847). It provides a simple construction for the so-called canonical 1-factorization
F = (F1, . . . , F2n−1) of K2n, where

mod(2n−1)(x) =

⎧⎪⎨
⎪⎩

x + 2n − 1, if − (2n − 2) ≤ x ≤ 0,

x, if 1 ≤ x ≤ 2n − 1,

x − (2n − 1), if 2n ≤ x ≤ 4n − 2.

(1)

We give in Fig. 1a graphical interpretation of the circle method. We first position the teams 1
to 2n − 1 in the vertices of a regular polygon. For round 1, we first match the highest team of the
polygon (team 1) with that in the center (team 2n). Next, we pair each team on the left side of the
polygon with that on the right side at the same height. This perfect matching defines the games
of round 1. We repeat this procedure for rounds 2, 3, . . . , 2n − 1, as if the teams in the polygon’s
vertices were rotated counterclockwise at each step (or round).

The chronological sequence of the rounds in which the games are scheduled in the 1-factorization
F = (F1, . . . , F2n−1) induces an order on F1, . . . , F2n−1. However, we shall refer to 1-factorizations
without mentioning the order whenever no confusion may arise.

© 2023 The Authors.
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Fig. 1. Circle method for a tournament with 2n = 6 teams.

Fig. 2. Canonical 1-factorization of K4.

Table 1
Timetable corresponding to the canonical 1-factorization of Fig. 2.

Rounds

1 2 3

[4, 1] [4,2] [4,3]
[2, 3] [3,1] [1,2]

The circle method is used in some of the problems and models described later in this tutorial.
Figure 2 shows a canonical 1-factorization F = (F1, F2, F3) of K4. In the first round, team 4 plays
a game with team 1, while team 2 plays against team 3, then F1 = {[4, 1], [2, 3]}. Similarly, F2 =
{[4, 2], [3, 1]} and F3 = {[4, 3], [1, 2]}.

Table 1 represents the timetable corresponding to the canonical 1-factorization of Fig. 2.
We may also represent the timetable of a single round-robin tournament of a league of 2n teams

by a two-dimensional opponents array with 2n rows and 2n − 1 columns. Each row corresponds
to a team, while each column is associated with a round of the timetable. The entry in row i and

© 2023 The Authors.
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Table 2
Opponents array for the timetable of Table 1.

Rounds

Teams 1 2 3

1 4 3 2
2 3 4 1
3 2 1 4
4 1 2 3

Fig. 3. Construction on the fly of factor F1.

column r of this array gives the opponent of team i in round r. For example, the entry in row 2 and
column 3 in Table 2 denotes that team 2 meets team 1 in round 3.

Remark 3. In leagues with an odd number of teams, there is (at least) one team that does not
play a game in each round. We say that such a team has a bye in this round. For a single round-
robin tournament represented by the complete graph K2n−1, each team must play 2n − 2 games.
Therefore, any timetable will require at least 2n − 1 rounds. One has χ ′(K2n−1) = 2n − 1, and one
can construct a timetable with 2n − 1 rounds by starting from a timetable F of K2n and remove all
games of team 2n (which does not exist and may be seen as a dummy team in a league of 2n − 1
teams).

There are many more 1-factorizations for complete graphs besides the canonical ones. There is
only one nonisomorphic 1-factorization for K2, K4, and K6, but this number increases very fast:
there are six for K8, 396 for K10, and 526,915,620 for K12. We often need to use these noncanonical
1-factorizations, particularly when the problem constraints will restrict the set of rounds in which
some specific games may be scheduled. We show in Section 15 another algorithm that can construct
any 1-factorization of K2n, including the canonical.

4. How (not) to construct a timetable: premature sets

This section explains what may happen when a timetable for a single round-robin tournament of
2n teams has to be constructed on-the-fly, round after round.

For example, consider a tournament with 2n = 6 teams associated with the complete graph K6 as
shown in Fig. 3a. To start, we take a set of three nonadjacent edges that form the 1-factor F1 of K6 in

© 2023 The Authors.
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Fig. 4. Construction on the fly of factor F2.

Fig. 5. Construction on the fly of factor F3: {F1, F2, F3} is a premature set of 1-factors.

Fig. 3b. Figure 3c illustrates the graph K6 − F1 from where the remaining factors will be obtained.
In the next step, we construct in the resulting graph K6 − F1 illustrated in Fig. 4a the 1-factor F2

shown in Fig. 4b. The graph K6 − F1 − F2 contains the still unused edges.
The procedure continues in the third step with the selection in the resulting graph K6 − F1 − F2 in

Fig. 5a of the 1-factor F3 in Fig. 5b. Then, having constructed a timetable for the first three rounds
defined by the three factors F1, F2, and F3, we realize that the resulting graph K6 − F1 − F2 − F3 in
Fig. 5c contains no 1-factor. Therefore, a timetable with 2n − 1 = 5 rounds cannot be constructed,
and {F1, F2, F 3} is a so-called premature set of 1-factors.

A set of k disjoint 1-factors of K2n is called premature if the graph obtained by removing from
K2n the k 1-factors has no 1-factorization.

A premature set of k disjoint 1-factors {F1, . . . , Fk} is maximal if K2n − (F1 ∪ . . . ∪ Fk) has no 1-
factor. In the example of a tournament with six teams described in Figs. 3–5, the premature set
{F1, F2, F 3} was maximal.

However, we may have premature sets that are not maximal. Although we can construct a 1-
factor Fk+1 for round k + 1, the choice of {F1, . . . , Fk} is bad in the sense that it will not be possible
to construct a 1-factorization {Fk+1, . . . , F2n−1} for the remaining graph.

Several authors have studied premature sets; see, e.g., Rosa and Wallis (1982), Rees and Wal-
lis (1991), and Caccetta and Mardiyono (1992) to understand, for instance, at which stage of the
construction of a 1-factorization of K2n a wrong choice may be made.

Rees and Wallis (1991) have completely characterized the critical values of k for which a maximal
premature set of k 1-factors may occur. There exists a maximal premature set of k disjoint 1-factors
of K2n if and only if either 2
n/2� + 1 ≤ k ≤ 2n − 1 and k is odd or (1/3)(4n + 4) ≤ k ≤ 2n − 4 and
k is even. Observe that necessarily k < 2n − 2, since after removing 2n − 2 disjoint 1-factors, each

© 2023 The Authors.
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Fig. 6. Solution from a different 1-factor F ′
3 in the third step.

node of the remaining graph would have degree one, forming a 1-factorization of K2n together with
the 2n − 2 previous 1-factors.

Knowing the values of k for which premature sets of k disjoint 1-factors may occur is not a
considerable help to construct a 1-factorization of K2n. However, it may indicate the procedure
stage where the choice of 1-factors should be modified. In such a situation, the minimum size of a
premature set (not necessarily maximal) would indicate where to restart the construction.

In the previous example of a tournament with 2n = 6 teams, we can pick the 1-factor F ′
3 from

K6 − F1 − F2, as shown in Fig. 6a. The remaining graph K6 − F1 − F2 − F ′
3 appears in Fig. 6b. If the

1-factor F4 depicted in Fig. 6c is picked from K6 − F1 − F2 − F ′
3 , the remaining graph would be the

1-factor F5, and a solution is found.

5. From timetables to schedules: home and away games

It is often the case that each team has its venue (or a stadium), and each game between teams i and
j is played either in the home city of team i or the home city of team j. In the first case, we say that
team i plays a home game and that team j plays an away game. It is convenient to represent this
game by an arc ( j, i) oriented from j to i. In the second case, if the game between teams i and j is
played in the home city of team j, we have an arc (i, j) oriented from i to j.

If every game in a single round-robin tournament is assigned to a venue, then each edge of K2n
receives an orientation and becomes an arc. Instead of an edge coloring, we now have an oriented
edge coloring, denoted by

−→
F = (

−→
F 1, . . . ,

−→
F 2n−1).

For the timetable associated with K4 in Tables 1 and 2, the edges may be oriented, e.g., as

−→
F 1 = {(4, 1), (3, 2)}, −→F 2 = {(2, 4), (3, 1)}, and

−→
F 3 = {(4, 3), (1, 2)},

as represented in Fig. 7.
We can associate a home-away pattern (or a HAP) with the oriented edge coloring

−→
F =

(
−→
F 1, . . . ,

−→
F 2n−1) and represent it by an array named HAP with 2n rows and 2n − 1 columns,

where HAP(i, r) = “H” if team i plays a home game in round r, HAP(i, r) = “A” if team i plays
an away game in round r, or HAP(i, r) = “∗′′ if team i has a bye in round r, for i = 1, . . . , 2n
and r = 1, . . . , 2n − 1. Together, the timetable and the HAP define the tournament schedule.

© 2023 The Authors.
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Fig. 7. Oriented edge coloring for the edge coloring of Fig. 2.

Table 3
Home-away pattern associated with the oriented edge coloring
of Fig. 7 (breaks are underlined).

Rounds

Teams 1 2 3

1 H H A
2 H A H
3 A A H
4 A H A

Using graphs to model fundamental sports scheduling problems with HAPs was first presented
in de Werra (1980, 1981, 1982).

Row i of the HAP gives the profile of team i. Usually, one tries to alternate as much as possible
the Hs and the As in the profile of each team, i.e., the home and away games played by this team.
No two teams may have the same profile. To show it, we suppose that two teams had the same
profiles. Since both teams would be simultaneously away or both at home, they would never be able
to play against each other. Therefore, at most two teams may have perfectly alternating profiles: one
that starts the tournament with a home game and another that starts with an away game.

If the profile of a team i has two consecutive entries in rounds r − 1 and r with the same symbol
(H or A), we say that team i has a break (of alternation) in round r. The HAP in Table 3 illustrates
that teams 1 and 3 have a break in round 2. If a team plays two consecutive home games, we say it
has a home break (as for team 1 in the table). If a team plays two consecutive away games, we say it
has an away break (as for team 3 in the table).

We now recall some elementary properties of schedules.

Proposition 1. Any schedule of a single round-robin tournament with 2n teams has at least 2n −
2 breaks.

Proof. If an oriented edge coloring exists with p < 2n − 2 breaks, there are at least 2n − p ≥ 3 teams
without breaks in their profiles. Therefore, two teams, i and j, have the same profile. It follows that
i and j can never play against each other. �

This result shows that the oriented edge coloring of K4 in Fig. 7 has a minimum number 2n − 2 =
2 of breaks.

© 2023 The Authors.
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Algorithm 2. Canonical procedure for edge orientation

Remark 4. One can also consider oriented edge colorings of graphs that are not complete and
similarly define breaks by simply ignoring byes. There is a break (home or away) for team i in round
r if entries HAP(i, r′) and HAP(i, r), with r′ < r, of the HAP are equal and all entries HAP(i, r′ +
1), . . . , HAP(i, r − 1) are byes.

Proposition 2. (i) For a single round-robin tournament with 2n teams, there exists a schedule with
exactly 2n − 2 breaks. (ii) For 2n − 1 teams, there exists a schedule without breaks.

Proof. In what follows, we give the construction of a canonical oriented edge coloring of K2n. It
starts from a canonical 1-factorization and gives an orientation to its edges so that teams 1 and 2n
have no breaks and the remaining 2n − 2 teams have one break each.

The method is called the canonical procedure for edge orientation and its template appears in
Algorithm 2. Given a canonical 1-factorization F = (F1, . . . , F2n−1) obtained as described in Sec-
tion 3, the procedure gives an orientation

−→
F i to each 1-factor Fi, for i = 1, . . . , 2n − 1, creating

an oriented canonical 1-factorization
−→
F = (

−→
F 1, . . . ,

−→
F 2n−1). Table 4 illustrates an example for

2n = 6.
We observe that team i has a unique break for any 2 ≤ i ≤ 2n − 1. It occurs either in the round

of game (i, 2n) (if i is odd) or in the round following game (2n, i) (if i is even). Teams 1 and 2n have
no breaks. Therefore, for obtaining an oriented edge coloring of K2n−1, we omit all games involving
team 2n, which gives a schedule in 2n − 1 rounds without breaks. �

© 2023 The Authors.
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Table 4
Canonical oriented 1-factorization of K6. The arcs in red are oriented
from node i to 2n (line 5) and from node i − � to i + � (line 11), while
the arcs in blue are oriented from node 2n to i (line 3) and from node
i + � to i − � (line 9) in Algorithm 2.

Canonical 1-factorization Canonical oriented 1-factorization

F1 = {[6, 1], [2, 5], [3, 4]} −→
F 1 = {(1, 6), (2, 5), (4, 3)}

F2 = {[6, 2], [3, 1], [4, 5]} −→
F 2 = {(6, 2), (3, 1), (5, 4)}

F3 = {[6, 3], [4, 2], [5, 1]} −→
F 3 = {(3, 6), (4, 2), (1, 5)}

F4 = {[6, 4], [5, 3], [1, 2]} −→
F 4 = {(6, 4), (5, 3), (2, 1)}

F5 = {[6, 5], [1, 4], [2, 3]} −→
F 5 = {(5, 6), (1, 4), (3, 2)}

6. On the structure of HAPs with a minimum number of breaks

We showed in Propositions 1 and 2 that the minimum number of breaks for a single round-robin
schedule with 2n teams is 2n − 2. We now characterize the HAPs associated with schedules with
2n − 2 breaks.

Proposition 3. The number of home breaks equals the number of away breaks in any round of a
round-robin schedule.

Proof. There are n teams playing an away game and n teams playing a home game in each round.
If, in any round, there are more home breaks than away breaks, then more teams would play home
than away (and vice versa). �

Proposition 4. No team has more than one break in a round-robin schedule with 2n − 2 breaks.

Proof. If a team had more than one break, there would be at least three teams without breaks,
which is impossible in a round-robin tournament. �

Proposition 5. There are either 0 or 2 breaks in each round of any round-robin schedule with 2n −
2 breaks.

Proof. Suppose there are p ≥ 4 breaks in some round r and, without loss of generality, suppose
they occur for teams 1, . . . , p. From Proposition 6, each of these p teams has a unique break, which
occurs in round r. However, there are only two profiles with exactly one break in round r, one
starting with a home game and the other with an away game. Since all teams must have different
profiles, this situation is impossible. �

We say that two team profiles are complementary if one is obtained from the other by interchang-
ing their home and away games. We state the following corollary from the above propositions:

Corollary 1. The HAP associated with a single round-robin tournament schedule of 2n teams with
a minimum number of breaks consists of n pairs of complementary profiles. One pair has no break,
and the n − 1 other pairs have one break each. Each pair of complementary profiles has its breaks in a
different round.

© 2023 The Authors.
International Transactions in Operational Research © 2023 International Federation of Operational Research Societies.

 14753995, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13290 by C

elso da C
ruz C

arneiro R
ibeiro - C

A
PE

S , W
iley O

nline L
ibrary on [05/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3278 C. C. Ribeiro et al. / Intl. Trans. in Op. Res. 30 (2023) 3267–3295

Fig. 8. Construction of an optimal HAP for 2n = 6 teams with 2n − 2 = 4 breaks (breaks are underlined).

The HAP illustrated in Table 3 corresponds to a single round-robin tournament schedule of a
league of four teams, where teams 2 and 4 have complementary profiles without any break. Teams
1 and 3 have complementary profiles with one break each in round 2. For the HAP in Fig. 9 with
six teams, the pairs of teams with complementary profiles are 1-5, 2-6, and 3-4. The first pair of
teams has no breaks, while the other pairs have one break each.

For a single round-robin tournament schedule of a league with 2n teams, an optimal HAP is
entirely determined by providing the n − 1 profiles of one team in each of the pairs of complemen-
tary profiles with one break each. Alternatively, we may provide the n − 1 rounds where the breaks
should occur (in pairs).

For example, consider a league with 2n = 6 teams for which we want to construct a HAP with
2n − 2 = 4 breaks occurring in pairs in rounds 2 and 5. Figure 8a shows three profiles, all starting
with an away game. The first profile has no break. The second and third profiles have a break in
rounds 2 and 5, respectively. The complete HAP in Fig. 8b is obtained by complementing profiles
1, 2, and 3 to obtain profiles 4, 5, and 6.

Let us now assume now that the rounds 1, 2, . . . , 2n − 1 are cyclically ordered, i.e., round 1 fol-
lows round 2n − 1.

Proposition 6. Each profile has at least one break in any cyclic HAP for 2n teams.

Proof. Consider the profile of a team without beaks. If this team plays at home (resp. away) in the
first round, it also plays at home (resp. away) in the last round since the number of rounds is odd.
If the rounds are ordered cyclically, this creates a break in the first round. �

It follows that the smallest number of breaks in a cyclic HAP is 2n.

© 2023 The Authors.
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If we now return to the linear order of rounds 1, 2, . . . , 2n − 1, we notice that if teams i and
j have a break in round r, then reordering the rounds as r, r + 1, . . . , 2n − 1, 1, . . . , r − 1 gives a
linear HAP with precisely 2n − 2 breaks, because teams i and j have no longer a break.

Procedures for finding a HAP with minimum breaks starting from a given timetable appeared
in Miyashiro and Matsui (2005). Post and Woeginger (2006) studied the worst cases that can hap-
pen when minimizing the number of breaks of a given schedule. They gave upper bounds on the
minimum number of breaks.

7. Multiround-robin tournaments

Most sports leagues play either a single round-robin tournament , where each pair of teams
meets once, or a double round-robin tournament , where each pair of teams meets twice. In the
general case, each team plays against every other team exactly m times. The number of rounds
needed to schedule all m

(2n
2

)
games is equal to m(n − 1), where each team plays exactly one game

in each round. Double-round-robin tournaments can be organized in different manners, such
as

• Unconstrained double round-robin tournaments, in which the order of the games is arbitrary.
• Tournaments with the no-repeaters constraint, which does not allow the two games between the

same pair of teams to be played in two consecutive rounds.
• Tournaments in which a minimum number of rounds should separate the two games between the

same pair of teams.
• Tournaments organized in two separate phases, each of which is an single round-robin tourna-

ment, possibly with a different timetable.
• Mirrored tournaments, in which both phases are single round-robins with the same timetables,

but the venues of the two games between each pair of teams are interchanged from one phase to
the other.

In the case of a mirrored double round-robin tournament, if the game between teams i and j is
played at the venue of team i (resp. j) in the first phase, then it is played at the venue of team j (resp.
i) in the second phase.

Therefore, one can obtain a schedule
−→
H = (

−→
H 1, . . . ,

−→
H 4n−2) for a mirrored double round-

robin by taking
−→
H i = −→

F i for i = 1, . . . , 2n − 1, where
−→
F = (

−→
F 1, . . . ,

−→
F 2n−1) is an oriented edge

coloring of K2n obtained by the canonical procedure in Algorithm 2, and
−→
H i = ←−

F i−(2n−1) for

i = 2n, . . . , 4n − 2, where
←−
F i is obtained by reversing all arcs of

−→
F i.

This schedule has 2n − 2 breaks in the first phase and 2n − 2 breaks in the second phase. In
addition, all 2n − 2 teams who had a break in the first phase will have a break in round 2n (if
a team has an away game in

−→
H 1, then it will have a home game in

−→
H 2n−1 and a home game in−→

H 2n). Thus, the schedule has 6n − 6 breaks, the minimum number of breaks for a mirrored double
round-robin tournament.

This construction may lead to teams with two consecutive breaks (i.e., three consecutive home
games or three consecutive away games), which might be undesirable in some situations. Such a

© 2023 The Authors.
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Algorithm 3. Modified canonical procedure for edge orientation for mirrored double round-robin tournaments

Fig. 9. Modified oriented 1-factorization of K6 and its HAP (modified arc orientations appear in red; breaks are
underlined).

situation may occur in round 2n of a double round-robin tournament. The teams with a break in
round 2n − 1 are teams 2n − 2 and 2n − 1. We may move these breaks to earlier rounds so that
no team has a break in round 2n − 1 by modifying line 2 of the original canonical procedure for
edge orientation, as it appears now in Algorithm 3. This construction procedure to avoid additional
breaks when concatenating the two phases appeared in de Werra (1981).

The modified oriented edge coloring of K6 appears in Fig. 9. We notice that these modifications
induce the following changes in the HAP:

• Team 2n − 3 had a break in round 2n − 3, which moved to round 2n − 2.
• Team 2n − 2 had a break in round 2n − 1, which moved to round 2n − 2.

© 2023 The Authors.
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• Team 2n − 1 had a break in round 2n − 1 that disappeared.
• Team 2n had no break before but acquired a break in round 2n − 3.

Since there are now no breaks in round 2n − 1, it follows that for a double round-robin tourna-
ment, there is a schedule with 6n − 6 breaks such that no team has two consecutive breaks.

8. Constructing schedules from HAPs or from timetables

In some applications, we may have a given fixed HAP, and the question is to determine whether
there is a compatible timetable assigning each game of the single round-robin tournament to the
rounds r = 1, . . . , 2n − 1.

Such a timetable may only sometimes exist: consider, for instance, the teams represented by pro-
files 1, 3, and 5 in the example of Fig. 8. Teams 1 and 5 have to meet in the first round since both
play home or away in every other round. Similarly, the game between teams 1 and 3 has to be
scheduled in round 5. The game between teams 3 and 5 could be scheduled in either round 1 or
5. However, this cannot be done since, in both rounds, either team 3 or team 5 would already be
assigned to play with team 1.

According to Corollary 1, HAPs with a minimum number of breaks have precisely two breaks
in n − 1 of the 2n − 2 rounds where they may occur. The example above illustrates that among the(2n−2

n−1

)
possible HAPs with the minimum number of beaks of a single round-robin tournament of a

league with 2n teams, there are some for which no timetable can be constructed.
An integer programming formulation can be used to determine if a given HAP (with the min-

imum number of breaks or not) corresponds to a timetable. This formulation was devised in
Briskorn (2008) for constructing timetables from a given HAP. It is a list-edge-coloring model in
which one maximizes the number of edges that can be colored.

In the opposite situation, a timetable is given, and one has to find a HAP with a minimum
number of breaks.

Given a timetable for a single round-robin tournament of a league with 2n teams, one can find in
O(n2) time whether there exists a HAP with 2n breaks associated with this timetable. The algorithm
relies on the special structure of HAPs with a minimum number of breaks. More generally, given
a timetable, it is difficult to find an associated HAP with a minimum number of breaks, i.e., with
2n − 2 breaks. Furthermore, for a given timetable, the worst case for the minimum number of breaks
is n(n − 1) for n even or (n − 1)2 for n odd.

9. Minimizing the number of rounds with breaks

We have seen that HAPs for single round-robin tournaments with a minimum number of breaks
have exactly n − 1 rounds with breaks. In this section, we are interested in minimizing the number
of rounds where breaks occur, which may increase the total number of breaks.

We recall that a graph is bipartite if its node set may be partitioned into two subsets V1 and V2

such that none of its edges has both endpoints in V1 or in V2. A bipartite graph has no odd cycle.

© 2023 The Authors.
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Fig. 10. Decomposition of K8 into a minimum number of bipartite graphs.

Proposition 7. Let F = (F1, . . . , F2n−1) be a 1-factorization of K2n that defines a timetable for a
single round-robin tournament of a league with 2n teams. Then, a schedule without breaks in rounds
r + 1, . . . , r + t can be constructed by assigning orientations to the edges of F if and only if Fr ∪ . . . ∪
Fr+t is a bipartite (t + 1)-factor of K2n.

Proof. Let F be such a 1-factorization and assume that, for some values of r and t, Fr ∪ . . . ∪ Fr+t
is a bipartite (t + 1)-factor. Let V1 and V2 define a partition of the node set such that all edges
in Fr ∪ . . . ∪ Fr+t have an endpoint in V1 and the other endpoint in V2. For every i = r, . . . , r + t,
we give the orientation from the node in V1 to that in V2 to all edges in Fi, if i is even. Otherwise,
we give the orientation from the node in V2 to that in V1 to all edges in Fi. By giving an arbitrary
orientation to the remaining edges in F , we obtain a schedule where no breaks occur in rounds
r + 1, . . . , r + t.

Conversely, we assume that Fr ∪ . . . ∪ Fr+t is not bipartite. Therefore, it contains an odd cycle
C. In order to have no breaks between rounds r + 1 and r + t, all teams must have a perfectly
alternating profile from round r to round r + t. There are only two such profiles, one starting with
a home game and the other with an away game. Two adjacent nodes in C (i.e., two teams that have
to meet between rounds r and r + t) will have the same profile and hence will not be able to meet,
which is a contradiction. Therefore, Fr ∪ . . . ∪ Fr+t is bipartite. �

Hence, if the edge set of K2n is partitioned into p subsets M1, . . . , Mp, where each Mi is a bipartite
ti-factor (with t1 + · · · + tp = 2n − 1), one may construct a schedule by giving adequate orientations
to the edges. This construction is done in such a way that breaks occur only in rounds t1 + 1, t1 +
t2 + 1, . . . , t1 + t2 + · · · + tp−1 + 1. If we minimize p, we also minimize the number of rounds with
breaks. For a league with 2n teams, the smallest value of p is �log2 2n�. In fact, one can show
that the partition can be constructed in such a way that the values of ti are either �(2n − 1)/p� or

(2n − 1)/p�.

Proposition 8. There is a decomposition of the edge set of K2n into p = �log2 2n� bipartite ti-factors
such that −1 ≤ ti − t j ≤ +1 for any i, j ≤ p.

Figure 10 shows a decomposition for K8 into �log2 8� = 3 bipartite factors: the first of them is a
3-factor, and the other two are 2-factors.

We can also show that such a schedule with at most 2
 n
2��log2 n� breaks can be found. Related

results and properties, including the proof of Proposition 8, are found in Kotzig (1972) and de
Werra (1982).

© 2023 The Authors.
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Table 5
HAP for 2n = 8 teams where each team has one away and one home break (breaks are underlined).

Rounds

Teams 1 2 3 4 5 6 7

1 A A H A H H A
2 A H H A A H A
3 A H A A H H A
4 A H A H H A A
5 H H A H A A H
6 H A A H H A H
7 H A H H A A H
8 H A H A A H H

10. Fairness of schedules

Fairness is another criterion for tournament scheduling. The first idea is to require that all teams
have the same number of breaks. Single round-robin schedules in which every one of the 2n teams
has one break are not more difficult to obtain than schedules with 2n − 2 breaks. Indeed, from
any schedule in which each team has one break, one can derive a schedule with 2n − 2 breaks by
a simple cyclic permutation of the rounds (if two teams have a break in round r, then taking the
rounds in the order r, r + 1, . . . , 2n − 1, 1, 2, . . . , r − 1 will give a schedule with 2n − 2 breaks).

Similarly, from any schedule with 2n − 2 breaks, one can get a schedule with 2n breaks by ade-
quately permuting the rounds cyclically.

In these schedules, one-half of the teams have an away break, while the other half have a home
break. This situation sometimes is considered unfair, and for a schedule to be fair, each team should
have the same number of away and home breaks.

When it is required that for each team, the number of home and away breaks must be the same,
the best schedule we can have is one in which each team has exactly one home break and one away
break. A HAP of this type is represented in Table 5 for 2n = 8 teams.

There is still some unfairness in such a schedule, as we will see. Assume that some team has a
larger interval between their two breaks than others. If the team considered has an away break first,
this team will likely play many games with low vitality caused by the preceding away break (for two
consecutive rounds, the team has not played at home). Conversely, if a team has a home break first,
this team may take advantage of its first home break for a longer period.

To prevent this kind of unfairness, we look for schedules where the two breaks of each team
are adjacent so that the respective advantages or disadvantages are immediately canceled out. Ta-
ble 6 shows such a HAP for a league with 2n = 8 teams. The HAP always consists of n pairs of
complementary profiles for such schedules.

Knust and von Thaden (2006) considered the situation where HAPs have to be constructed so
that, for each team, the numbers of home and away games differ by at most one. They suggested
repairing techniques for improving unbalanced HAPs. Tanaka and Miyashiro (2016) studied HAPs
for which each team has one home break and one away break. They require that the distance

© 2023 The Authors.
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Table 6
HAP for 2n = 8 teams where the two breaks of each team are consecutive (breaks are underlined).

Rounds

Teams 1 2 3 4 5 6 7

1 A A H H A H A
2 A H H A A H A
3 A H A A H H A
4 A H A H H A A
5 H H A A H A H
6 H A A H H A H
7 H A H H A A H
8 H A H A A H H

between the two breaks is the same for all teams, and properties of such fair schedules were derived.
Suzuka et al. (2007) also examined fair schedules in terms of breaks.

11. Travel minimization and break maximization

Generally, the 2n teams of a league playing a single round-robin tournament are located in different
cities, and the distances between the cities are known. All teams start the tournament at home,
where they should return after their last away game. In this situation, minimizing the total distance
traveled by the teams may be more critical than minimizing the number of breaks.

If all distances are assumed to be equal to one, then the problem becomes the minimization of
the total number of travels the teams perform. A timetable T is given, and we want to find a HAP
minimizing the total number of travels. We can show that the problem amounts to maximizing the
number of breaks. Before the first round, the n teams starting with an away game will travel. At
the end of the tournament, all n teams with an away game will travel back home. After each round
r = 1, . . . , 2n − 2, only the teams with home breaks in the next round do not travel.

If B(T ) denotes the total number of breaks in the schedule based on timetable T , then the to-
tal number of home breaks is B(T )/2. Therefore, the total number of trips after round 2n − 2 is
2n(2n − 2) − B(T )/2. Hence, the total number of trips is

n + 2n(2n − 2) − B(T )/2 + n = 2n(2n − 1) − B(T )/2.

It follows that for minimizing the number of travels, we maximize the number B(T ) of breaks;
see Urrutia and Ribeiro (2006).

A schedule with the maximum number of breaks may be obtained from a schedule minimizing
the number of breaks. To do so, we start from a HAP H with the minimum number of breaks and
create another HAP H ∗ by exchanging the home-away status of all games in the even rounds of
H , as illustrated in Fig. 11.

© 2023 The Authors.
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Fig. 11. Construction of a HAP H ∗ with the maximum number of breaks from a HAP H with the minimum number
of breaks for 2n = 6 teams (breaks are underlined).

Note that for every team i and every round r = 2, . . . , 2n − 1, entry (i, r) is a break in HAP H ∗

if and only if it is not a break in HAP H . Hence, B(H ) + B(H ∗) = 2n(2n − 2) and H will be a
HAP minimizing the number of breaks if and only if H ∗ is HAP maximizing the number of breaks.

12. Balanced tournaments

We have assumed that each team has its venue (or stadium). This situation is not always the case,
and we also have to consider models in which the 2n teams have to play their games in a set of
shared venues. Special requirements regarding these venues (courts, fields, stadiums, locations) may
also have to be considered for some sports scheduling problems.

We first consider a single round-robin tournament of a league with 2n teams and a collection
of n venues. We would like to have a timetable as balanced as possible, i.e., in which all teams
play approximately the same number of games in each venue. Since each of the 2n teams has 2n −
1 games to play, one would like each team to have one or two games in each of the n venues.
A schedule satisfying this requirement is called a balanced tournament. In some cases, instead of
venues, the assigned time slots in the rounds (starting times of the games) have to be balanced,
assuming that no games can be played in parallel. Balanced schedules exist for any 2n �= 4. A simple
construction is described below for the cases where 2n = 0 (mod 3) or 2n = 2 (mod 3).

© 2023 The Authors.
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Fig. 12. Construction of a balanced tournament for 2n = 6 teams (games in red had their venues changed).

We start from a canonical ordered 1-factorization (F1, . . . , F2n−1) of K2n. For each round r =
1, . . . , 2n − 1, we denote by F i

r the edge corresponding to the game scheduled at the venue i =
1, . . . , n. In each round, games are assigned to venues as they are created by the circle method in
Algorithm 1. For each round r = 1, . . . , 2n − 1, the game between teams 2n and r is first assigned
to venue 1. Following, the game created in each iteration � = 1, . . . , n − 1 is assigned to venue
� + 1.

At this point, all teams except team 2n have a balanced schedule because team 2n is always
playing at the venue i = 1. For every i = 1, . . . , n − 1, we exchange the venues associated with edges
F 1

i and F i+1
i . Similarly, for every i = n + 1, . . . , 2n − 1, we exchange the venues associated with

edges F 1
i and F 2n+1−i

i . We observe that this construction balances the games of every team over
the n venues, i.e., all teams play twice in all but one venue and once in the remaining venue. An
illustration for a league of 2n = 6 teams appears in Fig. 12.

Balanced tournaments for 2n teams have been shown to exist for all values of 2n �= 4. To make
the problem more regular for a theoretical study, instead of using a complete graph K2n, one may
consider the graph K∗

2n obtained from K2n by doubling all edges of a single 1-factor. We now have
the following requirements:

(a) all pairs of teams meet at least once;
(b) there are n games in each round with 2n participating teams;
(c) exactly one game is played in each venue in each round;
(d) each team plays two games in each of the n venues; and
(e) each pair of teams plays no more than one game in each venue.

© 2023 The Authors.
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Table 7
Balanced schedule for 2n = 10 teams in s = 3 venues. Each team plays 2n − 1 = 9 games,
three of which in each venue.

Venues

Rounds 1 2 3

1 [1,10] [3,6] [2,8]
2 [1,5] [3,7] [2,9]
3 [2,6] [1,8] [3,4]
4 [2,7] [1,9] [3,5]
5 [3,8] [2,4] [1,6]
6 [3,9] [2,10] [1,7]
7 [2,3] [5,8] [6,7]
8 [5,10] [6,9] [7,8]
9 [6,4] [1,3] [8,9]
10 [7,5] [8,4] [9,10]
11 [8,6] [9,5] [4,10]
12 [7,9] [6,10] [4,5]
13 [8,10] [4,7] [1,2]
14 [1,4] [2,5] [3,10]
15 [4,9] [7,10] [5,6]

Finding a schedule meeting requirements (a)–(e) is slightly different from the balanced tourna-
ment design problem. For instance, although there is a balanced tournament for K6, there are no
schedules satisfying requirements (a)–(e) for K∗

6 , as it may be seen by inspection. There is no solu-
tion either for K4 or for K∗

4 . However, a simple inductive construction was developed for K∗
2n when

2n is a power of two greater than or equal to eight. It is based on dividing the league with 2n teams
into two disjoint subleagues. These ideas have been explored later to derive a procedure for the
general case of 2n ≥ 8 teams.

In some situations, the number s of venues may be smaller than the number of games in each
round of a compact schedule, i.e., s < n. A balanced noncompact schedule exists when 2n − 1 =
0 mod s or n = 0 mod s. As an illustration, consider a league with 2n = 10 teams. Table 7 shows
that a noncompact balanced schedule exists when the number of venues is s = 3. Note that 2n −
1 = 9 is a multiple of s = 3. There are n(2n − 1) = 45 games to be scheduled in n(2n − 1)/s = 15
rounds.

In a more general setting, the number of available venues may vary from round to round. More
precisely, we are given the number of rounds q ≥ 2n − 1 and the number of venues sr available in
each round r = 1, . . . , q. Balancing is no longer an issue, but the question becomes to determine if
a schedule exists where exactly sr games are played in round r = 1, . . . , q.

The condition
∑q

r=1 sr = n(2n − 1) holds, and we assume that sr ≤ n, r = 1, . . . , q. For conve-
nience and without loss of generality, we assume that s1 ≥ s2 ≥ · · · ≥ sq. This assumption does not
restrict the model since the q rounds may be arbitrarily permuted.

A schedule with sr games in each round r = 1, . . . , q always exists and can be constructed from
a canonical 1-factorization of K2n. For each 1-factor Fi of the ordered canonical 1-factorization
F = (F1, . . . , F2n−1), we pick each of its edges in the order F 1

i , . . . , F n
i and assign it to the first

© 2023 The Authors.
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Fig. 13. Construction of a timetable with sr venues in round r.

round with a place still available. Figure 13 illustrates this construction for 2n = 8 teams on 10
rounds. The number of venues available in each round is s1 = s2 = s3 = 4, s4 = s5 = s6 = 3, s7 =
s8 = s9 = 2, and s10 = 1. This strategy gives a schedule where each team plays at most one game in
each round. Figure 13a gives the ordered canonical 1-factorization of K8. Figure 13b displays the
games scheduled for each round.

Balanced tournaments were defined and studied in Schellenberg et al. (1977). A regularized ver-
sion of the problem was studied by de Werra et al. (2006) and Ikebe and Tamura (2008). In Mendel-
sohn and Rodney (1994), stadium-balanced tournament design was studied for an arbitrary num-
ber of stadiums. Geinoz et al. (2008) studied some constructions of balanced schedules based on
partitions into subleagues. Erzurumluoglu (2018) exploited the idea of partitioning the league for
constructing several types of balanced schedules.

© 2023 The Authors.
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Fig. 14. Room square of size 2n − 1 = 7.

13. Tournaments with referees

We now consider another type of scheduling problem related to the assignment of referees to games.
We want to construct a timetable for a single round-robin tournament of a league with 2n teams
for which we have 2n − 1 referees. Exactly one referee should be assigned to each game. The goal
is to find a compact timetable in 2n − 1 rounds such that each team sees every referee exactly
once.

The combinatorial structure needed to model this problem is a Room square (of size 2n − 1) built
on a set T = {1, . . . , 2n} corresponding to the 2n teams. A Room square is a (2n − 1) × (2n − 1)
array where every entry is either empty or contains an unordered pair of distinct elements i, j ∈ T ,
corresponding to the game between teams i and j. In addition, it satisfies the following conditions:
(i) every element of T occurs exactly once in every row and exactly once in every column, and (ii)
every unordered pair of elements of T appears in exactly one entry of the Room square. The original
concept of s Room square appeared in Kirkman (1850) and was later formalized by Room (1955)
and studied by Mullin and Wallis (1975). Construction procedures for Room squares appeared in
Anderson (1997).

An example of a Room square of size 2n − 1 = 7 is shown in Fig. 14. There are eight teams, and
the timetable is represented by the nonempty entries of the Room square. Its rows correspond to
the 2n − 1 rounds, and its columns are associated with the 2n − 1 referees. Room squares can be
found for any odd number greater than or equal to seven.

We may now consider a further extension of the problem with 2n − 1 referees by introducing
2n − 1 venues. We require, in addition, that each team plays its 2n − 1 games in different venues.

This extension introduces a third dimension to the Room square previously considered. We
now have a Room cube of size 2n − 1, i.e., a three-dimensional array with the property that each
one of its two-dimensional projections is a Room square of size 2n − 1. The extension of Room
squares to Room cubes and p-dimensional Room cubes was presented in Dinitz and Stinson
(2005).

A Room cube based on the Room square of Fig. 14 is shown in Fig. 15. Each nonempty entry in
row r and column u of the Room cube contains a pair [i, j] and a venue identification s, meaning
that teams i and j play against each other in round r with referee u at the venue s.

© 2023 The Authors.
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Fig. 15. Room cube of size 2n − 1 = 7.

14. Carryover effects

Minimizing the value of the carryover effects is another requirement often present in the construc-
tion of schedules for sports tournaments. The carryover effect has generated extensive research due
to the irregularities it may create in a tournament. It was studied first in Russell (1980), where a
construction for a balanced tournament was devised for the case when the number of teams is a
power of two.

In this problem, we seek to avoid having many teams such that all of them play against two
teams, i and j, consecutively in the same order. In other words, if we consider the sets formed
by ordered pairs (i, j) of consecutive opponents of each team, we would like to have all of them
pairwise disjoint. Otherwise, if this is impossible, we want to minimize the sum of the squares of
the number of times each pair of consecutive opponents appears over all sets.

We define a Latin square as a q × q array in which every row contains the numbers 1 to q, and
so does every column. The timetable in Fig. 16 illustrates an example of a league with 2n = 4
teams. Figure 16a gives the opponents of teams 1 to 4 in each round. For convenience, we con-
sider a cyclic timetable, assuming that round 1 follows (or is repeated after) round 3. Figure 16b
displays the pairs of consecutive opponents for each team. Team 1, for example, meets consec-
utively with teams 4, 3, and 2. Hence, the pairs of consecutive opponents for team 1 in the
cyclic schedule are (4,3), (3,2), and (2,4). We artificially introduce the pair (i, i) in the first col-
umn of the table of ordered pairs of consecutive opponents (although it does not correspond
to a real pair of opponents). This table can be seen as a 2n × 2n array containing 4n2 pairs
of teams. We would like to have (if possible) all these pairs different, as it happens to be the
case in Fig. 16b. If we decompose the 2n × 2n array of ordered pairs into two 2n × 2n arrays

© 2023 The Authors.
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Fig. 16. Timetable with no repeating pairs of consecutive opponents.

by taking the first element i (resp. the second element j) of each ordered pair (i, j), we ob-
tain two Latin squares. Requiring that all ordered pairs differ amounts to saying that the two
Latin squares are orthogonal . Since orthogonal Latin squares of size six do not exist, in any
timetable for a league with 2n = 6 teams, at least two teams will consecutively meet some pair
of teams.

It has nevertheless been shown that if 2n is a power of two, then there is a schedule in 2n − 1
rounds such that each pair of consecutive opponents occurs precisely once.

Heuristics for the minimum carryover effects problem appeared, e.g., in Guedes and Ribeiro
(2011) and Cao et al. (2022). Notably, the canonical 1-factorization of K2n maximizes the value
of the carryover effects. Goossens and Spieksma (2012) examined the popularity of the canon-
ical schedule and how it was used in 25 European football (soccer) competitions for the sea-
son 2008–2009. The authors also discussed how the schedules managed the carryover effects.
Lambrechts et al. (2018) showed that schedules generated for round-robin tournaments by
the circle method have maximum carryover effects. Consequently, as discussed in the follow-
ing section, there is a need to examine other 1-factorizations, not isomorphic to the canonical
1-factorization.

© 2023 The Authors.
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Fig. 17. Finding an edge coloring of K4 (right) from an edge coloring of K3 (left).

15. How to find general 1-factorizations?

The chromatic index χ ′(G) of a graph G = (V, E ) was defined in Section 2. Vizing’s theorem (Viz-
ing, 1964) states that if G is a simple graph (i.e., a graph without loops or parallel edges), then its
chromatic index χ ′(G) ≤ �(G) + 1, where �(G) is the largest degree of any node of graph G. Differ-
ent constructive proofs of Vizing’s theorem provide algorithms for constructing edge colorings of
G using, at most, �(G) + 1 colors. Gabow et al. (1985) presented another edge-coloring procedure
that can be used for 1-factorizations.

In the particular case of complete graphs, �(K2n) = 2n − 1 and �(K2n−1) = 2n − 2. Vizing’s the-
orem implies that χ ′(K2n) ≤ �(K2n) + 1 = 2n and χ ′(K2n−1) ≤ �(K2n−1) + 1 = 2n − 1. It turns out
that this bound is tight for K2n−1, but not for K2n because, as we have already seen, K2n can be
colored with 2n − 1 colors.

An edge coloring of K2n with 2n − 1 colors (i.e., a 1-factorization of K2n) can be obtained from an
edge coloring of K2n−1 with the same 2n − 1 colors that, in turn, can be built using the constructions
of Vizing’s theorem. If K2n−1 can be edge colored with 2n − 1 colors, it is possible to obtain an edge
coloring with the same number of colors for K2n. First, we observe that a different color (among
the 2n − 1 colors) is missing at the edges incident to each node of K2n−1. Since each color is used
in exactly n − 1 edges of K2n−1, it is missing in one node. Therefore, we can add a new node to
the graph K2n−1 and color the new edges connecting this node to the original nodes of K2n−1 with
the missing color of each node. Hence, an edge coloring of K2n with 2n − 1 colors is obtained. An
application of this procedure is illustrated in Fig. 17.

We now show that the edges of an arbitrary graph G can be colored with �(G) + 1 colors. The
procedure starts from a graph G partially colored with no more than �(G) + 1 colors. At each step,
a new, yet uncolored edge e0 = [w, v0] will be colored without using more than �(G) + 1 colors.
This procedure is repeated until all edges are colored when it obtains the desired edge coloring with
�(G) + 1 colors.

We denote by Free(v) the set of colors missing at node v, i.e., the set of colors not used in the
edges incident to node v. Since the degrees of nodes v0 and w are smaller than or equal to �(G), we
have |Free(v0)| ≥ 2 and |Free(w)| ≥ 2.

If there is a color c that belongs to Free(v0) ∩ Free(w), then we simply color edge eo with c.
Otherwise, Free(w) ∩ Free(v0) = ∅. Then, let α0 ∈ Free(v0) and β ∈ Free(w) be two free colors at

nodes v0 and w, respectively. Let P be a maximal chain starting from v0 such that its edges are
alternately colored with colors β and α0. Such a chain will be called an α0/β-chain. Two cases may
arise: P does not end in node w or P ends in node w. In the first case, edge e0 = [w, v0] may be

© 2023 The Authors.
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colored and the edge coloring is augmented. This is done by exchanging the colors of the edges
along the chain P and coloring edge e0 = [w, v0] with color β that is now free in v0.

In the second case, we assume that the chain P ends at node w. If we exchange the colors of all
edges of P, then β ∈ Free(v0) but β �∈ Free(w).

Then, let v1 be the node adjacent to w in P and e1 = [w, v1] be the edge that is colored with α0. At
this point, the color α0 is removed from edge e1 and edge e0 is colored with that same color α0.

The problem consists of recoloring edge e1. The same procedure applied to edge e0 can be used
to assign a color to edge e1. If Free(w) ∩ Free(v1) is also empty, then the color to be selected
from Free(v1) must be different from α0 in order to avoid cycling. This color always exists, since
|Free(v1)| ≥ 2.

We may continue with this procedure until Free(w) ∩ Free(vi) becomes not empty or the chain P
does not terminate at w. This case will eventually occur after, at most, �(G) iterations. This proof
of Vizing’s theorem immediately yields a polynomial algorithm running in time O(|E ||V |�(G)) to
obtain a proper edge (�(G) + 1)-coloring of a simple graph. More efficient algorithms have been
designed and used in practical instances.

This edge-coloring procedure can be applied to a complete graph, in particular to K2n−1 to obtain
an edge coloring with 2n − 1 colors, from which an edge coloring of K2n with the same number of
colors can be obtained. It will provide a 1-factorization of graph K2n.

Remark 5. Given any arbitrary 1-factorization of K2n, there exists an order for coloring its edges
by the procedure described above that will produce exactly this 1-factorization. Contrarily to the
circle method, this procedure may generate any 1-factorization of K2n.

16. Concluding remarks

We have realized how adequate graph models are for representing round-robin tournaments. Each
game involves two teams and is an invitation to represent it by an edge linking two nodes. Complete
graphs also appear very clearly whenever every two teams have to play a game against each other.
Since a team cannot play more than one game in a round, we come across 1-factorizations to
represent timetables.

Assigning orientations to the edges (which is a fundamental idea in graph theory) of the graph
illustrates visually the fact that we have, in some circumstances, home games and away games.
Having chosen to use graph-theoretical models for sports scheduling problems, we are in a situation
where various tools of graph theory can be applied not only for representing a schedule but also to
construct it.

Graphs help to provide a deeper understanding of the techniques used for exploring the set of
1-factorizations or, more generally, that of edge colorings.
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