
Annals of Operations Research
https://doi.org/10.1007/s10479-023-05609-7

ORIG INAL RESEARCH

A biased random-key genetic algorithm for the minimum
quasi-clique partitioning problem

Rafael A. Melo1 · Celso C. Ribeiro2 · Jose A. Riveaux3

Received: 23 May 2023 / Accepted: 8 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Let G = (V , E) be a graph with vertex set V and edge set E , and consider γ ∈ [0, 1) to be
a real constant. A γ -clique (or quasi-clique) is a subset V ′ ⊆ V inducing a subgraph of G
with edge density at least γ . In this paper, we tackle the minimum quasi-clique partitioning
problem (MQCPP), which consists of obtaining a minimum-cardinality partition of V into
quasi-cliques. We propose a biased random-key genetic algorithm (BRKGA) relying on an
efficient partitioning decoder that allows merge operations to combine smaller quasi-cliques
into larger ones. Furthermore, we show that MQCPP and the problem of covering the graph
with a minimum number of quasi-cliques are not equivalent. Computational experiments
indicate that the proposed BRKGA is very effective in obtaining high-quality solutions for
MQCPP in low computational times. More specifically, it can at least match all the best
solutions available in the literature, strictly improving over them for 20.3% of the benchmark
instances. Besides, the approach is robust as it obtains small deviations from the best-achieved
solutions when executing multiple independent runs. We also consider the performance of
our BRKGA on a new set of challenging large instances with up to 2851 vertices.

Keywords Combinatorial optimization · Quasi-clique partitioning · Quasi-cliques · Biased
random-key genetic algorithms · Network clustering · Metaheuristics

B Rafael A. Melo
rafael.melo@ufba.br

Celso C. Ribeiro
celso@ic.uff.br

Jose A. Riveaux
jangel.riveaux@usp.br

1 Institute of Computing, Universidade Federal da Bahia, Salvador, BA 40170-115, Brazil

2 Institute of Computing, Universidade Federal Fluminense, Niterói, RJ 24210-346, Brazil

3 Department of Production Engineering, University of São Paulo, São Paulo, SP 05508-010, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-023-05609-7&domain=pdf
http://orcid.org/0000-0002-9478-2351

Annals of Operations Research

1 Introduction

1.1 Basic definitions

Let G = (V , E) be a simple undirected graph with a set V = {v1, . . . , vn} of vertices and
a set E of edges. A graph G is complete if every pair of vertices in V is connected by an
edge in E . Given H ⊆ V , denote by G[H] the graph induced in G by H , i.e., that with
vertex set H and edge set formed by every edge in E with both extremities in H . A clique
is a subset V ′ ⊆ V that induces a complete subgraph G[V ′] of G. Let N (v) represent the
neighbors of v ∈ V in G and degG(v) its degree, determined by |N (v)|. Moreover, consider
degG(v, H) = |N (v)∩ H |. A graph partition is a partition of its vertex set. A clique partition
(or vertex clique cover) is a partition of V into cliques. The minimum clique partitioning
problem (or minimum vertex clique covering problem) consists in obtaining a minimum
cardinality clique partition.

The density of G is defined as d(G) = |E |/(|V | · (|V | − 1)/2). Given G and a threshold
γ ∈ (0, 1], a γ -clique (also called a γ -quasi-clique) is a subset C ⊆ V such that the density
of G[C] is greater than or equal to γ . Given a specific value for γ , a γ -clique is also denoted
by simply quasi-clique. The minimum quasi-clique partitioning problem (MQCPP) consists
in obtaining a minimum cardinality partition of a graph into quasi-cliques. Figures1 and 2
illustrate, respectively, an input graph and a minimum quasi-clique partition for γ = 0.51.
A vertex quasi-clique cover is a set of quasi-cliques that cover all the vertices of a graph.
The minimum vertex quasi-clique covering problem (MVQCCP) consists in obtaining a
minimum cardinality quasi-clique cover.

Additionally, a γ -clique C is maximal if there is no other γ -clique C ′ such that C ⊂ C ′.
Let C̄ = V \C denote the complement of C . A vertex v ∈ C̄ is a γ -vertex with respect to a
γ -clique C if C ∪ {v} is a γ -clique. Denote by Nγ (C) the set of γ -vertices with respect to a
γ -clique C . A subset H ⊆ C̄ is a γ -set if C ∪ H is a γ -clique.

1.2 Literature review

MQCPP is related to the problems of obtaining dense subgraphs (Bomze et al., 1999; Wu
& Hao, 2015) and dense clusters in networks (Kriegel et al., 2011; Campello et al., 2020).
Finding dense subgraphs has shown to be applicable in several domains, including telecom-
munications (Abello et al., 2002), biology (Spirin &Mirny, 2003), and social networks (Seo
& Kim, 2021). On the other hand, applications of partitioning graphs into dense subgraphs
appear in bioinformatics (Hu et al., 2005), quantum computing (Verteletskyi et al., 2020),
data mining (Glaria et al., 2021), and community detection (Yang et al., 2016; Zhao et al.,
2021), among others. MQCPP is also associated with problems of obtaining induced sub-
graphs with some required properties (Agra et al., 2017;Melo et al., 2021;Marzo et al., 2022;
Melo & Ribeiro, 2022, 2023).

Several approaches have been proposed for obtaining maximum and maximal quasi-
cliques. Adaptive construction heuristics and their iterated greedy extensions appeared in
Oliveira et al. (2013) and Pinto et al. (2018). Metaheuristics include greedy randomized
adaptive search procedures (GRASP) (Abello et al., 2002), local search (Tsourakakis et al.,
2013), biased random-key genetic algorithms (BRKGA) (Pinto et al., 2018, 2021), memetic
algorithm (Zhou et al., 2020), artificial bee colony (Peng et al., 2021), and kernel-based
heuristic (Sanei-Mehri et al., 2021). Amongst the exact methods, we can highlight linear and

123

Annals of Operations Research

Fig. 1 Example of an input graph G with |V | = 9 and |E | = 12

Fig. 2 Optimal quasi-clique
partition for the graph in Fig. 1
with γ = 0.51: the partition
{{v1, v2, v3, v4, v5}, {v6, v7}, {v8, v9}}
is composed of three
quasi-cliques with densities 0.6,
1.0, and 1.0, respectively

integer programming approaches (Pattillo et al., 2013; Veremyev et al., 2016; Marinelli et
al., 2021) and backtracking (Ribeiro & Riveaux, 2019).

Despite its vast potential applicability, quasi-clique partitioning was only recently consid-
ered in the literature. To the best of our knowledge, the first work on the subject was Basu
et al. (2014) in the context of community detection. However, the authors did not consider
the problem from an optimization point of view. Instead, they proposed a game-theoretical
approach for partitioning a graph into so-called (λ, γ)-cliques, characterized by both their
densities and their vertices’ degrees. Melo et al. (2022) formalized MQCPP and showed that
its decision version is NP-complete even for the case of bipartition (differently from what
happens with the minimum clique partitioning problem). They also proposed four compact
integer programming formulations and amulti-start greedy randomized heuristic for the prob-
lem. MQCPP was recently considered in a tutorial about MIP formulations for optimization
problems involving induced graphs (Melo & Ribeiro, 2023).

1.3 Contributions and organization

The contributions of our work are twofold. First, we show that although the minimum clique
partitioning and theminimumvertex cover partitioning problems are equivalent,MQCPP and
MVQCCP are not. After that, as our main contribution, we provide a BRKGA metaheuristic
for MQCPP. The BRKGA algorithm relies on an effective partitioning decoder that employs
merging operations allowing the union of smaller quasi-cliques into larger ones. We also
propose a new benchmark set composed of challenging large instances.

123

Annals of Operations Research

Table 1 Number of edges in a
complete graph with |V | vertices
and the required minimum
number of edges for a γ -clique
with γ = 0.51

|V | |V |·(|V |−1)
2

⌈
0.51 · |V |·(|V |−1)

2

⌉

2 1 1

3 3 2

4 6 4

5 10 6

6 15 8

7 21 11

8 28 15

9 36 19

The remainder of this paper is organized as follows. Section2 proves that MQCPP and
MVQCCP are not equivalent. Section3 details the proposed biased random-key genetic
algorithm for MQCPP. Section4 summarizes the computational results. Section5 discusses
concluding remarks.

2 Nonequivalence of MQCPP andMVQCCP

As it was already mentioned in Sect. 1.1, finding a minimum clique partition in a graph is
equivalent to obtaining a minimum vertex clique cover (Garey & Johnson, 1979). Theorem 1
shows via an example that, differently from what happens with the minimum clique parti-
tioning and the minimum vertex clique covering problems, MQCPP and MVQCCP are not
equivalent.

Theorem 1 MQCPP and MVQCCP are not equivalent.

Proof Let G be the graph illustrated in Fig. 1 and consider γ = 0.51. The required minimum
number of edges for γ -cliques with |V | ∈ {2, 3, 4, 5, 6, 7, 8, 9} and γ = 0.51 are provided
in Table 1. G has a minimum quasi-clique partition with three quasi-cliques (see Fig. 2)
and a minimum quasi-clique cover with two quasi-cliques (see Fig. 3). To see why these
are minimum, firstly, notice that the graph only has γ -cliques (γ = 0.51) for subgraphs
with up to five vertices (see Table 1). This ensures a lower bound of two quasi-cliques for
both MQCPP and MVQCCP. Thus, the quasi-clique cover in Fig. 3 is minimum. Secondly,
observe that all the possible quasi-cliques with four or five vertices must contain v5. This
implies that, in a minimum cardinality quasi-clique partition, v5 has to be in a quasi-clique
with five vertices. Consequently, at least two disjoint quasi-cliques are needed for partitioning
the remaining four vertices. This ensures a lower bound of three quasi-cliques for MQCPP.
Thus, the quasi-clique partition in Fig. 2 is minimum. �	

3 Biased random-key genetic algorithm

Random-key genetic algorithms (RKGA) were introduced by Bean (1994). Solutions are
associated with vectors of real numbers (denoted as random keys) in the interval [0, 1).
A deterministic algorithm, which in this context is also called a decoder, takes a vector of
random keys to produce a feasible solution to the optimization problem at hand and computes

123

Annals of Operations Research

Fig. 3 Optimal vertex quasi-clique cover for the graph in Fig. 1 with γ = 0.51: the cover
{{v1, v2, v3, v4, v5}, {v5, v6, v7, v8, v9}} is composed of two quasi-cliques with density 0.6 each

its fitness or objective value. Parents are randomly selected from the entire population for
mating and crossover, with repetitions allowed.

A biased random-key genetic algorithm (BRKGA) (Gonçalves & Resende, 2011) differs
from an RKGA by the strategy used to select parents for mating, see Resende and Ribeiro
(2016) for an advanced tutorial of methods and applications. One of the main characteristics
of a BRKGA is that each new solution is generated by the combination of one solution
selected at random from the subset of elite solutions of the current population with another
that is always a non-elite solution. The crossover strategy is biased not only because one
parent is always an elite solution but also because it has a higher probability of passing its
characteristics to the offspring.

The algorithm uses the parametric uniform crossover strategy originally proposed in
Spears and De Jong (1991) for combining two parent solutions and producing a new one. The
solution generated by crossover inherits with a higher probability each of its keys from the
best parent. The algorithm does not use the standardmutation operator. Instead, the following
concept of mutants is used: new solutions (i.e., mutants) are introduced in the population at
each generation, randomly generated with the same strategy as in the initial population. They
play the same role as the mutation operator in more standard genetic algorithm frameworks,
that is, diversifying the search and assisting the procedure in escaping from local optima
(Gonçalves & Resende, 2015; Brandão et al., 2015, 2016; Pinto et al., 2020; Andrade et al.,
2021; Carrabs, 2021).

A BRKGA evolves a population formed by vectors of real numbers. Its evolutionary
dynamics can be summarized as follows. The initial population P is entirely formed by
vectors formed by randomly generated elements in the interval [0, 1). At each generation,
the current population is partitioned into two subsets: T O P and RE ST . The subset T O P
always contains the best (or elite) solutions, while RE ST contains the non-elite solutions.
The population size is thus |P| = |T O P| + |RE ST |. The non-elite set RE ST is further
partitioned into two subsets, M I D and BOT , with BOT containing the worst elements of
the population. The algorithm is elitist: the solutions in T O P are copied from the population
of one generation to the next, i.e., T O P remains the same. This is shown in Fig. 4. The
solutions in M I D are replaced by new solutions generated by a biased crossover operation
between an elite solution from T O P and a non-elite solution from RE ST . The solutions in
BOT are replaced by randomly generated mutant solutions.

The implementation of biased random-key genetic algorithms can be supported by the
C++ library developed by Toso and Resende (2015). The instantiation of the framework

123

Annals of Operations Research

Fig. 4 Population evolution between consecutive generations of a BRKGA

Fig. 5 BRKGA framework

shown in Fig. 5 to some specific optimization problem requires exclusively the development
of a class implementing the decoder for this problem. This is the only problem-dependent
part of the tool. Other applications of this framework in the implementation of BRKGAs
appeared, e.g., in Noronha et al. (2011), Brandão et al. (2016), Pinto et al. (2020).

3.1 Solution encoding

Define a solution to MQCPP as a partition S = {C1, . . . , Ck} of V into quasi-cliques.
Moreover, consider a partial solution S′ as a partition of V ′ ⊂ V into quasi-cliques. Besides,
let V (S′) be the set of vertices covered in S′ and C′(v) be the set of quasi-cliques in S′ for
which v ∈ V̄ (S′) = V \V (S′) is a γ -vertex. Additionally, let Ḡ ′ = G[V̄ (S′)].

In our approach, we encode a solution as a |V |-dimensional vector R of random keys
Rv ∈ [0, 1), v = 1, . . . , |V |. Each element Rv indicates the priority of inserting a vertex
v ∈ V into the solution, i.e., adding it to a quasi-clique.

123

Annals of Operations Research

3.2 Partitioning decoder

We propose a decoder that inserts each vertex v ∈ V̄ (S′) into the partial solution under
construction S′ (initially empty) in the order implied by their increasing random keys Rv, v =
1, . . . , |V |. Each of them is added to the lowest-index (i.e., the first created) quasi-clique in
C′(v). The partitioning decoder is detailed in Algorithm 1. It takes as inputs a graph G, a
density γ , and a solution encoded by the random-key vector R. Firstly, the solution is defined
as empty (line 1). The loop of lines 2–21 is executed while there are vertices from V that
are not in the solution. Line 3 selects the vertex v with the lowest key Rv among those that
are not part of the solution. If v is not a γ -vertex for any of the existing quasi-cliques, a new
single-element quasi-clique formed exclusively by vertex v is built (lines 4–5). Otherwise,
the loop of lines 7–13 verifies whether inserting v into the solution allows the merge of
two quasi-cliques into a larger one. All pairs of quasi-cliques {C ′, C ′′} belonging to C′(v)

are considered as candidates, in the order they were created (line 8). If {v} can be merged
together with C ′ and C ′′ into a single, larger quasi-clique (line 9), then they are merged (lines
10–11), C is set to the merged quasi-clique (line 12) and the for loop is halted (line 13). If C
is nonempty (line 14), i.e., smaller quasi-cliques were merged into a larger one, the algorithm
verifies whether C can be further merged with other quasi-cliques that are γ -sets to it (lines
15–18). In case quasi-cliques could not be merged with the addition of v, then the vertex is
inserted into the lowest-index, i.e., the first created quasi-clique in C′(v) (lines 19–21). The
algorithm returns in line 22 the obtained solution S′ and its associated fitness value |S′|.
Remark 1 The decoder proposed in Algorithm 1 can work properly with or without the
merging operations (lines 8–18).

Proposition 1 Algorithm 1 can be implemented to run in time O(|V |3). If the merging oper-
ations are disabled, the running time drops to O(|V | log |V | + |E |).
Proof To analyze the running time of Algorithm 1, assume G is represented by an adjacency
list. Let each quasi-clique be characterized by a list of vertices and a solution (partial or
complete) by a vector of lists. Additionally, consider the following auxiliary variables and
structures: the number of vertices already in the solution, a |V |-dimensional vector in which
each element indicates the quasi-clique vertex v ∈ V belongs, and a |V |-dimensional vector
in which each element specifies the degree of v ∈ V in Ḡ ′. Besides, consider the following
variables and structures for each quasi-clique in the solution: cardinality, number of edges,
number of vertices adjacent to each vertex in V̄ (S′), and number of vertices adjacent to the
vertices of every other quasi-clique.

The first analysis regards the computational costs associated with adding a vertex v ∈
V̄ (S′) to the solution, i.e., inserting it into a quasi-clique. Notice that when adding a new
vertex to a quasi-clique, we update the vector indicating its quasi-clique and the list of vertices
in the corresponding quasi-clique together with its cardinality, all of which take O(1). Then,
by going through the list of vertices adjacent to v, we can update in time O(|V |) the degree
of the changed quasi-clique for every vertex in V̄ (S′), its number of edges, and the sets C ′(u)

for the appropriate vertices u ∈ V̄ (S′). Notice, however, that all these updates throughout
the algorithm’s execution correspond to going once through the graph’s adjacency list while
performing constant-time operations. Thus, the total running time for performing all of them
is O(|V | + |E |).

Line 1 takes time O(1). The while loop of lines 2–21 is executed O(|V |) times. In each
iteration, the selection of a vertex with a minimum key in line 3 can be performed in O(1)

123

Annals of Operations Research

Algorithm 1: Partitioning-Decoder(G, γ, R)

1 S′ ← ∅;
2 while V̄ (S′) �= ∅ do
3 v ← argmin{R j : j ∈ V̄ (S′)};
4 if C′(v) = ∅ then
5 S′ ← S′ ∪ {{v}};
6 else
7 C ← ∅;
8 for every pair C ′, C ′′ ∈ C′(v) taken in the order they were created do
9 if d(G[C ′ ∪ C ′′ ∪ {v}]) ≥ γ then

10 C ′ ← C ′ ∪ C ′′ ∪ {v};
11 S′ ← S′ \ C ′′;
12 C ← C ′;
13 break;

14 if C �= ∅ then
15 for every C ′ ∈ S′ \ {C} taken in the order they were created do
16 if d(G[C ∪ C ′]) ≥ γ then
17 C ← C ∪ C ′;
18 S′ ← S′ \ C ′;

19 else
20 C ← the lowest-index quasi-clique in C′(v);
21 C ← C ∪ {v};

22 return S′, |S′|;

assuming the vertices are already sorted, what can be done only once at the beginning of the
algorithm’s execution in O(|V | log |V |). The cost of line 5 is already considered in the costs
of inserting the vertices into the quasi-cliques. The condition in line 9 can be verified in O(1).
The updates related to lines 10–11 for the new larger quasi-clique: cardinality, number of
vertices adjacent to each vertex in V̄ (S′), number of edges, and updated number of vertices
adjacent to the vertices of every other quasi-clique can all be done in O(|V |). To update the
vector indicating the quasi-cliques of the different vertices, one has to go through the list of
vertices in the largest index clique and change the values accordingly, which can be done
in O(|V |). Thus, the cost of lines 8–13 is O(|C′(v)|2 + |V |). The for loop of lines 15–18
is executed O(|S′|) times. In each iteration, evaluating the condition in line 16 takes O(1)
and the updates in lines 17–18 take O(|V |). Thus, the whole loop takes O(|S′||V |). Line
20 can be executed in O(1). The cost of line 21 was already accounted for in the costs of
inserting vertices into quasi-cliques. Let S′

max be the maximum number of quasi-cliques in
S′ during the execution of the algorithm. Thus, Algorithm 1 can be implemented to run in
O(|V | log |V |+|E |+|V |2S′

max), what, in terms of the input values, leads to O(|V |3). Notice
that without the merging operations (lines 17–18) the algorithm can be implemented to run
in O(|V | log |V | + |E |). �	
Remark 2 Although Algorithm 1 has a worst-case running time in O(|V |3), it is sensitive to
the number of quasi-cliques in the generated partial solutions. Therefore, practical settings
can imply lower-order running times depending on the graph density and the value of γ .

123

Annals of Operations Research

4 Computational experiments

In this section, we summarize the experiments performed to assess the effectiveness of the
proposed approach. All experiments were conducted on a machine running under Ubuntu
GNU/Linux, with an Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz processor and 16Gb of
RAM. The algorithms were implemented in C++ with the BRKGA implementations using
the API of Toso and Resende (2015). All the tests were executed using a single thread.

Section 4.1 describes the benchmark instances used in the literature. Section 4.2 enu-
merates the tested approaches. Section 4.3 summarizes the computational experiments using
the instances available in the literature. Section 4.4 proposes a new set of large benchmark
instances and outlines the results for these new instances. Section 4.5 provides a comparative
summary of the performance of the two BRKGA variants.

4.1 Benchmark instances

Each of the original benchmark instances (Melo et al., 2022) corresponds to an input graph
and a density value γ . The used input graphs correspond to real networks that are commonly
used in the literature and were recently considered in Matsypura et al. (2019), graphs from
the DIMACS Implementation Challenges (DIMACS, 2021), and networks from the Movie-
galaxies data set (Kaminski et al., 2018). Table 2 displays the input graphs, the numbers of
vertices and edges, and the densities, ordered by |V |. For each of these 23 graphs, instances
are considered for γ ∈ {0.999, 0.950, 0.900, 0.800, 0.700, 0.600, 0.500, 0.400, 0.300} (207
instances in total).

4.2 Tested approaches and parameter settings

We considered the following approaches in our experiments: the multi-start heuristic (MSH)
proposed in Melo et al. (2022), the BRKGA without the merging operations (BRKGA), and
the complete BRKGA (BRKGAm). We also report the best results obtained in Melo et al.
(2022) using the IP formulations proposed therein (executed with a time limit of 3600s).

The parameters used for MSH were set as in Melo et al. (2022). The settings for BRKGA
and BRKGAm were established based on preliminary experiments considering the recom-
mendations described in Gonçalves and Resende (2011). The settings are: the number of
chromosomes in the population is p = |P| = 100, the size of the elite set in the population
is pe = 0.2p, the number of mutants to be introduced in the population at each generation
is pm = 0.1p, and the probability that a key is inherited from the elite parent is ρe = 0.7.
Besides, BRKGA restarts with a newly generated population whenever 100 generations are
performed without improving the incumbent solution.

4.3 Computational results

In the experiments reported in this section, ten independent runs were performed usingMSH,
BRKGA, and BRKGAm for each benchmark instance. A time limit of 300s (five minutes)
was imposed on each run of each algorithm.

Table 3 summarizes the results assembled by the input graphs. All the reported values are
averaged over the nine instances (with different values of γ) for the specified input graph.
The results for MSH, BRKGA, and BRKGAm correspond to the ten independent executions.

123

Annals of Operations Research

Table 2 Benchmark graphs used
in Melo et al. (2022)

Input graph |V | |E | d(G)

Memento 14 19 0.2088

The_X_Files 24 41 0.1486

Alien_3 25 77 0.2567

high-tech 33 91 0.1723

karate 34 78 0.1390

mexican 35 117 0.1966

sawmill 36 62 0.0984

tailorS1 39 158 0.2132

chesapeake 39 170 0.2294

Batman_Returns 51 124 0.0973

attiro 59 128 0.0748

krebs 62 153 0.0809

dolphins 62 159 0.0841

prison 67 142 0.0642

sanjuansur 75 144 0.0519

jean 77 254 0.0868

3-FullIns_3 80 346 0.1095

david 87 406 0.1085

myciel6 95 755 0.1691

4-FullIns_3 114 541 0.0840

ieeebus 118 179 0.0259

sfi 118 200 0.0290

anna 138 493 0.0522

Table 3 Summary of the average results for the original instances, assembled by the input graphs

Input graph IP MSH BRKGA BRKGAm

Best Min Avg Max ttb (s) Min avg Max ttb (s) Min Avg Max ttb (s)

Memento 7.78 7.78 7.78 7.78 0.0 7.78 7.78 7.78 0.0 7.78 7.78 7.78 0.0

The_X_Files 9.78 9.78 9.81 9.89 14.6 9.78 9.78 9.78 0.0 9.78 9.78 9.78 0.1

Alien_3 6.56 6.89 6.89 6.89 0.3 6.56 6.56 6.56 0.0 6.56 6.56 6.56 0.0

high-tech 10.44 10.44 10.44 10.44 20.4 10.44 10.44 10.44 0.1 10.44 10.44 10.44 0.1

karate 12.89 13.22 13.29 13.44 25.8 12.89 12.89 12.89 0.6 12.89 12.89 12.89 2.7

mexican 8.00 8.00 8.04 8.22 18.6 8.00 8.00 8.00 0.1 8.00 8.00 8.00 0.1

sawmill 12.78 12.78 12.78 12.78 12.6 12.78 12.78 12.78 0.1 12.78 12.78 12.78 0.3

tailorS1 9.78 9.89 10.13 10.22 34.2 9.78 9.78 9.78 0.1 9.78 9.78 9.78 0.1

chesapeake 10.22 10.33 10.67 10.78 32.4 10.11 10.11 10.11 2.1 10.11 10.11 10.11 2.3

Batman_Returns 13.33 13.67 13.99 14.11 28.7 13.33 13.33 13.33 0.5 13.33 13.33 13.33 0.9

attiro 18.56 18.78 18.91 19.00 36.5 18.33 18.33 18.33 13.9 18.33 18.33 18.33 20.2

krebs 21.22 22.33 22.63 22.89 44.5 21.11 21.21 21.22 2.9 21.11 21.21 21.22 1.5

dolphins 19.11 19.89 20.11 20.44 54.2 18.89 18.96 19.00 13.7 18.89 18.97 19.00 9.7

prison 18.56 18.78 18.96 19.11 44.1 18.33 18.38 18.44 13.2 18.33 18.39 18.44 11.5

123

Annals of Operations Research

Table 3 continued

Input graph IP MSH BRKGA BRKGAm

Best Min Avg Max ttb (s) Min avg Max ttb (s) Min Avg Max ttb (s)

sanjuansur 24.22 24.56 24.83 25.00 47.3 24.00 24.06 24.11 12.0 24.00 24.09 24.11 9.0

jean 22.89 24.67 25.37 26.00 56.2 22.67 22.67 22.67 6.1 22.67 22.67 22.67 3.7

3-FullIns_3 25.33 26.33 26.51 26.78 59.3 25.00 25.10 25.33 49.1 25.00 25.13 25.33 52.5

david 22.78 25.78 26.40 27.00 81.2 21.89 22.09 22.33 31.0 21.89 22.09 22.22 33.3

myciel6 33.67 38.56 39.03 39.78 97.4 32.11 32.31 32.56 26.6 32.33 32.52 32.67 14.6

4-FullIns_3 37.78 38.44 39.02 39.56 69.9 36.44 36.79 37.00 54.1 36.44 36.83 37.00 53.1

ieeebus 44.33 45.89 46.47 47.11 109.7 43.00 43.07 43.22 32.2 43.00 43.12 43.22 35.2

sfi 47.78 51.44 52.19 52.78 57.7 47.56 47.78 47.89 25.8 47.67 47.83 48.00 37.4

anna 61.56 65.44 66.58 67.44 88.2 56.33 56.72 57.22 70.5 56.67 56.94 57.33 69.3

The first column displays the input graph. The second column (best) presents the best results
obtained inMelo et al. (2022) using the IP formulations proposed therein (with a time limit of
3600s). The following 12 columns provide, forMSH, BRKGA, andBRKGAm , theminimum
(min), average (avg), and maximum (max) objective values over the ten independent runs,
as well as the average time in seconds to reach the best-obtained solution (ttb). The values in
boldface indicate the cases in which the corresponding approach achieved the lowest average
minimum in each line. The results show that both BRKGA andBRKGAm obtain high-quality
solutions within low computational times. Overall, BRKGA performs the best as it reaches
the lowest minimum values for all the input graphs. Besides, BRKGA and BRKGAm have
shown to be robust for the benchmark set as they obtain reasonably low deviations between
the minimum and maximum values. Note that the minimum and maximum values are the
same for both BRKGA and BRKGAm for all the graphs with up to 59 vertices. The minimum
values obtained by BRKGA and BRKGAm at least match the best values obtained by the
integer programming formulations (within the time limit) for all the input graphs. Moreover,
strictly improved results were reached for 14 out of the 23 graphs (60.8%) for which the
integer programming approach did not find the optimal solution for all the values of γ within
3600s. Detailed results are available in Appendix A.

Table 4 summarizes the results gathered by the values of γ . All the reported values are
averaged over the 23 instances with different input graphs for each specific value of γ . The
results show that BRKGA obtained the lowest minima for all the values of γ but 0.800. On
the other hand, BRKGAm reaches the smallest average minima for all the values of γ larger
than or equal to 0.700. We also notice that the average minima obtained by BRKGA improve
or match those obtained by BRKGAm for all the values of γ except 0.800.

Figure 6 graphically summarizes the quality of the best solutions obtained by BRKGA
and BRKGAm . It shows the fraction in percent of the 207 instances for which the two
approaches obtained: (a) the current best-known solution, (b) a solution that at least matches
the best one found by the IP formulations in Melo et al. (2022), and (c) a solution that strictly
improves over the best one achieved by the IP formulations inMelo et al. (2022). It shows that
BRKGAperforms slightly better thanBRKGAm , finding the best-known solutions up-to-date
for 99.5% of the instances. Besides, the plots show that BRKGA and BRKGAm improved
over the best solutions achieved by the IP formulations in Melo et al. (2022) for 20.3% of
the instances, even considering that the formulations were run with a much larger time limit
of 3600s, compared with the 300s given to the two BRKGA variants.

123

Annals of Operations Research

Table 4 Summary of the average results for the original instances, gathered by the values of γ

γ I P MSH BRKGA BRKGAm

Best Min Avg Max ttb (s) Min Avg Max ttb (s) Min Avg Max ttb (s)

0.999 31.22 31.57 31.66 31.74 17.4 31.22 31.23 31.26 5.6 31.22 31.23 31.26 5.5

0.950 31.09 31.48 31.58 31.70 21.6 31.09 31.10 31.13 5.6 31.09 31.10 31.13 5.5

0.900 30.35 30.78 30.92 31.13 25.3 30.26 30.29 30.35 10.8 30.26 30.29 30.35 11.3

0.800 28.17 28.65 28.77 28.91 39.1 27.96 27.96 27.96 2.6 27.91 27.95 27.96 4.5

0.700 26.52 26.91 27.16 27.48 51.8 25.83 25.87 25.91 10.1 25.83 25.85 25.87 12.4

0.600 17.91 19.00 19.44 19.83 61.8 16.74 16.82 16.87 17.7 16.78 16.84 16.87 14.3

0.500 13.65 15.39 16.01 16.39 57.3 12.26 12.45 12.61 25.3 12.39 12.52 12.65 28.1

0.400 10.04 12.26 12.86 13.43 75.1 9.04 9.16 9.39 30.8 9.09 9.27 9.43 31.3

0.300 6.43 8.87 9.33 9.70 55.2 6.22 6.43 6.57 30.4 6.30 6.52 6.61 26.9

Fig. 6 Fraction in percent of the 207 original benchmark instances for whichBRKGAandBRKGAm obtained:
a the best-known solution, b a solution that at least matches the best found by the IP formulations in Melo et
al. (2022), and c a solution that strictly improves over the best one achieved by the IP formulations in Melo et
al. (2022)

The boxplot with jittered points depicted in Fig. 7 summarizes the deviations in percent
from the best-known solutions for all the 2070 runs (ten runs for each of the 207 instances).
The deviation for a given run is defined as 100 · zrun−zbest

zbest
, where zrun represents the objective

value achieved in that run and zbest is the best-known solution obtained using any of the
approaches for the specific instance. The boxplot shows evidence that both BRKGA and
BRKGAm are very robust, as all the nonzero deviations are classified as outliers, i.e., both

123

Annals of Operations Research

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

BRKGA BRKGAm

de
vi

at
io

n
in

 p
er

ce
nt

 fr
om

 th
e

be
st

 k
no

w
n

so
lu

tio
ns

Fig. 7 Boxplot summarizing the deviation in percent from the best-known solutions for the 2070 runs (ten
independent runs for each of the 207 original instances) performed using BRKGA and BRKGAm

the upper and lower whiskers are null and, consequently, the median and the second and third
quartiles are also null.

4.4 Results using a new benchmark set withmore challenging large instances

This section assesses how the proposed BRKGA implementations perform on even more
challenging large instances. To accomplish that, we introduce a new benchmark set composed
of eight miscellaneous sparse graphs with |V | ∈ [494, 2851] and d(G) ∈ [0.238, 2.951],
and 13 dense graphs from the DIMACS Implementation Challenges with |V | ∈ [500, 2000]
and d(G) ∈ [24.475, 77.131]. The sparse and dense graphs are summarized in Tables 5
and 6, respectively. Their columns are the same as in Table 2. These graphs are available in
Rossi and Ahmed (2015a), Rossi and Ahmed (2015b). Instances are considered for the values
of γ ∈ {0.999, 0.950, 0.900, 0.800, 0.700, 0.600, 0.500, 0.400, 0.300} that are at least 0.01
larger than the corresponding graphs’ densities. In total, there are 72 sparse and 78 dense
instances.

123

Annals of Operations Research

Table 5 New benchmark set with
challenging large sparse instances

Input graph |V | |E | d(G)

494bus 494 586 0.481

662bus 662 906 0.414

email-dnc-corecipient 906 12,100 2.951

email 1133 5, 451 0.850

polblogs 1490 16,715 1.507

bcsstk13 2003 40,940 2.042

hamsterster 2400 16,600 0.577

data 2851 15,093 0.371

Table 6 New benchmark set with
challenging large dense instances

Input graph |V | |E | d(G)

p-hat500-1 500 31,569 25.306

p-hat500-2 500 62,946 50.458

p-hat500-3 500 93,800 75.190

keller5 766 225,990 77.131

brock800-3 800 207,333 64.873

p-hat1000-1 1000 122,253 24.475

p-hat1000-2 1000 244,799 49.009

san1000 1000 250,500 50.150

p-hat1000-3 1000 371,746 74.424

p-hat1500-1 1500 284,923 25.343

p-hat1500-2 1500 568,960 50.608

p-hat1500-3 1500 847,244 75.361

C2000-5 2000 999,836 50.017

For the experiments reported in this section, we only compare the results obtained by
MSH, BRKGA, and BRKGAm . We do not provide those using the IP formulations given
their limitations to tackle such large instances, considering their O(|V |3) variables; see Melo
et al. (2022). The parameter settings for MSH, BRKGA, and BRKGAm were the same as
those described in Sect. 4.2. Ten independent runswere executed using each of the approaches
(MSH, BRKGA, and BRKGAm) for each instance. A time limit of |V | seconds was imposed
on each run.

4.4.1 Results for the sparse graphs

Table 7 summarizes the results for the large sparse instances assembled by the input graphs.
The columns are the same as in Table 3. All the reported values are averaged over the nine
instances (given by the different values of γ) for the specified input graph. The results for
MSH and BRKGA correspond to the ten independent executions. Detailed results for each
instance are available in Appendix B.

The results show thatBRKGAm reaches the lowestminimumvalues for all the input graphs
except 662_bus. Furthermore, BRKGAm reaches maximum values that are always lower
than the minimum values achieved byMSH. Besides, for all the input graphs, the differences

123

Annals of Operations Research

Ta
bl
e
7

Su
m
m
ar
y
of

th
e
av
er
ag
e
re
su
lts

fo
r
th
e
ne
w
la
rg
e
sp
ar
se

in
st
an
ce
s,
as
se
m
bl
ed

by
th
e
in
pu

tg
ra
ph

s

In
pu

tg
ra
ph

M
SH

B
R
K
G
A

B
R
K
G
A

m

M
in

A
vg

m
ax

ttb
(s
)

M
in

A
vg

M
ax

ttb
(s
)

M
in

A
vg

M
ax

ttb
(s
)

49
4_

bu
s

23
8.
56

24
1.
49

24
3.
44

20
5.
7

21
8.
67

22
1.
18

22
3.
78

26
8.
3

21
5.
67

21
7.
43

21
9.
00

45
3.
8

66
2_

bu
s

30
7.
33

31
1.
48

31
5.
11

27
3.
0

28
0.
33

28
3.
54

28
8.
33

49
2.
2

28
2.
67

28
6.
39

29
0.
33

63
0.
9

em
ai
l-
dn

c-
co
re
ci
pi
en
t

44
6.
33

45
0.
19

45
3.
22

46
4.
4

41
9.
67

42
4.
47

43
0.
89

70
0.
4

39
3.
89

39
7.
02

40
0.
11

78
8.
0

em
ai
l

49
8.
33

50
4.
40

50
8.
89

53
4.
4

45
3.
00

46
2.
90

47
2.
11

11
00

.8
43

8.
78

44
3.
84

44
8.
33

10
63

.9

po
lb
lo
gs

63
8.
89

64
4.
26

64
9.
44

68
7.
3

59
1.
44

59
9.
52

60
8.
67

11
72

.6
54

8.
67

55
2.
71

55
6.
22

11
12

.9

bc
ss
tk
13

20
0.
33

20
3.
64

20
6.
78

10
80

.0
20

5.
11

20
9.
07

21
2.
67

14
25

.3
17

5.
00

17
7.
28

17
9.
22

13
21

.8

so
c-
ha
m
st
er
st
er

71
9.
44

72
8.
84

73
4.
33

15
54

.5
71

1.
11

71
9.
98

72
7.
22

21
49

.8
62

4.
44

62
9.
78

63
3.
67

22
42

.6

da
ta

54
7.
11

55
4.
12

56
0.
44

18
74

.4
56

6.
33

57
2.
84

57
7.
56

19
14

.6
53

1.
67

53
5.
16

53
8.
33

20
37

.1

123

Annals of Operations Research

Table 8 Summary of the average results for the new large sparse instances, gathered by the values of γ

γ MSH BRKGA BRKGAm

Min Avg Max ttb (s) Min Avg Max ttb (s) Min Avg Max ttb (s)

0.999 572.25 576.46 580.12 853.9 540.88 544.26 547.25 1207.4 556.62 558.79 560.75 1225.9

0.950 567.50 572.21 576.50 818.8 538.38 542.27 545.88 1238.7 552.38 555.08 557.25 1224.1

0.900 553.75 558.35 562.25 814.7 527.50 531.61 535.12 1266.4 535.38 538.12 540.62 1285.8

0.800 512.00 516.69 519.88 757.2 494.12 498.53 504.00 1216.4 485.75 488.75 491.50 1185.8

0.700 487.38 493.21 496.88 973.7 474.12 480.75 486.75 1136.7 451.00 454.25 456.75 1089.1

0.600 406.75 412.48 416.62 842.8 388.75 395.27 401.62 1215.2 343.50 347.59 351.38 1213.1

0.500 363.25 368.77 373.88 879.4 350.25 355.59 363.25 1129.9 285.25 290.65 295.38 1273.7

0.400 322.12 328.06 333.12 796.1 311.50 320.43 330.12 1023.3 238.75 243.04 247.50 1174.2

0.300 260.88 266.99 271.38 771.3 250.88 261.48 269.88 943.1 163.50 168.30 172.25 1185.7

between the values obtained by BRKGA in the columns min, avg, and max are relatively
small, indicating the robustness of the approach. It is noteworthy that, differently from what
happened with the original instances, that have up to 138 vertices and are thus considerably
smaller, BRKGAm reaches better results than those achieved by BRKGA, indicating the
benefits of the proposed merging operations.

Table 8 summarizes the results gathered by the values of γ . The columns are the same as
in Table 4. The results show that BRKGA reaches the lowest minimum values for the largest
settings of γ , while BRKGAm is the best performing approach for the values of γ below
0.800.

The boxplot with jittered points illustrated in Fig. 8 summarizes the deviations in percent
from the best-known solutions for all the 720 runs for the instances corresponding to the large
sparse graphs. The boxplot shows that the solutions obtained in multiple runs by BRKGAm

do not have significant deviations from the best-known solutions, as they are always below
10%. BRKGA does not have a similar behavior, since some runs can reach deviations above
100%.

4.4.2 Results for the dense graphs

Table 9 summarizes the results for the large dense instances assembled by the input graphs.
The columns are the same as in Table 3, except for the second column (#inst) that provides
the number of instances for the corresponding input graphs, given by the different values of
γ that are at least 0.01 larger than the graphs’ densities. All the reported values are averaged
over the number of instances for the specified input graph. The results for MSH, BRKGA,
and BRKGAm correspond to the ten independent executions.

The results show thatBRKGAm reaches the lowestminimumvalues for all the input graphs
but the largest one (C2000-5). Furthermore, BRKGAm reaches the lowest average values for
all the input graphs. As observed for the large sparse graphs, the differences between the
values obtained by BRKGA in the columns min, avg, and max are often small.

Table 10 summarizes the results gathered by the values of γ . The columns are the same as
in Table 4, except for the second column (#inst) that gives the number of graphs with density
at least 0.01 below the corresponding value of γ . The results show that BRKGAm obtains
the lowest minimum values for all the values of γ , except γ = 0.999.

123

Annals of Operations Research

0

10

20

30

40

50

60

70

80

90

100

110

BRKGA BRKGAm

de
vi

at
io

n
in

 p
er

ce
nt

 fr
om

 th
e

be
st

 k
no

w
n

so
lu

tio
ns

Fig. 8 Boxplot summarizing the deviation in percent from the best-known solutions for the 720 runs (ten
independent runs for each of the 72 instances) performed using BRKGA and BRKGAm considering the large
sparse instances

The boxplot with jittered points illustrated in Fig. 9 summarizes the deviations in percent
from the best-known solutions for all the 780 runs for the instances corresponding to the
large dense graphs. The boxplot shows that, as observed for the large sparse instances, the
obtained solutions in multiple runs by BRKGAm do not have large deviations from the best-
known solutions, differently from what happens for BRKGA. Once again, the results show
the benefits of the proposed merging operations in the decoder.

4.5 Summary of the behaviors of BRKGA and BRKGAm

We remark that, given the caracteristics of the two variants, BRKGA potentially explores
a larger variety of solutions while BRKGAm tends to converge faster to locally optimal
solutions. For the original smaller instances, that have up to 138 vertices, the ability of
exploring more solutions allows BRKGA to perform slightly better. However, when it comes
to the larger instances,with 500 ormore vertices, such an advantage does not hold. In that case,
the faster convergence of BRKGAm provides competitiveness as very low-quality solutions

123

Annals of Operations Research

Table 9 Summary of the average results for the new large dense instances assembled by the input graphs

Input graph #inst MSH BRKGA BRKGAm

Min Avg Max ttb (s) Min Avg Max ttb (s) Min Avg Max ttb (s)

p-hat500-1 9 75.33 76.87 78.22 224.8 69.22 70.63 71.89 276.0 64.67 65.69 66.56 246.1

p-hat500-2 6 59.83 61.35 62.67 206.0 53.50 55.03 55.83 248.1 48.33 49.43 50.00 220.4

p-hat500-3 4 25.25 25.97 26.50 156.5 24.50 24.80 25.25 95.9 23.25 23.60 24.00 93.6

keller5 4 30.50 31.30 32.00 316.1 30.00 30.78 31.25 347.6 29.50 29.65 30.00 225.7

brock800-3 5 40.20 40.78 41.60 210.4 40.20 40.52 41.20 212.9 39.60 39.94 40.60 206.6

p-hat1000-1 9 141.11 143.34 145.33 534.5 129.00 130.68 132.00 596.7 121.56 122.94 124.44 600.7

p-hat1000-2 6 112.67 115.10 117.33 467.6 101.00 102.67 104.33 604.8 92.17 92.83 94.00 585.1

san1000 6 48.83 49.23 49.67 347.3 48.83 49.10 49.33 199.1 48.17 48.50 48.67 173.8

p-hat1000-3 4 44.50 45.62 46.75 404.7 43.00 43.75 44.00 255.2 41.50 42.17 42.50 277.6

p-hat1500-1 9 192.56 196.00 198.56 862.7 177.00 178.69 180.56 994.3 168.11 169.18 170.44 939.8

p-hat1500-2 6 151.33 154.37 156.67 972.6 136.00 137.63 139.33 915.5 124.17 125.57 126.50 844.6

p-hat1500-3 4 58.25 59.55 60.50 980.5 56.50 57.23 57.75 412.5 54.50 55.30 55.75 521.4

C2000-5 6 124.50 125.63 126.671015.9 125.17 125.95 126.67 623.1 125.00 125.47 126.00 587.1

Table 10 Summary of the average results for the new large dense instances, gathered by the values of γ

γ #inst MSH BRKGA BRKGAm

Min Avg Max ttb (s) Min Avg Max ttb (s) Min Avg Max ttb (s)

0.999 13 142.15 143.86 145.15 519.2 131.77 133.00 134.23 483.3 132.46 133.42 134.46 511.3

0.950 13 129.69 131.16 132.69 485.3 121.54 122.83 123.85 496.1 121.23 122.28 123.23 493.9

0.900 13 106.54 108.60 110.00 544.2 100.15 101.37 102.54 491.5 97.38 98.52 99.46 494.6

0.800 13 74.00 75.12 76.46 481.9 68.15 69.26 70.15 459.8 63.46 64.03 64.69 439.6

0.700 9 77.89 80.41 82.00 497.8 73.89 74.92 76.00 505.3 62.00 62.74 63.78 455.4

0.600 8 57.38 58.71 60.00 630.7 51.25 52.26 53.12 477.7 44.00 44.56 44.88 370.4

0.500 3 72.67 75.10 76.67 444.6 69.33 70.27 71.00 500.3 57.67 58.67 59.33 534.8

0.400 3 52.33 54.33 56.00 645.4 49.00 50.20 51.33 505.9 33.33 33.80 34.00 396.8

0.300 3 27.67 29.43 32.00 648.3 23.33 24.43 25.33 456.2 12.33 12.60 13.00 328.1

are potentially avoided, obtaining significantly better solutions than BRKGA in the same
running times for most instances.

Finally, we performed some tests for statistical significance regarding the relative behav-
iors of BRKGA and BRKGAm . They took into consideration the deviations from the
best-known solutions already defined earlier in this section. Namely, we considered three
populations: (A) the 2070 observations for the 207 original instances, (B) the 720 observa-
tions for the 72 large sparse instances, and (C) the 780 observations for the 78 large dense
instances. First, as normality cannot be assumed, we applied the Shapiro-Wilk test (Shapiro
& Wilk, 1965) to each of the three populations to check for normality. The null hypothesis
that the data has normal distribution was rejected with a p-value smaller than 2.2×10−16 for
all of them. After that, we applied the nonparametric Wilcoxon-Mann–Whitney test (Mann
& Whitney, 1947) to verify whether there is statistical evidence that the proposed merging
operations allow BRKGAm to outperform BRKGA. The null hypothesis was that the devia-

123

Annals of Operations Research

0

10

20

30

40

50

60

70

80

90

100

110

BRKGA BRKGAm

de
vi

at
io

n
in

 p
er

ce
nt

 fr
om

 th
e

be
st

 k
no

w
n

so
lu

tio
ns

Fig. 9 Boxplot summarizing the deviation in percent from the best-known solutions for the 780 runs (ten
independent runs for each of the 78 instances) performed using BRKGA and BRKGAm , considering the large
dense instances

tions achieved by BRKGA are less than or equal to those obtained by BRKGAm . There was
not enough evidence to reject the null hypothesis for the original instances, with a p-value
larger than 0.992, implying that BRKGA performs at least as good as BRKGAm . Contrarily,
the null hypothesis was rejected for each of the two sets of large instances with a p-value
smaller than 2.2× 10−16. Thus, there is statistical evidence that BRKGAm performs strictly
better than BRKGA for the larger instances.

5 Concluding remarks

This paper considered the minimum quasi-clique partitioning problem (MQCPP). First, we
showed that MQCPP and the minimum vertex quasi-clique covering problem do not share
an equivalence relationship, differently from what happens between the minimum clique
partitioning problem and theminimum vertex clique covering problem. Second, we proposed
a biased random-key genetic algorithm for the problem that relies on an efficient partitioning

123

Annals of Operations Research

decoder. Furthermore, a new benchmark set of larger and more challenging instances is
proposed for MQCPP, for which feasible solutions are provided for the first time.

The proposed BRKGA’s decoder can merge quasi-cliques during its execution and runs
in O(|V |3). Whenever one chooses not to perform merge operations, the decoder can be
implemented to run in O(|V | log |V | + |E |). The computational experiments show that the
two BRKGA variants are able to generate high-quality solutions in low computational times.
Solutions at least as good as the ones available in the literature were obtained for all the
available benchmark instances, with new best results achieved for 20.3% of them, i.e., for 42
out of the 207 benchmark instances. Furthermore, the two BRKGA variants are very robust
as they obtain low deviations from the best-obtained solutions, with all the nonzero devia-
tions being statistically characterized as outliers. The results for the new large benchmark
instances indicate that the complete BRKGA with merging operations obtains solutions that
outperform the existing multi-start heuristic. The results also evidence the benefits of the
proposed merging operations. Besides, robustness can also be observed in its behavior for
such instances as low deviations from the best-known solutions are observed when multiple
executions are performed.

Acknowledgements The work of Rafael A. Melo was supported by the Brazilian National Council for Scien-
tific and Technological Development (CNPq) research grant 314662/2020-0. Thework of Celso C. Ribeirowas
partially supported by CNPq research grant 309869/2020-0 and by FAPERJ (Fundação de Amparo à Pesquisa
do Estado do Rio de Janeiro) research grant E-26/200.926/2021. The work of Jose A. Riveaux was sponsored
by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) research grant 2022/06747-0.

Data Availability The data that support the findings of this study are available from the corresponding author
upon request.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this
article.

Appendix A: Detailed results for the benchmark instances of Melo et al.
(2022)

Table 11 details the results obtained for the original instances. The first two columns indicate
the input graph and the value of γ . The third column provides the best result obtained
in Melo et al. (2022) using any formulations. The following columns show, for MSH and
BRKGA, the minimum (min), average (avg), and maximum (max) objective values over
the ten independent runs, as well as the average time in seconds to reach the best-obtained
solution (ttb).

123

Annals of Operations Research

Table 11 Detailed results obtained by the approaches for the original instances

Input graph γ I P MSH BRKGA BRKGAm

Best Min Avg Max ttb (s) Min avg Max ttb (s) Min Avg Max ttb (s)

Memento 0.999 10 10 10.0 10 0.0 10 10.0 10 0.0 10 10.0 10 0.0

Memento 0.950 10 10 10.0 10 0.0 10 10.0 10 0.0 10 10.0 10 0.0

Memento 0.900 10 10 10.0 10 0.0 10 10.0 10 0.0 10 10.0 10 0.0

Memento 0.800 9 9 9.0 9 0.0 9 9.0 9 0.0 9 9.0 9 0.0

Memento 0.700 9 9 9.0 9 0.0 9 9.0 9 0.0 9 9.0 9 0.0

Memento 0.600 8 8 8.0 8 0.0 8 8.0 8 0.0 8 8.0 8 0.0

Memento 0.500 6 6 6.0 6 0.0 6 6.0 6 0.0 6 6.0 6 0.0

Memento 0.400 5 5 5.0 5 0.0 5 5.0 5 0.0 5 5.0 5 0.0

Memento 0.300 3 3 3.0 3 0.0 3 3.0 3 0.0 3 3.0 3 0.0

The_X_Files 0.999 14 14 14.0 14 0.0 14 14.0 14 0.0 14 14.0 14 0.0

The_X_Files 0.950 14 14 14.0 14 0.0 14 14.0 14 0.0 14 14.0 14 0.0

The_X_Files 0.900 14 14 14.0 14 0.0 14 14.0 14 0.0 14 14.0 14 0.0

The_X_Files 0.800 13 13 13.0 13 0.0 13 13.0 13 0.0 13 13.0 13 0.0

The_X_Files 0.700 11 11 11.0 11 0.0 11 11.0 11 0.0 11 11.0 11 0.0

The_X_Files 0.600 9 9 9.0 9 0.0 9 9.0 9 0.0 9 9.0 9 0.0

The_X_Files 0.500 6 6 6.0 6 0.8 6 6.0 6 0.0 6 6.0 6 0.0

The_X_Files 0.400 4 4 4.3 5 129.7 4 4.0 4 0.2 4 4.0 4 0.3

The_X_Files 0.300 3 3 3.0 3 0.7 3 3.0 3 0.0 3 3.0 3 0.0

Alien_3 0.999 11 11 11.0 11 0.0 11 11.0 11 0.0 11 11.0 11 0.0

Alien_3 0.950 11 11 11.0 11 0.0 11 11.0 11 0.0 11 11.0 11 0.0

Alien_3 0.900 10 10 10.0 10 0.0 10 10.0 10 0.0 10 10.0 10 0.0

Alien_3 0.800 9 9 9.0 9 0.0 9 9.0 9 0.0 9 9.0 9 0.0

Alien_3 0.700 6 7 7.0 7 2.6 6 6.0 6 0.0 6 6.0 6 0.0

Alien_3 0.600 5 5 5.0 5 0.1 5 5.0 5 0.0 5 5.0 5 0.0

Alien_3 0.500 3 4 4.0 4 0.2 3 3.0 3 0.1 3 3.0 3 0.1

Alien_3 0.400 2 3 3.0 3 0.1 2 2.0 2 0.0 2 2.0 2 0.0

Alien_3 0.300 2 2 2.0 2 0.0 2 2.0 2 0.0 2 2.0 2 0.0

high-tech 0.999 16 16 16.0 16 0.1 16 16.0 16 0.0 16 16.0 16 0.0

high-tech 0.950 16 16 16.0 16 0.1 16 16.0 16 0.0 16 16.0 16 0.0

high-tech 0.900 15 15 15.0 15 0.2 15 15.0 15 0.0 15 15.0 15 0.0

high-tech 0.800 14 14 14.0 14 0.4 14 14.0 14 0.0 14 14.0 14 0.0

high-tech 0.700 12 12 12.0 12 23.6 12 12.0 12 0.2 12 12.0 12 0.2

high-tech 0.600 8 8 8.0 8 42.4 8 8.0 8 0.0 8 8.0 8 0.0

high-tech 0.500 6 6 6.0 6 49.7 6 6.0 6 0.1 6 6.0 6 0.1

high-tech 0.400 4 4 4.0 4 62.4 4 4.0 4 0.1 4 4.0 4 0.2

high-tech 0.300 3 3 3.0 3 4.9 3 3.0 3 0.0 3 3.0 3 0.0

123

Annals of Operations Research

Table 11 continued

Input graph γ I P MSH BRKGA BRKGAm

Best Min Avg Max ttb (s) Min avg Max ttb (s) Min Avg Max ttb (s)

karate 0.999 20 20 20.0 20 0.0 20 20.0 20 0.1 20 20.0 20 0.1

karate 0.950 20 20 20.0 20 0.0 20 20.0 20 0.1 20 20.0 20 0.1

karate 0.900 19 19 19.0 19 0.0 19 19.0 19 0.1 19 19.0 19 0.1

karate 0.800 17 17 17.0 17 0.6 17 17.0 17 0.1 17 17.0 17 0.1

karate 0.700 15 15 15.0 15 13.4 15 15.0 15 0.4 15 15.0 15 0.5

karate 0.600 10 11 11.0 11 44.9 10 10.0 10 0.7 10 10.0 10 0.7

karate 0.500 7 8 8.5 9 75.2 7 7.0 7 0.3 7 7.0 7 0.6

karate 0.400 5 5 5.1 6 83.4 5 5.0 5 0.1 5 5.0 5 0.1

karate 0.300 3 4 4.0 4 15.1 3 3.0 3 3.9 3 3.0 3 21.6

mexican 0.999 13 13 13.0 13 0.7 13 13.0 13 0.1 13 13.0 13 0.1

mexican 0.950 13 13 13.0 13 0.7 13 13.0 13 0.1 13 13.0 13 0.1

mexican 0.900 12 12 12.0 12 2.7 12 12.0 12 0.1 12 12.0 12 0.1

mexican 0.800 10 10 10.0 10 8.7 10 10.0 10 0.1 10 10.0 10 0.1

mexican 0.700 8 8 8.1 9 65.7 8 8.0 8 0.1 8 8.0 8 0.1

mexican 0.600 6 6 6.3 7 59.9 6 6.0 6 0.1 6 6.0 6 0.1

mexican 0.500 5 5 5.0 5 3.6 5 5.0 5 0.0 5 5.0 5 0.1

mexican 0.400 3 3 3.0 3 24.0 3 3.0 3 0.1 3 3.0 3 0.1

mexican 0.300 2 2 2.0 2 1.1 2 2.0 2 0.0 2 2.0 2 0.0

sawmill 0.999 18 18 18.0 18 0.0 18 18.0 18 0.1 18 18.0 18 0.1

sawmill 0.950 18 18 18.0 18 0.0 18 18.0 18 0.1 18 18.0 18 0.1

sawmill 0.900 18 18 18.0 18 0.0 18 18.0 18 0.1 18 18.0 18 0.1

sawmill 0.800 16 16 16.0 16 0.0 16 16.0 16 0.1 16 16.0 16 0.1

sawmill 0.700 16 16 16.0 16 0.0 16 16.0 16 0.1 16 16.0 16 0.1

sawmill 0.600 11 11 11.0 11 0.2 11 11.0 11 0.0 11 11.0 11 0.1

sawmill 0.500 8 8 8.0 8 5.0 8 8.0 8 0.1 8 8.0 8 0.1

sawmill 0.400 6 6 6.0 6 14.2 6 6.0 6 0.0 6 6.0 6 0.1

sawmill 0.300 4 4 4.0 4 94.3 4 4.0 4 0.7 4 4.0 4 2.3

tailorS1 0.999 17 17 17.0 17 0.0 17 17.0 17 0.1 17 17.0 17 0.1

tailorS1 0.950 17 17 17.0 17 0.0 17 17.0 17 0.1 17 17.0 17 0.1

tailorS1 0.900 15 15 15.0 15 2.1 15 15.0 15 0.1 15 15.0 15 0.1

tailorS1 0.800 12 12 12.0 12 90.5 12 12.0 12 0.1 12 12.0 12 0.1

tailorS1 0.700 10 11 11.0 11 50.3 10 10.0 10 0.2 10 10.0 10 0.2

tailorS1 0.600 7 7 7.9 8 24.3 7 7.0 7 0.2 7 7.0 7 0.2

tailorS1 0.500 5 5 5.5 6 82.7 5 5.0 5 0.1 5 5.0 5 0.1

tailorS1 0.400 3 3 3.8 4 48.6 3 3.0 3 0.1 3 3.0 3 0.1

tailorS1 0.300 2 2 2.0 2 9.1 2 2.0 2 0.1 2 2.0 2 0.1

123

Annals of Operations Research

Table 11 continued

Input graph γ I P MSH BRKGA BRKGAm

Best Min Avg Max ttb (s) Min avg Max ttb (s) Min Avg Max ttb (s)

chesapeake 0.999 17 17 17.0 17 0.8 17 17.0 17 0.1 17 17.0 17 0.1

chesapeake 0.950 17 17 17.0 17 0.8 17 17.0 17 0.1 17 17.0 17 0.1

chesapeake 0.900 16 16 16.8 17 17.8 16 16.0 16 15.1 16 16.0 16 14.7

chesapeake 0.800 13 14 14.0 14 43.5 13 13.0 13 2.3 13 13.0 13 4.7

chesapeake 0.700 12 12 12.0 12 19.6 11 11.0 11 0.9 11 11.0 11 0.6

chesapeake 0.600 7 7 7.8 8 56.9 7 7.0 7 0.1 7 7.0 7 0.2

chesapeake 0.500 5 5 5.9 6 28.4 5 5.0 5 0.1 5 5.0 5 0.1

chesapeake 0.400 3 3 3.5 4 117.4 3 3.0 3 0.1 3 3.0 3 0.5

chesapeake 0.300 2 2 2.0 2 6.7 2 2.0 2 0.1 2 2.0 2 0.1

Batman_Returns 0.999 20 20 20.0 20 0.0 20 20.0 20 0.1 20 20.0 20 0.1

Batman_Returns 0.950 20 20 20.0 20 0.0 20 20.0 20 0.1 20 20.0 20 0.1

Batman_Returns 0.900 20 20 20.0 20 0.0 20 20.0 20 0.1 20 20.0 20 0.1

Batman_Returns 0.800 17 17 17.0 17 27.6 17 17.0 17 0.1 17 17.0 17 0.1

Batman_Returns 0.700 15 16 16.0 16 1.2 15 15.0 15 0.2 15 15.0 15 0.1

Batman_Returns 0.600 10 10 10.7 11 95.7 10 10.0 10 0.1 10 10.0 10 0.1

Batman_Returns 0.500 8 9 9.9 10 42.2 8 8.0 8 1.1 8 8.0 8 0.7

Batman_Returns 0.400 6 7 7.5 8 49.5 6 6.0 6 0.3 6 6.0 6 0.3

Batman_Returns 0.300 4 4 4.8 5 42.4 4 4.0 4 2.6 4 4.0 4 6.5

attiro 0.999 27 27 27.0 27 9.6 27 27.0 27 0.2 27 27.0 27 0.2

attiro 0.950 27 27 27.0 27 9.7 27 27.0 27 0.2 27 27.0 27 0.2

attiro 0.900 27 27 27.0 27 9.7 27 27.0 27 0.2 27 27.0 27 0.2

attiro 0.800 24 24 24.0 24 3.7 24 24.0 24 0.2 24 24.0 24 0.2

attiro 0.700 21 21 21.0 21 30.0 21 21.0 21 0.3 21 21.0 21 0.3

attiro 0.600 14 14 14.5 15 58.1 13 13.0 13 4.1 13 13.0 13 4.5

attiro 0.500 12 12 12.7 13 57.9 11 11.0 11 36.1 11 11.0 11 73.3

attiro 0.400 9 10 10.0 10 97.7 9 9.0 9 1.5 9 9.0 9 2.5

attiro 0.300 6 7 7.0 7 52.6 6 6.0 6 81.9 6 6.0 6 100.4

krebs 0.999 33 33 33.0 33 0.2 33 33.0 33 0.2 33 33.0 33 0.2

krebs 0.950 33 33 33.0 33 0.1 33 33.0 33 0.2 33 33.0 33 0.2

krebs 0.900 31 31 31.1 32 54.4 31 31.0 31 0.5 31 31.0 31 0.5

krebs 0.800 26 27 27.0 27 12.1 26 26.0 26 4.0 26 26.0 26 2.9

krebs 0.700 25 25 25.0 25 71.8 25 25.0 25 0.2 25 25.0 25 0.2

krebs 0.600 18 18 18.9 19 67.0 17 17.0 17 1.1 17 17.0 17 0.8

krebs 0.500 12 15 15.4 16 45.2 12 12.0 12 1.2 12 12.0 12 1.2

krebs 0.400 8 11 11.9 12 115.3 8 8.0 8 1.8 8 8.0 8 5.4

krebs 0.300 5 8 8.4 9 34.9 5 5.9 6 16.6 5 5.9 6 2.2

123

Annals of Operations Research

Table 11 continued

Input graph γ I P MSH BRKGA BRKGAm

Best Min Avg Max ttb (s) Min avg Max ttb (s) Min Avg Max ttb (s)

dolphins 0.999 28 28 28.0 28 24.0 28 28.0 28 0.3 28 28.0 28 0.3

dolphins 0.950 28 28 28.0 28 24.3 28 28.0 28 0.3 28 28.0 28 0.3

dolphins 0.900 27 27 27.0 27 40.9 27 27.0 27 0.3 27 27.0 27 0.3

dolphins 0.800 25 25 25.0 25 24.2 25 25.0 25 0.3 25 25.0 25 0.3

dolphins 0.700 23 23 23.2 24 118.2 23 23.0 23 0.3 23 23.0 23 0.4

dolphins 0.600 16 17 17.5 18 64.7 15 15.0 15 22.5 15 15.0 15 33.6

dolphins 0.500 12 14 14.0 14 68.1 11 11.0 11 23.2 11 11.0 11 18.8

dolphins 0.400 8 10 10.8 12 60.9 8 8.0 8 1.6 8 8.0 8 2.3

dolphins 0.300 5 7 7.5 8 63.0 5 5.6 6 74.6 5 5.7 6 31.4

prison 0.999 26 26 26.0 26 20.5 26 26.0 26 0.4 26 26.0 26 0.4

prison 0.950 26 26 26.0 26 20.5 26 26.0 26 0.4 26 26.0 26 0.4

prison 0.900 25 25 25.0 25 2.4 25 25.0 25 0.2 25 25.0 25 0.2

prison 0.800 24 24 24.0 24 51.7 24 24.0 24 0.4 24 24.0 24 0.4

prison 0.700 22 22 22.0 22 71.3 21 21.0 21 1.2 21 21.0 21 2.1

prison 0.600 15 16 16.5 17 47.0 15 15.0 15 1.2 15 15.0 15 1.6

prison 0.500 12 12 12.9 13 60.2 12 12.0 12 1.4 12 12.0 12 1.0

prison 0.400 10 10 10.2 11 95.2 9 9.4 10 85.0 9 9.5 10 73.7

prison 0.300 7 8 8.0 8 27.9 7 7.0 7 28.7 7 7.0 7 24.1

sanjuansur 0.999 35 35 35.0 35 2.3 35 35.0 35 0.2 35 35.0 35 0.2

sanjuansur 0.950 35 35 35.0 35 2.4 35 35.0 35 0.2 35 35.0 35 0.2

sanjuansur 0.900 35 35 35.0 35 2.4 35 35.0 35 0.2 35 35.0 35 0.2

sanjuansur 0.800 31 31 31.0 31 18.3 31 31.0 31 0.5 31 31.0 31 0.5

sanjuansur 0.700 29 29 29.0 29 85.6 29 29.0 29 0.6 29 29.0 29 0.6

sanjuansur 0.600 18 20 20.0 20 42.5 18 18.0 18 1.4 18 18.0 18 2.0

sanjuansur 0.500 15 15 16.2 17 78.2 14 14.0 14 11.3 14 14.0 14 19.5

sanjuansur 0.400 12 12 12.6 13 124.9 11 11.0 11 26.1 11 11.0 11 30.4

sanjuansur 0.300 8 9 9.7 10 68.6 8 8.5 9 67.2 8 8.8 9 27.0

jean 0.999 35 35 35.0 35 0.2 35 35.0 35 0.3 35 35.0 35 0.3

jean 0.950 35 35 35.0 35 0.1 35 35.0 35 0.3 35 35.0 35 0.3

jean 0.900 33 33 33.0 33 1.4 33 33.0 33 0.3 33 33.0 33 0.3

jean 0.800 30 30 30.2 31 92.0 30 30.0 30 0.3 30 30.0 30 0.3

jean 0.700 27 27 28.0 29 79.7 27 27.0 27 0.3 27 27.0 27 0.3

jean 0.600 20 22 23.2 24 32.7 19 19.0 19 4.8 19 19.0 19 2.5

jean 0.500 13 18 19.0 20 88.4 12 12.0 12 30.6 12 12.0 12 15.3

jean 0.400 8 13 15.1 16 68.9 8 8.0 8 2.1 8 8.0 8 2.8

jean 0.300 5 9 9.8 11 142.5 5 5.0 5 16.3 5 5.0 5 11.5

123

Annals of Operations Research

Table 11 continued

Input graph γ I P MSH BRKGA BRKGAm

Best Min Avg Max ttb (s) Min avg Max ttb (s) Min Avg Max ttb (s)

3-FullIns_3 0.999 37 39 39.0 39 86.5 37 37.3 38 103.3 37 37.3 38 102.1

3-FullIns_3 0.950 37 39 39.0 39 85.8 37 37.3 38 103.4 37 37.3 38 102.0

3-FullIns_3 0.900 37 38 38.7 39 47.0 37 37.0 37 17.5 37 37.0 37 17.3

3-FullIns_3 0.800 36 37 37.0 37 89.6 36 36.0 36 7.9 36 36.0 36 7.8

3-FullIns_3 0.700 35 36 36.1 37 46.6 35 35.0 35 4.5 35 35.0 35 4.6

3-FullIns_3 0.600 17 18 18.1 19 60.9 16 16.0 16 67.8 16 16.0 16 51.3

3-FullIns_3 0.500 13 13 13.7 14 26.3 12 12.3 13 46.8 12 12.6 13 76.9

3-FullIns_3 0.400 10 10 10.0 10 55.1 9 9.0 9 54.5 9 9.0 9 58.0

3-FullIns_3 0.300 6 7 7.0 7 36.2 6 6.0 6 36.4 6 6.0 6 52.6

david 0.999 36 36 36.0 36 0.2 36 36.0 36 0.3 36 36.0 36 0.3

david 0.950 34 34 34.9 35 30.4 34 34.0 34 1.3 34 34.0 34 1.3

david 0.900 33 33 33.2 34 108.4 33 33.0 33 0.4 33 33.0 33 0.4

david 0.800 29 30 30.4 31 79.8 29 29.0 29 0.6 29 29.0 29 0.6

david 0.700 26 28 28.5 29 107.7 23 23.2 24 102.8 23 23.0 23 162.3

david 0.600 18 24 24.3 25 98.9 17 17.6 18 73.1 17 17.7 18 29.8

david 0.500 14 19 20.5 21 106.7 11 11.9 12 10.3 11 11.9 12 19.3

david 0.400 9 16 17.5 19 87.9 8 8.1 9 88.7 8 8.2 9 83.3

david 0.300 6 12 12.3 13 110.9 6 6.0 6 1.3 6 6.0 6 2.2

myciel6 0.999 48 52 52.2 53 88.1 48 48.0 48 2.6 48 48.0 48 2.6

myciel6 0.950 48 52 52.2 53 88.6 48 48.0 48 2.6 48 48.0 48 2.6

myciel6 0.900 48 52 52.2 53 89.4 48 48.0 48 2.6 48 48.0 48 2.6

myciel6 0.800 48 52 52.2 53 87.9 48 48.0 48 2.6 48 48.0 48 2.6

myciel6 0.700 52 52 52.2 53 87.0 48 48.0 48 2.6 48 48.0 48 2.6

myciel6 0.600 23 30 30.3 31 116.0 19 19.5 20 47.2 20 20.0 20 16.9

myciel6 0.500 18 24 24.7 25 91.7 14 14.9 15 42.7 15 15.1 16 68.9

myciel6 0.400 12 19 20.0 21 86.8 10 10.3 11 61.8 10 10.8 11 12.2

myciel6 0.300 6 14 15.3 16 141.7 6 6.1 7 74.5 6 6.8 7 20.3

4-FullIns_3 0.999 55 55 56.7 57 48.7 55 55.0 55 12.3 55 55.0 55 12.2

4-FullIns_3 0.950 55 56 56.5 57 66.0 55 55.0 55 10.6 55 55.0 55 10.5

4-FullIns_3 0.900 54 56 56.1 57 65.5 53 53.5 54 76.3 53 53.5 54 75.6

4-FullIns_3 0.800 53 54 54.1 55 69.8 52 52.0 52 20.9 51 51.8 52 48.4

4-FullIns_3 0.700 52 52 52.7 53 75.7 49 49.7 50 59.6 49 49.6 50 75.6

4-FullIns_3 0.600 26 27 27.1 28 151.9 23 23.8 24 82.8 23 23.7 24 68.0

4-FullIns_3 0.500 20 20 20.8 21 40.8 18 18.4 19 110.3 19 19.0 19 33.0

4-FullIns_3 0.400 15 15 15.6 16 56.7 14 14.0 14 68.2 14 14.0 14 61.2

4-FullIns_3 0.300 10 11 11.6 12 54.0 9 9.7 10 46.3 9 9.9 10 93.0

123

Annals of Operations Research

Table 11 continued

Input graph γ I P MSH BRKGA BRKGAm

Best Min Avg Max ttb (s) Min avg Max ttb (s) Min Avg Max ttb (s)

ieeebus 0.999 57 59 59.2 60 113.8 57 57.0 57 5.2 57 57.0 57 5.1

ieeebus 0.950 57 59 59.2 60 109.8 57 57.0 57 5.2 57 57.0 57 5.2

ieeebus 0.900 57 59 59.2 60 110.4 57 57.0 57 5.2 57 57.0 57 5.2

ieeebus 0.800 57 58 58.9 59 115.3 57 57.0 57 7.6 57 57.0 57 7.6

ieeebus 0.700 57 58 58.6 59 78.6 57 57.0 57 4.1 57 57.0 57 4.1

ieeebus 0.600 40 40 40.7 41 109.1 36 36.0 36 30.4 36 36.0 36 32.3

ieeebus 0.500 31 32 33.0 34 98.0 27 27.0 27 67.0 27 27.0 27 80.4

ieeebus 0.400 25 26 27.1 28 150.6 21 21.2 22 53.3 21 21.3 22 106.0

ieeebus 0.300 18 22 22.3 23 101.9 18 18.4 19 112.0 18 18.8 19 71.3

sfi 0.999 65 65 65.0 65 0.2 65 65.0 65 0.8 65 65.0 65 0.8

sfi 0.950 65 65 65.0 65 0.2 65 65.0 65 0.8 65 65.0 65 0.8

sfi 0.900 65 65 65.0 65 0.1 65 65.0 65 0.8 65 65.0 65 0.8

sfi 0.800 61 61 61.0 61 4.1 61 61.0 61 0.7 61 61.0 61 0.7

sfi 0.700 57 57 58.2 59 77.3 57 57.0 57 0.7 57 57.0 57 0.7

sfi 0.600 45 48 48.4 49 89.0 45 45.0 45 1.1 45 45.0 45 1.5

sfi 0.500 32 42 43.0 44 112.4 31 31.4 32 80.0 31 31.6 32 101.8

sfi 0.400 24 35 37.1 39 102.2 23 23.7 24 100.4 23 23.9 25 161.5

sfi 0.300 16 25 27.0 28 133.5 16 16.9 17 46.6 17 17.0 17 68.2

anna 0.999 80 80 80.0 80 3.9 80 80.0 80 1.2 80 80.0 80 1.2

anna 0.950 79 79 79.5 80 57.5 79 79.0 79 2.1 79 79.0 79 2.1

anna 0.900 77 78 78.8 79 26.7 76 76.2 77 128.7 76 76.2 77 141.7

anna 0.800 74 75 75.8 76 80.4 70 70.0 70 11.7 70 70.0 70 26.5

anna 0.700 70 72 73.1 74 86.1 66 66.0 66 52.3 66 66.0 66 29.2

anna 0.600 61 61 62.9 64 160.2 51 51.0 51 68.5 51 51.0 51 83.5

anna 0.500 51 56 57.5 59 156.2 38 39.5 41 119.5 39 39.8 41 136.2

anna 0.400 40 52 52.7 54 96.2 29 30.0 32 161.2 30 31.4 32 119.7

anna 0.300 22 36 38.9 41 126.9 18 18.8 19 89.5 19 19.1 20 84.0

Appendix B: Detailed results for the new large sparse benchmark
instances

Table 12 details the results obtained for each large sparse instance. The columns are the same
as in Table 11 in Appendix A. The only difference is that the results using the formulations
are not available for these large instances.

123

Annals of Operations Research

Table 12 Detailed results obtained by the approaches for the new large sparse instances

Input graph γ MSH BRKGA BRKGAm

min avg max ttb (s) min avg max ttb (s) min avg max ttb (s)

494_bus 0.999 293 294.7 296 185.1 278 278.8 279 156.5 279 280.2 281 455.0

494_bus 0.950 293 294.7 296 186.2 278 278.8 279 155.3 279 280.2 281 455.0

494_bus 0.900 293 294.7 296 186.0 278 278.8 279 156.4 279 280.2 281 454.6

494_bus 0.800 293 294.7 296 186.2 278 278.8 279 155.0 279 280.2 281 454.7

494_bus 0.700 293 294.7 296 185.9 278 278.8 279 156.9 279 280.2 281 454.6

494_bus 0.600 214 218.0 221 266.2 187 191.7 197 368.5 185 186.9 189 477.0

494_bus 0.500 179 182.3 186 206.6 151 154.6 160 384.1 142 144.7 149 451.3

494_bus 0.400 155 159.5 161 207.1 129 133.8 140 433.2 117 119.9 122 443.3

494_bus 0.300 134 140.1 143 242.2 111 116.5 122 449.1 102 104.4 106 438.5

662_bus 0.999 379 382.5 386 162.2 354 355.6 357 426.9 366 368.6 371 632.9

662_bus 0.950 379 382.5 386 162.2 354 355.5 357 462.1 366 368.6 371 633.7

662_bus 0.900 379 382.5 386 162.2 354 355.5 357 461.4 366 368.6 371 633.5

662_bus 0.800 378 380.4 383 288.7 352 353.1 355 395.7 365 366.3 369 626.9

662_bus 0.700 371 378.7 382 367.4 350 352.7 356 407.1 362 364.6 367 622.8

662_bus 0.600 278 282.5 285 337.2 247 249.9 252 517.0 247 250.9 256 641.4

662_bus 0.500 230 232.9 238 331.3 198 200.7 205 602.4 185 193.7 199 636.8

662_bus 0.400 196 201.5 205 292.0 167 171.1 176 555.4 153 157.6 166 649.2

662_bus 0.300 176 179.8 185 354.0 147 157.8 180 602.1 134 138.6 143 601.2

email-dnc-corecipient 0.999 498 500.0 501 361.0 495 495.0 495 81.1 495 495.0 495 589.0

email-dnc-corecipient 0.950 497 499.5 501 406.0 492 492.7 494 396.5 490 492.1 494 878.5

email-dnc-corecipient 0.900 495 496.4 498 432.0 483 485.3 487 646.7 483 484.4 486 745.5

email-dnc-corecipient 0.800 482 487.3 489 500.2 469 471.6 476 801.8 462 463.8 466 796.3

email-dnc-corecipient 0.700 475 476.6 479 663.3 449 456.1 465 851.5 440 441.8 443 713.3

email-dnc-corecipient 0.600 435 441.1 445 435.3 410 414.5 423 858.0 380 382.1 387 866.9

email-dnc-corecipient 0.500 414 418.8 426 599.2 381 386.9 397 889.0 338 343.6 348 786.9

email-dnc-corecipient 0.400 391 396.8 401 405.7 341 349.8 367 895.2 292 297.3 303 844.3

email-dnc-corecipient 0.300 330 335.2 339 377.4 257 268.3 274 883.6 165 173.1 179 871.5

email 0.999 613 618.4 622 513.1 559 561.9 566 1091.1 589 592.0 595 1032.8

email 0.950 610 614.7 619 651.2 555 560.7 566 1077.0 590 591.5 595 1074.1

email 0.900 599 606.8 613 657.9 548 551.8 557 1100.6 581 583.4 586 1012.2

email 0.800 569 574.4 578 596.2 527 530.2 535 1117.0 544 548.2 553 1007.1

email 0.700 550 559.6 564 637.9 510 518.6 524 1137.2 515 518.8 522 1136.9

email 0.600 458 462.8 467 325.6 408 419.5 428 1108.4 376 384.7 388 1052.1

email 0.500 412 416.7 420 395.9 369 379.6 394 1116.6 317 323.8 331 1121.5

email 0.400 369 374.6 380 379.1 325 349.2 372 1109.0 264 272.7 280 1052.0

email 0.300 305 311.6 317 652.4 276 294.6 307 1049.8 173 179.5 185 1086.7

polblogs 0.999 746 750.5 755 762.6 684 685.6 687 1161.3 712 714.3 716 1033.6

polblogs 0.950 738 746.3 752 795.3 681 685.3 688 1210.2 711 712.6 714 1052.2

polblogs 0.900 738 741.1 746 562.1 681 682.4 686 1193.0 702 703.6 706 1067.8

123

Annals of Operations Research

Table 12 continued

Input graph γ MSH BRKGA BRKGAm

min avg max ttb (s) min avg max ttb (s) min avg max ttb (s)

polblogs 0.800 707 712.5 718 610.0 661 668.3 677 1194.2 660 661.7 664 1154.6

polblogs 0.700 697 698.9 702 748.4 647 658.7 673 1182.7 633 636.5 639 993.7

polblogs 0.600 605 612.1 616 701.6 557 570.5 583 1168.0 480 485.9 491 1198.1

polblogs 0.500 558 564.9 572 763.6 522 530.6 542 1166.3 416 423.1 430 1178.3

polblogs 0.400 518 524.5 532 687.7 487 496.7 512 1184.3 371 375.2 379 1139.1

polblogs 0.300 443 447.5 452 554.6 403 417.6 430 1093.3 253 261.5 267 1199.0

bcsstk13 0.999 312 316.4 321 1317.7 292 297.6 304 1899.2 303 305.2 306 1540.1

bcsstk13 0.950 298 300.1 304 930.6 286 289.1 293 1906.0 286 289.3 291 1209.4

bcsstk13 0.900 285 288.8 291 873.3 278 282.8 288 1886.3 265 269.3 272 1581.2

bcsstk13 0.800 232 237.9 242 783.7 244 247.0 251 1289.7 211 214.4 218 1099.2

bcsstk13 0.700 203 206.1 208 1178.3 215 221.1 224 1451.5 170 172.7 176 1279.2

bcsstk13 0.600 160 162.1 164 1053.7 169 173.4 177 1628.3 126 127.5 129 1383.6

bcsstk13 0.500 132 134.3 137 1159.6 147 149.7 153 1013.9 94 95.7 98 1318.3

bcsstk13 0.400 104 107.7 112 1256.0 123 125.5 127 1030.2 68 68.9 70 1216.3

bcsstk13 0.300 77 79.4 82 1167.2 92 95.4 97 722.7 52 52.5 53 1269.0

soc-hamsterster 0.999 884 889.7 894 1736.4 835 839.7 843 2410.7 861 863.1 866 2208.8

soc-hamsterster 0.950 872 880.4 888 1627.6 830 835.9 843 2354.9 849 854.4 856 2177.3

soc-hamsterster 0.900 859 862.1 865 1658.7 818 827.9 834 2346.8 828 831.9 836 2169.1

soc-hamsterster 0.800 815 817.7 820 1436.8 791 797.7 811 2296.2 760 766.1 767 2252.6

soc-hamsterster 0.700 777 789.3 794 1672.5 770 779.2 787 2297.7 691 698.5 702 2104.4

soc-hamsterster 0.600 683 695.2 702 1615.0 687 692.6 698 2142.4 559 561.9 567 2288.0

soc-hamsterster 0.500 629 640.5 646 1347.6 639 644.2 653 2051.1 462 470.2 476 2359.4

soc-hamsterster 0.400 553 564.9 573 1583.7 578 592.8 600 1842.5 382 386.7 391 2415.6

soc-hamsterster 0.300 403 419.8 427 1312.4 452 469.8 476 1606.1 228 235.2 242 2208.1

data 0.999 853 859.5 866 1793.2 830 839.9 847 2432.5 848 851.9 856 2315.1

data 0.950 853 859.5 866 1791.2 831 840.2 847 2347.6 848 851.9 856 2312.3

data 0.900 782 794.4 803 1985.4 780 788.4 793 2339.8 779 783.6 787 2622.5

data 0.800 620 628.6 633 1655.7 631 641.5 648 2481.6 605 609.3 614 2095.3

data 0.700 533 541.8 550 2336.0 574 580.8 586 1608.7 518 520.9 524 1408.3

data 0.600 421 426.0 433 2008.0 445 450.1 455 1930.8 395 400.8 404 1797.6

data 0.500 352 359.8 366 2231.3 395 398.4 402 1815.9 328 330.4 332 2337.3

data 0.400 291 295.0 301 1557.8 342 344.5 347 1136.6 263 266.0 269 1633.9

data 0.300 219 222.5 226 1510.6 269 271.8 273 1138.2 201 201.6 203 1811.5

Appendix C: Detailed results for the large dense benchmark instances

Table 13 details the results obtained for each new large dense instance. The columns are the
same as in Table 12 in Appendix B.

123

Annals of Operations Research

Table 13 Detailed results obtained by the approaches for the new large dense instances

Input graph γ MSH BRKGA BRKGAm

min avg max ttb (s) min avg max ttb (s) min avg max ttb (s)

p-hat500-1 0.999 126 128.2 130 258.5 115 117.1 119 334.2 117 117.8 119 360.7

p-hat500-1 0.950 125 126.4 128 247.3 114 116.4 118 355.6 114 116.4 118 337.1

p-hat500-1 0.900 115 116.8 118 211.5 105 106.6 108 318.7 103 104.8 107 280.3

p-hat500-1 0.800 93 94.3 95 154.4 84 85.6 87 354.8 79 80.2 81 267.4

p-hat500-1 0.700 78 79.4 81 219.4 74 74.7 76 239.2 64 65.3 67 306.1

p-hat500-1 0.600 56 57.4 58 237.3 52 53.1 54 217.5 47 47.9 48 230.8

p-hat500-1 0.500 41 42.3 44 180.9 39 40.1 41 268.7 32 32.8 33 237.3

p-hat500-1 0.400 29 31.0 32 265.2 27 28.3 30 280.2 19 19.0 19 115.1

p-hat500-1 0.300 15 16.0 18 248.5 13 13.8 14 114.8 7 7.0 7 80.3

p-hat500-2 0.999 85 86.9 88 246.0 75 76.6 77 265.8 76 76.8 77 313.4

p-hat500-2 0.950 81 82.3 83 142.0 72 73.4 75 272.7 71 72.8 74 290.4

p-hat500-2 0.900 72 73.0 74 143.3 65 66.7 68 289.3 61 62.4 63 296.3

p-hat500-2 0.800 55 56.3 58 195.2 50 51.4 52 250.0 42 43.4 44 155.0

p-hat500-2 0.700 42 44.7 47 256.9 40 40.9 41 244.3 27 27.3 28 205.0

p-hat500-2 0.600 24 24.9 26 252.8 19 21.2 22 166.6 13 13.9 14 62.6

p-hat500-3 0.999 39 39.8 40 93.7 37 37.4 38 101.0 37 37.4 38 109.7

p-hat500-3 0.950 31 31.4 32 176.9 30 30.4 31 154.5 29 29.4 30 150.5

p-hat500-3 0.900 22 23.0 24 146.4 22 22.4 23 73.3 20 20.6 21 93.5

p-hat500-3 0.800 9 9.7 10 208.9 9 9.0 9 54.7 7 7.0 7 20.8

keller5 0.999 58 58.9 60 318.3 56 56.2 57 384.4 56 56.2 57 413.1

keller5 0.950 41 41.6 42 224.2 40 40.7 41 283.2 39 39.4 40 203.2

keller5 0.900 21 22.6 23 444.7 22 22.9 23 304.5 21 21.0 21 165.3

keller5 0.800 2 2.1 3 277.2 2 3.3 4 418.1 2 2.0 2 121.0

brock800-3 0.999 72 72.1 73 168.1 70 70.2 71 180.3 70 70.2 71 200.8

brock800-3 0.950 58 59.5 61 178.1 59 59.5 60 180.0 58 58.9 59 254.0

brock800-3 0.900 43 43.7 45 333.6 43 43.8 45 279.7 43 43.4 44 203.1

brock800-3 0.800 21 21.6 22 156.4 22 22.0 22 207.8 21 21.1 22 245.2

brock800-3 0.700 7 7.0 7 215.8 7 7.1 8 216.6 6 6.1 7 129.9

p-hat1000-1 0.999 239 240.8 243 525.9 217 219.0 221 756.5 219 220.5 222 804.5

p-hat1000-1 0.950 233 235.1 238 587.3 214 216.5 218 572.9 215 217.7 220 604.6

p-hat1000-1 0.900 214 217.6 220 639.9 196 198.1 200 684.4 195 196.4 198 740.7

p-hat1000-1 0.800 173 174.1 176 495.3 156 157.5 159 724.1 149 150.0 152 661.3

p-hat1000-1 0.700 143 146.4 148 684.2 133 135.8 137 625.8 119 121.3 124 675.5

p-hat1000-1 0.600 106 107.1 108 460.1 95 96.3 98 539.5 88 89.5 91 430.6

p-hat1000-1 0.500 76 78.5 80 465.0 73 73.3 74 512.8 60 61.2 62 569.5

p-hat1000-1 0.400 55 57.1 59 450.3 51 52.6 53 507.3 35 35.8 36 448.9

p-hat1000-1 0.300 31 33.4 36 502.9 26 27.0 28 446.7 14 14.1 15 470.6

p-hat1000-2 0.999 160 162.7 164 514.5 142 142.8 145 616.0 142 143.3 145 674.4

p-hat1000-2 0.950 152 153.0 155 498.6 135 137.2 139 617.2 134 135.4 138 683.9

p-hat1000-2 0.900 134 136.9 138 288.4 121 123.5 125 725.4 116 116.9 118 617.2

123

Annals of Operations Research

Table 13 continued

Input graph γ MSH BRKGA BRKGAm

min avg max ttb (s) min avg max ttb (s) min avg max ttb (s)

p-hat1000-2 0.800 103 105.2 108 440.5 92 94.3 96 555.2 82 82.1 83 580.2

p-hat1000-2 0.700 79 83.2 87 483.3 75 76.3 78 527.6 52 52.3 53 464.3

p-hat1000-2 0.600 48 49.6 52 580.4 41 41.9 43 587.5 27 27.0 27 490.8

san1000 0.999 133 133.8 135 603.5 132 132.5 133 356.1 132 132.7 133 225.4

san1000 0.950 114 115.1 116 424.1 113 113.9 114 207.3 112 112.4 113 352.6

san1000 0.900 40 40.5 41 459.4 42 42.2 43 478.2 39 39.9 40 313.4

san1000 0.800 2 2.0 2 171.2 2 2.0 2 50.8 2 2.0 2 50.6

san1000 0.700 2 2.0 2 194.0 2 2.0 2 51.2 2 2.0 2 50.5

san1000 0.600 2 2.0 2 231.9 2 2.0 2 50.8 2 2.0 2 50.5

p-hat1000-3 0.999 70 70.8 72 294.4 66 66.6 67 348.6 66 66.6 67 364.6

p-hat1000-3 0.950 54 55.2 56 449.1 52 53.6 54 360.9 52 52.7 53 230.0

p-hat1000-3 0.900 38 39.7 41 352.6 38 38.8 39 218.9 36 36.8 37 228.6

p-hat1000-3 0.800 16 16.8 18 522.8 16 16.0 16 92.6 12 12.6 13 287.4

p-hat1500-1 0.999 331 335.7 338 866.7 303 305.4 308 1142.1 306 307.6 310 1039.2

p-hat1500-1 0.950 322 325.7 330 851.7 298 299.6 303 1114.3 301 301.3 302 1123.5

p-hat1500-1 0.900 299 304.5 308 860.4 273 275.6 278 1092.3 270 272.6 275 1261.7

p-hat1500-1 0.800 235 237.8 240 628.4 214 215.4 217 1060.1 206 207.2 209 1128.7

p-hat1500-1 0.700 195 198.8 201 682.8 181 183.0 185 1194.1 166 167.2 169 1035.0

p-hat1500-1 0.600 140 143.2 145 772.0 128 129.6 131 1088.9 121 121.4 122 1012.7

p-hat1500-1 0.500 101 104.5 106 688.0 96 97.4 98 719.4 81 82.0 83 797.8

p-hat1500-1 0.400 73 74.9 77 1220.7 69 69.7 71 730.1 46 46.6 47 626.3

p-hat1500-1 0.300 37 38.9 42 1193.5 31 32.5 34 807.2 16 16.7 17 433.3

p-hat1500-2 0.999 220 223.3 225 806.0 194 196.9 199 770.5 195 197.1 199 930.5

p-hat1500-2 0.950 206 208.2 210 891.2 185 186.3 187 1015.1 184 185.0 186 967.4

p-hat1500-2 0.900 181 184.5 187 607.5 167 168.2 170 921.8 158 159.7 161 955.9

p-hat1500-2 0.800 137 139.0 141 828.3 122 125.2 128 1084.1 109 110.6 111 968.1

p-hat1500-2 0.700 102 107.5 110 1256.5 97 98.1 100 918.7 67 68.2 69 772.0

p-hat1500-2 0.600 62 63.7 67 1446.2 51 51.1 52 782.7 32 32.8 33 473.8

p-hat1500-3 0.999 94 95.2 96 840.5 88 89.5 90 522.5 88 89.5 90 553.9

p-hat1500-3 0.950 71 72.2 73 638.9 70 70.8 71 486.1 69 69.9 70 357.3

p-hat1500-3 0.900 50 51.4 52 1140.5 50 50.1 51 366.0 47 47.6 48 532.2

p-hat1500-3 0.800 18 19.4 21 1302.2 18 18.5 19 275.4 14 14.2 15 642.4

C2000-5 0.999 221 222.0 223 1213.0 218 218.8 220 505.2 218 218.8 220 656.3

C2000-5 0.950 198 199.4 201 999.0 198 198.5 199 829.1 198 198.4 199 865.7

C2000-5 0.900 156 157.6 159 1447.1 158 158.9 160 637.3 157 158.6 160 741.9

C2000-5 0.800 98 98.3 100 883.6 99 100.2 101 849.0 100 100.0 100 586.8

C2000-5 0.700 53 54.7 55 487.3 56 56.4 57 530.1 55 55.0 55 460.0

C2000-5 0.600 21 21.8 22 1065.3 22 22.9 23 387.8 22 22.0 22 211.6

123

Annals of Operations Research

References

Abello, J., Resende, M., & Sudarsky, S. (2002). Massive quasi-clique detection. In J. Abello & J. Vitter
(Eds.), Proceedings of the 5th Latin American Symposium on the Theory of Informatics. Lecture Notes
in Computer Science (Vol. 2286, pp. 598–612). Berlin: Springer.

Agra, A., Dahl, G., Haufmann, T. A., & Pinheiro, S. J. (2017). The k-regular induced subgraph problem.
Discrete Applied Mathematics, 222, 14–30.

Andrade, C. E., Toso, R. F., Gonçalves, J. F., & Resende, M. G. C. (2021). The multi-parent biased random-
key genetic algorithm with implicit path-relinking and its real-world applications. European Journal of
Operational Research, 289, 17–30.

Basu, S., Sengupta, D., Maulik, U., & Bandyopadhyay, S. (2014). A strong Nash stability based approach to
minimum quasi clique partitioning. In 2014 Sixth International Conference on Communication Systems
and Networks, Bangalore (pp. 1–6). IEEE.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on
Computing, 6, 154–160.

Bomze, I. M., Budinich, M., Pardalos, P. M., & Pelillo, M. (1999). The maximum clique problem. In P. M.
Pardalos, D.-Z. Du, & R. L. Graham (Eds.), Handbook of combinatorial optimization (pp. 1–74). Boston:
Springer.

Brandão, J. S., Noronha, T. F., Resende, M. G. C., & Ribeiro, C. C. (2015). A biased random-key genetic
algorithm for single-rounddivisible load scheduling. International Transactions in Operational Research,
22, 823–839.

Brandão, J. S., Noronha, T. F., Resende, M. G. C., & Ribeiro, C. C. (2016). A biased random-key genetic
algorithm for scheduling heterogeneous multi-round systems. International Transactions in Operational
Research, 24, 1061–1077.

Brandão, J. S., Noronha, T. F., &Ribeiro, C. C. (2016). A biased random-key genetic algorithm tomaximize the
number of accepted lightpaths in WDM optical networks. Journal of Global Optimization, 65, 813–835.

Campello, R. J., Kröger, P., Sander, J., & Zimek, A. (2020). Density-based clustering. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 10(2), 1343.

Carrabs, F. (2021). A biased random-key genetic algorithm for the set orienteering problem. European Journal
of Operational Research, 292, 830–854.

DIMACS. (2021). ImplementationChallenges.Online reference at http://dimacs.rutgers.edu/Challenges/. Last
visited on October 17, 2022.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: a Guide to the Theory of NP-
completeness. San Francisco: Freeman.

Glaria, F., Hernández, C., Ladra, S., Navarro, G., & Salinas, L. (2021). Compact structure for sparse undirected
graphs based on a clique graph partition. Information Sciences, 544, 485–499.

Gonçalves, J. F., & Resende, M. G. (2011). Biased random-key genetic algorithms for combinatorial opti-
mization. Journal of Heuristics, 17(5), 487–525.

Gonçalves, J. F., & Resende, M. G. C. (2015). A biased random-key genetic algorithm for the unequal area
facility layout problem. European Journal of Operational Research, 246, 86–107.

Hu, H., Yan, X., Huang, Y., Han, J., & Zhou, X. J. (2005). Mining coherent dense subgraphs across massive
biological networks for functional discovery. Bioinformatics, 21, 213–221.

Kaminski, J., Schober, M., Albaladejo, R., Zastupailo, O., & Hidalgo, C. (2018). Moviegalaxies - Social net-
works in movies. Harvard Dataverse. Online reference at, 2022. https://doi.org/10.7910/DVN/T4HBA3,
last visited on October 17.

Kriegel, H.-P., Kröger, P., Sander, J., & Zimek, A. (2011). Density-based clustering. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 1, 231–240.

Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically
larger than the other. The Annals of Mathematical Statistics, 50–60.

Marinelli, F., Pizzuti, A., & Rossi, F. (2021). LP-based dual bounds for the maximum quasi-clique problem.
Discrete Applied Mathematics, 296, 118–140.

Marzo, R. G., Melo, R. A., Ribeiro, C. C., & Santos, M. C. (2022). New formulations and branch-and-cut
procedures for the longest induced path problem. Computers & Operations Research, 139, 105627.

Matsypura, D., Veremyev, A., Prokopyev, O. A., & Pasiliao, E. L. (2019). On exact solution approaches for
the longest induced path problem. European Journal of Operational Research, 278, 546–562.

Melo, R. A., Queiroz, M. F., & Ribeiro, C. C. (2021). Compact formulations and an iterated local search-based
matheuristic for the minimum weighted feedback vertex set problem. European Journal of Operational
Research, 289, 75–92.

Melo, R. A., & Ribeiro, C. C. (2022). Maximum weighted induced forests and trees: new formulations and a
computational comparative review. International Transactions in Operational Research, 29, 2263–2287.

123

http://dimacs.rutgers.edu/Challenges/
https://doi.org/10.7910/DVN/T4HBA3

Annals of Operations Research

Melo, R. A., & Ribeiro, C. C. (2023). MIP formulations for induced graph optimization problems: a tutorial.
International Transactions in Operational Research, 30, 3159–3200.

Melo, R. A., Ribeiro, C. C., & Riveaux, J. A. (2022). The minimum quasi-clique partitioning problem:
Complexity, formulations, and a computational study. Information Sciences, 612, 655–674.

Noronha, T. F., Resende,M. G. C., & Ribeiro, C. C. (2011). A biased random-key genetic algorithm for routing
and wavelength assignment. Journal of Global Optimization, 50, 503–518.

Oliveira, A. B., Plastino, A., & Ribeiro, C. C. (2013). Construction heuristics for the maximum cardinality
quasi-clique problem. In Abstracts of the Tenth Metaheutistics International Conference, Singapore (p.
84).

Pattillo, J., Veremyev, A., Butenko, S., &Boginski, V. (2013). On themaximumquasi-clique problem.Discrete
Applied Mathematics, 161, 244–257.

Peng, B., Wu, L., Wang, Y., & Wu, Q. (2021). Solving maximum quasi-clique problem by a hybrid artificial
bee colony approach. Information Sciences, 578, 214–235.

Pinto, B. Q., Ribeiro, C. C., Riveaux, J. A., & Rosseti, I. (2021). A BRKGA-based matheuristic for the
maximum quasi-clique problem with an exact local search strategy. RAIRO: Recherche Opérationnelle,
55, 741–763.

Pinto, B. Q., Ribeiro, C. C., Rosseti, I., & Noronha, T. F. (2020). A biased random-key genetic algorithm for
routing and wavelength assignment under a sliding scheduled traffic model. Journal of Global Optimiza-
tion, 77, 949–973.

Pinto, B. Q., Ribeiro, C. C., Rosseti, I., & Plastino, A. (2018). A biased random-key genetic algorithm for the
maximum quasi-clique problem. European Journal of Operational Research, 271, 849–865.

Resende, M. G. C., & Ribeiro, C. C. (2016). Biased-random key genetic algorithms: An advanced tutorial. In
Proceedings of the 2016 Genetic and Evolutionary Computation Conference - GECCO’16 Companion
Volume (pp. 483–514). Association for Computing Machinery.

Ribeiro, C. C., & Riveaux, J. A. (2019). An exact algorithm for the maximum quasi-clique problem. Interna-
tional Transactions in Operational Research, 26, 2199–2229.

Rossi, R. A., & Ahmed, N. K. (2015). The Network Data Repository with Interactive Graph Analytics and
Visualization. Online reference at http://networkrepository.com. Last access on May 5, 2023.

Rossi, R., &Ahmed, N. (2015). The network data repository with interactive graph analytics and visualization.
Proceedings of the AAAI Conference on Artificial Intelligence29(1).

Sanei-Mehri, S.-V., Das, A., Hashemi, H., & Tirthapura, S. (2021). Mining largest maximal quasi-cliques.
ACM Transactions on Knowledge Discovery from Data, 15, 1–21.

Seo, J. H., & Kim, M. H. (2021). Finding influential communities in networks with multiple influence types.
Information Sciences, 548, 254–274.

Shapiro, S. S.,&Wilk,M.B. (1965).An analysis of variance test for normality (complete samples).Biometrika,
52(3/4), 591–611.

Spears, W., & De Jong, K. A. (1991). On the virtues of parameterized uniform crossover. In R. Belew & L.
Booker (Eds.),Proceedings of the Fourth International Conference on Genetic Algorithms (pp. 230–236).
San Mateo: Morgan Kaufman.

Spirin, V., &Mirny, L. A. (2003). Protein complexes and functional modules in molecular networks. Proceed-
ings of the National Academy of Sciences, 100, 12123–12128.

Toso, R. F., & Resende, M. G. (2015). A C++ application programming interface for biased random-key
genetic algorithms. Optimization Methods and Software, 30, 81–93.

Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., & Tsiarli, M. (2013). Denser than the densest subgraph:
Extracting optimal quasi-cliques with quality guarantees. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Chicago (pp. 104–112).

Veremyev, A., Prokopyev, O. A., Butenko, S., & Pasiliao, E. L. (2016). Exact MIP-based approaches for
finding maximum quasi-clique and dense subgraphs. Computational Optimization and Applications, 64,
177–214.

Verteletskyi, V., Yen, T.-C., & Izmaylov, A. F. (2020). Measurement optimization in the variational quantum
eigensolver using a minimum clique cover. The Journal of Chemical Physics, 152, 124114.

Wu, Q., & Hao, J.-K. (2015). A review on algorithms for maximum clique problems. European Journal of
Operational Research, 242, 693–709.

Yang, Z., Algesheimer, R., & Tessone, C. J. (2016). A comparative analysis of community detection algorithms
on artificial networks. Scientific Reports, 6, 30750.

Zhao, X., Liang, J., & Wang, J. (2021). A community detection algorithm based on graph compression for
large-scale social networks. Information Sciences, 551, 358–372.

Zhou, Q., Benlic, U., &Wu, Q. (2020). An opposition-basedmemetic algorithm for themaximum quasi-clique
problem. European Journal of Operational Research, 286, 63–83.

123

http://networkrepository.com

Annals of Operations Research

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	A biased random-key genetic algorithm for the minimum quasi-clique partitioning problem
	Abstract
	1 Introduction
	1.1 Basic definitions
	1.2 Literature review
	1.3 Contributions and organization

	2 Nonequivalence of MQCPP and MVQCCP
	3 Biased random-key genetic algorithm
	3.1 Solution encoding
	3.2 Partitioning decoder

	4 Computational experiments
	4.1 Benchmark instances
	4.2 Tested approaches and parameter settings
	4.3 Computational results
	4.4 Results using a new benchmark set with more challenging large instances
	4.4.1 Results for the sparse graphs
	4.4.2 Results for the dense graphs

	4.5 Summary of the behaviors of BRKGA and BRKGAm

	5 Concluding remarks
	Acknowledgements
	Appendix A: Detailed results for the benchmark instances of MelRibRiv22
	Appendix B: Detailed results for the new large sparse benchmark instances
	Appendix C: Detailed results for the large dense benchmark instances
	References

