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Machine Learning Techniques for Cooperative
Spectrum Sensing in Cognitive Radio Networks

Karaputugala Madushan Thilina, Kae Won Choi, Nazmus Saquib, and Ekram Hossain

Abstract—We propose novel cooperative spectrum sensing
(CSS) algorithms for cognitive radio (CR) networks based on
machine learning techniques which are used for pattern classifi-
cation. In this regard, unsupervised (e.g., K-means clustering
and Gaussian mixture model (GMM)) and supervised (e.g.,
support vector machine (SVM) and weighted K-nearest-neighbor
(KNN)) learning-based classification techniques are implemented
for CSS. For a radio channel, the vector of the energy levels
estimated at CR devices is treated as a feature vector and fed
into a classifier to decide whether the channel is available or not.
The classifier categorizes each feature vector into either of the two
classes, namely, the “channel available class” and the “channel
unavailable class”. Prior to the online classification, the classifier
needs to go through a training phase. For classification, the K-
means clustering algorithm partitions the training feature vectors
into K clusters, where each cluster corresponds to a combined
state of primary users (PUs) and then the classifier determines
the class the test energy vector belongs to. The GMM obtains
a mixture of Gaussian density functions that well describes the
training feature vectors. In the case of the SVM, the support
vectors (i.e., a subset of training vectors which fully specify
the decision function) are obtained by maximizing the margin
between the separating hyperplane and the training feature
vectors. Furthermore, the weighted KNN classification technique
is proposed for CSS for which the weight of each feature
vector is calculated by evaluating the area under the receiver
operating characteristic (ROC) curve of that feature vector. The
performance of each classification technique is quantified in
terms of the average training time, the sample classification delay,
and the ROC curve. Our comparative results clearly reveal that
the proposed algorithms outperform the existing state-of-the-art
CSS techniques.

Index Terms—Cognitive radio, cooperative spectrum sensing,
K-means clustering, GMM, support vector machine (SVM), K-
nearest-neighbor, primary user detection

I. INTRODUCTION

THE CONCEPT of cognitive radio (CR) for designing
wireless communications systems has emerged since last

decade to mitigate the scarcity problem of limited radio
spectrum by improving the utilization of the spectrum [1]. The
CR refers to an intelligent wireless communications device,
which senses its operational electromagnetic environment and
can dynamically and autonomously adjust its radio operating
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parameters. In this context, opportunistic spectrum access
(OSA) is a key concept, which allows a CR device to oppor-
tunistically access the frequency band allocated to a primary
user (PU) when the PU transmission is detected to be inactive
[2]–[4]. For OSA, the CR devices have to sense the radio
spectrum licensed to the PUs by using its limited resources
(e.g., energy and computational power), and subsequently
utilize the available spectrum opportunities to maximize its
performance objectives. Therefore, efficient spectrum sensing
is crucial for OSA.

Cooperative spectrum sensing (CSS) can be used when the
CR devices are distributed in different locations. It is possible
for the CR devices to cooperate in order to achieve higher
sensing reliability than individual sensing does [5] by yielding
a better solution to the hidden PU problem that arises because
of shadowing [6] and multi-path fading [7]. In cooperative
sensing, the CR devices exchange the sensing results with
the fusion center for decision making [5]. With hard fusion
algorithms, the CR devices exchange only one-bit information
with the fusion center, which indicates whether the received
energy is above a particular threshold. For example, the OR-
rule [8], the AND-rule, the counting rule [9], and the linear
quadratic combining rule [10] are commonly used for CSS.
In [11], a softened hard fusion scheme with two-bit overhead
for each CR device is considered. In soft decision algorithms
[11], [12], the exact energy levels estimated at the CR devices
are transmitted to the fusion center to make a better decision.
In [13], the authors propose an optimal linear fusion algorithm
for spectrum sensing. Relay-based cooperative spectrum sens-
ing schemes are studied in [14], [15].

In this paper, we propose novel CSS schemes based on
machine learning techniques. The machine learning techniques
are often used for pattern classification, where a feature vector
is extracted from a pattern and is fed into the classifier which
categorizes the pattern into a certain class. In the context
of CSS, we treat an “energy vector”, each component of
which is an energy level estimated at each CR device, as
a feature vector. Then, the classifier categorizes the energy
vector into one of two classes: the “channel available class”
(corresponding to the case that no PU is active) and the “chan-
nel unavailable class” (corresponding to the case that at least
one PU is active). Prior to online classification, the classifier
has to go through a training phase where it learns from training
feature vectors. According to the type of learning method
adopted, a classification algorithm can be categorized as
unsupervised learning (e.g., K-means clustering and Gaussian
mixture model (GMM)) or supervised learning (e.g., support
vector machine (SVM) and K-nearest neighbor (KNN)) [16]–
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[21]. In supervised (resp., unsupervised) learning, a training
feature vector is fed into the classifier with (resp., without)
its label indicating the actual class the training feature vector
belongs to. In this paper, we propose both unsupervised and
supervised learning techniques for CSS.

The proposed machine learning-based CSS techniques have
the following advantages over the traditional CSS techniques.

• The proposed techniques are capable of implicitly learn-
ing the surrounding environment (e.g., the topology of
the PU and the CR networks and the channel fading) in
an online fashion. Therefore, the proposed techniques are
much more adaptive than the traditional CSS techniques,
which need prior knowledge about the environment for
optimization.

• The proposed techniques can describe more optimized
decision region1 on the feature space than the traditional
CSS techniques (e.g., OR/AND-rule-based and linear
fusion techniques) can, which results in better detection
performance.

In spite of these advantages, there have been only few
studies on the application of machine learning techniques to
CSS for the CR networks. The authors in [22] suggest a
pattern recognition-based linear fusion rule for CSS, in which
linear coefficients are obtained by using the Fisher linear
discriminant analysis. To the best of our knowledge, other than
[22], the machine learning techniques have not been adopted
for CSS in the existing literature.

The main contributions of our paper are as follows.
• We propose to use unsupervised learning approaches

such as the K-means clustering and the GMM for CSS.
The K-means clustering algorithm partitions the features
into K clusters. Each cluster is mapped to either the
channel available class or the channel unavailable class.
On the other hand, in the GMM, we obtain a Gaussian
mixture distribution from training feature vectors, where
each Gaussian distribution in the mixture distribution
corresponds to a cluster.

• Due to their higher prediction capability, we also propose
to use supervised learning approaches such as the SVM
and the KNN for CSS. In the SVM, the support vectors
(i.e., a subset of training vectors which fully specify the
decision function) are obtained by maximizing the margin
between separating hyperplanes and feature vectors. In
addition, the weighted KNN classification technique is
also investigated for CSS with different distance mea-
sures.

• The performance of each of the classification techniques
is evaluated in terms of the training time, the classifica-
tion delay, and the ROC curve. The effect of the number
of the CR devices in cooperation is also quantified.

The rest of the paper is organized as follows. In Section II,
we present the system model and the assumptions. The ma-
chine learning-based cooperative spectrum sensing framework
is presented in Section III. Then, we describe unsupervised and
supervised CSS algorithms in Sections IV and V, respectively.
Section VI presents the performance evaluation results for the

1The classifier categorizes a feature vector according to which decision
region the feature vector falls in.

proposed CSS algorithms. Lastly, Section VII concludes the
paper.

II. SYSTEM MODEL AND ASSUMPTIONS

A. Cognitive Radio Network and Primary User Model

We consider a CR network which shares a frequency
channel with PUs. Henceforth, a CR device in the CR network
will be called a secondary user (SU). The CR network consists
of N secondary users (SUs), each of which is indexed by
n = 1, . . . , N . SU n is located at the coordinate cSU

n in
the two-dimensional space. For cooperative sensing, each SU
estimates the energy level and reports it to another SU which
takes the role of a fusion center. The fusion center determines
the channel availability based on the energy levels reported by
all SUs.

In this paper, we adopt a very generalized PU model where
multiple PUs alternate between active and inactive states.
There are M PUs, each of which is indexed by m = 1, . . . ,M .
Let cPU

m denote the coordinate of PU m in the two-dimensional
space. Let Sm indicate the state of PU m. We have Sm = 1 if
PU m is in the active state (i.e., PU m transmits a signal); and
Sm = 0 otherwise. Let S = (S1, . . . , SM )T be the vector of
the states of all PUs, where the superscript T denotes the
transpose operation. The probability that S = s for given
s = (s1, . . . , sM )T is denoted by

v(s) = Pr[S = s]. (1)

If at least one PU is active (i.e., Sm = 1 for some m), the
channel is considered as unavailable for the CR network to
access. The channel is available only when there is no PU in
the active state (i.e., Sm = 0, ∀ m). If we let A denote the
channel availability, we have

A =

{
−1, if Sm = 1 for some m
1, if Sm = 0 for all m.

(2)

B. Energy Vector Model

To estimate the energy level, an SU performs energy de-
tection for a time duration of τ . If we denote the bandwidth
by w, the energy detector takes wτ baseband complex signal
samples during τ . Let Zn(i) denote the ith signal sample taken
by SU n. The signal samples consist of the summation of the
signals from all PUs in the active state and the thermal noise,
that is,

Zn(i) =
M∑

m=1

Smhm,nXm(i) +Nn(i), (3)

where hm,n denotes the channel gain from PU m to SU n,
Xm(i) is the signal transmitted by PU m, and Nn(i) is the
thermal noise at SU n. The transmission power of PU m is
assumed to be fixed to ρm =

∑wτ
i=1 E[|Xm(i)|2]/τ and the

noise spectral density is denoted by η = E[|Nn(i)|2]. The
energy detector of SU n estimates the energy level normalized
by the noise spectral density, which is denoted by Yn, from
the signal samples as

Yn =
2

η

wτ∑
i=1

|Zn(i)|2. (4)
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All SUs report the estimated energy levels to the fusion center
and the fusion center generates the “energy vector,” which is
defined as

Y = (Y1, . . . , YN )T . (5)

Now, we investigate the distribution of the energy vector.
It is known that, conditioned on S = s, the energy level Yn
follows a noncentral chi-squared distribution with the degree
of freedom q = 2wτ and the non-centrality parameter,

ζn =
2τ

η

M∑
m=1

smgm,nρm, (6)

where gm,n is the power attenuation from PU m to SU n such
that gm,n = |hm,n|2. The power attenuation gm,n is given as

gm,n = PL(‖cPU
m − cSU

n ‖) · ψm,n · νm,n, (7)

where ‖ · ‖ is the Euclidean distance, PL(d) = d−α is the
path-loss component for relative distance d with the path-loss
exponent α, ψm,n is the shadow fading component, and νm,n

is the multi-path fading component. We assume that PUs and
SUs are immobile (e.g., the base station (BS), the consumer
premise equipment (CPE), and the TV station in IEEE 802.22-
based wireless regional area network (WRAN)). We assume
that the shadow fading and the multi-path fading components
are quasi-static during the time of interest.

If the number of samples (i.e., wτ ) is sufficiently large, the
distribution of the energy level Yn given that S = s can be
approximated by a Gaussian distribution with mean μYn|S=s

and variance σ2
Yn|S=s, where

μYn|S=s = E[Yn|S = s] = q + ζn

= 2wτ +
2τ

η

M∑
m=1

smgm,nρm, (8)

σ2
Yn|S=s = E[(Yn − μYn|S=s)

2|S = s] = 2(q + 2ζn)

= 4wτ +
8τ

η

M∑
m=1

smgm,nρm. (9)

Therefore, the energy vector Y given that S = s follows a
multivariate Gaussian distribution with the mean vector and
the covariance matrix such that

μY|S=s = (μY1|S=s, . . . , μYN |S=s)
T , (10)

ΣY|S=s = diag(σ2
Y1|S=s, . . . , σ

2
YN |S=s), (11)

where diag(x1, . . . , xN ) denotes the diagonal matrix whose
diagonal entries are x1, . . . , xN .

III. MACHINE LEARNING-BASED COOPERATIVE
SPECTRUM SENSING FRAMEWORK

A. Operation of Proposed CSS Framework

The purpose of the proposed CSS techniques is to correctly
determine the channel availability A based on the given energy
vector Y. In the context of machine learning, this is equivalent
to constructing a classifier to correctly map the energy vector
Y to the channel availability A. Therefore, an energy vector in
our problem is analogous to a feature in the machine learning
terminology. To construct the classifier, the first step is to

collect a sufficient number of training energy vectors. Let
y(l) denote the lth training energy vector and let a(l) denote
the channel availability corresponding to y(l). Then, the set
of the training energy vectors, i.e., y = {y(1), . . . ,y(L)}
(where L is the number of training samples), is fed into the
classifier for training. In case of unsupervised learning, each
of the training energy vectors does not need to be labeled
with the corresponding channel availability. On the other hand,
supervised learning requires to have the set of the channel
availabilities, i.e., a = {a(1), . . . , a(L)}, for training as well
as the set of the training energy vectors.

Next, the classifier is trained by using the training energy
vectors. The training procedure differs for each machine
learning technique under consideration. For example, in case
of K-means clustering, the training involves partitioning the
training energy vectors into K clusters and the centroid of each
cluster is used later for classification. In another example, the
SVM tries to find the maximum-margin hyperplane that splits
the training energy vectors as clearly as possible.

Once the classifier is successfully trained, it is ready to
receive the test energy vector for classification. Let y∗ denote
the test energy vector received by the classifier and let a∗

denote the corresponding channel availability. In addition, let
â denote the channel availability determined by the classifier.
The classifier categorizes the energy vector y∗ into either
“channel available class” (i.e., â = 1) or “channel unavailable
class” (i.e., â = −1). If the energy vector is classified into the
channel available class (resp., the channel unavailable class),
it means that there is no PU (resp., at least one PU) in the
active state and the channel is available (resp., unavailable) for
the CR network to access. Therefore, the channel availability
is correctly determined in the case that â = a∗, while
misdetection (resp., false alarm) occurs in the case that â = 1
and a∗ = −1 (resp., â = −1 and a∗ = 1).

In Fig. 1, we illustrate the modular architecture of the
proposed CSS framework, which consists of the training
module and the classification module. In this architecture, the
training and classification modules can operate independently.
Whenever the CR network needs to find out the channel
availability, the CR network generates the test energy vector
and puts it into the classification module. The classification
module determines the channel availability based on the test
energy vector by using the classifier. Usually, finding the
channel availability in the CR network requires very short
delay. The classification delay of the proposed CSS techniques
can meet this requirement due to low complexity.

The training module is responsible to train the classifier
from the training energy samples and to provide the classifica-
tion module with a trained classifier. The training module can
be activated when the CR network is first deployed and when
the radio environment changes (e.g., when the PU network
changes its configuration). In addition, the CR network can
periodically activate the training module to catch up with
the changing environment. The training procedure of machine
learning techniques generally takes a long time. However,
this is not a significant problem since the training module is
activated only by the above-mentioned events. Moreover, the
training procedure can be performed in the background while
the classification module operates normally.
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Fig. 1. Modular architecture of the proposed CSS framework.

B. Advantages of Proposed CSS Framework

The advantage of the proposed machine learning-based CSS
framework over the traditional CSS techniques is twofold.

• The proposed CSS techniques retain a learning ability
since the optimized classifier is learnt from the training
energy vectors, which makes the proposed CSS tech-
niques adaptive to changing radio environment without
human intervention. The training procedure is fully au-
tonomous in that it does not require any prior information
about the environment and does not involve any pa-
rameter setting. Moreover, the proposed CSS techniques
can adapt themselves to the changing environment by
retraining the classifier periodically.

• The proposed CSS techniques can describe more opti-
mized decision surface than the traditional CSS tech-
niques can, which result in better performance in terms
of the detection and the false alarm probabilities. The
generalized multiple PU model in this paper leads to very
complex probability space of the energy vector, which
cannot be handled by the traditional CSS techniques.
However, the proposed CSS techniques can find the
decision surface which efficiently classifies the energy
vectors even in the multiple PU model.

In Fig. 3, we present example scatter plots of the energy
vectors of two SUs in two different scenarios to highlight the
advantages of the proposed CSS techniques. In Scenario I,
there are two PUs whose locations are given in Fig. 2(a). The
PUs in Scenario I are activated according to the probability
of v((0, 0)T ) = 0.36, v((0, 1)T ) = 0.24, v((1, 0)T ) = 0.24,
and v((1, 1)T ) = 0.16. In Scenario II, there is only one PU
whose location is given in Fig. 2(b). In this scenario, the PU is
activated with the probability of v((1)) = 0.5. In Figs. 3(a)–
3(d)2, the energy vectors as well as the decision surfaces of the
proposed technique are plotted for each scenario. The decision
surface divides the energy vectors into two decision regions
– one for the channel available class and the other for the
channel unavailable class. In these figures, one of the proposed
techniques, the Gaussian mixture model (GMM) technique, is
used to draw the decision surface. The GMM will be explained

2The simulation parameter values for Fig. 3 are as follows: the bandwidth
w is 5 MHz, the sensing duration τ is 100 μs, the noise spectral density η is
−174 dBm, and the path-loss exponent α is 4. We assume that the shadow
fading and the multi-path fading components are fixed as ψm,n = 1 and
νm,n = 1.

SU 1 SU 2PU 1

PU 2

1 km

(a) Locations of PU and SU in Scenario I.

SU 1 SU 2

PU 1

1 km

(b) Locations of PU and SU in Scenario II.

Fig. 2. Two scenarios of user locations.

in detail in Section IV-C. The threshold for classification in
the GMM (i.e., δ) is set to zero for Fig. 3. Figs. 3(a) and
3(b) are plotted for Scenarios I while Figs. 3(c) and 3(d) are
plotted for Scenario II. The transmission power of each PU is
200 mW in Figs. 3(a) and 3(c), and is 80 mW in Figs. 3(b)
and 3(d).

From Fig. 3, we can notice the following advantages of the
proposed machine learning-based CSS framework.

• We can see that the GMM technique is able to adap-
tively adjust the decision surface for different scenarios.
Suppose that the CR network has the configuration in
Scenario I and the transmission power of each PU is 200
mW. In this case, the CR network has the decision surface
as shown in Fig. 3(a). Then, suppose that the PU network
changes its configuration to Scenario II. The CR network
can adapt to this change by gathering the energy vectors
for a while and recalculate the decision surface as shown
in Fig. 3(c). This process is autonomous and does not
require any human intervention.

• We can see that the decision surface divides the energy
vectors in each class as clearly as possible, which leads to
improved detection performance. In Figs. 3(a) and 3(b),
the decision surface, derived by the GMM technique,
optimally separates the energy vectors. This decision
surface takes a complex form, which cannot be described
by any other existing CSS technique.
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(a) Scatter plot of energy vectors in Scenario I when the transmit power
of each PU is 200 mW.
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(b) Scatter plot of energy vectors in Scenario I when the transmit power
of each PU is 80 mW.
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(c) Scatter plot of energy vectors in Scenario II when the transmit power
of each PU is 200 mW.
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(d) Scatter plot of energy vectors in Scenario II when the transmit power
of each PU is 80 mW.

Fig. 3. Example scatter plots of energy vectors in two scenarios.

IV. UNSUPERVISED LEARNING FOR COOPERATIVE
SPECTRUM SENSING

A. Motivation for Unsupervised Learning

In this section, we propose unsupervised learning ap-
proaches for the proposed CSS framework. In case of un-
supervised learning, only the training energy vectors (i.e.,
y = {y(1), . . . ,y(L)}) are fed into the classifier for training.
Unsupervised learning does not need the information regarding
the channel availability corresponding to each training energy
vector, i.e., a = {a(1), . . . , a(L)}. Therefore, unsupervised
learning can be easily implemented in a practical sense com-
pared to the supervised learning which requires a for training.

Since there is no explicit teacher which helps training,
unsupervised learning has to rely on the inherent clustering
structure of the training energy vectors. Recall that the energy
vector Y given S = s follows a multivariate Gaussian distri-
bution with the mean vector μY|S=s and the covariance matrix
ΣY|S=s. For each possible combination of the states of PUs,
a cluster of the training energy vectors is formed according to
the respective multivariate Gaussian distribution. In Fig. 3(a),

we observe that four visible clusters are formed each of which
respectively corresponds to the cases that (S1, S2)

T is (0, 0)T ,
(0, 1)T , (1, 0)T , and (1, 1)T . If there are M PUs, the number
of clusters can be calculated as K = 2M . Each cluster is
indexed by k = 1, . . . ,K .

More specifically, the training energy vectors are samples
taken out of the Gaussian mixture distribution the pdf of which
is as follows:

f(x) =
∑
s

v(s) · φ(x|μY|S=s,ΣY|S=s), (12)

where v(s) is the probability that S = s (i.e., v(s) = Pr[S =
s]) and φ(x|μY|S=s,ΣY|S=s) is the pdf of the multivariate
Gaussian distribution such that

φ(x|μY|S=s,ΣY|S=s) =
1

(2π)N/2|ΣY|S=s|1/2

exp

{
− 1

2
(x− μY|S=s)

TΣ−1
Y|S=s(x− μY|S=s)

}
. (13)

The samples from the Gaussian mixture distribution form
discernible clusters as shown in Figs. 3(a) and 3(c) if the
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transmission power of each PU is high. However, clusters are
not visually separable in Figs. 3(b) and 3(d) in the case that the
transmission power of each PU is low. It is worth noting that,
even in the case of low transmission power, the proposed CSS
scheme is able to obtain the decision surface separating the
channel available and channel unavailable classes as shown in
Figs. 3(b) and 3(d).

Among all clusters, only one cluster corresponding to the
case that no PU is in the active state (i.e., S = 0 for the zero
vector 0) can be mapped to the channel available class, while
all the other clusters are mapped to the channel unavailable
class. Without loss of generality, we designate the cluster
corresponding to the case that S = 0 as cluster 1. The
CR network is aware of the parameters for the multivariate
Gaussian distribution if and only if S = 0 since the CR
network does not know the power attenuation gm,n. Therefore,
cluster 1 can easily be identified by the mean vector μY|S=0

and the covariance matrix ΣY|S=0 while the other clusters
should be blindly identified by unsupervised learning.

From now on, we will investigate the application of two
representative unsupervised clustering algorithms, i.e., the K-
means clustering and the GMM, to CSS. After training by
using these clustering algorithms, each time the classifier
receives the test energy vector for classification, the classifier
finds out which cluster the test energy vector belongs to and
classifies it as the channel available class if and only if the
test energy vector belongs to cluster 1.

B. K-Means Clustering Algorithm

The unsupervised K-means clustering algorithm partitions a
set of the training energy vectors (i.e., y = {y(1), . . . ,y(L)})
into K disjoint clusters. Let Ck denote the set of the training
energy vectors that belong to cluster k. Cluster k has a
centroid αk. Differently from the ordinary K-means clus-
tering algorithm, we assume that the centroid of cluster 1
is fixed to the mean of Y conditioned on S = 0, that
is, α1 = μY|S=0. For all other clusters, the centroid is
defined as the mean of all training energy vectors in Ck such
that αk = |Ck|−1

∑
y(l)∈Ck

y(l), ∀k = 2, . . . ,K , where |X |
denotes the number of elements in the set X . The K-means
clustering algorithm aims to find out K clusters, C1, . . . , CK ,
which minimize the within-cluster sum of squares as follows:

argmin
C1,...,CK

K∑
k=1

∑
y(l)∈Ck

∥∥∥y(l) −αk

∥∥∥2 . (14)

To find the clusters satisfying (14), we use an iterative
suboptimal algorithm presented in Algorithm 1.

In Algorithm 1, the centroid of cluster 1 is set to μY|S=0

in Line 1. The centroids for clusters except for cluster 1 are
initialized in Line 2. The iteration begins from Line 3. In
Line 4, each training energy vector is assigned to the cluster
the centroid of which is closest to the training energy vector.
In Line 5, the centroids of clusters except for cluster 1 are
updated by taking the mean of all training energy vectors
in each cluster. The iterations are repeated until there is no
change in the clusters. Finally, we have a suboptimal solution
for (14) when the iteration is over. Let α∗

k denote the centroid
for cluster k obtained by the K-means clustering.

Algorithm 1 K-Means Clustering Algorithm for CSS
1: α1 ← μY|S=0

2: αk is initialized, ∀k = 2, . . . ,K .
3: while Ck for some k is changed in the previous iteration

do
4: Ck ← {y(l)|‖y(l) − αk‖ ≤ ‖y(l) − αi‖, ∀i =

1, . . . ,K}, ∀k = 1, . . . ,K .
5: αk ← |Ck|−1

∑
y(l)∈Ck

y(l), ∀k = 2, . . . ,K .
6: end while

After the training is over, the classifier receives the test
energy vector y∗ for classification. The classifier determines
if the test energy vector belongs to cluster 1 or the other
classes, based on the distance from the test energy vector
to the centroids. The classifier classifies y∗ as the channel
unavailable class (i.e., â = −1) if the following condition is
met:

‖y∗ −α∗
1‖

mink=1,...,K ‖y∗ −α∗
k‖
≥ β. (15)

Otherwise, y∗ is classified as the channel available class (i.e.,
â = 1). The parameter β is the threshold to control the tradeoff
between the misdetection and the false alarm probabilities. If
β becomes high, y∗ is more likely to be classified as the chan-
nel available class, which in turn increases the misdetection
probability while decreasing the false alarm probability.

C. Gaussian Mixture Model

A GMM is a weighted sum of multivariate Gaussian prob-
ability densities given by

f(x|θ) =
K∑

k=1

vk · φ(x|μk,Σk), (16)

where φ(x|μk,Σk) is the Gaussian density such that

φ(x|μk,Σk) =

1

(2π)N/2|Σk|1/2 exp

{
− 1

2
(x− μk)

TΣ−1
k (x− μk)

}
,

(17)

and θ is the collection of all parameters for the GMM
including vk, μk, and Σk for all k = 1, . . . ,K . The GMM
exactly matches our energy vector model where Y conditioned
on S = s follows the multivariate Gaussian distribution with
the mean vector μY|S=s and the covariance matrix ΣY|S=s.
Let the kth Gaussian density φ(x|μk,Σk) in the GMM
approximate the density of the energy vectors belonging to
cluster k. If cluster k corresponds to the case that S = s,
the parameters for the kth Gaussian density, μk, Σk, and vk,
correspond to μY|S=s, ΣY|S=s, and v(s) in the energy vector
model, respectively. Since cluster 1 corresponds to the case
that S = 0, we have μ1 = μY|S=0 and Σ1 = ΣY|S=0,
which are known to the CR network in advance. Moreover,
we can restrict Σk to a diagonal matrix for all k since ΣY|S=s

is a diagonal matrix for all s. The rest of the parameters in θ
are unknown and need to be estimated.

The parameters can be estimated by using the maximum-
likelihood (ML) estimation given the set of the training energy
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vectors (i.e., y = {y(1), . . . ,y(L)}). The log-likelihood of the
set of the training energy vectors can be written as

ω(y|θ) =
L∑

l=1

ln

( K∑
k=1

vk · φ(y(l)|μk,Σk)

)
. (18)

The ML estimator is the parameter that maximizes this log-
likelihood function. Unfortunately, direct computation of the
ML estimator is not possible due to latent information [17].
However, the parameters that maximize the log-likelihood
can be obtained by using the expectation maximization (EM)
algorithm [23].

The EM algorithm iteratively updates the parameter θ by
maximizing the following function:

Q(θ′|θ) = E

[ L∑
l=1

ln
(
v′z(l) · φ(y(l)|μ′

z(l) ,Σ
′
z(l))

)∣∣∣∣y, θ]

=

L∑
l=1

{ K∑
k=1

u
(l)
k ln v′k +

K∑
k=1

u
(l)
k lnφ(y(l)|μ′

k,Σ
′
k)

}
,

(19)

where z(l) is a random variable which is the index of the
cluster to which the lth training energy vector belongs to and
u
(l)
k is defined as

u
(l)
k = Pr[z(l) = k|y, θ] = vk · φ(y(l)|μk,Σk)∑K

i=1 vi · φ(y(l)|μi,Σi)
. (20)

Let us define θ(j) as the estimated parameter at the jth
iteration of the EM algorithm. At the jth iteration, the EM
algorithm finds θ(j + 1) that satisfies

θ(j + 1) = argmax
θ

Q(θ|θ(j)). (21)

It is known that θ(j) converges to a local optimal solution
over iterations [23].

At each iteration, the EM algorithm first calculates u(l)k from
(20) in the expectation step, and then derives the solution of
(21) in the maximization step. The solution of (21) can be
evaluated by a basic optimization technique. In Algorithm 2,
we present the EM algorithm for solving the GMM. In Line
1 of Algorithm 2, the mean μ1(1) and the covariance Σ1(1)
for cluster 1 are set to μY|S=0 and ΣY|S=0, respectively.
In Line 2, all other parameters are initialized. In Lines 4–
8, the expectation and the maximization steps are repeated
until θ(j) converges. Note that μ1(j) and Σ1(j) are not
updated in the maximization step since μ1(j) and Σ1(j) are
fixed to μY|S=0 and ΣY|S=0, respectively. Let θ∗ denote the
parameter obtained after the EM algorithm is over.

After obtaining the optimal parameter θ∗, the classifier
receives the test energy vector y∗ for classification. The
classifier determines whether the test energy vector y∗ belongs
to cluster 1 or other clusters. The log-likelihood that y∗

belongs to cluster 1 is ln(v∗1 · φ(y∗|μ∗
1,Σ

∗
1)). Similarly, the

log-likelihood that y∗ belongs to the clusters other than cluster
1 is ln(

∑K
k=2 v

∗
k · φ(y∗|μ∗

k,Σ
∗
k)). Therefore, y∗ is classified

as the channel unavailable class (i.e., â = −1) if and only if

ln

( K∑
k=2

v∗k · φ(y∗|μ∗
k,Σ

∗
k)

)
− ln(v∗1 · φ(y∗|μ∗

1,Σ
∗
1)) ≥ δ,

(22)

Algorithm 2 EM Algorithm for GMM
1: μ1(1)← μY|S=0 and Σ1(1)← ΣY|S=0

2: Initialize vk(1) for k = 1, . . . ,K and μk(1) and Σk(1)
for k = 2, . . . ,K .

3: j ← 1
4: repeat
5: Expectation Step

u
(l)
k ←

vk(j) · φ(y(l)|μk(j),Σk(j))∑K
i=1 vi(j) · φ(y(l)|μi(j),Σi(j))

,

for l = 1, . . . , L and k = 1, . . . ,K.

6: Maximization Step

vk(j + 1)←
∑L

l=1 u
(l)
k

L
, for k = 1, . . . ,K.

μk(j + 1)←
∑L

l=1 u
(l)
k y(l)∑L

l=1 u
(l)
k

, for k = 2, . . . ,K.

Σk(j + 1)←
∑L

l=1 u
(l)
k {diag(y(l) − μk(j + 1))}2∑L

l=1 u
(l)
k

,

for k = 2, . . . ,K.

7: j ← j + 1
8: until θ(j) converges.

for a given threshold δ. We can decrease the false alarm
probability at the expense of misdetection probability by
increasing δ since y∗ is more likely to be classified as the
channel available class if the value of δ is high.

V. SUPERVISED LEARNING FOR COOPERATIVE SPECTRUM
SENSING

A. Motivation for Supervised Learning

In this section, we propose application of the supervised
learning techniques, i.e., the support vector machine (SVM)
and the weighted K-nearest-neighbor (KNN), to CSS in the
CR networks. The main difference of the supervised learning
from the unsupervised learning is that each training energy
vector y(l) is labeled with the corresponding channel avail-
ability a(l). Therefore, to implement supervised learning for
CSS in practice, the PU should occasionally inform the CR
network of the channel availabilities for some training energy
vectors for the purpose of training. Since supervised learning
can work with the explicit help from the PU, it is more difficult
to implement than the unsupervised learning. However, super-
vised learning tends to show better performance due to the
extra information on the channel availability. We assume that
the training energy vectors (i.e., y = {y(1), . . . ,y(L)}) and
the channel availability corresponding to each training energy
vector (i.e., a = {a(1), . . . , a(L)}) are fed into the classifier
for training.

B. Support Vector Machine

The SVM tries to find a linearly separable hyperplane,
with the help of support vectors (i.e., energy vectors that lie
closest to the decision surface), by maximizing the margin of
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the classifier while minimizing the sum of errors. However,
the training energy vectors may not be linearly separable.
Therefore, we try to map the training energy vectors into a
higher dimensional feature space by a non-linear mapping
function, denoted by φ, to make the training samples linearly
separable [16], [24]. Hence, the classifier should satisfy the
following condition for all l = 1, . . . , L:

w · φ(y(l)) + w0 ≥ 1, if a(l) = 1,

w · φ(y(l)) + w0 ≤ −1, if a(l) = −1, (23)

where w is the weighting vector and w0 is the bias. The bias
is used for shifting the hyperplane away from the origin.

Although we map the training energy vectors into a higher
dimensional feature space, practically we cannot achieve a
perfect linearly separable hyperplane that satisfies the condi-
tion in (23) for each y(l). Hence, we modify condition (23)
by introducing a slack variable δ(l) for possible classification
errors as follows:

a(l)[w · φ(y(l)) + w0] ≥ 1− δ(l), (24)

where δ(l) ≥ 0 for l = 1, . . . , L. For marginal classification
errors, the slack variable lies in 0 ≤ δ(l) ≤ 1, whereas δ(l) >
1 for misclassification. Hence, the optimization problem for
maximizing the margin of classifier while minimizing the sum
of errors can be written as

minimize
1

2
‖w‖2 + ξ

L∑
l=1

I{δ(l)>1} (25)

subject to a(l)[w · φ(y(l)) + w0] ≥ 1− δ(l), (26)
for l = 1, . . . , L, (27)

δ(l) ≥ 0, for l = 1, . . . , L, (28)

where ‖w‖2 = w · w, ξ is a soft margin constant [16], and
I{X} is the indicator function which is one if X is true; and
is zero, otherwise.

The optimization problem defined in (25)–(28) is non-
convex due to I{δ(l)>1} in the objective function. Since
δ(l) > 1 for misclassification,

∑L
l=1 δ

(l) gives a bound on the
number of the misclassified training energy vectors. Therefore,∑L

l=1 δ
(l) can be used to measure the number of the training

energy vectors which are misclassified by the decision surface
w · φ(y(l)) + w0 = 0 as well as the number of the training
energy vectors that are correctly classified but they lie in the
slab −1 < w · φ(y(l)) + w0 < 1. Hence, we can rewrite
the optimization problem as a convex optimization problem
as follows:

minimize
1

2
‖w‖2 + ξ

L∑
l=1

δ(l) (29)

subject to a(l)[w · φ(y(l)) + w0] ≥ 1− δ(l), (30)
for l = 1, . . . , L, (31)

δ(l) ≥ 0, for l = 1, . . . , L. (32)

The Lagrangian of (29)–(32) can be written as

Λ(w, w0, δ;λ,γ) =
1

2
‖w‖2 + ξ

L∑
l=1

δ(l)

−
L∑

l=1

λ(l)
{
a(l)[w · φ(y(l)) + w0]

− 1 + δ(l)
}

−
L∑

l=1

γ(l)δ(l), (33)

where λ(l) and γ(l) are Lagrangian multipliers. By applying
the Karush-Kuhn-Tucker (KKT) conditions, we can obtain

w =
L∑

l=1

λ(l)a(l)φ(y(l)) (34)

L∑
l=1

λ(l)a(l) = 0 (35)

λ(l) = ξ − γ(l). (36)

It is noticeable that γ(l) ≥ 0 and 0 ≤ λ(l) ≤ ξ. The vector of
λ(l)’s is known as a support vector. Hence, we can obtain the
dual problem in terms of the support vector as follows:

maximize
L∑
l=1

λ(l)−

1

2

L∑
i=1

L∑
j=1

λ(i)λ(j)a(i)a(j){φ(y(i)) · φ(y(j))}

(37)

subject to
L∑
l=1

λ(l)a(l) = 0 (38)

0 ≤ λ(l) ≤ ξ, for l = 1, . . . , L. (39)

The KKT conditions uniquely characterize the solution of the
primal problem as (34)–(36), and the dual problem as two
active constraints λ(l)

{
a(l)[w·φ(y(l))+w0]−1+δ(l)

}
= 0 and

γ(l)δ(l) = (ξ − λ(l))δ(l) = 0. We can solve the optimization
problem in (37)–(39) by using standard techniques to solve a
quadratic program. Let λ̃(l) denote the solution of (37)–(39).

Finally, the nonlinear decision function can be obtained as

d(x) = sgn

( L∑
l=1

λ̃(l)a(l)κ(x,y(l)) + w0

)
, (40)

where sgn is the sign function and κ(x,y) = φ(x)·φ(y) is the
kernel function. Some of the commonly used kernel functions
are linear, polynomial, and Gaussian radial basis functions
[16]. After the classifier obtains the decision function, the
classifier can categorize the test energy vector y∗ as

â = d(y∗). (41)

Note that the bias w0 can be derived by solving the optimiza-
tion problem (29)–(32) after finding the optimal w. However,
in this paper, we adjust w0 to control the tradeoff between the
false alarm and the misdetection probabilities.
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Remark: If L denotes the number of training energy vectors
and Ls denotes the total number of support vectors, then
the expected error rate is bounded by E[error] ≤ E[Ls]/L
[17]. The expectation is taken over the training set generated
from the distribution of energy vectors. Note that this bound
is independent of the dimension of the feature space that is
determined by φ. Furthermore, if we can map the original
feature space to the higher dimensional feature space (i.e., the
feature space of φ) so that it separates the training energy
vectors by using a small number of support vectors, the
expected error becomes lower. Hence, it is important to select
a kernel function which reduces the number of support vectors.

C. Weighted K-Nearest-Neighbor
The weighted K-nearest-neighbor (KNN) is a classification

technique based on the majority voting of neighbors. For a
given test energy vector y∗, the KNN classifier finds K neigh-
boring training energy vectors among y = {y(1), . . . ,y(L)}
based on a particular distance measure. We define Δ(x,y)
as a distance between the energy vectors x and y. To find
the neighboring training energy vectors, the KNN classifier
calculates Δ(y∗,y(l)) for all y(l)’s and sorts the training
energy vectors in the ascending order of Δ(y∗,y(l)). Then,
the KNN classifier selects the first K training energy vectors
as neighbors. Let Φ(y∗,y) denote the set of neighbors of
y∗ among y. To determine the class of y∗, we count the
number of neighbors that belong to the channel available class
and the channel unavailable class, respectively. The number
of neighbors in the channel available class (a = 1) and the
channel unavailable class (a = −1) is defined as

ν(a;y∗,y) = |{l = 1, . . . , L|a(l) = a, y(l) ∈ Φ(y∗,y)}|.
(42)

The KNN classifier categorizes y∗ as the channel unavailable
class (i.e., â = −1) if and only if

ν(−1;y∗,y)
ν(1;y∗,y)

≥ ϕ, (43)

where ϕ is a constant that controls the tradeoff between the
false alarm and the misdetection probabilities.

The distance Δ(x,y) can be calculated in various ways.
In this paper, we adopt a weighted distance measure where
each component of the energy vector is weighted by a certain
weight factor. The weight factor for the nth component of the
energy vector is denoted by ωn. To calculate ωn, we draw an
ROC curve by using the nth components of the training energy
vectors (i.e., y(1)n , . . . , y

(L)
n ) and the corresponding channel

availabilities (i.e., a(1)n , . . . , a
(L)
n ). Then, the weight factor ωn

is equal to the area-under-the-ROC-curve (AUC) of the nth
components of the training energy vectors. If we consider the
squared Euclidean distance, the distance measure is given as

Δ(x,y) =

N∑
n=1

{ωn(xn − yn)}2. (44)

On the other hand, if we adopt the city block distance, we
have

Δ(x,y) =

N∑
n=1

|ωn(xn − yn)|. (45)

Remark: If the number of neighbors (i.e., K) is fixed and
the number of training energy vectors approaches infinity, then
all the K neighbors converge to y∗. Hence, the label of each
of the K-nearest-neighbors is a random variable which takes
the value of a with probability Pr[A = a|Y = y∗] [17].
When the number of neighbors, K , increases, the proportion
of each label of the neighbors approaches the Bayesian a
posteriori probability. Hence, the error probability of the KNN
classifier becomes closer to that of the Bayesian classifier with
increasing K . In practice, we can have only a limited number
of training energy vectors. On the other hand, we want to
reduce errors by increasing the number of training energy
vectors. This tradeoff forces us to select a reasonable value
for K .

VI. PERFORMANCE EVALUATION

A. Parameters

In this study, unless otherwise specified, we consider that
the SUs participating in cooperative spectrum sensing (CSS)
are located in a 5-by-5 (25 SUs) grid topology in a 4000 m
× 4000 m area as shown in Fig. 4. The values of important
simulation parameters are as follows: the bandwidth w is 5
MHz, the sensing duration τ is 100 μs, the noise spectral
density η is −174 dBm, and the path-loss exponent α is 4.
We assume that the shadow fading and the multi-path fading
components are fixed as ψm,n = 1 and νm,n = 1. The transmit
power of each PU is 200 mW. We consider two PUs having
fixed locations with coordinates (500 m, 500 m) and (−1500
m, 0 m). The probability that a PU is in the active state is
0.5 and the state of each PU is independent of that of the
other PU. The proposed algorithms are implemented by using
Matlab 7.10.0 (R2010a) in a 64-bit computer with a core i7
processor (clock speed of 2.8 GHz) and 4 GB RAM.

B. Training Duration for Different Classifiers

The average training durations for different classifiers ac-
cording to the size of training energy vectors are shown in
Table I. The GMM shows relatively high training duration
(1.12796 seconds for 1000 samples) among the unsupervised
classifiers whereas the supervised SVM classifier with the
polynomial kernel takes the highest training duration (1.65817
seconds for 1000 samples) among all classifiers. The average
training time for the KNN classifier is measured as the
uploading time of the training energy vectors to the classifier
and it is approximately 50 μs for 1000 energy vectors. Hence,
the KNN classification has the capability of changing the
training energy vectors more promptly as compared to all other
classifiers.

C. Average Classification Delay for Different Classifiers

Table II shows the time taken for deciding the channel
availability for different classifiers. The classification delay
of Fisher linear discriminant, K-means clustering, and GMM
classifiers does not change with different batch of training
energy vectors. More specifically, the number of decision
parameters does not change with the number of training energy
vectors even though the values of the decision parameters
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TABLE I
AVERAGE TRAINING DURATION (IN SECONDS) FOR DIFFERENT CLASSIFIERS (5×5 SUS)

Classification Methods Number of Training Samples
100 200 300 400 500 1000

Fisher 0.01001 0.01035 0.01067 0.01091 0.01144 0.01346
K-means 0.09202 0.09319 0.09363 0.09455 0.09536 0.11704

GMM 0.0309 0.06621 0.17373 0.24281 0.35527 1.12796
SVM-Linear 0.01114 0.01426 0.01792 0.02114 0.0268 0.06289
SVM-Poly. 0.04986 0.31983 0.46806 0.85701 1.03886 1.65817

TABLE II
AVERAGE CLASSIFICATION DELAY (IN SECONDS) FOR DIFFERENT CLASSIFIERS (5×5 SUS)

Classification Methods Number of Training Samples
100 200 300 400 500 1000

Fisher 5.3× 10−6 5.3× 10−6 5.3× 10−6 5.3× 10−6 5.3× 10−6 5.3× 10−6

K-means 1.9× 10−5 1.9× 10−5 1.9× 10−5 1.9× 10−5 1.9× 10−5 1.9× 10−5

GMM 3.8× 10−5 3.8× 10−5 3.8× 10−5 3.8× 10−5 3.8× 10−5 3.8× 10−5

SVM-Linear 1.92× 10−5 3.24× 10−5 3.87× 10−5 4.45× 10−5 4.86× 10−5 5.67× 10−5

SVM-Polynomial 1.02× 10−5 1.12× 10−5 1.25× 10−5 1.32× 10−5 1.53× 10−5 2.81× 10−5

KNN-Euclidean 4.68× 10−5 5.82× 10−5 7.72× 10−5 8.73× 10−5 1.17× 10−4 2.98× 10−4

KNN-Cityblock 4.62× 10−5 5.73× 10−5 7.63× 10−5 8.57× 10−5 1.16× 10−4 2.84× 10−4

4000 m

SU

PU 

Fig. 4. The CR network topology used for simulation.

change slightly with the number of training energy vectors.
Table II clearly shows that the K-means classifier has the
capability to detect channel availability more promptly in
comparison to the other unsupervised learning approach (i.e.,
GMM). For supervised learning, the Fisher linear discriminant
shows the lowest classification delay. It is important to note
that, for the KNN classifier, the classification delay is rela-
tively high even though its training time is found to be the
lowest.

D. Detection Probability for Different Classifiers

Fig. 5 compares the performance of different proposed CSS
schemes in terms of receiver operating characteristic (ROC)
curves for different sets of cooperating SUs when there is
only a single PU at (500 m, 500 m). In particular, Figs.
5(a) and 5(b) show the ROC curves when 3 × 3 SUs (i.e.,
9 SUs) and 5 × 5 SUs (i.e., 25 SUs) participate in CSS,
respectively. These figures clearly reveal that the performances
of the proposed classifiers improve with the increasing number
of SUs. It is important to notice that all the proposed CSS
schemes outperform the existing CSS techniques such as those
based on the Fisher linear discriminant analysis, AND-rule,
and OR-rule. Fig. 5 depicts that the SVM with the linear
kernel outperforms the other CSS schemes. The SVM-Linear
classifier achieves high detection probability by mapping a
feature space to a higher dimension with the help of the linear
kernel. Interestingly, Fig. 5 clearly shows that the unsupervised
K-means classifier achieves the performance comparable to
the SVM-Linear classifier. The simple weighted KNN scheme
achieves comparatively higher detection probability than the
existing CSS techniques due to the exploitation of localized
information.

Fig. 6 shows the performance of different CSS schemes in
terms of the ROC curve when there are two PUs at (500 m,
500 m) and (−1500 m, 0 m). This figure clearly depicts that
the SVM classifier with the linear kernel outperforms the other
supervised and unsupervised CSS schemes. The computational
complexity of the SVM-Linear classifier can be compensated
by its high detection capability and comparatively low training
and classification delay. Hence, the SVM classifier with the
linear kernel is well-suited for CSS requiring high accuracy.
Further, this figure reveals that the K-means clustering scheme
outperforms the other unsupervised CSS schemes even in the
multiple PU case.

In Fig. 7, the detection probabilities for the different CSS
schemes are plotted against the transmission power of a PU.
The results are obtained for a target false alarm probability
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(a) ROC curve for 3-by-3 SU cooperation.
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(b) ROC curve for 5-by-5 SU cooperation.

Fig. 5. The ROC curves when a single PU is present. We use 500 training
energy vectors to train each classifier.

of 0.1 when there is a single PU at (500 m, 500 m). This
figure shows that all the proposed CSS schemes outperform
the existing CSS schemes in all range of the transmission
power of a PU. Especially, it is worth noting that the unsu-
pervised learning schemes (i.e., K-means and GMM) achieve
performance which is comparable to that of the supervised
learning schemes even when the transmission power of a PU
is very low.

E. Summary of Results

The main results of the analysis can be summarized as
follows:

• The unsupervised K-means clustering is a promising ap-
proach for CSS due to its higher PU detection capability
and lower training and classification delay. Moreover, its
detection probability is very close to the best performing
classifier, i.e., the SVM-Linear classifier.
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Fig. 6. The ROC curves when there are two PUs. We use 500 training energy
vectors to train each classifier.
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Fig. 7. The detection probability according to the transmission power of a
PU when the false alarm probability is 0.1 and there are 25 (5×5) SUs.

• Compared to all other classifiers, the supervised SVM
classifier with the linear kernel performs well in terms of
the detection probability. The computational complexity
of the SVM-Linear classifier is compensated by its higher
detection capability and comparatively lower training and
classification delay.

• In terms of updating the training energy vectors on-the-
fly, the KNN performs extremely well (training duration
for 1000 sample is approximately 50 μs). However,
its classification delay is relatively higher than other
classifiers.

A qualitative comparison among the different classifiers is
shown in Table III.

VII. CONCLUSION

In this paper, we have designed cooperative spectrum sens-
ing (CSS) mechanisms for cognitive radio (CR) networks
based on unsupervised and supervised learning techniques.
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TABLE III
COMPARISON AMONG DIFFERENT CSS CLASSIFIERS

Classification Methods Training Duration Classification Delay ROC Performance
Fisher Linear Discriminant Low Normal Low

K-Means Normal Low High
GMM High Low High

SVM-Linear Low Normal High
SVM-Poly. High Low Normal

KNN-Euclidean Low High Normal
KNN-Cityblock Low High Normal

We have proposed to use unsupervised classifiers such as
K-means clustering and Gaussian mixture model (GMM)
for CSS, whereas the support vector machine (SVM) and
weighted K-nearest-neighbor classifiers have been proposed
for CSS under supervised learning. The received energy level
measured at the secondary users (SUs) are considered as a
feature for determining the channel availability. We quantify
the performance of the classifiers in terms of the training
duration, the classification delay, and the ROC curves. The
proposed SVM classifier achieves the highest detection per-
formance compared to the other CSS algorithms by mapping
the feature space into the higher dimensional space with the
help of kernel functions, namely, linear kernel and polynomial
kernel functions. Further, the unsupervised K-means clustering
scheme achieves the performance very close to the supervised
SVM-Linear classifier in terms of the ROC performance. In
particular, the weighted KNN cognitive classifier requires very
small amount of time for training the classifier. Hence, the
weighted KNN classifier is well suited for CSS which requires
to update training energy vectors on-the-fly.

More importantly, the unsupervised K-means clustering and
the supervised SVM with the linear kernel are promising
approaches for CSS in CR networks. In practical imple-
mentation, it is important to obtain accurate training energy
vectors since inaccurate training of the classifier results in
inaccurate decision. The proposed CSS approaches can be
further improved to gradually train the classifiers by using
the energy vectors obtained one-by-one. This facilitates the
classifiers to adapt to the varying environment without training
all over again.
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