Linguagens Formais e Teoria da Computação Lista 2 Prof. Bruno Lopes

1. A linguagem $L = \{a^k b^k c^n \mid 0 \le k \le 1000 \text{ e } n > 0\}$ é regular. No entanto, um aluno que faltou algumas aulas, usando o lema do bombeamento, obteve a seguinte prova de que L não é regular. Aponte o erro na prova desse aluno e argumente que a linguagem é, de fato, regular.

Suponha que L é regular, então vale o lema do bombeamento. Isto é, existe um número positivo m tal que para qualquer palavra w de L com tamanho maior que m, tem-se u,v e z, tal que , w=uvz, $|uv| \leq m$, |v| > 0 e para todo $i \in Nat$, $uv^iz \in L$. Ora, $a^{900}b^{900}c^m$ tem tamanho maior que m, então, uv só tem a's e portanto uv^0z que é o mesmo que uz é da forma $a^{900-r}b^{900}c^m$ com r > 0. Como $a^{900-r}b^{900}c^m \not\in L$, temos a conclusão desejada.

- 2. Usando o lema de bombeamento para linguagens regulares, prove que a linguagem das palavras w sobre $\{a, b, c, d\}$ com a mesmo número de ocorrências de cada um dos símbolos em w não é regular.
- 3. Usando o lema do bombeamento para linguagens regulares, prove que $\{a^p \mid p \text{ \'e primo}\}$ não 'e regular. Dica: Um número não 'e primo se pode ser expresso como a multiplicação de dois números, ambos diferentes de 1. Escolha um primo p maior que k e mostre que uv^hz , com h = |u| + |z|, concluindo que o resultado do bombeamento não pertence a linguagem.
- 4. Já sabemos, inclusive pelo ítem acima, que a linguagem $L_{nP} = \{a^p \mid p \text{ não \'e primo}\}$ não \'e regular, pois \'e o complemento em relação a $\{a\}^*$ de uma linguagem que não \'e regular. Pede-se provar, diretamente via o uso do lema do bombeamento, que L_{nP} não \'e regular.
- 5. As questões abaixo são resolvidas com a aplicação direta do lema do bombeamento. Escolha uma palavra dependendo de k, do lema do bombeamento, e mostre que existe um bombeamento da decomposição uvz que não pertence a linguagem.
 - (a) $\{a^nb^n \mid n \in \mathbb{N}\}$ Dica: escolha a^kb^k e mostre que uv^0z não pertence a linguagem.
 - (b) $\{a^n b^m \mid n > m\}$ Dica: escolha $a^{k+1} b^k$ e mostre que $uv^0 z$ não pertence a linguagem.
 - (c) $\{a^{n^m} \mid n \in \mathbb{N}\}$, com m fixo, ou seja considere uma linguagem para cada m. Dica: escolha a^{k^m} e mostre que uv^2z não pertence a linguagem.
 - (d) $\{ww \mid w \in \{a,b\}^*\}$ Dica: escolha $a^k b^k a^k b^k$ e mostre que $uv^0 z$ não pertence a linguagem.
 - (e) (Difficil) $\{w_1 w_2 \mid w_1 \neq w_2, w_i \in \{a, b\}^*\}.$