
Real-Time Divisible Load Scheduling for Cluster Computing

Xuan Lin, Ying Lu, Jitender Deogun, Steve Goddard
Department of Computer Science and Engineering

University of Nebraska - Lincoln
Lincoln, NE 68588

{lxuan, ylu, deogun, goddard}@cse.unl.edu

Abstract
Cluster computing has emerged as a new paradigm for solv-

ing large-scale problems. To enhance QoS and provide per-
formance guarantees in cluster computing environments, vari-
ous real-time scheduling algorithms and workload models have
been investigated. Computational loads that can be arbitrarily
divided into independent pieces represent many real-world ap-
plications. Divisible load theory (DLT) provides insight into dis-
tribution strategies for such computations. However, the prob-
lem of providing performance guarantees to divisible load ap-
plications has not yet been systematically studied. This paper
investigates such algorithms for a cluster environment. Design
parameters that affect the performance of these algorithms and
scenarios when the choice of these parameters have significant
effects are studied. A novel algorithmic approach integrating
DLT and EDF (earliest deadline first) scheduling is proposed.
For comparison, we also propose a heuristic algorithm. Inten-
sive experimental results show that the application of DLT to
real-time cluster-based scheduling leads to significantly better
scheduling approaches.

1 Introduction
The dawn of the information age has changed how we solve
important problems. Emerging computation and data intensive
applications cannot be solved by a single stand-alone machine.
This has led to the emergence of cluster computing—which har-
nesses the power of hundreds and thousands of machines—as a
new paradigm for computing. However, as the size of a clus-
ter increases, so does the complexity of resource management
and maintenance. Automated performance control and resource
management is crucial to achieve continued evolution of clus-
ter computing. Current cluster scheduling practice is similar
in sophistication to early supercomputer batch scheduling al-
gorithms, and no consideration is given to desired quality-of-
service (QoS) attributes. To fully avail the power of computa-
tional clusters, new scheduling theory that provides high per-
formance, QoS assurance, and streamlined management of the
cluster resources needs to be developed.

The challenge, however, in developing real-time scheduling
theory for cluster computing is to support various types of clus-
ter applications. Broadly speaking, computational loads submit-
ted to a cluster are structured in two primary ways: indivisible
and divisible. An indivisible load is essentially a sequential job
and thus must be assigned to a single processor. The divisible

loads are comprised of tasks that can be executed in parallel and
can be further divided into two categories: modularly divisible
and arbitrarily divisible loads. Modularly divisible loads are di-
vided a priori into a certain number of subtasks and are often
described by a task (or processing) graph. Arbitrarily divisible
loads can be partitioned into an arbitrarily large number of load
fractions. Examples of arbitrarily divisible loads can be easily
found in high energy and particle physics. For example, the
CMS (Compact Muon Solenoid) [10] and ATLAS (AToroidal
LHC Apparatus) [6] projects, which are associated with the
Large Hadron Collider (LHC) at CERN (European Laboratory
for Particle Physics), execute cluster-based applications with ar-
bitrarily divisible loads. Usually all elements in such computa-
tional loads demand an identical type of processing, and relative
to the huge total computation, the processing on each individual
element is infinitesimally small.

The problem of providing QoS or real-time guarantees for
sequential and modularly divisible jobs in distributed systems
has been studied extensively. Similarly, significant progress has
been made in divisible load theory (DLT)[28]. However, de-
spite the increasing importance of arbitrarily divisible applica-
tions [24], to the best of our knowledge, the real-time scheduling
of arbitrarily divisible loads has not been systematically investi-
gated.

Scheduling of arbitrarily divisible loads represents a problem
of great significance for cluster-based research computing facil-
ities such as the U.S. CMS Tier-2 sites [26]. (The CMS project
will not be fully operational until 2007.) One of the manage-
ment goals at the University of Nebraska-Lincoln (UNL) Re-
search Computing Facility (RCF) is to provide a multi-tiered
QoS scheduling framework in which applications “pay” accord-
ing to the response time requested for each job [26]. Exist-
ing real-time cluster scheduling algorithms assume the existence
of a task graph for all applications, which are not appropriate
for arbitrarily divisible loads. To better manage these high-end
clusters and control their performance, we need new real-time
scheduling algorithms for arbitrarily divisible applications.

Four contributions are made in this paper. First, DLT is ex-
tended to compute the minimum number of processors required
to meet an application’s deadline. Second, based on this, a novel
algorithmic approach integrating DLT and EDF (earliest dead-
line first) scheduling is proposed. For comparison, we also pro-
pose a heuristic algorithm. Third, important design parameters
are identified that affect the performance of real-time divisible-

Proceedings of the 13th IEEE Real Time and
Embedded Technology and Applications Symposium(RTAS'07)
0-7695-2800-7/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSIDADE FEDERAL FLUMINENSE. Downloaded on November 19, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

load scheduling algorithms. Fourth, we systematically investi-
gated the effects of these design parameters on a set of real-time
scheduling algorithms, and show that the application of DLT to
real-time, cluster-based scheduling leads to significantly better
scheduling approaches.

The remainder of this paper is organized as follows. Related
work is presented in Section 2. Section 3 describes both task
and system models. In Section 4, real-time scheduling algo-
rithms investigated in this paper are discussed. We evaluate the
performance of algorithms in Section 5 and conclude the paper
in Section 6.

2 Related Work

Development of commodity-based clusters and Grid computing
has recently gained considerable momentum. By linking a large
number of computers together, a cluster provides a cost-effective
facility for solving complex problems. In a large-scale Grid, the
resource management system (RMS), which provides real-time
guarantees or QoS, is central to its operation.

Research has been carried out in utility-driven cluster com-
puting [29, 25] to improve the value of utility delivered to users.
Proposed cluster RMSs [9, 3] have addressed the scheduling of
both sequential and parallel loads. The goal of those schemes is
similar to ours: to harness the power of resources based on user
objectives.

The scheduling models investigated for distributed or multi-
processor systems most often (e.g., [23, 22, 14, 1, 20, 13, 5])
assume periodic or aperiodic sequential jobs that must be allo-
cated to a single resource and executed by their deadlines. With
the evolution of cluster computing, researchers have begun to in-
vestigate real-time scheduling of parallel applications on a clus-
ter [31, 21, 12, 2, 4]. However, most of these studies assume
the existence of some form of task graph to describe commu-
nication and precedence relations between computational units
called subtasks (i.e., nodes in the task graph).

The most closely related work to our problem is scheduling
algorithms for “scalable real-time tasks” running in a multipro-
cessor system presented in [16]. In that paper, like divisible
loads, it is assumed that a task can be executed on more than
one processor and as more processors are allocated to it, its pure
computation time decreases monotonically. The paper notes that
the decision on the number of processors allocated to tasks is
an important factor in the design of parallel scheduling algo-
rithms. However, the simulations described in the paper are lim-
ited and are favorably biased towards their proposed schemes.
Therefore, their conclusions on comparing their proposed MWF
(Maximum Workload derivative First) schemes with the EDF
and FIXED algorithms [19, 7] hold true only in certain scenar-
ios.

Our work differs significantly from previous work in real-
time as well as cluster computing in both the task model as-
sumed and in the comprehensiveness of our study. In this paper
unlike the previous study [16], we do not assume task execu-
tion times are known a priori. Instead, we apply DLT to guide
task partitioning, to derive its execution time function, and to

compute the minimum number of processors required to meet
its deadline.

DLT provides an in-depth study of distribution strategies for
arbitrarily divisible loads [8, 24, 28]. The goal of DLT is to
exploit parallelism in computational data so that the workload
can be partitioned and assigned to several processors such that
execution completes in the shortest possible time [8]. DLT has
been previously applied to and implemented in Grid computing
[30, 15, 27]. Complimentary to that work, our paper applies
DLT in the design of real-time scheduling algorithms for cluster
computing; specifically, DLT is applied in the partitioning of
applications, such as CMS [10] and ATLAS [6], that execute on
a large cluster.

3 Task and System Models

In this section we describe our task and system models briefly,
and state assumptions related to these models.

Task Model. We assume a real-time aperiodic task model
in which each aperiodic task Ti consists of a single invocation
specified by the tuple (Ai, σi, Di), where Ai ≥ 0 is the arrival
time of the task, σi > 0 is the total data size of the task, and
Di > 0 is its relative deadline. The absolute deadline of the task
is given by Ai+Di. Section 4.2 presents, in detail, how task exe-
cution time is dynamically computed based on total data size σi,
resources allocated (i.e., processing nodes and bandwidth) and
the partitioning method applied to parallelize the computation.

System Model. A cluster consists of a head node, denoted
by P0, connected via a switch to N processing nodes, denoted
by P1, P2, . . . , PN . We assume that all processing nodes have
the same computational power and all links from the switch to
the processing nodes have the same bandwidth. The system
model assumes a typical cluster environment in which the head
node does not participate in computation. The role of the head
node is to accept or reject incoming tasks, execute the schedul-
ing algorithm, divide the workload and distribute data chunks to
processing nodes. Since different nodes process different data
chunks, the head node sequentially sends every data chunk to
its corresponding processing node via the switch. We assume
that data transmission does not happen in parallel, although it
is straightforward to generalize our model and include the case
where some pipelining of communication may occur. For the di-
visible loads we assume that tasks and subtasks are independent.
Therefore, there is no need for processing nodes to communicate
with each other.

According to divisible load theory, linear models are used to
represent processing and transmission times [28]. In the sim-
plest scenario, the computation time of a load σ is calculated by
a cost function Cp(σ) = σCps, where Cps represents the time
to compute a unit of workload on a single processing node. The
transmission time of a load σ is calculated by a cost function
Cm(σ) = σCms, where Cms is the time to transmit a unit of
workload from the head node to a processing node. For many
applications the output data is just a short message and is neg-
ligible, particularly considering the very large size of the input
data. Therefore, in this paper we only model transfer of applica-

Proceedings of the 13th IEEE Real Time and
Embedded Technology and Applications Symposium(RTAS'07)
0-7695-2800-7/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSIDADE FEDERAL FLUMINENSE. Downloaded on November 19, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

tion input data but not the transfer of output data. The extension
to consider the output data transfer using DLT is straightforward.

4 Algorithms
This section presents real-time scheduling algorithms for divisi-
ble loads. To develop the algorithms, we need to make three im-
portant decisions. The first is to adopt a scheduling policy to de-
termine the order of execution for tasks (Section 4.1). The sec-
ond decision is to determine the number n of processing nodes
to allocate to each task and the third is to choose a strategy to
partition the task among the allocated n nodes (Section 4.2).

4.1 Scheduling Policies

Three scheduling policies to determine the execution order of
tasks are investigated: FIFO, EDF and MWF (Maximum Work-
load derivative First) [16]. The FIFO scheduling algorithm exe-
cutes tasks following their order of arrival. EDF, a well-known
real-time scheduling algorithm, orders tasks by their absolute
deadlines. MWF is a real-time scheduling algorithm for divisi-
ble tasks.

The main rules of MWF are: 1) a task with the highest work-
load derivative (DCi) is scheduled first; and 2) the number of
nodes allocated to a task is kept as small as possible (nmin

i)
without violating its deadline. Node assignment is discussed
in Section 4.2. Here, we review how MWF determines task ex-
ecution order and define the workload derivative metric, DCi,
where Wi(n) is used to represent the workload (cost) of a task
Ti when n processing nodes are assigned to it.

DCi = Wi(n
min
i + 1) − Wi(n

min
i) (1)

That is, Wi(n) = n×E(σi, n), where E(σi, n) denotes the task’s
execution time (see Section 4.2 for E’s calculation). Therefore,
DCi is the derivative of the task workload Wi(n) at nmin

i (the
minimum number of nodes needed by Ti to meet its deadline).

4.2 Node Assignment and Task Partitioning

We study two primary strategies for node assignment. First, as-
sign a task all N nodes and thus try to finish the current task as
early as possible. Second, assign a task the minimum number
nmin of nodes it needs to meet its deadline, and thereby save
resources for new tasks.

Similarly, two different partitioning methods are investi-
gated: Optimal Partitioning Rule (OPR) (analyzed in Section
4.2.1), and Equal Partitioning Rule (EPR) (analyzed in Section
4.2.2). OPR is based on divisible load theory (DLT), which
states that the optimal execution time is obtained when all nodes
allocated to the task complete their computation at the same time
[28]. For comparison, we propose EPR, based on a common
practice of dividing a task into n equal-sized subtasks when the
task is to be processed by n nodes.

The following notations, partially adopted from [28], are
used in the analysis.

• T = (A, σ, D): A divisible task, where A is the arrival
time, σ is the data size, and D is the relative deadline.

a
s
1

.
.
.
.
.
.
.
C
m
s
 C
m
s
 C
m
s
a
 a
 a

a

a

a

2
s
 s

s

s

s

3
 n
 C
m
s

n
 C
p
s

C
p
s

C
p
s

s

1

2

P
0

P
1

P
2

P
n

.

.

.

.

.

.

Figure 1: Time Diagram for OPR-Based Partitioning.

• α = (α1, α2, ..., αn): Data distribution vector, where n is
the number of processing nodes allocated to the task, αj is
the data fraction allocated to the jth node, i.e., αjσ, is the
amount of data that is to be transmitted to the jth node for
processing, 0 < αj ≤ 1 and Σn

j=1αj = 1.

• Cms: Cost of transmitting a unit workload.

• Cps: Cost of processing a unit workload.

Based on our system model (Section 3) we have the follow-
ing cost functions: the data transmission time on the jth link is
Cm(αjσ) = αjσCms and the data processing time on the jth

node is Cp(αjσ) = αjσCps. We assume that the setup costs
for initializing data transmission and processing are negligible.
We have also investigated the case where the setup costs may
be significant [17], but those results are omitted from this paper
due to space limitations.

4.2.1 Optimal Partitioning Rule (OPR)

For a given task, we first analyze its execution time function,
E(σ, n), assuming n nodes are to be allocated to process a total
data size of σ. Then, we use the function to derive the minimum
number, nmin, of nodes needed to meet the task’s deadline.

Task Execution Time Analysis. Figure 1 shows an example
task execution time diagram following OPR when n nodes are
allocated to process the task. Let E denote Task Execution Time,
which is a function of σ and n. We have,

E(σ, n) = α1σCms + α1σCps (2)

= (α1 + α2)σCms + α2σCps (3)

= (α1 + α2 + α3)σCms + α3σCps (4)

. . .

= (α1 + α2 + α3 + ... + αn)σCms +

αnσCps. (5)

From (2) and (3), we get

α1 = α2
σCms + σCps

σCps

=
α2

β
, where

β =
σCps

σCms + σCps

=
Cps

Cms + Cps

(6)

Proceedings of the 13th IEEE Real Time and
Embedded Technology and Applications Symposium(RTAS'07)
0-7695-2800-7/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSIDADE FEDERAL FLUMINENSE. Downloaded on November 19, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

Note that 0 < β < 1. It follows that α2 = βα1. Similarly, from
(3) and (4), we have α3 = βα2, and therefore, α3 = β2α1.
This leads to a general formula: αj = βj−1α1. Since αj is
the data fraction distributed to the jth processing node, we have∑n

j=1 αj = 1. Substituting αj with βj−1α1 in this equation,
we obtain

α1 + βα1 + β2α1 + ... + βn−1α1 = 1.

Solving this equation, we get α1 = 1−β
1−βn . Substituting it into

(2), we have

E(σ, n) =
1 − β

1 − βn
σ(Cms + Cps). (7)

Derivation of nmin. Given E(σ, n), we can calculate the
minimum number nmin of nodes required to meet a task’s dead-
line.

Let C(n) denote the task completion time function. Assum-
ing that the task T = (A, σ, D) has a start time s, then its com-
pletion time is C(n) = s + E(σ, n), which leads to

C(n) = s +
1 − β

1 − βn
σ(Cms + Cps). (8)

To meet a task’s deadline means its completion time should sat-
isfy the constraint that C(n) ≤ A + D. It follows that

s +
1 − β

1 − βn
σ(Cms + Cps) ≤ A + D, that is

1 − β

1 − βn
σ(Cms + Cps) ≤ A + D − s. (9)

Since 1 − βn > 0. Multiplying both sides of (9) by (1 − βn),
we get

(1 − β)σ(Cms + Cps) ≤ (1 − βn)(A + D − s). (10)

If A + D − s ≤ 0, the task will miss its deadline no matter
how many nodes we assign to it and how we partition it. Such
a task will be rejected because it fails the schedulability test of
our scheduling algorithms (for details see Sec. 4.3). Thus, A +
D − s > 0, and dividing both sides of (10) by (A + D − s) we
have

(1 − βn) ≥
(1 − β)σ(Cms + Cps)

A + D − s
, thus

βn ≤ 1 −
(1 − β)σ(Cms + Cps)

A + D − s

= 1 −
(1 −

Cps

Cms+Cps

)σ(Cms + Cps)

A + D − s

= 1 −
(Cms

Cms+Cps

)σ(Cms + Cps)

A + D − s

= 1 −
σCms

A + D − s

P
0

P
1

P
2

P
n

.

.

.

.

.

.

C
m
s
/
n
s
 C
m
s
/
n
s
 .
.
.
.
.
.
 C
m
s
/
n
s

C
p
s
/
n
s

C
p
s
/
n
s

C
p
s
/
n
s

e
E
x
e
c
u
t
i
o
n

T
i
m
e

Figure 2: Time Diagram for EPR-Based Partitioning.

Let γ = 1− σCms

A+D−s
. Thus, βn ≤ γ. If γ ≤ 0, starting task T at

time s will not leave enough time even for its data transmission
and therefore the task will be rejected as well. Thus, γ > 0,
and it follows that n ≥ lnγ

ln β
. Since n, the number of nodes

assigned, should be an integer, we have n ≥ ⌈ lnγ
lnβ

⌉. Therefore,
the minimum number of processing nodes that the task needs at
time s to meet its deadline is nmin = ⌈ ln γ

ln β
⌉ where γ is defined

above and β in (6).

4.2.2 Equal Partitioning Rule (EPR)

To understand the merits of divisible load theory (DLT) in prac-
tical real-time cluster-based scheduling, we analyze EPR as a
comparison. Similar to the analysis for DLT-based OPR, we de-
rive the task execution time function and nmin for EPR.

Task Execution Time Analysis. Assuming n nodes are allo-
cated to a task, an example task execution time diagram follow-
ing the EPR is shown in Figure 2. By analyzing the diagram, we
have E(σ, n) = σCms + αnσCps, where αn = 1

n
. Thus,

E(σ, n) = σCms +
σCps

n
. (11)

Derivation of nmin. Assuming that the task T = (A, σ, D)
has a start time s, then the task completion time is C(n) = s +
E(σ, n), which must satisfy the constraint that C(n) ≤ A + D.
That is,

s + σCms +
σCps

n
≤ A + D. (12)

Thus,

σCps

A + D − s − σCms

≤ n. (13)

Therefore, following EPR, the minimum number of processing
nodes that the task needs at time s to complete before its dead-
line is nmin = ⌈

σCps

A+D−s−σCms

⌉.

4.3 Algorithm Framework

As is typical for dynamic real-time scheduling algorithms
[11, 18, 22], when a task arrives, the scheduler dynamically de-
termines if it is feasible to schedule the new task without com-
promising the guarantees for previously admitted tasks. The
pseudocode for a general Schedulability Test is shown in Figure
3. It could be configured to generate various real-time divisible
load scheduling algorithms by giving the design decisions on:

Proceedings of the 13th IEEE Real Time and
Embedded Technology and Applications Symposium(RTAS'07)
0-7695-2800-7/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSIDADE FEDERAL FLUMINENSE. Downloaded on November 19, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

���� ����������	

���
��� ¾

��� ��
����
����� �� ��������
�
����
����� �� ��
��� �� ������ ��� �� �!�
�" �����
� ���� ���� ����� � ���� �#	
 $% �! �!�&����'��� (�)" $&)* ¾ !��� ��
����� �� % �! �!�
���� !�
� +��� ��� ����" +���� �) �� �������
� $&) �� ���
����� �� % �! �!�
����#,-��./�/.�����!�
 ��0�.�1�2313�456�-��� ������ �7�'��� 8 � 9 $�������� �7�:����;; $������
� �� ��� �����
 ������!�
� ��!��<=;; >?@" @A@B �� CD@ �?������
 EF������ ����� �7�'���;; B�� �
 ��� % �! �!�
���� �
���� ���
��
�� �� $% �! �!�&����'��� (�)"$&) *;;A
��� !�G ���
H�����!��� �7'��� 8fI031� ����� �7'��� JK f����%� ���$�"s�" ?�� ���� ����� �7�'���;; $������
� �� ��� �����

��� ����
��
� ��!��<=;; ����
�
� � �7
��
 �� &
���� �?������
 EL����
���< ��� � �!���� ���� �) +��
 ��� % �! �!�
���� $&) M
���
 ��)� �� $&) M &;; H�� ������!�� �� ���
� ������ 8 �);; $������
� �� ��� �����
 � ������
�
� ��!�=;; BNO �� >NO �?������
 EP�" � !��! �� e

��!!�+�
�;; >Q �R#S� �
 H�����
 R#L#F �� >Q �R#FF� �
 H�����
 R#L#L";;
� ��� ��� �T������ ����!����
 ������ 8 e
�
s�"
�� 9 ��3U �� * $� 9 ?������V � !�� ;; ?� �!�
� ��������� ���$�"s �" ?�" ��"
�" ��� �
�� H�����!��� �7'������ �� $% �! �!�&����'����V. I031�;W $!! � �7� �
 ��� �!����� �� ������! �!� W;$�������� �7�:����8 H�����!��� �7'��������V �����V. ��0�.�1�2313�4 6�-���

Figure 3: Schedulability Test.

1) scheduling policy (FIFO, EDF or MWF), 2) node assignment
method (assigning a task all N or its nmin nodes), and 3) task
partitioning rule (OPR or EPR). Upon completion of the test, if
all tasks are schedulable a feasible schedule is developed and the
new task is accepted, otherwise, it is rejected1.

By following the aforementioned framework, we gener-
ate ten algorithms: EDF-OPR-MN, EDF-OPR-AN, EDF-EPR-
MN, EDF-EPR-AN, FIFO-OPR-MN, FIFO-OPR-AN, FIFO-
EPR-MN, FIFO-EPR-AN, MWF-OPR-MN, and MWF-EPR-
MN. The nomenclature of the algorithms, include three parts
corresponding to the three algorithm design decisions. The

1Rejection in the cluster environment means that the system administrator
(or a program proxy) will negotiate with the client for a feasible task deadline,
and the job will be rescheduled with modified parameters.

first part denotes the scheduling policy adopted: EDF, FIFO or
MWF. The second part represents the choice of the partitioning
rule: DLT-based OPR or heuristic EPR. In the third portion of
the name, MN means the algorithm assigns a task the minimum
number of nodes needed to meet its deadline, and AN means the
algorithm assigns all nodes. Since MWF always allocates a task
nmin nodes, the algorithm only has the MN versions.

5 Performance Evaluation
The previous section proposed various real-time cluster-based
scheduling algorithms for divisible loads. This section evalu-
ates their performance relative to each other and to changes of
various configuration parameters.

Cluster Configuration. We use a discrete simulator to sim-
ulate a range of clusters that are compliant to the system model
presented in Section 3. For every simulation, three parameters,
N , Cms and Cps are specified for a cluster.

Workload Generation. To generate task Ti = (Ai, σi, Di),
we assume that the interarrival times follow an exponential dis-
tribution with a specified mean of 1/λ, and task data sizes σi

are assumed to be normally distributed with a specified mean
of Avgσ and a standard deviation equal to the mean. Task
relative deadlines are assumed to be uniformly distributed in
the range of [AvgD

2 , 3AvgD
2], where AvgD is the mean rela-

tive deadline. To specify AvgD, a new term DCRatio is
introduced. It is defined as the ratio of mean deadline to
mean minimum execution time (cost), that is AvgD

E(Avgσ,N) , where
E(Avgσ, N) is the task execution time computed with Eq (7)
assuming the task has an average data size Avgσ and runs on
all N processing nodes. Given DCRatio, the cluster size N
and the average data size Avgσ, AvgD is implicitly specified
as DCRatio × E(Avgσ, N). In this way, by DCRatio, task
relative deadlines are specified relating to the average task ex-
ecution time. In addition, a task relative deadline Di is chosen
to be larger than its minimum execution time E(σi, N). In sum-
mary, we specify the following parameters for every simulation:
(N, Cms, Cps, 1/λ, Avgσ, DCRatio).

To analyze how loaded a cluster is for a simulation, we define
another metric SystemLoad. It is derived from the specified
parameters as

SystemLoad =
E(Avgσ, N)

λ
,

which corresponds to

SystemLoad =
TotalTaskNumber× E(N, Avgσ)

TotalSimulationT ime
.

Sometimes, we specify SystemLoad for the simulation
instead of average interarrival time 1/λ. Configuring
(N, Cms, Cps, SystemLoad, Avgσ, DCRatio) is equivalent to
specifying (N, Cms, Cps, 1/λ, Avgσ, DCRatio), because

1/λ =
SystemLoad

E(Avgσ, N)
.

To evaluate the performance of the real-time scheduling algo-
rithms, we use the metric, Task Reject Ratio, which is the ratio

Proceedings of the 13th IEEE Real Time and
Embedded Technology and Applications Symposium(RTAS'07)
0-7695-2800-7/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSIDADE FEDERAL FLUMINENSE. Downloaded on November 19, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

of the number of tasks rejected by a real-time scheduling algo-
rithm to the total number of tasks arriving at the cluster. The
smaller the Task Reject Ratio, the better the real-time schedul-
ing algorithm.

For all figures in this paper, a point on a curve
corresponds to the average performance value of ten
simulations 2. In the ten runs, the same parameters
(N, Cms, Cps, 1/λ, Avgσ, DCRatio) are specified but
different random numbers are generated for task arrival times
Ai, data sizes σi, and deadlines Di. For each simulation, the
TotalSimulationT ime is 10,000,000 time units, which is
sufficiently long.

In Section 4, we identified three important decisions on Task
Partitioning,Node Assignment, and Scheduling Policy in design-
ing real-time, cluster-based scheduling algorithms for divisible
loads. The next three subsections evaluate and compare the al-
gorithms proposed in Section 4 and respectively investigate the
scenarios where each of these three decisions matters.

5.1 OPR vs. EPR Partitioning

We first evaluate the performance of the following real-time
scheduling algorithms with respect to the two proposed partion-
ing rules (OPR and EPR): EDF-OPR-MN v.s. EDF-EPR-MN,
EDF-OPR-AN v.s. EDF-EPR-AN, FIFO-OPR-MN v.s. FIFO-
EPR-MN, FIFO-OPR-AN v.s. FIFO-EPR-AN, and MWF-OPR-
MN v.s. MWF-EPR-MN. Due to space limitations, we only re-
port the comparison of EDF-OPR-MN v.s. EDF-EPR-MN and
EDF-OPR-AN v.s. EDF-EPR-AN here. The performance re-
sults for the other pairs are similar (refer to [17] for details).

5.1.1 Simulation Modeling
For our basic simulation model we chose the following param-
eters: number of processing nodes in the cluster, N = 16; unit
data transmission time, Cms = 1; unit data processing time,
Cps = 100; SystemLoad changes in the range [0.1, 0.2, · · · ,
1.0]; Average data size, Avgσ = 200; and the ratio of the av-
erage deadline to the average execution time, DCRatio = 2.
Our simulation has a three-fold objective. First, we want to ver-
ify our hypothesis that it is advantageous to apply DLT in real-
time cluster-based scheduling. Second, we study the effects of
DCRatio, and third, we want to investigate effects of the pro-
cessing speed.

5.1.2 Merits of DLT for Cluster Scheduling
To study the merits of DLT we employ our basic simulation
model without any changes. The four curves in Figure 4a show
the Task Reject Ratio of the four algorithms: EDF-OPR-MN,
EDF-EPR-MN, EDF-OPR-AN, and EDF-EPR-AN. Observe
that EDF-OPR-MN always leads to a lower Task Reject Ratio
than EDF-EPR-MN. Similarly, observe that EDF-OPR-AN al-
ways achieves a lower Task Reject Ratio than EDF-EPR-AN.
These simulation results confirm our hypothesis that it is ad-
vantageous to apply DLT in real-time, cluster-based scheduling
algorithms. DLT provides an optimal task partitioning, which

2Due to space limitations, we only report average data here. Please refer to
[17] for curves with confidence intervals.

leads to minimum task execution times, and as a result the clus-
ter can satisfy a larger number of task deadlines.

We carried out the same type of simulations by changing, one
at a time, the following cluster or workload parameters: clus-
ter size N , unit transmission time Cms, and average data size
Avgσ. Results are similar to Figure 4a, where algorithms with
OPR partitioning always perform better than algorithms with
EPR partitioning (refer to [17] for details).

5.1.3 Effects of DCRatio
To study the effects of the DCRatio, we use the same configu-
ration as the basic simulation except that we vary the DCRatio
over the range [2, 3, 10, 20, 100]. For sake of readability, Fig-
ure 4b only shows the performance of EDF-OPR-AN and EDF-
EPR-AN with DCRatio = 2, 10, and 100. Corresponding to
different combinations of algorithm and DCRatio, six curves
are produced. Again, Figure 4b shows that the algorithm with
OPR partitioning performs better. In addition, we can see
as DCRatio increases, the performance of EDF-EPR-AN be-
comes closer to that of EDF-OPR-AN. This is because the
higher the DCRatio, the looser the task relative deadlines
are. Consequently, the worse execution times caused by a non-
optimal partition, like EPR, will have less impact on the algo-
rithms’ performance. In particular, when DCRatio is extremely
high (100), the two algorithms perform almost the same.

5.1.4 Effects of Processing Speed
To study effects of processing speed, we vary Cps over
[10, 50, 100, 500, 1000, 5000, 10000] range. The larger Cps, the
slower the computation. Figure 4c shows results of EDF-OPR-
MN and EDF-EPR-MN with Cps = 10 and 10000 respectively.

From the figure, we can see that the algorithm with OPR par-
titioning (EDF-OPR-MN) still outperforms the algorithm with
EPR partitioning (EDF-EPR-MN). However, as the processing
speed decreases, i.e., Cps increases, the differences between the
two algorithms becomes less and less significant. In particu-
lar, when the computation is extremely slow (Cps = 10000),
we can see that the curves for the two algorithms are almost
overlapped, indicating non-differentiableTask Reject Ratios. To
demonstrate this point, let us assume Cps is so large that the ra-
tio of Cms to Cps is approaching 0. In the analysis of OPR, we
showed that β from Eq (6) will approach 1 in this case, causing
the data fractions allocated to processing nodes, α1, α2, · · · , αn,
to all be close to 1

n
. Therefore, OPR and EPR will perform the

same in this case.
From the aforementioned intensive experiments, we con-

clude that no matter what the system parameters are, the al-
gorithms with DLT-based partitioning (OPR) always perform
better than the ones with the equal-sized partitioning heuristic
(EPR). This shows that it is beneficial to apply divisible load
theory in real-time, cluster-based scheduling.

5.2 N v.s. nmin Nodes
In this subsection, we compare and analyze the real-time
scheduling algorithms with different node assignment methods.
We investigate the performance difference in algorithms assign-
ing all N nodes to every task (ALG-AN) v.s. those assigning

Proceedings of the 13th IEEE Real Time and
Embedded Technology and Applications Symposium(RTAS'07)
0-7695-2800-7/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSIDADE FEDERAL FLUMINENSE. Downloaded on November 19, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=2

EDF-EPR-MN
EDF-OPR-MN
EDF-EPR-AN
EDF-OPR-AN

(a) OPR v.s. EPR: Baseline Experiment

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200

EDF-EPR-AN, dcratio=2
EDF-OPR-AN, dcratio=2

EDF-EPR-AN, dcratio=10
EDF-OPR-AN, dcratio=10

EDF-EPR-AN, dcratio=100
EDF-OPR-AN, dcratio=100

(b) OPR v.s. EPR: Effects of DCRatio

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, average data size = 200, dcratio=2

EDF-EPR-MN, Cps=10
EDF-OPR-MN, Cps=10

EDF-EPR-MN, Cps=10000
EDF-OPR-MN, Cps=10000

(c) OPR v.s. EPR: Effects of Processing Speed

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 2 4 6 8 10 12 14 16 18 20D
if

fe
re

nc
e

of
 T

as
k

R
ej

ec
t R

at
io

Cms

nodes=16, Cms=1, Cps=100, Inter-arrival Time=1000, dcratio=2

TRR of EDF-OPR-MN - TRR of EDF-OPR-AN

(d) N v.s. nmin: Effects of Overhead

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 600 800 1000 1200 1400D
if

fe
re

nc
e

of
 T

as
k

R
ej

ec
t R

at
io

Inter-arrival Time (1/ l)

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=2

TRR of EDF-OPR-MN - TRR of EDF-OPR-AN

(e) N v.s. nmin: Effects of 1/λ (DCRatio = 2)

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 600 800 1000 1200 1400D
if

fe
re

nc
e

of
 T

as
k

R
ej

ec
t R

at
io

Inter-arrival time (1/ l)

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=10

TRR of EDF-OPR-MN - TRR of EDF-OPR-AN

(f) N v.s. nmin: Effects of 1/λ (DCRatio = 10)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 900 1000 1100 1200 1300 1400 1500 1600

T
as

k
R

ej
ec

t R
at

io

Inter-arrival Time

nodes=16, Cms=1, Cps=100, data size = 200

EDF-OPR-2
EDF-OPR-AN

(g) N v.s. nmin: Analysis Verification

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 500 1000 1500 2000 2500 3000

T
as

k
R

ej
ec

t R
at

io

Inter-arrival Time (1/ l)

nodes=64, Cms=2, Cps=100, average data size = 200, dcratio=20

EDF-OPR-MN
FIFO-OPR-MN
MWF-OPR-MN

(h) Comparison of FIFO, EDF and MWF (Cms=2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500 1000 1500 2000 2500 3000

T
as

k
R

ej
ec

t R
at

io

Inter-arrival Time (1/ l)

nodes=64, Cms=10, Cps=100, average data size = 200, dcratio=20

EDF-OPR-MN
FIFO-OPR-MN
MWF-OPR-MN

(i) Comparison of FIFO, EDF and MWF (Cms=10)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500 1000 1500 2000 2500 3000

T
as

k
R

ej
ec

t R
at

io

Inter-arrival Time (1/ l)

nodes=64, Cms=20, Cps=100, average data size = 200, dcratio=20

EDF-OPR-MN
FIFO-OPR-MN
MWF-OPR-MN

(j) Comparison of FIFO, EDF and MWF (Cms=20)

Figure 4: Performance Evaluation.

Proceedings of the 13th IEEE Real Time and
Embedded Technology and Applications Symposium(RTAS'07)
0-7695-2800-7/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSIDADE FEDERAL FLUMINENSE. Downloaded on November 19, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

the minimum number nmin of nodes needed to meet a task’s
deadline (ALG-MN).

The relative performance of EDF-OPR-MN v.s. EDF-OPR-
AN is shown in Section 5.2.1. It is noteworthy that in contrast
to the results in [16] comparing MWF(-MN) and FIXED(-AN)
algorithms, our initial data seem to indicate that EDF-OPR-AN
outperforms EDF-OPR-MN most of the time. To gain insight
into the performance results, in Section 5.2.2 we carry out rig-
orous analysis of a simplified scenario where a scheduling al-
gorithm always assigns K nodes (K < N) to a periodic di-
visible task. This analysis sheds new light on possible scenar-
ios where algorithms assigning nmin nodes (ALG-MN) perform
better than those assigning all N nodes (ALG-AN).

5.2.1 Initial Comparison

In Section 4.2, we have explained the rational behind the two
node-assignment strategies: an ALG-AN tries to finish the cur-
rent task as soon as possible, while an ALG-MN saves resources
for new tasks.

For the N node assignment strategy, the problem is it causes
higher parallel execution overhead than the nmin node assign-
ment counterpart. For the cluster model investigated (Section 3),
the higher the transmission cost (Cms), the greater the overhead.
As shown in Figure 1, the node idle time due to data transmis-
sion is one type of parallel execution overhead.

On the other hand, the nmin node assignment strategy, trying
to save resources for new tasks, will not improve performance
if there is no task coming in the near future. In that case, some
number of nodes (potentially N−nmin of them) are left idle and
their processing cycles are wasted. Since the larger the interar-
rival time 1/λ, the less frequent are the tasks arrivals, we believe
that ALG-MN will lose its performance gain over ALG-AN as
the interarrival time 1/λ increases.

We conducted intensive simulations, comparing EDF-OPR-
MN v.s. EDF-OPR-AN, to verify the aforementioned analysis
and present some conclusive simulation results.

As explained, EDF-OPR-AN leads to higher overhead than
EDF-OPR-MN, and the larger Cms, the higher the parallel
overhead. Thus, we expect that as Cms increases, the per-
formance of EDF-OPR-AN should be affected more than that
of EDF-OPR-MN. Figure 4d shows the relative performance
of the two algorithms (Task Reject Ratio of EDF-OPR-MN −
Task Reject Ratio of EDF-OPR-AN) in a simulation where we
gradually increase the value of Cms. We can see as Cms gets
larger, the difference between the Task Reject Ratios of EDF-
OPR-MN and EDF-OPR-AN decreases, indicating that the rel-
ative performance of EDF-OPR-MN v.s. EDF-OPR-AN im-
proves. Interestingly, for this simulation, the curve is above 0
for most of the cases, indicating EDF-OPR-MN performs worse
than EDF-OPR-AN.

The next group of simulations verifies our prediction that
EDF-OPR-MN will perform worse relative to EDF-OPR-AN as
task interarrival time 1/λ increases. As demonstrated in Figure
4e, with the increasing of the interarrival time, Task Reject Ratio
of EDF-OPR-MN − Task Reject Ratio of EDF-OPR-AN also
increases. The relative Task Reject Ratio curve once again lies

above 0, meaning EDF-OPR-MN performs worse than EDF-
OPR-AN.

The results from our initial simulations contradict the con-
clusion drawn by [16] that the nmin node assignment strategy
performs better than the maximum node assignment strategy.

We believe that there should be some scenarios where ALG-
MN performs better than ALG-AN, while in the other scenarios
(for instance, Figures 4d and 4e) the reverse is true. To show
that there are cases where ALG-MN outperforms ALG-AN, we
purposely configure a simulation where ALG-MN should have
improved performance.

For this simulation, we choose a similar configuration as that
in Figure 4e except changing the DCRatio from 2 to 10. By in-
creasing the DCRatio, we have longer relative deadlines com-
pared to the mean execution time. For an ALG-MN, a longer
deadline leads to a smaller nmin of nodes allocated to a task,
thus smaller overhead. While for an ALG-AN, its node assign-
ment and resulting overhead will not be affected by deadlines,
since a task is always assigned all N nodes. Therefore, we
believe, as DCRatio increases and ALG-MN’s overhead de-
creases, ALG-MN might perform better than ALG-AN.

Figure 4f validates our analysis. We can successfully create
some scenarios (those with interarrival time smaller than 1000
time units), by increasing DCRatio from 2 to 10, where EDF-
OPR-MN outperforms EDF-OPR-AN.

5.2.2 Analysis

In this subsection, we study a simplified scenario where there is
only one periodic divisible task. A new algorithm, ALG-K that
always assigns K nodes (K < N) to every task is investigated,
which is compared with an ALG-AN. We demonstrate that with
this simple analysis we could identify some scenarios where an
ALG-MN will be better than its corresponding ALG-AN when
handling aperiodic divisible tasks.

Here, we assume the system model described in Section 3,
while the task model is simplified: only one periodic task T
is running in the system. We assume that in every period P a
subtask with a fixed data size σ and a relative deadline D arrives
at the cluster. For such system and task models, we have proved
the following theorems [17].

Theorem 5.1 When an ALG-AN is applied, if P < E(σ, N) and
D is finite, some subtasks are doomed to miss their deadlines.

Theorem 5.2 For N > 1, 1 ≤ K < N , if P ≥ KE(σ,K)
N−K

,
Cps > (N − 1)Cms, and D ≥ E(σ, K), no subtask will miss its
deadline when an ALG-K is applied.

From the above theorems, it is further derived that if P ∈
[kE(σ,K)

N−k
, E(σ, N)), Cps > (N − 1)Cms, D ≥ E(σ, K), and

1 ≤ K < N , an ALG-K will perform better than a correspond-
ing ALG-AN.

We carry out simulations to verify this conclusion. A periodic
task T that includes subtasks with σ = 200 and D = E(σ, 2) is
simulated to run in a (N = 16, Cms = 1, Cps = 100) clus-
ter by EDF-OPR-2 or EDF-OPR-AN. According to the above

Proceedings of the 13th IEEE Real Time and
Embedded Technology and Applications Symposium(RTAS'07)
0-7695-2800-7/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSIDADE FEDERAL FLUMINENSE. Downloaded on November 19, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

K Range EDF-OPR-K
TRR

EDF-OPR-AN
TRR

1 [1263,1359) 0 0.0184
2 [1269,1359) 0 0.0263
4 [1282,1359) 0 0.0251
8 [1307,1359) 0 0.0187

Table 1: For a (N = 16, Cms = 1, Cps = 100) cluster, the ver-
ification of the derived range where EDF-OPR-K outperforms
EDF-OPR-AN.

K Range
1 [316, 425)
2 [318, 425)
3 [335, 425)
4 [321, 425)
5 [350, 425)
6 [357, 425)
7 [366, 425)
8 [327, 425)

Table 2: For a (N = 64, Cms = 1, Cps = 100) cluster, the
derived range where EDF-OPR-K outperforms EDF-OPR-AN.

conclusion, if the task period P ∈ [1263, 1359), EDF-OPR-2
should perform better than EDF-OPR-AN. Simulations are car-
ried out with the task period changing from 900 to 1700. Figure
4g shows the results, which demonstrate that EDF-OPR-2 has 0
Task Reject Ratio when the task period P falls in [1263, 1359)
range, outperforming EDF-OPR-AN. The derived result is veri-
fied.

To demonstrate that the above conclusion is also true for ape-
riodic tasks, we relax the fixed-period assumption. For all the
simulated scenarios, the task interarrival times could be differ-
ent but are always kept in the derived range where EDF-OPR-
K is guaranteed to perform better than EDF-OPR-AN. Table 1
presents the simulation results. As expected, under these con-
trolled scenarios, EDF-OPR-K algorithms perform better than
EDF-OPR-AN.

Leveraging the Analysis Results. In the last simulation of
this subsection, we demonstrate how the insight gained from the
above analysis could be leveraged to derive the scenarios where
ALG-MN is guaranteed to outperform its ALG-AN counterpart.
For a (N = 64, Cms = 1, Cps = 100) cluster, we derive the
ranges where EDF-OPR-K, K ∈ (1, 2, · · · , 8) outperform EDF-
OPR-AN (Table 2). We can see that the common subrange of
the 8 ranges is [366, 425). Thus, if task interarrival times fall
into that range and the task relative deadlines are long enough
that ALG-MN always generate nmin ≤ 8, then ALG-MN will
perform better than ALG-AN.

We conduct two simulations, one comparing EDF-OPR-
MN v.s. EDF-OPR-AN and the other comparing FIFO-OPR-
MN v.s. FIFO-OPR-AN. A scenario as described above is cre-
ated. Simulation results show that for such a configuration, the
Task Reject Ratios of EDF-OPR-MN and FIFO-OPR-MN are

both 0 while the Task Reject Ratios of EDF-OPR-AN and FIFO-
OPR-AN are 0.0523 and 0.0564 respectively. We thus verify un-
der the derived conditions an ALG-MN indeed performs better
than its ALG-AN counterpart.

The models in this subsection all assume tasks have the same
data size. In the future we plan to extend the analysis to a more
general task model.

5.3 FIFO, EDF and MWF
In this subsection, we examine the effects of different execution
order policies and compare algorithms FIFO-OPR-MN, EDF-
OPR-MN v.s. MWF-OPR-MN.

Recall that the MWF (Maximum Workload derivative First)
algorithm, proposed in [16], executes the task with highest
workload derivative (DCi) first, and thus reduces the total work-
load (cost) of all scheduled tasks. In [16] MWF is compared
with EDF and shown that MWF performs better than EDF.
Moreover, the authors claim that MWF is likely to be the best
choice for on-line scheduling of divisible tasks.

We conducted intensive simulations and a systematic study of
the three execution order strategies. Our data cast some doubts
on the conclusion drawn in [16] that the MWF algorithm is the
best choice. Our hypothesis is that MWF performs well when
the parallel execution overhead (workload) of the tasks is signif-
icant compared to their pure computation. To test our theory, a
group of simulations is designed to study how changing parallel
overhead affects the performance of scheduling algorithms. In
the 20 simulations, we gradually change the data transmission
cost (Cms) from 1 to 20, while keeping the data processing cost
(Cps) constant. Since the bigger the Cms, the higher the parallel
execution overhead, for the 20 simulations with Cms changing
from 1 to 20 the task overhead increases. According to our the-
ory, MWF should perform better than EDF and FIFO when Cms

increases.
Figures 4h, 4i and 4j show the results for simulations where

Cms = 2, 10 and 20 respectively. As observed, when Cms is
small (Figure 4h), the Task Reject Ratio curve of EDF-OPR-MN
lies below that of MWF-OPR-MN, indicating EDF execution
order performs better. As Cms increases (Figures 4i and 4j),
the relative performance of the two algorithms changes. When
Cms increases to 20 (Figure 4j), MWF-OPR-MN outperforms
EDF-OPR-MN. These data match our analysis and verify our
hypothesis that MWF performs better than EDF and FIFO as
workload parallel overhead increases.

Interestingly, for all 20 simulations, EDF-OPR-MN always
performs better than FIFO-OPR-MN, while in some scenarios
like the one in Figure 4h, MWF-OPR-MN performs even worse
than FIFO-OPR-MN.

Another observation is that as the interarrival time in-
creases, the performance of the three algorithms become non-
differentiable (see Figure 4h). As the interarrival time gets larger
and the system load smaller, either EDF and MWF generate the
same execution order as FIFO, or the load is so light that the
choice of execution order does not matter anymore.

In summary, our data indicate that the best choice of execu-
tion order policy depends on individual system and workload

Proceedings of the 13th IEEE Real Time and
Embedded Technology and Applications Symposium(RTAS'07)
0-7695-2800-7/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSIDADE FEDERAL FLUMINENSE. Downloaded on November 19, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

conditions. It might be appropriate and desirable to have an
adaptive scheduling algorithm where policies can be configured
with changing conditions. In the future, we plan to study real
cluster workload traces and further investigate this problem.

6 Conclusion
In this paper, we address the problem of providing deterministic
QoS to arbitrarily divisible applications executing in a cluster.
Four contributions are made. First, we extend DLT to com-
pute the minimum number of processors required to meet an
application deadline. Second, based on this, a novel algorith-
mic approach integrating DLT and EDF scheduling is proposed.
Third, important design parameters are identified that affect the
performance of real-time divisible-load scheduling algorithms.
Finally, we systematically investigated the effects of these de-
sign parameters on a set of real-time scheduling algorithms,
and show that the application of DLT to real-time, cluster-based
scheduling leads to significantly better scheduling approaches.

References
[1] T. F. Abdelzaher and V. Sharma. A synthetic utilization bound

for aperiodic tasks with resource requirements. In Proc. of 15th
Euromicro Conference on Real-Time Systems, pages 141–150,
Porto, Portugal, July 2003.

[2] A. Amin, R. Ammar, and A. E. Dessouly. Scheduling real time
parallel structure on cluster computing with possible processor
failures. In Proc of 9th IEEE International Symposium on Com-
puters and Communications, pages 62–67, July 2004.

[3] Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and A. Keren.
An opportunity cost approach for job assignment in a scalable
computing cluster. IEEE Trans. on Parallel and Distributed Sys-
tems, 11(7):760+, 2000.

[4] R. A. Ammar and A. Alhamdan. Scheduling real time paral-
lel structure on cluster computing. In Proc. of 7th IEEE Inter-
national Symposium on Computers and Communications, pages
69–74, Taormina, Italy, July 2002.

[5] J. Anderson and A. Srinivasan. Pfair scheduling: Beyond peri-
odic task systems. In 7th International Conference on Real-Time
Computing Systems and Applications, Los Alamitos, CA, Dec
2000.

[6] ATLAS (AToroidal LHC Apparatus) Experiment, CERN (Euro-
pean Lab for Particle Physics). Atlas web page. http://atlas.ch/.

[7] D. Babbar and P. Krueger. On-line hard real-time scheduling of
parallel tasks on partitionable multiprocessors. In ICPP, pages
29–38, 1994.

[8] V. Bharadwaj, T. G. Robertazzi, and D. Ghose. Scheduling Divis-
ible Loads in Parallel and Distributed Systems. IEEE Computer
Society Press, Los Alamitos, CA, 1996.

[9] B. N. Chun and D. E. Culler. Market-based proportional resource
sharing for clusters. Technical Report UCB/CSD-00-1092, EECS
Department, University of California, Berkeley, 2000.

[10] Compact Muon Solenoid (CMS) Experiment for the Large
Hadron Collider at CERN (European Lab for Particle Physics).
Cms web page. http://cmsinfo.cern.ch/Welcome.html/.

[11] M. L. Dertouzos and A. K. Mok. Multiprocessor online
scheduling of hard-real-time tasks. IEEE Trans. Softw. Eng.,
15(12):1497–1506, 1989.

[12] M. Eltayeb, A. Dogan, and F. Özgüner. A data scheduling al-
gorithm for autonomous distributed real-time applications in grid
computing. In Proc. of 33rd International Conference on Parallel
Processing, pages 388–395, Montreal, Canada, August 2004.

[13] S. Funk and S. Baruah. Task assignment on uniform heteroge-
neous multiprocessors. In Proc of 17th Euromicro Conference on
Real-Time Systems, pages 219–226, July 2005.

[14] D. Isovic and G. Fohler. Efficient scheduling of sporadic, ape-
riodic, and periodic tasks with complex constraints. In Proc. of
21st IEEE Real-Time Systems Symposium, Orlando, FL, Novem-
ber 2000.

[15] S. Kim and J. B. Weissman. A genetic algorithm based approach
for scheduling decomposable data grid applications. In Proc. of
International Conference on Parallel Processing, pages 406–413,
Montreal, Canada, August 2004.

[16] W. Y. Lee, S. J. Hong, and J. Kim. On-line scheduling of scalable
real-time tasks on multiprocessor systems. Journal of Parallel
and Distributed Computing, 63(12):1315–1324, 2003.

[17] X. Lin, Y. Lu, J. Deogun, and S. Goddard. Real-time divisible
load scheduling for cluster computing. Technical Report TR-
UNL-CSE-2006-0016, University of Nebraska-Lincoln, 2006.

[18] G. Manimaran and C. S. R. Murthy. An efficient dynamic
scheduling algorithm for multiprocessor real-time systems. IEEE
Trans. on Parallel and Distributed Systems, 9(3):312–319, 1998.

[19] P. Mohapatra. Dynamic real-time task scheduling on hypercubes.
J. of Parallel and Distributed Computing, 46(1):91–100, 1997.

[20] P. Pop, P. Eles, Z. Peng, and V. Izosimov. Schedulability-driven
partitioning and mapping for multi-cluster real-time systems. In
Proc. of 16th Euromicro Conference on Real-Time Systems, pages
91–100, July 2004.

[21] X. Qin and H. Jiang. Dynamic, reliability-driven scheduling of
parallel real-time jobs in heterogeneous systems. In Proc. of 30th
International Conference on Parallel Processing, pages 113–122,
Valencia, Spain, September 2001.

[22] K. Ramamritham, J. A. Stankovic, and P. fei Shiah. Effi-
cient scheduling algorithms for real-time multiprocessor systems.
IEEE Trans. on Parallel and Distributed Systems, 1(2):184–194,
April 1990.

[23] K. Ramamritham, J. A. Stankovic, and W. Zhao. Distributed
scheduling of tasks with deadlines and resource requirements.
IEEE Transactions on Computers, 38(8):1110–1123, 1989.

[24] T. G. Robertazzi. Ten reasons to use divisible load theory. Com-
puter, 36(5):63–68, 2003.

[25] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya. Libra:
a computational economy-based job scheduling system for clus-
ters. Software: Practice and Experience, 34(6):573–590, 2004.

[26] D. Swanson. Personal communication. Director, UNL Research
Computing Facility (RCF) and UNL CMS Tier-2 Site, August
2005.

[27] K. van der Raadt, Y. Yang, and H. Casanova. Practical divisi-
ble load scheduling on grid platforms with apst-dv. In Proc. of
19th International Parallel and Distributed Processing Sympo-
sium, Denver, CA, April 2005.

[28] B. Veeravalli, D. Ghose, and T. G. Robertazzi. Divisible load the-
ory: A new paradigm for load scheduling in distributed systems.
Cluster Computing, 6(1):7–17, 2003.

[29] C. S. Yeo and R. Buyya. A taxonomy of market-based resource
management systems for utility-driven cluster computing. Soft-
ware: Practice and Experience, accepted in Sep 2005.

[30] D. Yu and T. G. Robertazzi. Divisible load scheduling for grid
computing. In Proc. of IASTED International Conference on Par-
allel and Distributed Computing and Systems, Los Angeles, CA,
November 2003.

[31] L. Zhang. Scheduling algorithm for real-time applications in grid
environment. In Proc. of IEEE International Conference on Sys-
tems, Man and Cybernetics, October 2002.

Proceedings of the 13th IEEE Real Time and
Embedded Technology and Applications Symposium(RTAS'07)
0-7695-2800-7/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSIDADE FEDERAL FLUMINENSE. Downloaded on November 19, 2009 at 14:16 from IEEE Xplore. Restrictions apply.

