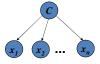
Inteligência Artificial


Aula 20
Profa Bianca Zadrozny
http://www.ic.uff.br/~bianca/ia

Métodos Estatísticos de Aprendizagem


Capítulo 20 – Russell & Norvig Seção 20.2 (Modelo de Bayes Ingênuo)

Método de Bayes Ingênuo

- Amostra:
 - Conjunto de exemplos no formato (x,C)
 - $x = (x_1, x_2, ..., x_n)$ é um vetor de características
 - C é uma classe
 - Supõe que a relação entre as características e a classe é dada pela seguinte rede bayesiana:

Método de Bayes Ingênuo

$$\mathbf{P}(C|x_1,\ldots,x_n) = \alpha \ \mathbf{P}(C) \prod_i \mathbf{P}(x_i|C)$$

- Neste modelo, temos que estimar $\mathbf{P}(C)$ e $\mathbf{P}(x_i|C)$ a partir do conjunto de exemplos.
- Depois podemos usar a fórmula acima pra classificar qualquer novo exemplo $x = (x_p, x_2, ..., x_n)$.

Estimativa Empírica de Probabilidades

- A maneira mais simples é usar contagens.
 - Chamada de estimativa de máxima verossimilhança porque maximiza a probabilidade dos dados vistos.
 - Para estimar a probabilidade de uma variável aleatória X (ou X|Y), para cada possível valor x que a variável pode assumir, calculamos:

P(x) = count(x)/N, onde N é o número de amostras disponíveis.

 $P_{ML}(r) = 1/3$

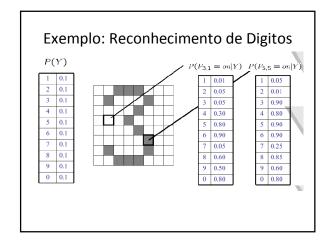
Exemplo: Reconhecimento de Digitos

Input: pixel grids

Output: a digit 0-9

012100

Exemplo: Reconhecimento de Digitos


- Simple version:
- One feature F_{ii} for each grid position <i,j>
- Possible feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
- Each input maps to a feature vector, e.g.

$$\P \to \langle F_{0,0} = 0 \ F_{0,1} = 0 \ F_{0,2} = 1 \ F_{0,3} = 1 \ F_{0,4} = 0 \ \dots F_{15,15} = 0 \rangle$$

- > Here: lots of features, each is binary
- Naïve Bayes model:

$$P(Y|F_{0,0}...F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$$

What do we need to learn?

Exemplo: Detecção de Spam

- Model
- $P(C, W_1 \dots W_n) = P(C) \prod P(W_i|C)$
- What are the parameters?

P	(C)
ham	:	0.66
spam	:	0.33

P(W spam)					
the	:	0.0156			
to	:	0.0153			
and	:	0.0115			
of	:	0.0095			
you	:	0.0093			
a	:	0.0086			
with	:	0.0080			
from	1:	0.0075			

P(W ham)				
the	:	0.0210		
to	:	0.0133		
of	:	0.0119		
2002	:	0.0110		
with	:	0.0108		
from	:	0.0107		
and	:	0.0105		
a	:	0.0100		
1				