Inteligência Artificial

Aula 30 Prof^a Bianca Zadrozny http://www.ic.uff.br/~bianca/ia

Exercícios – Cap. 13

- 1. Mostre que P(a | $b \land a$) = 1.
- 2. Usando os axiomas de probabilidade, prove que qualquer distribuição de probabilidade sobre uma variável aleatória discreta deve ter
- 3. Seria racional para um agente possuir as três crenças P(A)=0.4, P(B)=0.3 e $P(A \lor B)=0.5$? Neste caso, que intervalo de probabilidades seria racional o agente conter para A ∧ B?

Exercícios – Cap. 13

- 4. Considere o domínio da distribuição de cartas no jogo de pôquer de 5 cartas a partir de um baralho-padrão de 52 cartas, supondo que o jogador que distribui as cartas é justo.
 - a) Quantos eventos atômicos existem?
 - b) Qual é a probabilidade de cada evento atômico?
 - c) Qual é a probabilidade de ser distribuído um royal straight flush? E quatro cartas com o mesmo número (ou letra)?

Exercícios – Cap. 13

- 5. Dada a distribuição conjunta total mostrada abaixo, calcule:
 - a) P(toothache)
 - b) P(Cavity)
 - c) P(Toothache | cavity)
 - d) P(Cavity | toothache v catch)

J	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Exercícios – Cap. 13

6. (13.8) Exame que é 99% preciso dá um resultado positivo. A doença é rara, atingindo 1 em 10.000 pessoas. Quais são as chances de se ter a doença dado o exame positivo?

Respostas – Cap. 13

1.
$$P(A|B \wedge A) = \frac{P(A \wedge (B \wedge A))}{P(B \wedge A)} = \frac{P(B \wedge A)}{P(B \wedge A)} = 1$$

2. Usando o axioma 3: $P(a \lor b) = P(a) + P(b) - P(a \land b)$ Seja X uma variável discreta que pode assumir os valores $x_1, x_2, ...,$ x_n. Pelo axioma 3 temos

$$\begin{array}{l} \mathsf{P}(X = \! x_1 \lor X = \! x_2 \lor ... \lor X = \! x_n) = \mathsf{P}(X = \! x_1) + \mathsf{P}(X = \! x_2) + ... + \mathsf{P}(X = \! x_n) - \\ \mathsf{P}(X = \! x_1 \land X = \! x_2 \land ... \land X = \! x_n) \end{array}$$

Como a variável X só pode assumir um valor por vez temos que $P(X = x_1 \land X = x_2 \land ... \land X = x_n) = 0$. E como a variável X tem que necessariamente assumir algum desses valores temos que $P(X = x_1)$ $\vee X = x_2 \vee ... \vee X = x_n$) = 1. Logo

$$P(X = x_1) + P(X = x_2) + ... + P(X = x_n) = 1.$$

Respostas – Cap. 13

3. Sim. Pelo axioma 3, temos $P(A \lor B) = P(A) + P(B) - P(A \land B)$ Logo $P(A \wedge B) = P(A) + P(B) - P(A \vee B)$ = 0.4 + 0.3 - 0.5

Logo é racional acreditar nas probabilidades P(A) = 0.4, P(B)=0.3 e P(A \vee B)=0.5. Neste caso o agente deve acreditar que P(A \wedge B)=0.2.

Não seria racional, por exemplo, acreditar que P(A) = 0.4, P(B)=0.3 e P(A v B)=0.8, pois isso não é compatível com o axiomas de probabilidade, já que $P(A \wedge B)$ seria negativa.

Respostas – Cap. 13

4.

- a) 52!/(47! * 5!) = (52*51*50*49*48)/(5*4*3*2) = 2.598.960.
- b) 1/2.598.960.
- Um royal straight flush é uma seqüência A, K, Q, J, 10 de cartas do mesmo naipe. Logo só existem 4 eventos atômicos que são "royal straight flush" (um para cada naipe). Sendo assim, a probabilidade é 4/2.598.960.

Existem 13 números ou letras (2,3,...,10,J,Q,K,A). A quinta carta pode ser qualquer uma. Logo a probabilidade é 13*48/2.598.960 = 4.165.

Exercícios - Cap. 13

- a) P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2.
- P(Cavity=true)= 0.108 + 0.012 + 0.072 + 0.008 = 0.2 P(Cavity=false)=0.016 + 0.064 + 0.144 + 0.576 = 0.8 b)
- P(Toothache=true | cavity) = P(toothache \(\cavity) \)/P(cavity) = (0.108+0.012)/0.2 = 0.6 P(Toothache=false|cavity) = P(toothache \land cavity)/P(cavity) = (0.072+0.008)/0.2 = 0.4
- P(cavity=true | toothache \lor catch) = P(cavity=true \land (toothache \lor catch))/P(toothache \lor catch) = (0.108+ 0.012 + 0.072)/(0.108+0.012+0.072+0.016+0.064+0.144) = 0.192/0.416 = 0.4615

P(cavity=false | toothache \vee catch) = 1 – 0.4615 = 0.5385

Exercícios – Cap. 13

Informação dada:

P(Exame=true|Doença=true) = 0.99

P(Exame=false | Doença=false) = 0.99

P(Doença=true) = 1/10.000 = 0.0001

Pergunta: P(Doença=true | Exame=true)?

P(Doença=true|Exame=true) =
P(Exame=true|Doença=true)P(Exame=true) =
0.99*0.0001/P(Exame=true) = 0.000099/P(Exame=true)

0.59 0.0001/(Lxame=true) = 0.00093/(Lxame=true) = P(Exame=true | Doença=false) P(Doença=false)/P(Exame=true) = (1-0.99)*(1-0.0001)/P(Exame=true) = 0.01*0.9999/P(Exame=true) = 0.009999/P(Exame=true)

Logo P(Exame=true) = 0.000099 + 0.009999 = 0.010098 e P(Doença=true | Exame=true) = 0.000099/0.010098 = 0.009804