
 

Abstract- Estimation of the noise level in images is very 

important to assess the quality of the acquisition and to allow an 

efficient analysis. Moreover, it is a fundamental step, an 

indispensable procedure for many type of denoises and image 

processing. In this paper a new method to estimate the noise 

level in MR images is presented and evaluated. The advantage 

of this is the easiness for utilization during image acquisition 

and of course the adaptability of the idea of other areas of body. 

The correctness of the evaluation is addressed by comparison of 

Atlas noise free images where the level of Rician noise was 

artificially added and known. The main idea is the matching of 

same slices after registration in order to evaluate the level of 

noise. For evaluation of the range of noise in an image we used 

the signal noise ratio – SNR and a set of MRI with increasing 

levels of Rician noise. However, others metrics like the 

normalized cross correlation - NCC or the Root Mean Squared 

Error (RMSE) could be used as well. 

Keyworks-MRI brain atlas; Rician noise; image 

registration; signal noise ratio, interpolation. 

 

I. INTRODUCTION 

Medical diagnosis by Magnetic Resonance (MR) have 
become of great importance. However the used of good 
images is a critical aspect in such application of image 
processing. Despite significant improvements in recent years, 
magnetic resonance images (MRI) obtained directly by the 
instruments are frequently inadequate by medical analysis, 
especially in cardiac and brain [1] images because they 
present high levels of Rician noise [2][3]. Although, many 
image processing techniques could improvement the image 
quality by filtering or sharpening it, the acknowledgement of 
the quantity of noise present in these is fundamental for 
adequate de-noising design. Usually, the real and imaginary 
parts of the MR complex raw data are considered corrupted 
by white additive Gaussian noise, where the noise variance is 
assumed to be the same in both parts (real and imaginary). By 
taking the magnitude of the complex data, the noise is 
transformed into Rician noise. Noise in magnitude MR 
images can be well modeled by a Rician distribution when 
computed from a single complex raw data as well. Rician 
noise introduces a bias into MRI measurements that can have 
an impact on the shapes and orientations of tensors in 
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functional (or diffusion) magnetic resonance images. This is 
less problematical in structural MRI, because this bias is 
signal dependent and it does not seriously affect tissue 
recognition. However, functional MRI (or diffusion) imaging 
is used extensively for quantitative evaluations, and in these, a 
good estimation of the level of Rician noise present is a very 
important aspect.  

This work presents new noise estimation approach that is 
easily used in the medical environment during the acquisition 
process because it is based in simple computation and 
comparison of a previous organized Table. It has the 
advantage to be specially designed to brain images and Rician 
noise, as well. The main proposition is the use of registration 
and evaluation of the signal noise ratio of the real image with 
unknown level of noise based on comparison with a specially 
generated Table of artificially known noise added in synthetic 
noise free images of the similar type. The obtained results are 
compare with other works on the same propose. 

 

II. THE RICIAN NOISE PRESENTED IN MRI  

The noise models in magnitude MRI have been considered in 

[4][5]. The Rician distribution, showed in Figure 1, gives the 

best overall description in such images when they are 

computed from a single complex raw data [3]: 
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where ns is the standard deviation (StD) of Gaussian noise 

in the complex domain, m is the value in the magnitude image 

an 0I  is the zero
th

 order modified Bessel function [3]. A is 

the amplitude of the signal without noise and is given by:  A
2
 

= A
2
R + A

2
I ,  where AR and AI  are respectively the real and 

imaginary data. It is important to note that the Rice 
distribution ends to a Rayleigh distribution when the signal to 

noise ratio goes to zero (i.e., A/sn  0), as Figure 1 presents. 
Rician distribution is signal dependent and consequently it is 
difficult to separate signal from the noise. Rician noise is 
especially problematic in low quality images, or images with 
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low SNR (Figure 1). It introduces signal dependent bias to the 
data that reduces image contrast, as well.  

The noise level in an image may be determined in several 
ways. It can be measured directly from a large uniform, signal 
region as the standard deviation of pixel values in that region. 
Another approach which may be employed on magnitude 
reconstructed images is noise estimation from the signal 
amplitude value of non signal regions [6]. Alternatively, the 
noise can be determined by acquiring two images of the same 
object, subtracting one from the other and finding the 
standard deviation of the difference image. This last technique 
is the one currently advocated by National Electrical 
Manufacturers Association (NEMA) [6]. It has an advantage 
over the first two techniques of evaluation of noise: When 
properly employed, it is relatively insensitive to structured 
noise, for example, noise due to phenomena such as ghosting, 
ringing across edge boundaries due to finite sampling, and so 
on. A simple approach to estimate the Rician noise variance is 
to use the difference between two matched images of the 
same object [7]. Murphy et al., 1993 have developed a 
parallel rod test object (PRoTO) and a set of computer 
implemented analysis programs for noise estimation [7]. An 
image of the cross section of the PRoTO has a checker board 
appearance consisting of signal and non signal blocks. The 
analysis programs automatically extract many machine 
performance variables from a set of images of a single scan of 
the phantom and utilize them in the routine of quality control 
(QC) [7]. One of the advantages that this phantom and set of 
analysis routines provides is the easy determination of signal, 
voxel volume (x ,y pixel sizes and slice thickness), and 
various measures of noise at many locations within a slice 
(for each slice) of a single scan. This makes the phantom and 
programs ideal for exploring the significance of variables 
incorporated in the SNR. Although the technique is simple to 
implement, its efficiency relies heavily on the correct 
alignment of the two images. Therefore, others authors 
present techniques that use only a single image. The first 
methods using a single image were based on manual selection 
of uniform signal or non-signal regions [8][9]. However such 
techniques are time consuming and have a high intra and inter 
user variability. Naturally, some automatic techniques have 
been proposed [10][11][9][12]. Usually, these methods use 
the histogram of the background and some properties of the 
Rayleigh distribution. A common manner to measure the 
Rician noise variance in magnitude MR images with large 
enough background areas is to estimate it from the mode of 
the histogram [11][10][9]. A new noise Rician variance 
estimation method based on maximum likelihood (ML) 
estimation from a partial histogram was presented [9]. Aja-
Fernandez et al. (2008) [12] presented a set of new methods 
for noise estimation based on local statistics that are able to 
estimate the noise variance from the background but also 
from the imaged object in a very simple and efficient manner. 
Recently, Coupé et al, 2010 [13] propose an adaptation of the 
Median Absolute Deviation (MAD) estimator in the wavelet 
domain is proposed for Rician noise. This robust and efficient 
estimator has been proposed by Donoho (1995) [14] for 
Gaussian noise and since has been widely used in image 
processing. Coupé et al, 2010 [13] propose to adapt this 
operator for Rician noise by using only the wavelet 
coefficients corresponding to the object and then iteratively 
correcting the MAD estimation with an analytical scheme 

based on the SNR of the image [15]. We here propose the use 
of a simple Table to evaluate the noise level. Such table is 
constructed from a free of noise atlas where a known level of 
noise was added on each slice after its registration and then 
used to evaluate the level of a real image with unknown level 
of the same type of noise. The advantage of this is the 
easiness for utilization during image acquisition and of course 
the adaptability of the idea of other areas of the human body. 
The correctness of the evaluation is addressed by comparison 
of images where the level of noise was computed by other 
approaches. 

 

III. PROPOSED METHOD  

The main idea is the use of a table as standard noised brain 

images of know level for comparison after registration with 

the same slice where the level of noise must be evaluated. 

For evaluation of the level of noise we used the signal noise 

ratio-SNR. However, others metrics like the normalized 

cross correlation-NCC or the Root Mean Squared Error 

could be used as well. 
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Figure 1.  Rice probability density function for different signal magnitude. 

At SNR = 0 (i.e A/s=0) or at very low SNR, the Rician distribution is 
approximately a Rayleigh distributed. At low to medium SNR, it is neither 

Gaussian nor Rayleigh. For high SNR (i.e. SNR>3 or A/s > 3) the Rician 

data is approximately a Gaussian distribution. 

 

The first part of the proposition is to relate the Rician 

noise level and the SNR. This is obtained through a series of 

experimentation adding different levels of noise in gold 

standard image (i.e. a free of noise image) of brain. These 

images were normalized between 0 and 255 levels of grey 

and used to computing their corresponding SNR. Figure 2 

shows the main elements for the computation of one element, 

in this case the slice 72, for the first level of noise, which is 

second column of Table I.  The first image in Figure 2 is the 

original slice 72 (that we named image A). The second image 

in Figure 2 is the same slice but after the addition of Rician 

noise, in this case we use it with σnoise =10. We name this 

image B: that is A + σnoise = B. The image on right of Figure 



2 is the square of the subtraction image: (A – B)
2
 to show the 

level of noise added to the original slice, A, this is used in the 

denominator of equation 2 for evaluation of the SNR 

between images A and B: SNR (A, B). 

 

 

 

 

 
 

 

 

Figure 2.  A sample of the how is obtained on element of Table 1: on the 

right the original image: A, on middle it after the addition of Rician noise: 
B, and onthe right is the square of the subtraction image: (A – B)2 

 

On generation of Table I, we here consider as images A a 

set of structural MIR without any initially kind of noise. That 

is to evaluate the different slices we use a noise free (ground 

truth) T1 weighted MR data from the Brain Web database 

[16]. Such data set is composed of eleven (11) slices shown 

in Figure 3. The BrainWeb [16] dataset used represents 

classic MRI acquisition parameters: T1-weighting mode, 1 

mm slices and resolution of 181 x 217 x 181 voxels. The 

repetition time (TR) was equal to 18 ms and echo time (TE) 

was 10ms in an angle of 30 degrees at MINC storage (16 bit 

little endian format for integers). For the images B 

generation, we corrupted each slice with different levels of 

Rician noise (σnoise= 10 to σnoise= 300) resulting in the level of 

SNR shown in Table I. The noise was added for each slice 

after the skull elimination. As the noise added are know, this 

Table gives a good way to verify the relation among the 

quality of and image, measured by the SNR and the level of 

noise in such images.  

The Brain isolation (or skull stripping) is an important 

step in enabling accurate measurement of brain structures 

and so it must be done on computing Table I. This allows 

better execution of registrations and other important aspect of 

MRI examination, as well. We performed this by using the 

Brain Extraction Tool (BET) [17]. BET is guided by 

constraints on surface smoothness and by the voxel intensity 

nearby the surface position. It is a tool to remove the skull 

and all the materials that composed the layer between the 

human brain and the skull (such as hard material, marrow, 

air, vessels, fat, etc., i.e., all the tissues that are not part of the 

brain to be analyzed). This tool has been used in a lot of 

intracranial segmentation methods. It is based on the 

application of thresholding combined with morphological 

techniques [17]. BET has been tested on thousands of 

images, giving accurate segmentation in most of them. It has 

been conveniently included in FSL [18], MRIcro [19] and 

mri3dX [20]. We use the MRIcro free software version of 

this [19] to removal of non-brain tissues.  

For addition of the Rician noise to the atlas (free of 

noise) images (that is to obtain B images) with desired 

standard deviation value (σnoise) we use the Tool Rician 

developed in Mathworks [21].  

Naturally, depending on the artificial added degradation 

(that is levels of Rician standard deviations) and of the slice 

we obtain various SNR by Equation 2. In Table I it is 

presented for nine levels of Rician added in several slice of 

the structural MRI for a series we have special interest. We 

have used the snr.m tool of the WaveLab Tool [22] for this 

computation. The snr function WavelLab's uses the 

following definition (Equation 2) by SNR: 
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where Imref  is the reference image (or signal), Imnoise  is the 

noisy image (or signal)  and 
2

.. is the usual d
2 
norm. 

In order to estimate the noise level in a real image the 

proposed method follows the followings steps (in Figure 4). 

Step 1: Image acquisition, skull stripping and image 

normalization in 256 levels of grey- after acquisition of the 

real image the skull is eliminated in each slice for better 

comparison with the way Table 1 was performed. Of course 

this process of skull elimination could be overpass by 

computing in similar Table with such element. As mentioned 

before we use the MRIcro free software version of this [19]. 

The same software used in elaboration of Table 1 must be 

used to removal non-brain tissues. These images, as those for 

generation of Table I, were normalized between 0 and 255 

levels of grey. 

Step 2: Slices co registration and alignment of the 

atlas free of noise and the real image - In the step 1 the two 

images to be compared must be adjusted before the real SNR 

of the slices computation. Figure 5 shows the importance of 

this step. We have used the SPM8 for this [23]. The rigid-

body model Coreg is used for this registration. It reslices the 

images to match the source voxel-for voxel. 

Step 3: Computation of the SNR of the slices – after 

matched the noise free slice and the real image slice the SNR 

of both is computed, it is used in the next step as entry in the 

Table for identification of the true range of noise of the 

image. 

Step 4: Evaluation of the noise level – the slice used 

and the computed SNR as considered in Table I for 

identification of the range noise level. 
 

 

IV. EXPERIMENTAL RESULTS 

In order to verify the proposed method we first used 3 noise 

free image with known level of noise and then a real image 

with an unknown level of noise for comparison of our results 

with other methods in literature. All experiments were 

realized in a Pentium Intel Pentium 4 CPU 3.00 GHz 2.99 

GHz, 1,00 RAM's GB Extension of physical direction and 

Microsoft Windows XP Professional operational system.  
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TABLE I.  SNR RESULTS CONSIDERING THE ATLAS IMAGE (WITHOUT NOISE) AND THE SAME IMAGE WITH RICIAN NOISE ADDED                                                      

AT NINE LEVELS FROM 
noise  

noise =10 TO 
noise =300 

 Slice noise
σ = 10  

noise
σ = 20  

noise
σ = 60  noise

σ = 100  
noise
σ = 140  

noise
σ = 180  

noise
σ = 220  

noise
σ = 260  

noise
σ = 300  

110 21.1446 18.1269 14.0908 11.0664 8.7653 7.2093 6.4199 5.6405 5.3610 

100 21.9516 17.4776 13.6353 10.0566 8.8190 7.3491 6.7072 5.8290 5.3306 

90 19.9087 19.3155 13.9580 10.8305 9.0761 7.9995 6.3963 5.9813 5.2918 

87 21.5792 17.7763 13.9869 9.9694 8.7432 7.5944 6.8725 5.5427 4.8658 

83 21.1581 18.9588 14.5334 10.9165 8.3858 7.3780 5.9663 5.6909 4.8631 

72 21.1971 19.0970 14.3045 10.5786 8.7371 7.3379 6.5165 5.6011 5.4698 

65 22.2514 16.9874 14.5000 10.3466 8.9815 7.2456 6.4831 5.7283 5.2532 

57 21.1197 17.7713 13.6235 10.1277 8.7691 7.5884 6.5236 5.5513 4.9158 

47 19.2808 16.7890 12.1487 9.6883 8.3974 7.0429 6.1205 5.6831 4.8938 

38 18.1949 15.1159 11.2804 9.3542 8.0330 6.7632 6.0956 5.4222 4.8069 

29 17.1096 14.3130 9.7113 7.8669 6.6304 5.7135 5.0548 4.5395 4.1347 

Average SNR  20.4451 17.4299 13.2521 10.0729 8.4853 7.2020 6.2869 5.5645 5.0170 

St. deviation 1.6331 1.5834 1.5484 0.9027 0.6825 0.5870 0.4880 0.3714 0.3805 

St. error of  the : 

x

sd
se =

n
 

0.4924 0.4774 0.4669 0.2722 0.2058 0.1770 0.1471 0.1120 0.1147 

 

 
Figure 3.  Used slices for Table I computation 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Step of the used proposed noise evaluation methodology. 
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For the first set of experiments the same atlas was used. In 

each slice we added noise in the three levels:  
noise =90, 

noise =160 and 
noise =400 and after computation of the SNR 

the results in the Table II are achieved. Using this results in 
Table I we can compute, by interpolation, as the average noise 
level of each image as: 87.9676; 157.02797 and 351.6018 
respectively. Figures 6 and 7 show the images used for the 
case with less noise and greater noise. For the second set of 
experiments the images on Figure 5 have been used. These 
get to SNR=5.4082, this correspond in Table I, after 
extrapolations of values, to a noise level up to 

noise =318.7661. Figure 8 shows the original image and the 

image with noise level of 
noise =300 used to generate Table 

II. We can see that both the visually present the same level of 
noise. 

 
 

Figure 5.  Registraion Step: the slice 72 of real image: C, the slice 72 of the 

Atlas: D, the same slice of the real image after registration: E and F= (E-D)2   
that is used for SNR computation.  

Figure 6.  The slice 29  used to compute Table II (left) , the same slice after 

addition of the higher level of noise (
noise =400 ) (center) and the square of 

the subtration of both images (right) 

 

Figure 7.  The slice 72  used to compute Table II (left) , the same slice after 

addition of the lower level of noise ( noise =90 ) (center) and the square of 

the subtration of both images (right)   

 

Figure 8.  The slice after elimination  of the real image with SNR=5.4082 

( noise > 300 ) , the same slice of the the image with noise =300 used for 

composition of Table I. 

TABLE II.  TYPE SNR RESULTS CONSIDERING THE ATLAS IMAGE 

(WITHOUT NOISE) AND THE SAME IMAGE WITH RICIAN NOISE ADDED AT NINE 

LEVELS OF 
noise =90, 

noise =160 AND 
noise =400 

 

 

Slice 
σnoise =90 σnoise =160 σnoise =400 

110 11.5181 8.1510 4.3632 

100 11.6308 8.2271 4.4215 

90 11.6587 8.2561 4.4562 

87 11.6887 8.2876 4.4892 

83 11.6268 8.2430 4.4613 

72 11.6806 8.2885 4.4952 

65 

 
11.6958 8.2996 4.5081 

57 11.5591 8.2312 4.5038 

47 10.4702 7.7479 4.2375 

38 9.6758 7.5022 4.1457 

29 8.1224 6.0953 3.3363 

Average 11.0297 7.9390 4.3107 

Standard deviation 1.1633 0.6638 0.3440 

Standard error of the mean:
n

sd
se

x
  

0.3507 0.2001 0.1037 
 

 

V. CONCLUSION 

This work presents an idea for estimation directly the level 

of Rician noise of images. The idea are been tested in 

synthetic and real images of Brain MRI. Considering the 

results obtained using the noise free image added with the 

level of noise known we can say that the proposed 

methodology presets the expected values. Comparing the use 

of the proposition with real image show that this presents 

adequate results [24]. Of course comparison with other works 

must be done.  
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