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Abstract— The amount of fat on the surroundings of the heart 

is correlated to several health risk factors such as carotid stiffness, 

coronary artery calcification, atrial fibrillation, atherosclerosis, 

cancer incidence and others. Furthermore, the cardiac fat varies 

unrelated to the overall fat of the subject, and, therefore, it 

reinforces the quantitative analysis of these adipose tissues as 

being essential. Clinical decision support systems are computer 

programs capable of evaluating information and providing a 

corresponding diagnosis or data to complement the physicists’ 

analyses. The aim of this work is to propose a method capable of 

fully automatically segmenting two types of cardiac adipose tissues 

that stand apart from each other by the pericardium on CT images 

obtained by the standard acquisition protocol used for coronary 

calcium scoring. Much effort was devoted to promote minimal 

user intervention and ease of reproducibility. The methodology 

proposed in this work consists of a registration, which will roughly 

adjust input images to a standard, an extraction of features related 

to pixels and their surrounding area and a segmentation step based 

on data mining classification algorithms that define if an incoming 

pixel is of a certain type. Experimentations showed that the 

achieved mean accuracy for the epicardial and mediastinal fats 

was 98.4% with a mean true positive rate of 96.2%. In average, the 

Dice similarity index was equal to 96.8%. 

Keywords— epicardial, mediastinal, segmentation, automatic, 

classification, random forest, heart, cardiac, fat, adipose tissue, 

registration, intersubject, multi-manufacturer 

I.  INTRODUCTION 

The cardiac epicardial and mediastinal (also termed 
pericardial) fats are correlated with several cardiovascular risk 
factors [1,2]. At the present, three techniques (i.e., modalities) 
appear suitable for quantification of these adipose tissues, 
namely Magnetic Resonance Imaging (MRI), Echocardiography 
and Computed Tomography (CT). Each of these modalities have 
been used in several medical studies in the literature [3-5]. 
However, computed tomography provides a more accurate 
evaluation of fat tissues due to its higher spatial resolution if 
compared to ultrasound and MRI [6]. In addition, CT is also 
widely used for evaluating coronary calcium score [5]. 

The automated quantitative analysis of epicardial and 
mediastinal fats may add a prognostic value to cardiac CT trials 
with an improvement on its cost-effectiveness. Moreover, 
automation can reduce the variation introduced by different 

observers. In fact, evaluating these data by direct user interaction 
is highly prone to inter and intra-observer variability. Thus, 
evaluated samples may not be associated to a unified common 
sense of segmentation. Iacobellis et al. [7] have shown that the 
epicardial fat thickness and coronary artery disease correlate 
independently of obesity, fact that supports the individual 
segmentation of these adipose tissues rather than merely and 
simply estimating that volume based on the patient overall fat. 

In this work, we define the fat located within the epicardium 
as epicardial fat, corroborating with the majority of the 
published works [8-11]. Furthermore, by following the same 
“first outer anatomical container” logic, we conclude that 
mediastinal fat is the best definition for the fat located on the 
external surface of the heart or fibrous pericardium. In other 
words, the mediastinal fat is located within the mediastinal space 
as long as it is not epicardial (i.e., it is not located within the 
epicardium). Furthermore, we have used CT scans from two 
manufactures (Siemens and Philips), which configures this work 
as a multi-manufacturer approach. 

II. LITERATURE REVIEW 

Some studies [11,12] associate the amount of epicardial 
adipose tissue to the progression of coronary artery calcification. 
Schlett et al. [12] found that epicardial fat volume is nearly twice 
as high in patients with high-risk coronary lesions as compared 
to those without coronary artery calcification. Several studies 
also correlate other cardiovascular risk factors and outcomes to 
the epicardial adipose tissue volume such as myocardial 
infarction [13], atrial fibrillation and ablation outcome [12], 
carotid stiffness [14], atherosclerosis [8,9], and many others 
[2,13,15-17]. Furthermore, Wei-Ta et al. have also shown that 
high coronary artery calcium score is associated with a high 
general cancer incidence [18].  

Furthermore, some studies address the importance of the 
mediastinal fat (due to the literature inconsistency some call it 
pericardial fat) and its correlation with pathogenic profiles, risk 
factors and diseases [19-21]. Some [9,14] associate the 
mediastinal fat, along with the epicardial fat, to carotid stiffness 
and others [9,15] associate both to atherosclerosis and coronary 
artery calcification. Sicari et al. [3] have also shown how 
mediastinal fat rather than epicardial fat is a cardiometabolic risk 
marker. 
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Moreover, the 16-year study of Kresten et al. [22], that 
assessed a total of 384 597 patients, associates a rate of 38.4% 
of death to the subsequent 28 days of individuals that have had 
their first major coronary event. They also conclude that fatal 
cases is slightly less associated to female individuals. 
Furthermore, a study realized in Jamaica ranks cardiovascular 
accidents as the most common cause of sudden natural death 
[23], reinforcing the importance of this work. 

A. Segmentation of the cardiac adipose tissue 

Some of the first semi-automated segmentation methods for 
the epicardial fat were proposed since 2005. Dey et al. [24], for 
instance, apply a preprocessing step to remove all other 
structures apart from the heart by using a region growing 
strategy. Therefrom, an experienced user is required to scroll 
through the slices to place from 5 to 7 control points along the 
pericardium border if the it is visible. Catmull-Rom cubic spline 
functions are automatically generated to obtain a smooth closed 
pericardial contour. Finally, since the epicardial fat is inside this 
contour it is simply accounted by thresholding. In [25] a method 
for the segmentation of abdominal adipose tissue is proposed. 
The work of Kakadiaris et al. [26] have further extended the 
method introduced by Pednekar et al. [25] to the segmentation 
of the epicardial fat. 

Coppini et al. [6] focused on reducing the user intervention. 
On their method, an expert is still necessary to scroll through the 
slices between the atrioventricular sulcus and the apex in order 
to place some control points on the pericardium. The amount of 
essential points is not described clearly. Nevertheless, the 
amount of slices to be analyzed is apparently lesser than the ones 
on the method proposed by Dey et al. [24]. They also present 
their solution in a 3D space and claim that Dey et al [24] do not. 
The overall focus of their work was to describe their method 
mathematically. However, the work lacks heavily on describing 
the general accuracy of their method. 

Barbosa et al. [27] proposed a more automated segmentation 
method for the epicardial fat. They use the same preprocessing 
method from Dey et al. [24] and further apply a high level step 
for identification of the pericardium by tracing lines originating 
from the heart’s centroid to the pericardium layer and 
interpolating them with a spline. Although such approach may 
be interesting, of simple complexity and highly applicable for 
virtually any proposed method in the field, the reported results 
are not impressive. Only 4 out of 40 images were correctly 
segmented in a fully automatic way. 

Shahzad et al. [28] proposed, to the extent of our knowledge, 
the first fully automated method for epicardial fat segmentation 
in 2013. Their method uses a multi-atlas based approach to 
segment the pericardium. The multi-atlas approach is based on 
registering several atlases (8 in this case) to a target patient and 
on fusing these transformations to obtain the final result. They 
selected 98 patients for testing and reported a Dice similarity 
coefficient of 89.15% to the ground truth and a low rate of 
approximately 3% of unsuccessful segmentations. Nevertheless, 
they did not provide any measurements of the overall processing 
time. 

Ding et al. [29] proposed in 2014 an approach that is similar 
to the method of Shahzad et al. [28]. They segment the 

pericardium based on an atlas, which consists of a minimization 
of errors after applying transformations to the atlas along with 
an active contour approach. Their mean Dice similarity 
coefficient was 93% and they claim that their result was 
achieved in 60 seconds on a simple personal computer. Although 
their segmentation seems to be the most precise in the literature, 
the reported computing time is poorly described. We consider 
60 seconds too fast for segmenting and transforming an entire 
scan, which consists of roughly 50 images. They also present a 
work [30] that segmented the aorta instead of the pericardium 
and compare their achieved time (60 seconds) to the 15 minutes 
of the former. If these 60 seconds correspond to just the time it 
takes for the algorithm to minimize the transformations, then this 
comparison is not feasible. Furthermore, they report that on their 
approach the atlases’ images were pre-aligned to a standard 
orientation and, thus, there is a comparison with only one of the 
atlases to speed up the process. The remaining pericardium 
contour will follow the pre-aligned pattern, which is a reported 
limitation. Besides, they did not describe how each one of these 
atlases is chosen as the correct one for each possible case. 

Rikxoort et al. [31] have proposed the use of the k-nearest 
neighbor algorithm for segmentation of the liver on CT images. 
The core of their method consists of a voxel labeling procedure: 
(1) for every voxel in the test set a number of numerical values 
(a features vector) is computed and (2) a statistical classifier, 
trained on previously extracted features vectors, evaluates if the 
analyzed voxel is or is not part of the liver. The approach 
proposed on this work is similar to [31]. However, we have 
extracted more features, evaluated various classifiers instead of 
one, applied it to a different problem and combined the 
classification approach to an intersubject registration. 

III. PROPOSED METHODOLOGY 

The proposed automatic segmentation is based on two main 
principles, namely (1) a registration and (2) a classification step. 
For the whole segmentation process we have used CT images on 
its respective range of fat (from -200 to -30 HU [28,32-34]). The 
reason for choosing such interval was for directly quantifying 
the amount of fat an individual has by counting the pixels of the 
image. However, we believe that our methodology can be 
successfully applied to other ranges and also other modalities. 

Image registration can be defined as the process of matching 
characteristics from images in order to search for alignments that 
minimize the variation between overlapping pixels or areas of 
pixels [35]. Such processes are included on panoramas 
assemblages, medical images, time series alignments [36,37] 
and on many others tasks. Registration is also alternatively 
treated as an optimization problem with the goal of finding the 
spatial mapping that will bring images, parts of them, or even a 
combination of these parts into minimal variation. 

Machine learning algorithms are often divided in two main 
categories: (1) the supervised and (2) the unsupervised methods. 
The algorithm is categorized as supervised when it explicitly 
evaluates the class or label attribute of a training set as the 
predictive label desired to attach to an incoming unlabeled 
instance. Furthermore, when this assumption is formalized, the 
class attribute heavily induces the generated predictive model. 
However, when not formalized, the algorithm is defined as 
unsupervised and the class plays no heavy influence but of a 
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normal attribute, when it is not disregarded from the training 
phase. Classification algorithms are always categorized as 
supervised learning methods while clustering algorithms are 
often unsupervised. 

A. Image Registration 

The intent of this work is to autonomously perform the 
registration of several patients despite of the scaling and actual 
positioning of their hearts on their CT images. Therefore, there 
is no likelihood for manual placement of any common landmark 
such as several works have proposed [24-26,38]. Thus, the 
remaining alternative is to autonomously find a selected 
landmark. Hence, in other words, the parameters of our 
transformation are searched for and determined by finding an 
optimum of some function on the search space. 

The subject type of our solution cannot be intrasubject, since 
we do not want to align structures of a patient based just on its 
own information. As a matter of fact, we want to align the 
structures of several distinct patients to some extent. Our 
approach is based on affine transformations since the required 
registration to be applied have to support scaling and 
translations. Summarily, according to the definitions of Maintz 
et al. [36], our proposed registration approach is categorized as 
of intrinsic nature where the parameters are search for and the 
transformation applied is affine. The main steps of our 
registration are shown on Figure 1. 

 
Fig. 1. Main steps of the proposed registration. 

At first, an atlas was assembled by binary thresholding 
(between pixel values equal to and higher than 0) 10 retrosternal 
areas of 10 randomly chosen and manually aligned distinct 
patients and combining these images with an arithmetic mean 
(on the fat range only) as shown on Figure 2. We have selected 
just one slice from each patient and they were as next as possible 
to the shoulders. It is important to highlight that the retrosternal 
area, which was the chosen common landmark, is the region 
located on the back of the sternum. Taking the Figure 4 as 
reference, the central point of the retrosternal area is illustrated 
by the green plus sign whereas the atlas image is shifted to the 
blue color.  

 
Fig. 2. Atlas of the retrosternal area. 

Moreover, as soon as the atlas is assembled, the next step 
consists of using the same to recognize the retrosternal area of 
each patient. For doing so, a similarity measure can be used. 
Therefrom, the recognition approach consists of moving the 
atlas through one single slice of each patient and availing each 
position with a similarity score. The weighted mutual 
information (WMI) was empirically selected (with a successful 
rate of recognitions of 70%) for computing the similarity [39]. 
The WMI formula is shown on the Equation (1). Furthermore, 
we have also tested the normalized correlation, sum of the 
differences and the common mutual information as similarity 
measures but all of them provided worse results. 

    𝑊𝑀𝐼𝑦,𝑥(𝐹, 𝑀, 𝑔) =

       (∑ ∑
1

|𝑓−𝑚|+1
𝜌𝐹𝑀(𝑓, 𝑚) log𝑔

𝜌𝐹𝑀(𝑓,𝑚)

𝜌𝐹(𝑓)𝜌𝑀(𝑚)𝑚∈𝑀𝑓∈𝑀→𝐹 )  

The successful rate of 70% achieved by the WMI is 
relatively high but did not sufficiently high as we expected. We 
defined as successful every recognition of the retrosternal area 
that was visually correct, regarding a slightly variation on the 
positioning. Therefore, to enhance this rate we have combined 
the atlas approach with a heuristical confirmation method. The 
confirmation method was thought to reinforce the position 
chosen by the atlas scoring. Its heuristic is simple and 
straightforward. Given a small rectangle area of pixels 𝐴 at the 
center of the recognized retrosternal area, there should be two 
points 𝑝𝑙  and 𝑝𝑟 that belongs to 𝐴 and that continuously move 
only through fat pixels (the ones that are not background, or 
black) on the left-bottom and right-bottom direction respectively 
until they hit convergence. The first image on Figure 3 stands 
for a retrosternal recognition done by the atlas scoring approach, 
the center of the retrosternal area is pointed by the pink arrow 
and the rectangular area 𝐴 is represented in yellow. The second 
instance on Figure 3 depicts the reason why, due to the 
discontinuity of fat depots in some cases, an area 𝐴 should be 
considered to evaluate the starting points. Both images are 
displayed on the fat range only, where, as previously described, 
the processing of our approach took place. All the pixels that are 
not within this range are considered background and were 
colored as black (0). The non-smoothness of these images is a 
direct consequence of this type of displaying. 

  
Fig. 3. Central point of the retrosternal area and descuntinuity of fat depots. 

The thin slanted white lines crossing the middle of the heart 
on the instances of Figure 4 illustrate the binding of the two 
points 𝑝𝑙  and 𝑝𝑟 after their convergence. The action of moving 
these points on the image is just a step of the confirmation 
method. For better explanation, we define 𝑤 as being the width 
of the image (512 pixels in our case). The logical step that will 
reinforce if the selected position for the atlas is correct is defined 
as: (1) the white line must be within a certain width, i.e., be 
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bigger than 0.2𝑤 and smaller than 0.55𝑤. Besides, (2) the 
displacement of the points must also be within a certain length, 
i.e., both displacements must have at least half-length of the 
other. Finally, (3) both points must also be within a certain 
distance from the starting point, i.e., they must be away from the 
starting point by at least 0.2𝑤 pixels. If this confirmation fails, 
the settlement of the atlas (i.e., the recognition of the retrosternal 
area) and the confirmation method must be redone jointly for 
every evaluated position. It is important to highlight that 
depending on the interpolation used after the rescaling process 
(according to its DICOM file), some gaps may appear on the 
image, mainly on the surrounding line of fat of the heart. These 
produced gaps should be properly accounted by the confirmation 
method by, for instance, jumping a relative number of non-fat 
pixels when moving 𝑝𝑙  and 𝑝𝑟. In other words, if the 
interpolation usually lefts a gap of 2 pixels in the images, then 
the points should be forced to move 1 pixel and, if not possible, 
they should try to move 2. 

  

  

Fig. 4. Binding of the two points 𝑝𝑙 and 𝑝𝑟 and recognition of the retrosternal 
area. 

By combining the WMI and the confirmation method, the 
successful rate raised from 70% to 100%. That is, among all the 
82 instances we have assessed, all of them had their retrosternal 
area properly recognized. In our case, prior to the recognition 
step, the images were rescaled according to the pixel spacing 
data on the DICOM file. Therefore, the recognition was done on 
images that were already rescaled. Subsequently to the 
retrosternal area recognition and based on that information, all 
the images of the patient are translated to a common centralized 
point, which standardizes the positioning of the heart. Although 
we have rescaled the images prior to the recognition, we 
confirmed that the proposed registration works for varying 
scales as well. Furthermore, the recognition step just need to be 
done once for each patient, the same transformation applied to a 
single slice can be applied to the remaining. The 3 instances 
shown on Figure 5 represent 3 distinct patients before (first row) 
and after (second row) the registration. The images after the 
registration are represented on the fat range while the others are 
on the (-200,500) HU range. 

   

   
Fig. 5. Results of the proposed registration. 

B. Segmentation 

We define the act of segmenting an image using 
classification algorithms as classified segmentation. This 
procedure is also termed in the literature as pixel classification 
or probability based segmentation [40]. Several other 
approaches for image segmentation employ commonly used 
procedures such as a simple thresholding, clustering, edge 
detection, level set, active contour, region growing, atlas 
matching and many others [28,30,40-42]. 

The classifying segmentation can be viewed as a simple 
iteration through a set of pixels or voxels of an image or 3D 
model where a set of features (or characteristics) related to the 
iterated pixel, voxel or surrounding area is extracted. These 
extracted features are illustrated as the variable f on Figure 6. 
The set of features is usually called features vector. Several 
vectors of this type will usually compose a dataset that is 
provided as input to a classification algorithm.  

 
Fig. 6. Features being extracted from a pixel. 

In order to generate a concise predictive model we need to 
supply reliable data for the training phase of the classification 
algorithm, which is strictly necessary for manually segmenting 
an incoming patient. Therefore, two specialists, one being a 
physicist and the other being a computer scientist, have 
manually segmented the epicardial and mediastinal adipose 
tissues of 20 patients or CT scans (10 male and 10 female). Thus, 
our ground truth contains approximately 1000 manually 
segmented cardiac CT images. It is important to highlight that 
previously to the manual segmentation the images were already 
registered by our registration method. Our ground truth is 
available at [43]. The black grey value (0) still represents the 
background and these pixels are excluded from the feature 
extraction. 
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The generated ground truth is used as source for the selected 
features to be extracted. Posteriorly, some classification 
algorithms should be selected to train on this extracted data. 
Therefore, our whole classification approach consists of the 
three main steps: (1) extracting the features, (2) training the 
predictive model and (3) classifying an incoming CT scan. The 
steps (1) and (2) do not need to be redone every time a new 
incoming scan needs to be classified. In fact, if that were true, 
the method would take so long to converge that it would be 
unpractical. It do not take too much to perceive that the 
generated dataset is very big and that the step (1) is a very slow 
process. Thus, the step (3) is independent of (1) and (2) once 
they have already been done. These three steps are illustrated as 
the “Initial Points” on the following Figure 7. 

 

Fig. 7. The overall approach for the classifying segmentation. 

We have selected as primary features: the pixel grey level 
and the position x, y and z, where z is the index of the slice. 
Besides, we have also selected the x and y positions relative to 
the center of gravity of the image and texture-based features 
from a vicinity of variable size that encapsulates the iterated 
pixel at its center, i.e., a surrounding window of pixel values. 
Some features [44] were computed from this vicinity, such as: 
(1) a simple arithmetic mean of the grey levels, (2) moments of 
the co-occurrence matrix, (3) geometrical moments of the grey 
values, (4) run percentage, (5) grey level non-uniformity and (6) 
a coefficient of smooth variation (CSV). The CSV acts as a 
convolution where the weights of the Kernel are based on the 
sup metric and on a unidimensional Gaussian filter. More details 
about this coefficient can be found on [45]. 

The reason for extracting texture-based features was due to 
conceiving the hypothesis that the epicardial and mediastinal fat 
yield a slightly difference on their texture that can be partially 
accounted by these features. An evidence to corroborate this 
hypothesis would be a well positioning of these features on a 
reliable ranked evaluation of attributes. In the case of decision 
tree algorithms, the outputted predictive tree can also be used to 
estimate how important and decisive is a feature on the 
predictive model. 

IV. RESULTS 

For the classification tasks we have used the Weka library 
[46]. Weka is an open-source collection of machine learning 
algorithms maintained by the University of Waikato. The Weka 
usage is twofold, it has its own graphical interface that can be 
used on several types of data analyses and the library can be 
directly imported and used on Java code. The full set of 
classification algorithms present in Weka up to its version 3.6.11 
was selected for a speed evaluation. Some of these algorithms 
are, namely, the SVM, SMO, Naïve Bayes, RBFNetwork, 
Random Trees, CJ45, J48, SPegasos, REPTree, IBk, kNN, 
Multilayer Perceptron and others. Among all the tested 
algorithms, only the (ordered by the achieved accuracy): 
J48Graft, Random Forest, REPTree, J48, SimpleCart, SMO, 
RandomTree, RBFNetwork, SPegasos, DecisionStump and 
NaiveBayes converged within 200 seconds. Although the 
J48Graft achieved a greater accuracy than the Random Forest, 
the latter provided a more sparse and acceptable segmentation. 
Preliminary results of two slices from two distinct patients (on 
each row) using the Random Forest algorithm are shown on 
Figure 8. The red color represents the epicardial while the green 
color represents the mediastinal fat. 

  

  
Fig. 8. Automatic segmentation of the cardiac fats on [-200,500] HU. 

The efficiency of a predictive model is usually evaluated by 
a test mode. The two most commonly applied techniques for 
evaluating the accuracy of a predictive model are the split and 
the cross validation. The split method usually takes (randomly 
or not) a percentage of the dataset to train the predictive model 
and the remaining for testing its accuracy. A 𝑘%-split test mode, 
for instance, divides 𝑘% of the dataset for training and use the 
remaining for testing. The cross validation can be viewed as a 
more sophisticated split method. It divides the dataset in 𝑘 
subsamples. A single subsample is retained for evaluation of the 
predictive model while the remaining 𝑘 − 1 are used for 
training. The difference is that, on the cross validation, this 
process is done 𝑘 times while varying the retained subsample 
and the final statistics are the average of the 𝑘 tests. 
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A database of approximately 3 gigabytes originated from 20 
patients (ground truth) was generated for extensively evaluating 
our proposed segmentation approach using the Random Forest 
algorithm. This database is also directly available on the Weka’s 
arff format at [43]. For this occasion, we considered the 66% 
split evaluation and the 10-fold cross validation test modes. The 
difference between the two is not expressive due to the huge 
amount of instances on the dataset. Table 1 contains the 
accuracies and the confusion matrixes of the Random Forest 
with standard parameters (-I 10 -K 0 -S 1) over 20 patients, using 
a 25x25 vicinity size and obtained through the random 66%-split 
test mode, whereas the Table 2 contains the values obtained 
through the 10-fold cross validation. 

TABLE I.  RESULTS WITH  66%-SPLIT TEST MODE 

Tissue 
Rates 

Accuracy TP Rate TN Rated FP Rate FN Rate 

Epicardial 98.3% 98.1% 98.4% 1.6% 1.5% 

Mediastinal 98.0% 92.9% 98.8% 1.1% 1.1% 

TP = true positive, TN = true negative, FP = false positive and FN = false negative 

TABLE II.  RESULTS WITH 10-FOLD CROSS VALIDATION TEST MODE 

Tissue 
Rates 

Accuracy TP Rate TN Rated FP Rate FN Rate 

Epicardial 98.5% 98.3% 98.5% 1.4% 1.4% 

Mediastinal 98.4% 94.2% 99.1% 0.9% 0.9% 

TP = true positive, TN = true negative, FP = false positive and FN = false negative 

 

The Table 3 compares the results of the four main related 
works. When is the case that some values are not provided by 
the authors, the respective cell was left blank. Furthermore, the 
majority of these indexes are highly subjective. None of the 
works provides a publicly available ground truth. Thus, we are 
the first to provide a publicly available ground truth for further 
comparison [43]. The works of Barbosa et al. [27] and 
Kakadiaris et al. [26] are semi-automated, while the works of 
Shahzad et al. [28] and Ding et al. [29] are fully automatic. The 
first column indicates the rate of successful automatic 
segmentations (usually observed). All these four works 
proposed methods for segmenting just the epicardial fat and, 
therefore, we compare just our epicardial fat segmentation on 
this table. 

TABLE III.  COMPARING THE EPICARDIAL SEGMENTATION 

Authors 
Evaluated Indexes 

Successful A.S.a Dice TP Rate 

Barbosa et al. 10% (4/40) - - 

Kakadiaris et al. - - 85.6% 

Shahzad et al. 96.9% (95/98) 89.15% - 

Ding et al. - 93.0% - 

This work 
(epicardial) 

100% (82/82) 97.9% 98.3% 

a. A.S. = automatic segmentations 

V. CONCLUSION 

The appliance of classification algorithms on image 
segmentation is highly prone to success and may surpass many 
usual segmentation methods on several aspects. Random Forest 
is one of the most well rated decision-tree algorithms and was 
the most efficient in our analysis. We have also concluded that 
decision tree algorithms provided much better performance over 
neural networks and function-based classification algorithms. 
The achieved mean accuracy for the epicardial and mediastinal 
fats was 98.4% with a mean true positive rate of 96.2%. In 
average, the Dice similarity index was 96.8%.  

The current weakness of our approach is the processing time. 
Currently, with a huge set of extracted features and an optimized 
heuristical segmentation, the algorithm still takes some hours to 
fully segment a patient on a simple personal computer with a 
dual core processor and 4 gigabytes of memory. What could 
diminish this huge processing time would be an extensive 
evaluation of the features in order to select just the most 
important and disregard the remaining. That kind of selection 
would speed up the feature extraction, reduce the outputted 
dataset which, consequently, speeds up the classification step. 
Algorithms for attribute evaluation consume a significant time 
until reaching convergence, especially on a large dataset. Due to 
that fact, we were still not able to extensively evaluate such 
matters. 
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