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Resumo

No reconhecimento por imagens, a maioria das
aplicações precisa caracterizar os objetos pela sua
forma, definindo relações entre elementos e suas partes
(sua morfologia). A morfologia matemática é a
metodologia mais adequada para quantificar e
qualificar os grãos e os elementos presentes nas
imagens, podendo ser utilizada para imagens em tons
de cinza ou binárias. Este trabalho considera os
fundamentos teóricos da morfologia matemática em
tons de cinza, utilizados na implementação de um
sistema de caracterização de grãos por imagens.
Discute-se por exemplos os limites de aplicabilidade
das técnicas implementadas na resolução do problema
de contagem e medição de grãos constitutivos dos
meios no caso dos grãos estarem em contato ou
sobrepostos, quando esses puderem ser identificados
por seus tons e tamanhos.

Introdução

A contagem, identificação e a medição de elementos
é fundamental em diversas aplicações, da biologia a
mineralogia (figura 1), pois através da determinação
das freqüências e do tamanhos dos grãos presentes em
amostras do material é possível conhecer suas
propriedades e classificá-lo. Em petrologia, a contagem
e a medição de grãos é feita através de peneiras, ou
seja, fisicamente. Este trabalho surgiu da idéia de
automatizar tal processo, através da análise
granulométrica das imagens dos materiais a serem
caracterizados.

A granulometria por imagens é uma analogia ao
processo que ocorre no peneiramento físico de um
material. Depois do peneiramento pela contagem ou
pesagem dos materiais retidos na peneira é
determinado um histograma (curva granulométrica)
que relaciona o tamanho do grão com a quantidade de
material. Assim, uma definição adequada do tamanho
do grão presente no material depende, não só do
próprio material mas também do conjunto de peneiras
usadas.
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Figura l: Imagens reais a serem analisadas: lâminas de células em
tons de cinza (a) e grãos de formas irregulares preto-e-brancos (b).

Neste trabalho, prossegue-se no aprimoramento de
estudo iniciado no trabalho anterior [Conci et al.,
2004]. Faremos na próxima seção uma apresentação
dos conceitos de morfologia matemática em tons de
cinza a serem utilizados. A seguir apresentaremos,
idéia do algoritmo de granulometria usando imagens
em tons de cinza desenvolvido. Depois comenta-se a
sua utilização na identificação diferenciada dos grãos e
as limitações do algoritmo implementado. Diversos
exemplos para verificar as aplicabilidades do algoritmo
apresentado são analisados. Finalmente trata-se dos
detalhes que incluindo na análise solucionarão as
limitações observadas.

Morfologia em Tons de Cinza

Considera-se que 1964 tenha sido o ano de
"nascimento" da Morfologia Matemática, no campus
de Fontainebleau da École Nationale Supérieure des
Mines de Paris, pois foi neste ano que Georges
Matheron foi incumbido de investigar as relações entre
a geometria de um meio poroso e sua permeabilidade,
ao mesmo tempo que foi passado a Jean Serra a tarefa
de predizer as propriedades mineralógicas pela
quantificação petrográfica dos minérios de ferro [Serra,
1982].

Esta teoria se baseia na idéia de que perceber uma
imagem é transformá-la. É uma ferramenta muito
adequada para a qualificação e quantificação das
formas relevantes em uma imagem [Serra, 1982]. Seus
operadores são construtivisticamente definidos para
produzir determinados efeitos a partir um conjunto
mínimo de operações elementares como a dilatação e a
erosão [Matheron, 1975].

A morfologia matemática é uma aplicação da teoria
de conjuntos, que fornece uma abordagem não linear



poderosa para numerosos problemas de processamento
de imagens [Soille, 1999]. Os conjuntos em morfologia
matemática representam os objetos descritos na
imagem. Por exemplo, cada grão é definido pelos
pixels de determinado tom na imagem que estão
conectados e em conjunto representam uma descrição
completa dessa imagem.

Imagens digitais em níveis de cinza podem ser
representadas por conjuntos cujos componentes
estejam em Z3. Nesse caso, os dois primeiros
componentes de cada elemento do conjunto se referem
às coordenadas (i,j) (por convenção) dos pixels ligados
ou relevantes da imagem, enquanto o terceiro
corresponde ao valor discreto de intensidade ou tom de
cinza. Por exemplo, se considerarmos relevantes os
pixels brancos da imagem e o início dos eixos a
posição superior esquerda, o conjunto da figura 2(a)
pode ser descrito como {(2,1,3); (3,1,40); (1,4,30);
(3,4,55), (1,8,120)}.

Um conceito importante na morfologia matemática é
a definição de elemento estruturante. O elemento
estruturante é um conjunto definido e conhecido (forma
e tamanho), que é usado em uma operação com o
conjunto da imagem para salientar determinado
aspecto. É definido como uma imagem completamente
conhecida, podendo assumir várias formas dependendo
do efeito a ser obtido e sua origem é definida em
qualquer ponto, embora no caso de elementos simétrico
seja geralmente considerada o centro do conjunto.

No caso dos meios porosos, uma abordagem por
teoria dos conjuntos também é possível. Neste caso
vamos chamar de conjunto A os componentes sólidos
do meio (a união de todos os grãos) e Ac sua rede de
poros (pixels pretos na figura 1). Este meio será
"escaneado" por uma figura B que fará o papel de uma
"sonda" coletora de informações. No caso de
granulometria mais do que um conjunto B pensaremos
em escolher um família β de possíveis "sondas". A
relação mais elementar entre esse "coletor de
informações" e o meio é que B deve estar contido no
conjunto de grãos do meio, isso é B ⊂ A, ou B ∩ A ≠∅
[Matheron,1967].

O elemento estruturante usado em tons de cinza
pode, como a imagem, ter seus pixels acesos em
qualquer tom do intervalo de definição usado. A figura
2(b) é um exemplo de elemento estruturante com todos
os tons de cinza iguais, esse tipo de elemento é
chamado de elemento plano ("flat"). Fazendo um
paralelo com os meio porosos, elementos estruturantes
podem ser visualizados como os "coletores de
informações" do meio.

Embora a morfologia matemática tenha sido
desenvolvida inicialmente para imagens preto-e-
brancas existem operadores em níveis de cinza
análogos aos operadores da morfologia binária, entre
eles, erosão, dilatação e abertura [Schouten, 2001].
Eles são similarmente úteis para identificação/remoção
de objetos com certas características morfológicas. As
propriedades dos operadores que valem para
morfologia binária (comutatividade, idempotência,

extensividade, anti-extensividade, etc.) também valem
para os equivalentes em tons de cinza [Conci et al.,
2004].

Supondo que a imagem A e o elemento estruturante
B tenham ambos tons com valores inteiros entre 0 e
255. A dilatação em tons de cinza é defina por:

( )( ) )},(),(max{, yxBytxsAtsBA +−−=⊕

( ) ( ) ba DyxDytxs ∈∈−− ,,,

onde Da  e Db são os domínio de A e B respectivamente.
Assim pela fórmula acima a origem do elemento
estruturante refletido em torno da origem [Conci et al.,
2004], vai percorrer todos os pontos da imagem
realizando uma operação de adição dos pixels
correspondentes seguida de atribuição ao pixel operado
(s,t) do valor máximo da janela (s-x,t-y).

Podemos observar na figura 2(c) o resultado da
dilatação. Se o elemento estruturante tem um valor
uniforme, ou seja, todos os pontos do elemento que
estão ligados possuem a mesma intensidade, então esta
operação é equivalente a considerar o valor máximo da
região da imagem, correspondente a forma definida
pelo elemento estruturante, somado a este valor do
elemento estruturante.

Figura 2 Exemplo de dilatação em tons de cinza: (a) imagem
original, (b) elemento estruturante plano em cruz com origem no
centro e (c) imagem resultante da dilatação de (a) por (b)

A operação de erosão em níveis de cinza tem as
mesmas características da operação de erosão binária.
A origem do elemento estruturante vai percorrer todos
os pontos da imagem realizando uma operação de
subtração seguida de atribuição ao pixel operado (s,t)
do valor mínimo da janela (s+x,t+y)

( )( ) )},(),(min{, yxBytxsAtsBA −++=Θ
( ) ( ) ba DyxDytxs ∈∈++ ,,,

onde Da  e Db são os domínio de A e B respectivamente.
Assim pela fórmula acima a origem do elemento
estruturante, vai percorrer todos os pontos da imagem
realizando uma operação de subtração dos pixels
correspondentes seguida de atribuição ao pixel operado
do valor mínimo da janela (figura 3) [Conci et al.,
2004].

As operações de abertura e fechamento fazem o uso
das duas operações básicas da morfologia. A abertura
é definida como uma erosão seguida de dilatação com
o mesmo elemento estruturante. A operação de
fechamento é definida como uma dilatação seguida de
erosão com o mesmo elemento estruturante.

A abertura da imagem A pelo elemento estruturante
B pode ser definida por: ( ) BBABA ⊕Θ= .



Figura 3 Exemplo de erosão em tons de cinza: (a) imagem original,
(b) elemento estruturante em cruz com origem no centro e (c)

imagem resultante da erosão de (a) por (b)

A abertura é anti-extensiva ( A ° B ⊂ A ), crescente:
BDBAentãoDAse ⊂⊂  e idempotente (o

que quer dizer que, repetindo-se a operação mais de
uma vez, não se tem mais nenhum efeito adicional, ou
seja: ( ) BABBA =  )

O fechamento da imagem A pelo elemento
estruturante B pode ser definida por:

( ) BBABA Θ⊕=• . O fechamento é extensivo (A ⊂ A
• B) , crescente: BDBAentãoDAse •⊂•⊂  e
idempotente. Essa última propriedade quer dizer que,
repetindo-se a operação mais de uma vez, não se tem
mais nenhum efeito adicional, ou seja:
( ) BABBA •=•• .

Aos pares as operações de dilatação/erosão e
abertura/fechamento são duais em relação ao
complemento e reflexão em torno da origem [Conci et
al., 2004]. Essa observação é muito importante e
permite construir uma granulometria por abertura e
uma anti-granulometria ou granulometria por
fechamento. A combinação de ambas é que vai, em
alguns casos, permitir uma definição precisa do
diâmetro e outras medidas dos conjunto em análise.
Essa dualidade significa que:

( ) BABA cc ˆ⊕=Θ e ( ) BABA cc ˆ=•

onde B̂ é a reflexão em torno da origem de um
conjunto B: },|{ˆ BbparabxxB ∈−== e Ac denota o
complemento de um conjunto A em relação ao espaço
subjacente: }|{ AxxA c ∉=

A reconstrução morfológica é uma das operações
mais poderosas da morfologia matemática. Ela
acrescenta ao conjunto de operadores o conceito de
conectividade. Em imagens preto-e-brancas essa
operação identifica todos os elementos do conjunto
conectados a um ponto ou conjunto de pontos definidos
anteriormente, que na linguagem desta teoria é
denominado marcador. O conjunto de pontos
conectados a esse ponto encontrado é denominado de
reconstrução da imagem inicial a partir do marcador
definido.

Assim, em "linguagem de conjuntos", reconstrução
morfológica de um conjunto, A, a partir de um
subconjunto, C ⊂ A , é a união dos componentes

convexos de A que contém no mínimo um ponto em C.
O subconjunto C que dá inicio a reconstrução de A é
chamado de marcador da reconstrução.

A reconstrução é realizada a partir de uma seqüência
infinita de dilatações do marcador com um elemento
estruturante e interseções do resultado com a imagem
inicial até obter-se um resultado estável (idempotente).

Essa dilatação seguida de interseção é chamada de
dilatação condicional. Como exemplo, suponha que o
marcador seja os pixels das bordas da imagem 1(b),
mostrados na figura 4(a), para melhor ilustrar,
marcados por uma linha vermelha. A reconstrução
desta imagem a partir deste conjunto marcador resulta
nos semi-grãos que foram cortados no processo de
acquisição da imagem mostrados na figura 4(b). É
possível então subtrair-se a imagem original da
imagem reconstruída a partir dos marcadores para
obter-se uma imagem sem grãos cortados, figura4(c).

Uma utilidade imediata desta operação num
processo de granulometria automático é a eliminação
de grãos não inteiros. Esses se deixados na imagem a
ser analisada iriam influenciar no processo de
granulometria por serem automaticamente
interpretados como grãos menores.

(a) (b) (c)
Figura 4: Exemplo de reconstrução (a) imagem original com os

marcadores compondo a borda da imagem salientados apenas para
ilustração; (b)resultado do processo de reconstrução a partir dos

marcadores; e (c) a imagem só com os grãos inteiros, resultado da
subtração de (a) por (b) [Schouten,2001].

A reconstrução tem todas as propriedades da
abertura: é idempotente, crescente e anti-extensiva.
Sendo uma abertura algébrica. A escolha dos
marcadores é uma questão importante e deles depende
o resultado obtido. Na próxima seção os marcadores
são definidos a partir de aberturas da imagem e a
reconstrução será usada para só se considerar grãos
inteiros em um processo de "peneiramento". A
reconstrução em tons de cinza é uma operação
fundamental no projeto de filtragem conectada
[Schouten,2001].

A abertura, o fechamento e a reconstrução
morfológica para imagens em tons de cinza funcionam
da mesma forma que a abertura para imagens binárias.
A única diferença é que, por ser em tons de cinza, ela
utiliza a erosão e a dilatação em tons de cinza, e o
conjunto marcador serão pixels definidos no nível
máximo (255 neste caso).

Granulometria em Tons de Cinza
A contagem e medição de grãos (granulometria),

problema considerado neste artigo pode ser tratado



usando morfologia matemática, pois, através desse
método, podemos simular o processo de peneiramento.
Para isto utilizamos “peneiras virtuais”, onde
processamos uma imagem por uma "família" de
elementos estruturantes. (λ, B). Essa família é definida
pela multiplicação de todos os elementos de B por um
numero positivo λ, de forma a produzir um conjunto
continuo λB = { λx , x ∈ B }.

O resultado dessa contagem é resumido na curva
granulométrica ou histograma de distribuição de
tamanhos, que é uma função do número de grãos pelos
seus respectivos tamanhos geralmente representados
pelo seu diâmetro, ou sua classe φ.

Essa curva granulométrica pode ser aproximada pela
operação de abertura da imagem por uma família de
elementos estruturantes (λ, B). (conjunto de aberturas
crescentes de tamanho λ=2, 3, 4, ... onde B seria o
elemento estruturante inicial e λB pode ser, entendido
como uma medida do tamanho do elemento
estruturante). À medida que aplicamos esta sequência
de aberturas na imagem, os grãos vão diminuindo até
eventualmente desaparecer.

Estas operações de abertura e posterior reconstrução
dos grãos restante correspondem à passagem da
imagem por “peneiras virtuais”. Pode-se fazer uma
analogia entre a forma e o tamanho do elemento
estruturante usado na abertura com às formas e
tamanhos das malha desta peneira. Conforme os grãos
presentes na imagem vão passando por estas malhas
“virtuais”, na imagem eles irão desaparecendo. Após a
aplicação da abertura com um determinado elemento
estruturante, é feita uma subtração entre a imagem do
passo anterior e atual e os grãos inteiros que
desaparecem neste passo vão sendo marcados com o
tamanho λ do elemento estruturante λB.

Para uma família de elementos estruturantes
convexos (λ, B), um sub-conjunto A do espaço
Euclidiano E=ℜd e para λ >0, uma granulometria é
definida como o mapeamento λ→ψλ(A) onde

ψλ (A) = A ° λB =  ∪ { λBx , x∈E , λBx ⊂ A}.
Uma granulometria ψλ deve satisfazer as condições

[Matheron, 1975] :
1- ψ0 (A) = A , e se λ ≥ µ então ψλ (A) ⊂ ψµ (A).

2- Para λ ≥ 0 e C ⊂ D , ψλ (C) ⊂ ψλ(D).

3- Para λ ≥ µ ≥ 0 , ψλ (ψµ (A) )=ψµ (ψλ (A) )=ψλ (A)

A primeira propriedade indica que os conjuntos
transformados tem cada vez menos material. A
segunda propriedade indica que o resultado de uma
parte do conjunto deve estar contido no resultado do
todo. É um aspecto importante no caso de usar-se
amostras com níveis de resolução diversas, pois partes
do solo devem estar contidas na representação do todo.
A terceira propriedade considera que o resultado de
duas operações com aberturas consecutivas deve
produzir o mesmo resultado independente na ordem em
que é feito, e igual ao resultado do último
peneiramento.

Nas figuras 5 a 7, exemplifica-se o funcionamento
do algoritmo de granulometria através de um exemplo.
Para simplificar as imagens, todos os pixels brancos
são considerados como sendo do tom 255 e este valor é
omitido nas figuras 5 e 6. Consideramos a imagem da
figura 5(a) como entrada do algoritmo, e a família λB
como um conjunto de elementos estruturantes de
formas quadradas e tom constante 1, sendo λ o
tamanho deste elemento. O algoritmo começa
aplicando uma abertura com um elemento estruturante
2x2. O resultado desta abertura pode ser visualizado na
figura 5(b), onde são eliminados todos os grãos e partes
de grãos onde esse elemento não se encaixa.

Figura 5: Exemplificando as etapas da granulometria: (a) Imagem
original, (b) Imagem com abertura por elemento quadrado 2x2, (c)

Imagem final da primeira etapa: resultante de um processo de
reconstrução dos grãos.

O resultado da abertura da imagem pelo elemento
λB é usado em um processo de reconstrução do grãos
ou subtração condicional. Essa reconstrução é feita
considerando se alguns vizinho aos pixels que restaram
na imagem 5(b) estavam presentes na imagem original.
Os vizinhos considerados podem ser os 4-pixels
conectado a cada um dos pixels acessos ou os 8 pixels
vizinhos a esses pixels. Esse processo de definição da
vizinhança pode ser associado ao uso de elementos
estruturantes 3x3 em cruz ou 3x3 quadrados,
respectivamente [Conci et al., 2004].

A reconstrução corresponde a dilatação da imagem
5(b) pelo elemento estruturante seguida de interseção
com a imagem original, até a idempotência (o que
geralmente é conseguido em apenas duas passadas). O
resultado da reconstrução corresponde a imagem 5(c),
onde tem-se "inteiros" todos os grãos que ficaram
retidos na "peneira". Depois fazendo-se a subtração do
conjunto da figura 5(a) pelo da figura 5(c) pode-se
obter o número de pixels que desapareceram neste
primeiro passo. Eles são marcados em uma imagem
inicialmente vazia, que será a imagem de saída do
algoritmo, como podemos observar na figura 6(c), ou
será usada para gerar o gráfico da figura 7 (onde o
valor do lado λ do elemento estruturante, λB, será
usado no eixo horizontal e na vertical tem-se o número
de pixels que desaparecerem na iteração)

Figura 6: Continuando a exemplificaras etapas da granulometria:
(a) Imagem resultante da abertura por elemento quadrado 3x3, (b)

Imagem resultante do processo de reconstrução dos grãos, e (c)
imagem final com a marcação do ponto onde os pixels desaparecem.



A imagem inicial da segunda iteração é a da figura
5(c), agora a "malha virtual" cresce, ou seja, é aplicada
a abertura com um elemento estruturante maior. Neste
caso, o tamanho seguinte é 3x3. A figura 6(a) mostra a
imagem resultante dessa abertura. Depois o grão é
reconstruído obtendo-se a figura 6(b), que corresponde
a esta imagem depois de aplicada a abertura. Da
mesma forma que na iteração anterior, essa imagem é
subtraída da imagem inicial da iteração, figura 5(c), e
os pixels que desapareceram da imagem, nesta iteração,
são marcados em uma imagem resultante, figura 6(c),
que neste exemplo já possui inclusive as marcações da
próxima iteração.

Na terceira etapa, não ilustrada, o tamanho do
elemento estruturante passa a ser 4x4. A figura 6(b) é a
imagem de entrada desta etapa; essa imagem depois
aberta por um elemento estruturante 4x4 apresenta
todos os pixels excluídos, terminando o processo. Se
isto não tivesse acontecido neste momento, as etapas
continuariam da mesma forma até que se chegasse a
uma imagem sem nenhum pixel ligado. Como nas
etapas anteriores são feitas as marcações dos pixels que
desapareceram após a abertura e reconstrução.

O resultado final da granulometria [Matheron, 1975]
é obtido através do gráfico da figura 7, que é calculado
a partir das marcações com a etapa em que os grãos
desapareceram, figura 6(c). Assim é calculado o
histograma desta imagem que indicará o número de
pixels que desapareceram em cada passo. Este
histograma está representado na figura 7, em relação ao
tamanho do elemento estruturante do passo em que os

pixels desapareceram versus o número de pixels a
desaparecerem.

Figura 7:  Histograma obtido a partir da imagem 6(c).

Depois de calculado este histograma, é necessário
calcular a curva granulométrica. Se o objetivo for
considerar a curva granulométrica na forma de número
versos diâmetro de grãos, o número de pixels
desaparecido em cada passo (no histograma da figura
7) deve ser dividido pela área do grão que desaparece
no passo. Isto porque a abertura de uma imagem por
um elemento estruturante quadrado 2x2, por exemplo,
faz com que desapareçam desta imagem todos os grãos
com área menor do que a área deste elemento
estruturante. Como no método, utiliza-se uma
seqüência crescente de aberturas (2, 3, 4, ...), os grãos
que somem em cada passo são sempre relacionados

com o tamanho do elemento estruturante utilizado. O
resultado inteiro deste cálculo indicaria o número de
grãos presentes na imagem com tamanho (diâmetro)
imediatamente menor do que o valor deste passo (que
corresponde ao valor do lado do elemento
estruturante). Essa é a forma usada para fazer o que é
chamado de granulometria por número [Conci et al.,
2004]. Entretanto essa forma de definição da curva
conduz a erros se, como neste exemplo, o formato dos
grãos não for uniforme, pois como considerar a área do
grão que se os grãos que desaparecem no passo podem
ter diversas áreas.

Repare que na figura 5 ao se passar o elemento
estruturante 2x2, do passo 1 desapareceram na imagem
grãos com área de 1, 2 ou 3 pixels. Assim os grãos com
forma de 2x1, 1x2, ou em L, presentes também
"morrem", com os grãos de 1 pixel. O número de grãos
seria contato errado se essas diferentes áreas fossem
consideradas iguais. O mesmo ocorre em todos os
passos. Ao se passar o elemento estruturante 3x3, do
passo 2, vão "morrer" grãos com área de 4 a 8 pixels. E
ao se passar o elemento estruturante 4x4, "morrem"
grãos de áreas de 9 a 15. A relação entre o número de
pixels que desaparecem na imagem e o número de
grãos, não poderia ser considerado corretamente, sendo
mais adequado usar-se outras formas de medidas para a
granulometria, como por exemplo a área. Se fosse
mesmo assim necessário uma granulometria por
número seria mais adequado fala-se em faixas de
valores, que valores precisos, como indicado na tabela
1 para este exemplo.

passo pixels
desaparecidos
:

numero aproximado de grãos:

1 10 6/1 a 6/3 - de 2 a 6 grãos
2 19 19/4 a 19/8 - de 4 a 2 grãos
3 11 11/9 a 11/15 ou seja 1 ou 0

Tabela 1: Faixa de grãos que desaparecem nas iterações do
algoritmo ao ser processada a imagem da figura 5(a)

Observa-se que, com essa interpretação, é possível
descrever de maneira aproximada uma curva
granulométrica cujos resultados podem ser facilmente
comparado com as imagens utilizadas. Assim, embora
na maioria das aplicações não seja recomendado o uso
de uma curva granulométrica por número essa será a
forma utilizada nos exemplos deste trabalho, pela
facilidade de comprovação visual dos resultados
obtidos.

Resultados
A aplicação implementada para análise

granulométrica foi desenvolvida em C++, empregando
paradigmas da orientação a objetos. As classes que
representam os filtros utilizados para o processamento
das imagens foram desenvolvidos em dll’s. Estas
fazem uso de uma biblioteca de visualização e
processamento de imagens chamada CxImage
[Pizzolato, 2003], bem como de uma biblioteca de
manipulação gráfica chamada GraphCtrl [Yuantu
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Huang, 2000] e de uma biblioteca de desenho de
tabelas chamada GridCtrl [Maunder, 2002] que serão
utilizadas na exibição dos resultados. Todas essas
bibliotecas são de código aberto e se encontram
disponíveis na Internet.

Inicialmente foram implementadas as operações
morfológicas binárias básicas (erosão e dilatação), a
abertura e, posteriormente, a granulometria [Conci et
al., 2004]. Como as imagens a serem analisadas neste
trabalho não são binárias, pudemos observar que, ao
torná-las binarias, muita informação era perdida antes
do processamento como, por exemplo, informações de
contorno, fazendo com que grãos que se mostravam
independentes na imagem original ficassem unidos na
imagem inicial utilizada como entrada para o algoritmo
de granulometria. Isto pode ser observado a partir da
análise da figura 8(a) e de sua imagem binária
correspondente, figura 8(b).

Figura 8:  Exemplo de imagem granular: (a) Imagem original e (b)
Imagem binarizada

Deste modo, como a morfologia matemática binária
não se mostrou uma boa solução para imagens em tons
de cinza, optou-se por implementar os operadores da
morfologia matemática em tons de cinza, o que faz
com que a imagem de entrada do algoritmo perca
menos informação antes de ser processada.

Com relação ao elemento estruturante, neste
algoritmo inicial, fizemos vários testes quanto à sua
forma e quanto aos valores de suas intensidades.
Inicialmente, utilizamos somente o elemento
estruturante quadrado e variamos os valores das
intensidades, começando de 1. Um valor que se
mostrou interessante nos testes foi o de intensidade 50
para representar os pixels ligados do elemento
estruturante. Depois foram testados elementos
estruturantes com formatos de círculo e losango (com
todos os ângulos iguais). Isto foi feito para permitir que
grãos com estas formas fossem detectados com mais
facilidade. Assim, ao se iniciar o processo da
granulometria, o usuário tem a opção de definir a
forma que melhor representa os grãos presentes na
imagem. Como veremos a seguir a forma da família
usada nas aberturas é um aspecto fundamental.

Para validar o algoritmo proposto, executamos a
granulometria em imagens com resultado facilmente
verificáveis (número de formas e seus respectivos
diâmetros). Estes testes são apresentados a seguir, onde
verifica-se inicialmente a aplicabilidade do método
proposto com imagens sintéticas, com todos os dados

conhecidos para poder validar os resultados e
identificar os problemas existentes nas imagens reais.
Desta forma construiu-se imagens com grãos juntos e
de formas distintas, sobrepostos parcialmente e
totalmente (em diversos níveis). Todas as imagens
sintéticas possuem resolução de 300 x 250 pixels e 256
tons de cinza. Até o exemplo 5 não é feita a etapa de
reconstrução do grão, pois os grãos tem exatamente as
formas dos elementos estruturantes usados.

No primeiro exemplo (figura 9) são utilizados grãos
quadrados, dispostos juntos e com pequenas partes
sobrepostas por outros grãos. A descrição completa dos
grãos do exemplo 1 está mostrada na figura 10. Na
figura 11 são vistos os resultados obtidos pelo
programa tendo como entrada a imagem do exemplo 1,
utilizando elementos estruturantes quadrados. Como
pode-se observar estes resultados são 100% corretos.

Figura 9: Exemplo 1 - grãos quadrados com pequenas partes
sobrepostas

Figura 10: Curva granulométrica do exemplo 1

Figura 11 Curva granulométrica do exemplo 1 obtida pelo
programa

No exemplo 2, tem-se um teste semelhante, mas com



grãos em formato de losango (figura12). A descrição
completa dos grãos está na figura 13 e os resultados
calculados pelo programa utilizando elementos
estruturantes em forma de losango, podem ser vistos na
figura 14. Como podemos observar através da análise
dos gráficos das figuras 13 e 14, o método demonstrou-
se eficiente, calculando de maneira correta o número de
grãos de formas losangulares com poucos contados e
sobreposições.

Figura 12: Exemplo 2: grãos losangulares com pequenas partes
sobrepostas

Figura 13: Curva granulométrica do exemplo 2

Figura 14: Curva granulométrica do exemplo 2 obtida no
programa

No exemplo 3, tem-se novamente formas quadradas
(figura 15), mas agora possuindo grãos totalmente
sobrepostos ou com mais de 50% de sua área
sobreposta. Comparando os dados da imagem (figura
16) com os resultados obtidos pelo programa usando
elementos estruturantes quadrados (figura 17) podemos
observar que, o método falhou em grãos menores e
teve um acerto maior nos grãos maiores. Isto deve-se

ao fato de alguns grãos menores presentes na imagem
estão dispostos atrás ou sobre os grãos maiores,
fazendo assim com que estes grãos não tenham sido
identificados pelo algoritmo. Em um método manual
(ou feito através de peneiras) existe a possibilidade de
se mover as peneiras até que grãos que estão em algum
momento sobrepostos se movam de forma a cair nos
buracos das peneiras equivalentes ao seu tamanho,
sendo, identificados de forma precisa. Este erro no
método proposto era esperado, uma vez que não existe
esta flexibilidade na análise por imagens. Uma
proposta para resolver este problema é a de se capturar
não só uma, mas várias imagens correspondentes à
mesma amostra de grãos, com estes em posições
diferentes e tirar uma média dos resultados destas
imagens, usando uma granulometria por medida e
normalizada.

Figura 15: Exemplo 3:de grãos quadrados com grandes partes ou
totalmente sobrepostos

Figura 16: Curva granulométrica do exemplo 3.

Figura 17: Curva granulométrica do exemplo 3 obtida a pelo
programa

No exemplo 4, faz-se um teste semelhante ao
anterior, mas com grãos em formato de losango (figura



18). Comparando os gráficos das figuras 19 e 20 tem-
se uma análise equivalente ao exemplo anterior que
possuía as mesmas complicações para as imagens com
grãos quadrados. Da mesma forma, tem-se as mesma
limitações e erros nos menores grãos.

Figura 18: Exemplo 4: grãos losangulares com grandes partes
sobrepostas ou totalmente sobrepostos

Figura 19: Curva granulométrica do exemplo 4

Figura 20: Curva granulométrica o exemplo 5 obtida do
programa.

A próxima complexidade inserida nos testes foi
adicionar a uma mesma análise grãos de vários
formatos não perfeitamente iguais os elementos
estruturantes usados na análise (quadrados), para
aproximar as imagens de casos reais mais complicados
que englobem grãos de formatos diferentes. No
exemplo 5 é usada a imagem da figura 21. Nesta
imagem observamos quadrados com as bordas
arredondadas de dois tamanhos distintos, retângulos
dispostos tanto em pé como deitados e trapézios. Os
quadrados menores possuem 30 pixels de diâmetro

enquanto os maiores possuem diâmetro 44, os
retângulos e os trapézios possuem diâmetro 40, ambos
possuem 30 pixels na menor distância entre os seus
dois lados.

Nas figuras 22, 23 e 24 tem-se os resultados manuais
e da granulometria usando o programa sem e com
reconstrução dos grãos. Podemos observar na figura 23
que alguns grãos menores inexistentes são
identificados, o que também acontecia no caso dos
algoritmos em branco e preto antes da inclusão da
reconstrução [Conci et al., 2004]. Esses falso grãos
menores são na realidade partes do contorno dos grãos
onde as famílias de elementos estruturantes não se
encaixam. Podemos observar que ao incluir o processo
de reconstrução (figura 24) esses falsos grãos
desaparecem.

Observamos ainda nos gráficos dessas figuras que
todos os grãos foram identificados como tendo um
tamanho menor do que o tamanho real. Isto acontece
porque, como o elemento estruturante usado (no caso o
quadrado), não representa perfeitamente a forma dos
grãos da imagem, o menor elementos estruturante a não
caber no grão fará com que todo o grão seja perdido
durante a execução do método. Os grãos de diâmetro
44 foram identificados como tendo diâmetro 38. Isto se
deve ao fato do algoritmo reconhecer, para este caso
(elemento estruturante quadrado), o maior quadrado
que se encaixa dentro da área do grão. Esta
característica fez também com que os grãos
retangulares e com formatos de trapézios (de diâmetro
40) tenham sido identificados como tendo diâmetro 30
que, como havia sido mencionado, é a menor distância
entre seus dois lados. Para obter-se a diagonal real, isso
é a que é definida como maior distância entre dois
pontos quaisquer de um objeto, deve-se usar a
granulometria por fechamento ou anti-granulometria.

Figura 21: Exemplo de grãos com formatos distintos porém
parecidos com um quadrado

No último exemplo usa-se uma imagem real: a
obtida a partir da figura 1(a) por eliminação dos grãos
conectados à borda da imagem (figura 25). Neste pre-
processamento observa-se que, como os grãos da
imagem se tocam no processo de eliminação de grãos
conectados à borda são eliminados alguns grãos a ela
conectados através de outros grãos e não diretamente.



Assim uma melhoria neste processo deve ser
introduzida como um tratamento prévio da imagem
para eliminar alguns desses contatos. Na figura 26 são
encontrados 139 grãos, pois neste casos os núcleos
interiores em diferentes tons são contatos como outros
grãos.

Figura 22: Curva granulométrica do exemplo 5

Figura 23: Curva granulométrica do exemplo 5 obtida sem
reconstrução

Conclusão

A partir dos testes realizados observou-se que, para
imagens onde a forma dos grãos pode ser descrita de
maneira homogênea por um elemento estruturante
crescente, o método proposto tem uma resposta
excelente, mesmo quando alguns grãos se tocam e se
sobrepõem parcialmente. Para o caso de grãos se
sobrepõem totalmente ou em grande parte de sua área,
o método começa a apresentar alguns problemas. Em

imagens onde existem grãos de diversos formatos
distintos, devemos escolher o formato que melhor se
assemelha a todos os grãos presentes na imagem, para
assim ter o mínimo de perda de informações possível.
Um problema observado no método adotado é o tempo
de processamento, pois este é dependente tanto das
dimensões da imagem quanto do tamanho do maior
grão presente, como a imagem é um conjunto
desconhecido, esta dependência pode complicar a
utilização deste método. Apesar destas considerações,
os resultados obtidos com as imagens testadas em
relação aos seus valores reais correspondentes foram
muito interessantes.

Na forma da granulometria utilizada (por abertura)
os diâmetros dos grãos encontrados sempre estão
relacionados às suas menores dimensões interiores.
Isso porque a abertura se caracteriza por eliminar os
grãos onde o elemento estruturante utilizado não mais
se encaixa. Se fosse desejado caracterizar como
diâmetro por exemplo a maior dimensão do grão uma
eliminação baseado no fechamento (antigranulometria)
deve se mostrar mais adequada.

Finalmente, como esse método permite adaptações a
praticamente qualquer aspecto, entender a
aplicabilidade das técnicas implementadas é
fundamental. Um sistema voltado a identificar como
diferente, áreas em diferentes tons, não pode se mostrar
adequado quando o que se quer é contar grãos com
interior complexo caracterizado por áreas em tons
distintos como os da figura 25.  Neste caso a escolha de
um elemento estruturante que tenha mesma variação de
tons interiores que o grão resolveria o problema. Ou
seja é fundamental entender as características da
metodologia para que um sistema que a use tenhas suas
potencialidades corretamente utilizadas, já que a
morfologia matemática pode facilmente incluir muitas
possibilidades e ser adaptada a praticamente qualquer
circunstâncias.
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