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Resumo

No reconhecimento por imagens, a maioria das
aplicacdes precisa caracterizar os objetos pela sua
forma, definindo relagdes entre elementos e suas partes
(sua morfologia). A morfologia matematica ¢ a
metodologia mais adequada para quantificar e
qualificar os grdos e os elementos presentes nas
imagens, podendo ser utilizada para imagens em tons
de cinza ou binarias. Este trabalho considera os
fundamentos tedricos da morfologia matematica em
tons de cinza, utilizados na implementacdo de um
sistema de caracterizacdo de grdos por imagens.
Discute-se por exemplos os limites de aplicabilidade
das técnicas implementadas na resolucdo do problema
de contagem e medicdo de gridos constitutivos dos
meios no caso dos grdos estarem em contato ou
sobrepostos, quando esses puderem ser identificados
por seus tons e tamanhos.

Introduciao

A contagem, identificagdo e a medigdo de elementos
¢ fundamental em diversas aplicagdes, da biologia a
mineralogia (figura 1), pois através da determinacdo
das freqiiéncias e do tamanhos dos grios presentes em
amostras do material ¢ possivel conhecer suas
propriedades e classifica-lo. Em petrologia, a contagem
e a medicao de grios ¢ feita através de peneiras, ou
seja, fisicamente. Este trabalho surgiu da idéia de
automatizar tal processo, através da analise
granulométrica das imagens dos materiais a serem
caracterizados.

A granulometria por imagens ¢ uma analogia ao
processo que ocorre no peneiramento fisico de um
material. Depois do peneiramento pela contagem ou
pesagem dos materiais retidos na peneira ¢
determinado um histograma (curva granulométrica)
que relaciona o tamanho do grdo com a quantidade de
material. Assim, uma definicdo adequada do tamanho
do grao presente no material depende, ndo s6 do
proprio material mas também do conjunto de peneiras
usadas.
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Figura 1: Imagens reais a serem analisadas: laminas de células em
tons de cinza (a) e graos de formas irregulares preto-e-brancos (b).

Neste trabalho, prossegue-se no aprimoramento de
estudo iniciado no trabalho anterior [Conci et al.,
2004]. Faremos na proxima se¢do uma apresentacdo
dos conceitos de morfologia matematica em tons de
cinza a serem utilizados. A seguir apresentaremos,
idéia do algoritmo de granulometria usando imagens
em tons de cinza desenvolvido. Depois comenta-se a
sua utiliza¢do na identificagdo diferenciada dos graos e
as limitacdes do algoritmo implementado. Diversos
exemplos para verificar as aplicabilidades do algoritmo
apresentado sdo analisados. Finalmente trata-se dos
detalhes que incluindo na andlise solucionardo as
limitagdes observadas.

Morfologia em Tons de Cinza

Considera-se que 1964 tenha sido o ano de
"nascimento” da Morfologia Matematica, no campus
de Fontainebleau da Ecole Nationale Supérieure des
Mines de Paris, pois foi neste ano que Georges
Matheron foi incumbido de investigar as relacdes entre
a geometria de um meio poroso e sua permeabilidade,
ao mesmo tempo que foi passado a Jean Serra a tarefa
de predizer as propriedades mineraldgicas pela
quantificagdo petrografica dos minérios de ferro [Serra,
1982].

Esta teoria se baseia na idéia de que perceber uma
imagem ¢ transforma-la. E uma ferramenta muito
adequada para a qualificagdo e quantificagdo das
formas relevantes em uma imagem [Serra, 1982]. Seus
operadores sdo construtivisticamente definidos para
produzir determinados efeitos a partir um conjunto
minimo de operagdes elementares como a dilatagdo e a
erosao [Matheron, 1975].

A morfologia matematica ¢ uma aplicacdo da teoria
de conjuntos, que fornece uma abordagem ndo linear



poderosa para numerosos problemas de processamento
de imagens [Soille, 1999]. Os conjuntos em morfologia
matematica representam o0s objetos descritos na
imagem. Por exemplo, cada grio ¢ definido pelos
pixels de determinado tom na imagem que estdo
conectados e em conjunto representam uma descri¢ao
completa dessa imagem.

Imagens digitais em niveis de cinza podem ser
representadas por conjuntos cujos componentes
estejam em Z’. Nesse caso, os dois primeiros
componentes de cada elemento do conjunto se referem
as coordenadas (7,j) (por convencdo) dos pixels ligados
ou relevantes da imagem, enquanto o terceiro
corresponde ao valor discreto de intensidade ou tom de
cinza. Por exemplo, se considerarmos relevantes os
pixels brancos da imagem e o inicio dos eixos a
posicdo superior esquerda, o conjunto da figura 2(a)
pode ser descrito como {(2,1,3); (3,1,40); (1,4,30);
(3,4,55), (1,8,120)}.

Um conceito importante na morfologia matematica ¢é
a definicdo de elemento estruturante. O elemento
estruturante ¢ um conjunto definido e conhecido (forma
e tamanho), que ¢ usado em uma operagdo com o
conjunto da imagem para salientar determinado
aspecto. E definido como uma imagem completamente
conhecida, podendo assumir varias formas dependendo
do efeito a ser obtido e sua origem ¢ definida em
qualquer ponto, embora no caso de elementos simétrico
seja geralmente considerada o centro do conjunto.

No caso dos meios porosos, uma abordagem por
teoria dos conjuntos também ¢ possivel. Neste caso
vamos chamar de conjunto 4 os componentes sélidos
do meio (a unido de todos os grdos) e A° sua rede de
poros (pixels pretos na figura 1). Este meio serad
"escaneado"” por uma figura B que fara o papel de uma
"sonda" coletora de informag¢des. No caso de
granulometria mais do que um conjunto B pensaremos
em escolher um familia B de possiveis "sondas". A
relacdo mais elementar entre esse "coletor de
informagdes" e o meio é que B deve estar contido no
conjunto de grdos do meio, isso ¢ B € 4, ou B N A #2
[Matheron,1967].

O elemento estruturante usado em tons de cinza
pode, como a imagem, ter seus pixels acesos em
qualquer tom do intervalo de defini¢do usado. A figura
2(b) ¢ um exemplo de elemento estruturante com todos
os tons de cinza iguais, esse tipo de elemento ¢
chamado de elemento plano ("flat"). Fazendo um
paralelo com os meio porosos, elementos estruturantes
podem ser visualizados como os 'coletores de
informagoes" do meio.

Embora a morfologia matematica tenha sido
desenvolvida inicialmente para imagens preto-e-
brancas existem operadores em niveis de cinza
analogos aos operadores da morfologia binaria, entre
eles, erosdo, dilatagdo e abertura [Schouten, 2001].
Eles sdo similarmente uteis para identificagdo/remocao
de objetos com certas caracteristicas morfoldgicas. As
propriedades dos operadores que valem para
morfologia bindria (comutatividade, idempoténcia,

extensividade, anti-extensividade, etc.) também valem
para os equivalentes em tons de cinza [Conci et al.,
2004].

Supondo que a imagem A4 e o elemento estruturante
B tenham ambos tons com valores inteiros entre 0 e

255. A dilatagdo em tons de cinza é defina por:
(A @ B)(s,t)= max{ A(s — x,t— y)+ B(x,y)}

(s—x,t— y)e Da,(x,y)e D,

onde D, e D, sdo os dominio de 4 e B respectivamente.
Assim pela formula acima a origem do elemento
estruturante refletido em torno da origem [Conci et al.,
2004], vai percorrer todos os pontos da imagem
realizando uma operagdo de adicdo dos pixels
correspondentes seguida de atribui¢do ao pixel operado
(s,t) do valor maximo da janela (s-x,z-y).

Podemos observar na figura 2(c) o resultado da
dilatacdo. Se o elemento estruturante tem um valor
uniforme, ou seja, todos os pontos do elemento que
estdo ligados possuem a mesma intensidade, entdo esta
operagdo ¢ equivalente a considerar o valor maximo da
regido da imagem, correspondente a forma definida
pelo elemento estruturante, somado a este valor do
elemento estruturante.
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Figura 2 Exemplo de dilatagdo em tons de cinza: (a) imagem
original, (b) elemento estruturante plano em cruz com origem no
centro e (¢) imagem resultante da dilata¢do de (a) por (b)

(=a)

A operagdo de erosdo em niveis de cinza tem as
mesmas caracteristicas da operacdo de erosdo bindria.
A origem do elemento estruturante vai percorrer todos
os pontos da imagem realizando uma operacdo de
subtragdo seguida de atribuicdo ao pixel operado (s,2)
do valor minimo da janela (s+x,t+y)

(408 Xs,t)=min{ A(s + x,t + y) — B(x,y)}

(+x,0+y)e D, ,(x,y)e D,

onde D, e D, sdo os dominio de 4 e B respectivamente.
Assim pela formula acima a origem do elemento
estruturante, vai percorrer todos os pontos da imagem
realizando uma operacdo de subtragdo dos pixels
correspondentes seguida de atribui¢do ao pixel operado
do valor minimo da janela (figura 3) [Conci et al.,
2004].

As operagdes de abertura e fechamento fazem o uso
das duas operacdes basicas da morfologia. A abertura
¢ definida como uma erosdo seguida de dilatagdo com
o mesmo elemento estruturante. A operagdo de
fechamento ¢ definida como uma dilatagdo seguida de
erosdo com o mesmo elemento estruturante.

A abertura da imagem A pelo elemento estruturante
B pode ser definida por: 40 B = (AOB)® B .
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Figura 3 Exemplo de erosdo em tons de cinza: (a) imagem original,

(b) elemento estruturante em cruz com origem no centro e (c)
imagem resultante da erosdo de (a) por (b)

A abertura ¢ anti-extensiva ( 4 - B C 4 ), crescente:
AoBc DoB ¢ idempotente (o
que quer dizer que, repetindo-se a operagdo mais de
uma vez, ndo se tem mais nenhum efeito adicional, ou
seja: (Ao B)oB=AoB)

O fechamento da imagem A pelo elemento
estruturante B pode ser  definida  por:
Ao B=(4® B)®B . O fechamento ¢ extensivo (4 c 4

se Ac D entio

AeBc DeB ¢
idempotente. Essa ultima propriedade quer dizer que,
repetindo-se a operacdo mais de uma vez, ndo se tem
mais  nenhum  efeito  adicional, ou seja:
(4eB)eB=AeB.

Aos pares as operagdes de dilatacdo/erosdo e
abertura/fechamento sdo duais em relagdo ao
complemento e reflexdo em torno da origem [Conci et
al., 2004]. Essa observa¢do ¢ muito importante e
permite construir uma granulometria por abertura e
uma anti-granulometria ou granulometria por
fechamento. A combinacdo de ambas é que vai, em
alguns casos, permitir uma defini¢do precisa do
didmetro e outras medidas dos conjunto em analise.
Essa dualidade significa que:

e B) , crescente: se Ac D entdo

(4B =A@ B e (4eBY =4°oB
onde B ¢ a reflexdo em torno da origem de um
conjunto B: B = {x |x =-b,para be B} ¢ A° denota o
complemento de um conjunto 4 em relagdo ao espago
subjacente: 4¢ = {x |x ¢ A}

A reconstrucio morfologica ¢ uma das operagdes
mais poderosas da morfologia matematica. Ela
acrescenta ao conjunto de operadores o conceito de
conectividade. Em imagens preto-e-brancas essa
operacdo identifica todos os elementos do conjunto
conectados a um ponto ou conjunto de pontos definidos
anteriormente, que na linguagem desta teoria ¢
denominado marcador. O conjunto de pontos
conectados a esse ponto encontrado ¢ denominado de
reconstrucio da imagem inicial a partir do marcador
definido.

Assim, em "linguagem de conjuntos", reconstrucio
morfoldégica de um conjunto, 4, a partir de um
subconjunto, C < 4 , ¢ a unido dos componentes

convexos de 4 que contém no minimo um ponto em C.
O subconjunto C que da inicio a reconstrugdo de 4 ¢
chamado de marcador da reconstrugéo.

A reconstrugdo ¢ realizada a partir de uma seqiiéncia
infinita de dilatagdes do marcador com um elemento
estruturante e interse¢des do resultado com a imagem
inicial até obter-se um resultado estavel (idempotente).

Essa dilatacdo seguida de interse¢do ¢ chamada de
dilatacdo condicional. Como exemplo, suponha que o
marcador seja os pixels das bordas da imagem 1(b),
mostrados na figura 4(a), para melhor ilustrar,
marcados por uma linha vermelha. A reconstrucio
desta imagem a partir deste conjunto marcador resulta
nos semi-graos que foram cortados no processo de
acquisicio da imagem mostrados na figura 4(b). E
possivel entdo subtrair-se a imagem original da
imagem reconstruida a partir dos marcadores para
obter-se uma imagem sem graos cortados, figura4(c).

Uma utilidade imediata desta operagdo num
processo de granulometria automatico ¢ a eliminagdo
de grios ndo inteiros. Esses se deixados na imagem a
ser analisada iriam influenciar no processo de
granulometria por serem automaticamente
interpretados como graos menores.

(a)
Figura 4: Exemplo de reconstrugdo (a) imagem original com os
marcadores compondo a borda da imagem salientados apenas para
ilustracdo; (b)resultado do processo de reconstrugio a partir dos
marcadores; e (c) a imagem s6 com os graos inteiros, resultado da
subtragdo de (a) por (b) [Schouten,2001].

(b) (©

A reconstrugdo tem todas as propriedades da
abertura: ¢ idempotente, crescente e anti-extensiva.
Sendo uma abertura algébrica. A escolha dos
marcadores ¢ uma questdo importante e deles depende
o resultado obtido. Na proxima secdo os marcadores
sdo definidos a partir de aberturas da imagem e a

reconstrucdo serd usada para s6 se considerar graos
inteiros em um processo de '"peneiramento". A
reconstru¢do em tons de cinza é uma operagdo
fundamental no projeto de filtragem conectada
[Schouten,2001].

A abertura, o fechamento e a reconstru¢do

morfologica para imagens em tons de cinza funcionam
da mesma forma que a abertura para imagens binarias.
A tnica diferenca € que, por ser em tons de cinza, ela
utiliza a erosdo ¢ a dilatacdo em tons de cinza, € o
conjunto marcador serdo pixels definidos no nivel
maximo (255 neste caso).

Granulometria em Tons de Cinza

A contagem e medicdo de grios (granulometria),
problema considerado neste artigo pode ser tratado



usando morfologia matematica, pois, através desse
método, podemos simular o processo de peneiramento.
Para isto utilizamos “peneiras virtuais”, onde
processamos uma imagem por uma "familia" de
elementos estruturantes. (A, B). Essa familia é definida
pela multiplicagdo de todos os elementos de B por um
numero positivo A, de forma a produzir um conjunto
continuo AB = { Ax, x € B }.

O resultado dessa contagem ¢é resumido na curva
granulométrica ou histograma de distribuicdo de
tamanhos, que ¢ uma fun¢do do niimero de gréos pelos
seus respectivos tamanhos geralmente representados
pelo seu diametro, ou sua classe ¢.

Essa curva granulométrica pode ser aproximada pela
operagdo de abertura da imagem por uma familia de
elementos estruturantes (A, B). (conjunto de aberturas
crescentes de tamanho A=2, 3, 4, ... onde B seria o
elemento estruturante inicial e AB pode ser, entendido
como uma medida do tamanho do elemento
estruturante). A medida que aplicamos esta sequéncia
de aberturas na imagem, os grdos vdo diminuindo até
eventualmente desaparecer.

Estas operacdes de abertura e posterior reconstru¢ao
dos grios restante correspondem a passagem da
imagem por “peneiras virtuais”. Pode-se fazer uma
analogia entre a forma e o tamanho do elemento
estruturante usado na abertura com as formas e
tamanhos das malha desta peneira. Conforme os grios
presentes na imagem vao passando por estas malhas
“yirtuais”, na imagem eles irdo desaparecendo. Apods a
aplicacdo da abertura com um determinado elemento
estruturante, ¢ feita uma subtracdo entre a imagem do
passo anterior e atual e os grados inteiros que
desaparecem neste passo vao sendo marcados com o
tamanho A do elemento estruturante AB.

Para uma familia de elementos estruturantes
convexos (A, B), um sub-conjunto 4 do espago
Euclidiano E=R‘ ¢ para A >0, uma granulometria ¢
definida como o mapeamento A—;(4) onde

Wi(A)=A4°AB= U { AB,, x€E, AB, C 4}.
Uma granulometria y; deve satisfazer as condi¢des
[Matheron, 1975] :
I-yy(4)=A,ese A= pentio y; (4) C y, (A).

2-Paral>0eCc D, v, (C)c (D).
3-ParaA2pu >0, vy (W (A))=yu (Wi (4) )=y (A)

A primeira propriedade indica que os conjuntos
transformados tem cada vez menos material. A
segunda propriedade indica que o resultado de uma
parte do conjunto deve estar contido no resultado do
todo. E um aspecto importante no caso de usar-se
amostras com niveis de resolugdo diversas, pois partes
do solo devem estar contidas na representag¢ao do todo.
A terceira propriedade considera que o resultado de
duas operagdes com aberturas consecutivas deve
produzir o mesmo resultado independente na ordem em
que ¢ feito, e igual ao resultado do 1ltimo
peneiramento.

Nas figuras 5 a 7, exemplifica-se o funcionamento
do algoritmo de granulometria através de um exemplo.
Para simplificar as imagens, todos os pixels brancos
sdo considerados como sendo do tom 255 e este valor é
omitido nas figuras 5 e 6. Consideramos a imagem da
figura 5(a) como entrada do algoritmo, e a familia AB
como um conjunto de elementos estruturantes de
formas quadradas e tom constante 1, sendo A o
tamanho deste elemento. O algoritmo comega
aplicando uma abertura com um elemento estruturante
2x2. O resultado desta abertura pode ser visualizado na
figura 5(b), onde sdo eliminados todos os graos e partes
de graos onde esse elemento ndo se encaixa.

@ ) ©
Figura 5: Exemplificando as etapas da granulometria: (a) Imagem
original, (b) Imagem com abertura por elemento quadrado 2x2, (c)
Imagem final da primeira etapa: resultante de um processo de
reconstrugdo dos graos.

O resultado da abertura da imagem pelo elemento
AB é usado em um processo de reconstru¢do do grios
ou subtra¢do condicional. Essa reconstrugdo ¢ feita
considerando se alguns vizinho aos pixels que restaram
na imagem 5(b) estavam presentes na imagem original.
Os vizinhos considerados podem ser os 4-pixels
conectado a cada um dos pixels acessos ou os 8 pixels
vizinhos a esses pixels. Esse processo de defini¢do da
vizinhanga pode ser associado ao uso de elementos
estruturantes 3x3 em cruz ou 3x3 quadrados,
respectivamente [Conci et al., 2004].

A reconstrucdo corresponde a dilatacdo da imagem
5(b) pelo elemento estruturante seguida de intersegdo
com a imagem original, at¢ a idempoténcia (o que
geralmente € conseguido em apenas duas passadas). O
resultado da reconstru¢do corresponde a imagem 5(c),
onde tem-se "inteiros" todos os graos que ficaram
retidos na "peneira". Depois fazendo-se a subtragdo do
conjunto da figura 5(a) pelo da figura 5(c) pode-se
obter o nimero de pixels que desapareceram neste
primeiro passo. Eles sdo marcados em uma imagem
inicialmente vazia, que serda a imagem de saida do
algoritmo, como podemos observar na figura 6(c), ou
sera usada para gerar o grafico da figura 7 (onde o
valor do lado A do elemento estruturante, AB, sera
usado no eixo horizontal e na vertical tem-se o numero
de pixels que desaparecerem na iteragao)

@ ®
Figura 6: Continuando a exemplificaras etapas da granulometria:
(a) Imagem resultante da abertura por elemento quadrado 3x3, (b)
Imagem resultante do processo de reconstrug¢do dos graos, e (c)
imagem final com a marcag@o do ponto onde os pixels desaparecem.




A imagem inicial da segunda iteracdo ¢ a da figura
5(c), agora a "malha virtual" cresce, ou seja, ¢ aplicada
a abertura com um elemento estruturante maior. Neste
caso, o tamanho seguinte ¢ 3x3. A figura 6(a) mostra a
imagem resultante dessa abertura. Depois o grio ¢
reconstruido obtendo-se a figura 6(b), que corresponde
a esta imagem depois de aplicada a abertura. Da
mesma forma que na iteragdo anterior, essa imagem ¢€
subtraida da imagem inicial da iteracdo, figura 5(c), e
os pixels que desapareceram da imagem, nesta iteracao,
sdo marcados em uma imagem resultante, figura 6(c),
que neste exemplo ja possui inclusive as marcacdes da
proxima iteragao.

Na terceira etapa, ndo ilustrada, o tamanho do
elemento estruturante passa a ser 4x4. A figura 6(b) é a
imagem de entrada desta ctapa; essa imagem depois
aberta por um elemento estruturante 4x4 apresenta
todos os pixels excluidos, terminando o processo. Se
isto ndo tivesse acontecido neste momento, as etapas
continuariam da mesma forma até que se chegasse a
uma imagem sem nenhum pixel ligado. Como nas
etapas anteriores sdo feitas as marcacdes dos pixels que
desapareceram apds a abertura e reconstrucao.

O resultado final da granulometria [Matheron, 1975]
¢ obtido através do grafico da figura 7, que ¢ calculado
a partir das marcagdes com a etapa em que 0s graos
desapareceram, figura 6(c). Assim ¢ calculado o
histograma desta imagem que indicard o numero de
pixels que desapareceram em cada passo. Este
histograma esta representado na figura 7, em relagdo ao
tamanho do elemento estruturante do passo em que 0s

Numero de pixels
21 1
18
15
12

9

19

10 11

6
3
0

pixels desapareceram versus o numero de pixels a

desaparecerem.
Figura 7: Histograma obtido a partir da imagem 6(c).
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Depois de calculado este histograma, € necessario
calcular a curva granulométrica. Se o objetivo for
considerar a curva granulométrica na forma de ntimero
versos didmetro de grdos, o numero de pixels
desaparecido em cada passo (no histograma da figura
7) deve ser dividido pela area do grdo que desaparece
no passo. Isto porque a abertura de uma imagem por
um elemento estruturante quadrado 2x2, por exemplo,
faz com que desaparecam desta imagem todos os graos
com area menor do que a area deste elemento
estruturante. Como no método, utiliza-se uma
seqiiéncia crescente de aberturas (2, 3, 4, ...), os gréos
que somem em cada passo sdo sempre relacionados

com o tamanho do elemento estruturante utilizado. O
resultado inteiro deste célculo indicaria o nimero de
grios presentes na imagem com tamanho (didmetro)
imediatamente menor do que o valor deste passo (que
corresponde ao valor do lado do elemento
estruturante). Essa é a forma usada para fazer o que ¢
chamado de granulometria por nimero [Conci et al.,
2004]. Entretanto essa forma de defini¢do da curva
conduz a erros se, como neste exemplo, o formato dos
graos nao for uniforme, pois como considerar a area do
grdo que se os graos que desaparecem no passo podem
ter diversas areas.

Repare que na figura 5 ao se passar o elemento
estruturante 2x2, do passo 1 desapareceram na imagem
grdos com area de 1, 2 ou 3 pixels. Assim os grdos com
forma de 2x1, 1x2, ou em L, presentes também
"morrem", com os graos de 1 pixel. O nlimero de graos
seria contato errado se essas diferentes areas fossem
consideradas iguais. O mesmo ocorre em todos os
passos. Ao se passar o elemento estruturante 3x3, do
passo 2, vao "morrer" graos com area de 4 a 8 pixels. E
ao se passar o elemento estruturante 4x4, "morrem"
graos de areas de 9 a 15. A relacdo entre o numero de
pixels que desaparecem na imagem e o numero de
graos, nao poderia ser considerado corretamente, sendo
mais adequado usar-se outras formas de medidas para a
granulometria, como por exemplo a area. Se fosse
mesmo assim necessario uma granulometria por
nimero seria mais adequado fala-se em faixas de
valores, que valores precisos, como indicado na tabela
1 para este exemplo.

passo pixels numero aproximado de graos:
desaparecidos
1 10 6/1 a6/3 -de 2 a6 grios
2 19 19/4 a 19/8 - de 4 a 2 grios

3 11 11/9 a 11/15 ou seja 1 ou 0

Tabela 1: Faixa de graos que desaparecem nas iteragdes do
algoritmo ao ser processada a imagem da figura 5(a)

Observa-se que, com essa interpretagdo, ¢ possivel
descrever de maneira aproximada uma curva
granulométrica cujos resultados podem ser facilmente
comparado com as imagens utilizadas. Assim, embora
na maioria das aplica¢des ndo seja recomendado o uso
de uma curva granulométrica por nimero essa sera a
forma utilizada nos exemplos deste trabalho, pela
facilidade de comprovacdo visual dos resultados
obtidos.

Resultados

A aplicagdo implementada para analise
granulométrica foi desenvolvida em C++, empregando
paradigmas da orientagdo a objetos. As classes que
representam os filtros utilizados para o processamento
das imagens foram desenvolvidos em dllI’s. Estas
fazem uso de uma biblioteca de visualizagdo e
processamento de imagens chamada CxImage
[Pizzolato, 2003], bem como de uma biblioteca de
manipulagdo grafica chamada GraphCtrl [Yuantu



Huang, 2000] e de uma biblioteca de desenho de
tabelas chamada GridCtrl [Maunder, 2002] que serdo
utilizadas na exibicdo dos resultados. Todas essas
bibliotecas sdo de cddigo aberto e se encontram
disponiveis na Internet.

Inicialmente foram implementadas as operagdes
morfoldgicas binarias basicas (erosdo e dilatagdo), a
abertura e, posteriormente, a granulometria [Conci et
al., 2004]. Como as imagens a serem analisadas neste
trabalho ndo sdo binarias, pudemos observar que, ao
torna-las binarias, muita informacdo era perdida antes
do processamento como, por exemplo, informagodes de
contorno, fazendo com que grdos que se mostravam
independentes na imagem original ficassem unidos na
imagem inicial utilizada como entrada para o algoritmo
de granulometria. Isto pode ser observado a partir da
analise da figura 8(a) ¢ de sua imagem binaria
correspondente, figura 8(b).
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Figura 8: Exemplo de imagem granular: (a) Imagem original e (b)
Imagem binarizada

Deste modo, como a morfologia matematica binaria
ndo se mostrou uma boa solu¢do para imagens em tons
de cinza, optou-se por implementar os operadores da
morfologia matematica em tons de cinza, o que faz
com que a imagem de entrada do algoritmo perca
menos informag¢ao antes de ser processada.

Com relagdo ao elemento estruturante, neste
algoritmo inicial, fizemos varios testes quanto a sua
forma e quanto aos valores de suas intensidades.
Inicialmente, utilizamos somente o elemento
estruturante quadrado e variamos os valores das
intensidades, comecando de 1. Um valor que se
mostrou interessante nos testes foi o de intensidade 50
para representar os pixels ligados do elemento
estruturante. Depois foram testados elementos
estruturantes com formatos de circulo e losango (com
todos os angulos iguais). Isto foi feito para permitir que
graos com estas formas fossem detectados com mais
facilidade. Assim, ao se iniciar o processo da
granulometria, o usuario tem a op¢do de definir a
forma que melhor representa os grdos presentes na
imagem. Como veremos a seguir a forma da familia
usada nas aberturas ¢ um aspecto fundamental.

Para validar o algoritmo proposto, executamos a
granulometria em imagens com resultado facilmente
verificaveis (nimero de formas e seus respectivos
diametros). Estes testes sdo apresentados a seguir, onde
verifica-se inicialmente a aplicabilidade do método
proposto com imagens sintéticas, com todos os dados

conhecidos para poder validar os resultados e
identificar os problemas existentes nas imagens reais.
Desta forma construiu-se imagens com graos juntos e
de formas distintas, sobrepostos parcialmente e
totalmente (em diversos niveis). Todas as imagens
sintéticas possuem resolugdo de 300 x 250 pixels e 256
tons de cinza. Até o exemplo 5 ndo ¢ feita a etapa de
reconstru¢do do grio, pois os grios tem exatamente as
formas dos elementos estruturantes usados.

No primeiro exemplo (figura 9) sdo utilizados graos
quadrados, dispostos juntos € com pequenas partes
sobrepostas por outros graos. A descri¢do completa dos
graos do exemplo 1 estd mostrada na figura 10. Na
figura 11 sdo vistos os resultados obtidos pelo
programa tendo como entrada a imagem do exemplo 1,
utilizando elementos estruturantes quadrados. Como
pode-se observar estes resultados sdo 100% corretos.

Figura 9: Exemplo 1 - grios quadrados com pequenas partes
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Figura 10: Curva granulométrica do exemplo 1
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Figura 11 Curva granulométrica do exemplo 1 obtida pelo
programa

No exemplo 2, tem-se um teste semelhante, mas com



graos em formato de losango (figural2). A descricao
completa dos grdos estd na figura 13 e os resultados
calculados pelo programa utilizando elementos
estruturantes em forma de losango, podem ser vistos na
figura 14. Como podemos observar através da analise
dos graficos das figuras 13 ¢ 14, o método demonstrou-
se eficiente, calculando de maneira correta o niumero de
graos de formas losangulares com poucos contados e
sobreposicdes.

Figura 12: Exemplo 2: grios losangulares com pequenas partes
sobrepostas
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Figura 13: Curva granulométrica do exemplo 2
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Figura 14: Curva granulométrica do exemplo 2 obtida no
programa

No exemplo 3, tem-se novamente formas quadradas
(figura 15), mas agora possuindo grdos totalmente
sobrepostos ou com mais de 50% de sua area
sobreposta. Comparando os dados da imagem (figura
16) com os resultados obtidos pelo programa usando
elementos estruturantes quadrados (figura 17) podemos
observar que, o método falhou em grdos menores e
teve um acerto maior nos graos maiores. Isto deve-se

ao fato de alguns grios menores presentes na imagem
estdo dispostos atrds ou sobre os grios maiores,
fazendo assim com que estes grdos ndo tenham sido
identificados pelo algoritmo. Em um método manual
(ou feito através de peneiras) existe a possibilidade de
se mover as peneiras até que graos que estdo em algum
momento sobrepostos se movam de forma a cair nos
buracos das peneiras equivalentes ao seu tamanho,
sendo, identificados de forma precisa. Este erro no
método proposto era esperado, uma vez que nio existe
esta flexibilidade na andlise por imagens. Uma
proposta para resolver este problema ¢ a de se capturar
ndo s6 uma, mas varias imagens correspondentes a
mesma amostra de grios, com estes em posicdes
diferentes e tirar uma média dos resultados destas
imagens, usando uma granulometria por medida e
normalizada.

Figura 15: Exemplo 3:de graos quadrados com grandes partes ou
totalmente sobrepostos
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Figura 16: Curva granulométrica do exemplo 3.
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Figura 17: Curva granulométrica do exemplo 3 obtida a pelo
programa

No exemplo 4, faz-se um teste semelhante ao
anterior, mas com graos em formato de losango (figura



18). Comparando os graficos das figuras 19 e 20 tem-
se uma analise equivalente ao exemplo anterior que
possuia as mesmas complicagdes para as imagens com
graos quadrados. Da mesma forma, tem-se as mesma
limitagdes e erros nos menores graos.

Figura 18: Exemplo 4: graos losangulares com grandes partes
sobrepostas ou totalmente sobrepostos
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Figura 19: Curva granulométrica do exemplo 4
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Figura 20: Curva granulométrica o exemplo 5 obtida do
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programa.

A proxima complexidade inserida nos testes foi
adicionar a uma mesma analise grdos de varios
formatos ndo perfeitamente iguais os elementos
estruturantes usados na andlise (quadrados), para
aproximar as imagens de casos reais mais complicados
que englobem grdos de formatos diferentes. No
exemplo 5 ¢ usada a imagem da figura 21. Nesta
imagem observamos quadrados com as bordas
arredondadas de dois tamanhos distintos, retangulos
dispostos tanto em pé como deitados e trapézios. Os
quadrados menores possuem 30 pixels de didmetro

enquanto o0s maiores possuem didmetro 44, os
retangulos e os trapézios possuem didmetro 40, ambos
possuem 30 pixels na menor distdncia entre os seus
dois lados.

Nas figuras 22, 23 e 24 tem-se os resultados manuais
e da granulometria usando o programa sem e com
reconstrucdo dos grdos. Podemos observar na figura 23
que alguns grdos menores inexistentes  sdo
identificados, o que também acontecia no caso dos
algoritmos em branco e preto antes da inclusdo da
reconstrucdo [Conci et al., 2004]. Esses falso grios
menores sdo na realidade partes do contorno dos graos
onde as familias de elementos estruturantes ndo se
encaixam. Podemos observar que ao incluir o processo
de reconstrucdo (figura 24) esses falsos graos
desaparecem.

Observamos ainda nos graficos dessas figuras que
todos os grdos foram identificados como tendo um
tamanho menor do que o tamanho real. Isto acontece
porque, como o elemento estruturante usado (no caso o
quadrado), ndo representa perfeitamente a forma dos
graos da imagem, o menor elementos estruturante a nao
caber no grao fard com que todo o grao seja perdido
durante a execugdo do método. Os graos de didmetro
44 foram identificados como tendo diametro 38. Isto se
deve ao fato do algoritmo reconhecer, para este caso
(elemento estruturante quadrado), o maior quadrado
que se encaixa dentro da area do grdo. Esta
caracteristica fez também com que os gréos
retangulares ¢ com formatos de trapézios (de didmetro
40) tenham sido identificados como tendo didmetro 30
que, como havia sido mencionado, ¢ a menor distancia
entre seus dois lados. Para obter-se a diagonal real, isso
¢ a que ¢ definida como maior distancia entre dois
pontos quaisquer de um objeto, deve-se usar a
granulometria por fechamento ou anti-granulometria.

Figura 21: Exemplo de graos com formatos distintos porém
parecidos com um quadrado

No ultimo exemplo usa-se uma imagem real: a
obtida a partir da figura 1(a) por eliminacdo dos graos
conectados a borda da imagem (figura 25). Neste pre-
processamento observa-se que, como os grios da
imagem se tocam no processo de eliminacdo de graos
conectados a borda sdo eliminados alguns gréos a ela
conectados através de outros grios e ndo diretamente.



Assim uma melhoria neste processo deve ser
introduzida como um tratamento prévio da imagem
para eliminar alguns desses contatos. Na figura 26 sido
encontrados 139 gréos, pois neste casos os nucleos
interiores em diferentes tons sdo contatos como outros
graos.
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Figura 22: Curva granulométrica do exemplo 5
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Figura 23: Curva granulométrica do exemplo 5 obtida sem

reconstrucao
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Figura 24: Curva granulométrica do exemplo 5 obtida com
reconstru¢ao
Conclusiao

A partir dos testes realizados observou-se que, para
imagens onde a forma dos grdos pode ser descrita de
maneira homogénea por um elemento estruturante
crescente, o método proposto tem uma resposta
excelente, mesmo quando alguns grdos se tocam ¢ se
sobrepdem parcialmente. Para o caso de grios se
sobrepdem totalmente ou em grande parte de sua area,
o método comeca a apresentar alguns problemas. Em

Figura 25: Exemplo 6 imagem obtida a partir da figura
1(a) por eliminagdo dos graos conectados a borda da
imagem.

imagens onde existem graos de diversos formatos
distintos, devemos escolher o formato que melhor se
assemelha a todos os grios presentes na imagem, para
assim ter o minimo de perda de informagdes possivel.
Um problema observado no método adotado ¢ o tempo
de processamento, pois este ¢ dependente tanto das
dimensdes da imagem quanto do tamanho do maior
grdo presente, como a imagem ¢ um conjunto
desconhecido, esta dependéncia pode complicar a
utilizagdo deste método. Apesar destas consideracdes,
os resultados obtidos com as imagens testadas em
relacdo aos seus valores reais correspondentes foram
muito interessantes.

Na forma da granulometria utilizada (por abertura)
os diametros dos grios encontrados sempre estdo
relacionados as suas menores dimensdes interiores.
Isso porque a abertura se caracteriza por eliminar os
grdos onde o elemento estruturante utilizado ndo mais
se encaixa. Se fosse desejado caracterizar como
didmetro por exemplo a maior dimensdo do grdo uma
eliminacdo baseado no fechamento (antigranulometria)
deve se mostrar mais adequada.

Finalmente, como esse método permite adaptagdes a
praticamente  qualquer  aspecto, entender a
aplicabilidade das técnicas implementadas ¢
fundamental. Um sistema voltado a identificar como
diferente, areas em diferentes tons, ndo pode se mostrar
adequado quando o que se quer ¢ contar graos com
interior complexo caracterizado por areas em tons
distintos como os da figura 25. Neste caso a escolha de
um elemento estruturante que tenha mesma variagao de
tons interiores que o grdo resolveria o problema. Ou
seja ¢ fundamental entender as caracteristicas da
metodologia para que um sistema que a use tenhas suas
potencialidades corretamente utilizadas, ja que a
morfologia matematica pode facilmente incluir muitas
possibilidades e ser adaptada a praticamente qualquer
circunstancias.
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Figura 26: Curva granulométrica do exemplo 6 com
reconstrucao
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