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Resumo

Na area de andlise de imagens, se excluirmos alguns
problemas especificos de reconhecimento de padrbes e
restauracdo, a maioria das aplicagbes precisa
caracterizar os objetos descritos pelas imagens usando
a nocdo de forma ou estrutura. Essa estrutura ou forma
€ definida como o conjunto de relacfes entre elementos
ou partes dos objetos, ou sgja, sua morfologia. Desde
seu surgimento em 1964, na Ecole des Mines de Paris,
a morfologia matemética vem se desenvolvendo
continuamente e sendo usada para quantificar e
qualificar minérios em petrografia, auxiliando a
previsdo das propriedades de solos e rochas. Este
trabalho aborda os fundamentos tedricos da morfologia
matematica utilizados na implementacdo de um sistema
de caracterizagdo de gréos por imagens binérias (preto
e brancas). Discute-se, por exemplos, os resultados
obtidos com as duas técnicas implementadas,
verificando seus limites de aplicabilidade na resolugéo
do problema petrogréfico de contagem e medicdo de
gréos congtitutivos dos meios porosos.

Introducéo

A contagem e a medicdo de grédos de um dado
material (figura 1) é (til a engenheiros, gedlogos,
agronomos, hidlogos e ceredlistas, pois, através da
determinacdo de freqiéncias de tamanhos de gréos,
presentes em amostras do material, € possivel conhecer
suas propriedades ou classificar um produto.

Para rochas, a contagem e a medicdo de gréos é feita
através de peneiras, ou sgja, fisicamente. A aplicacdo
que ilustra este trabalho surgiu da idéia de automatizar
este processo, através da andlise das imagens que
contenham graos, o que é tratado pela granulometria.

Na medicdo de gréos usando imagens pode-se
estabelecer um paralelo com o0 processo que ocorre no
pengramento fisico de um material. Depois do
peneiramento, tem-se dois conjuntos de materiais. o
material que ficou retido e 0 que passou pela peneira.

*Redlizacdo SBMAC, apoio FAPESP, URL:
http://www.ibil ce.unesp.br/eventos/cnmac/home.htm
tBolsistas do laboratério ADDL abs

= " 165 DO
a8 g %0

(b) (© (d)
Figural: Imagensreais a serem anaisadas. Em (a) gréos
tridimensionais usadas para caracterizaggo de substratos de
barragens; em (b) gréos tridimensionais usadas para defini¢do das
caracteristicas de agregados na engenharia civil, em (c) laminas de
células cancerigenas e em (d) e secdo histol 6gica dos olhos, todas
exemplos onde o estudo de granulometria é relevante

Pela contagem ou pesagem dos materiais retidos na
peneira é estabelecido um histograma que relaciona o
tamanho do gréo com a quantidade de materia. Este
histograma é chamado de curva granulométrica. Assim,
uma definicdo adequada do tamanho do gréo presente
no material depende da escolha do conjunto e do
tamanho de malhas de peneiras usadas.

Existem diferentes formas de representacdo das
curvas granulométricas em fun¢do do tamanho das
peneiras. por nimero ou por medidas (peso ou
volume). No primeiro caso, a cada particula € atribuido
0 mesmo vaor, independente de sua massa, ou
tamanho. No segundo caso, a cada particula € atribuido
um valor proporcional a medida considerada. Esses
dois tipos de granulometrias algumas vezes s&0
relacionéveis.

Neste trabalho consideramos a primeira forma de
granulometria. Faremos, na proxima secdo, uma
apresentacdo dos conceitos da teoria a ser utilizada.
Depois apresentaremos, por exemplos, a idéia de dois
agoritmos de granulometria usando imagens. A
medida que sd0 comentadas as limitages de cada
algoritmo prossegue-se explicando os detalhes que
incluido solucionardo estas limitagbes. Diversos
exemplos, para ilustrar as aplicabilidades de cada
algoritmo apresentado, sdo analisados.

Morfologia M atemética

A morfologia matemética foi desenvolvida para ser
utilizada como uma ferramenta para a extragdo de
elementos das imagens e sua descricdo em termos da
qualificacdo das formas relevantes e sua quantificacéo
[Serra, 1982]. Esta teoria sempre associa as imagens
aos objetos que elas representam e as operacOes



redlizadas aos elementos que se procura nestas
imagens. Usa a idéia de que perceber uma imagem é
transformé-la. Assm seus operadores sdo construido
para produzir efeitos e usando um conjunto minimo de
operacOes elementares denominadas dilatacdo e erosdo.

A morfologia digital € uma ciéncia relativamente
recente [Matheron, 1975], o0s matematicos a
consideram uma aplicacdo da teoria de conjuntos. A
morfologia oferece uma abordagem ndo linear bem
estruturada, unificada e poderosa para numerosos
problemas de processamento de imagens [Soille,
1999].

Os conjuntos em morfologia matemética
representam as formas dos objetos em uma imagem.
Por exemplo, o conjunto de todos os pixels, suas cores
€ sua posicdo em uma imagem digital é uma descricdo
completa dessa imagem.

Em imagens binarias, os conjuntos em questdo sdo
membros do espago bidimensiona de nimeros inteiros
7%, em que cada elemento do conjunto é um vetor
bidimensiona cujas coordenadas sdo as coordenadas
(i,j) (por convencdo) dos pixels ligados ou relevantes
da imagem. Por exemplo, se considerarmos relevantes
0s pixels pretos e o inicio dos eixos a posi¢éo central, a
imagem da figura 2(c) é equivaente ao conjunto
{(111)1(17-1):('11'1)1('111)}

Sejam A e B dois conjuntos de Z2, com componentes
a=(a;,ay) e b=(by,by), respectivamente. A trandacio
de A por uma distdncia x ou um vetor X = (X1, Xo),
denotada por (A), € definida como:

(A), ={c|c=a+ x, para A}

A reflexdo em torno da origem de um conjunto B, é
denotada por B e é definida como:
B ={x|x=-b, para

al

b1 B}

O complemento de um conjunto A é denotado por
A, Esse conjunto € definido como todos os elementos
do espago subjacente, que ndo sdo elementos de A:

A° ={x|xT A}

Finalmente, a diferenca entre dois conjuntos A e B,
denotada por A-B (ou A/B) é definida como:

A- B={x|x1 A xl B} =ACB°

No caso dos meios porosos, uma abordagem por
teoria dos conjuntos também é possivel. Neste caso
vamos chamar de conjunto A os componentes solidos
do meio (a unido de todos os grdos) e A° sua rede de
poros. Este meio ser4 "escaneado" por uma figura B
que fara o papel de uma sonda coletora de informaces.
No caso de granulometria, mais do que um conjunto B
pensaremos em escolher um familia b de possiveis
"sondas'. A relacdo mais elementar entre esse "coletor
de informagdes' e 0 meio € que B deve estar contido no
conjunto de gréos do meio, isso éB1 A, ouBC Al A&
[Matheron,1967].

Um conceito importante na morfologia matemética é
a definicdo de elemento estruturante. O elemento
estruturante € um conjunto definido e conhecido (forma
e tamanho), que é usado em uma operacdo com O
conjunto da imagem para sdientar determinado

aspecto. Ele pode assumir vérias formas dependendo
do efeito a ser obtido e sua origem pode ser definida
em qualquer ponto. Alguns elementos estruturantes séo
exemplificados na figura 2. Fazendo uma analogia com
0S meio porosos, elementos estruturante convexos
podem ser visualizados como os "coletores de
informactes’ do meio.
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Figura 2: Exemplo de elementos estruturantes: (a) em coluna, (b) em
linha, (c) em cruz e (d) quadrado
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Figura 3: Convencao de representacdo dos pixels paraimagens
binarias: (a) pixel ligado (branco), (b) pixel desligado (preto) e (c)
origem do elemento estruturante

A dilatacdo daimagem A pelo elemento estruturante
B é uma das operacbes fundamentais da morfologia
matematica e pode ser (ha outras definicdes
equivalentes) definida por:

AAB={x|(B),C A &

A dilatacgo expande uma imagem tornando-a maior
ou igua & imagem original, conecta formas separadas
na imagem e preenche 0s vazios menores que O
eemento estruturante. Tem diversas propriedades
interessantes. A dilatacdo é uma transformagdo
continua, comutativa:

AAB=BAA
e associativa

AA (B,AB,)=(AA B,)A B,

A dilatacdo é crescente, ou sgja

S X1 VY etfio XABI YAB

A dilatagdo € extensiva, isto € o conjunto
transformado contém o conjunto inicial: AT (AA B).

Outra operacdo fundamental da morfologia
matematica é a erosdo da imagem A pelo elemento
estruturante B , que pode ser definida por:

AQB ={x|(B), I A}

A erosdo ndo é comutativa, nem associativa. Mas ela
€ uma transformagdo continua e crescente como a
dilatacdo, isso &

Se X1 Y entdo XQBI YQB

Para a erosdo a seguinte propriedade também é
vélida:

(AQB,)QB, = AQ(B, A B,)

A eo0sdo € anti-extensiva, ou sga, a imagem
resultante da eroséo € sempre menor ou igual a imagem
original: (AQB) I A. Intuitivamente a erosio remove
todas as posicfes onde o0 elemento estruturante néo
couber completamente e aumenta vazios interiores
presentes nas formas da imagem.



A operacdo de abertura faz o uso das duas
operagdes bésicas da morfologia. E definida como uma
erosdo seguida de dilatagdo com o0 mesmo elemento
estruturante. A operacéo de erosdo remove os ruidos e
0s contornos dos objetos menores que o elemento
estruturante. Na etapa seguinte, a dilatacdo val
restaurar a maioria dos pixels do contorno sem
restaurar os pixels referentes aos ruidos. Assim, a
operacdo de abertura suaviza o contorno de uma
imagem, elimina pontas agudas e formas presentes na
imagem que sgam menores do que o elemento
estruturante utilizado nesta abertura.

A abertura da imagem A pelo elemento estruturante
B pode ser definida por:

A-B=(AQB)A B

A abertura é anti-extensiva( X e B1 X)), crescente:
Se X1 Y entdlo XoBI YoB

e idempotente, 0 que quer dizer que, repetindo-se a
operacdo mais de uma vez, ndo se tem mais nenhum
efeito adiciona, ou sga

(AcB)oB=AoB

A contagem e medicdo de grdos, problema
considerado neste trabaho através da granulometria,
pode ser tratado usando morfologia matematica, pois,
através desse método, podemos simular o processo de
peneiramento. Paraisto, utilizamos “peneiras virtuais’,
onde processamos uma imagem por uma “familia' de
elementos estruturantes. (I , B). Essa familia é definida
pela multiplicagdo de todos os elementos de B por um
numero positivo |, de forma a produzir um conjunto
continuo | B={1x,x1 B}.

Granulometria Simples

Um conceito importante na granulometria é o de
curva granulométrica (ou histograma de distribuicéo de
tamanhos) que é uma funcdo do ndmero de gréos (ou
outra medida) pelos seus respectivos tamanhos.
Representamos 0 tamanho de um grédo pelo seu
didmetro que é definido como sendo a maior distancia
entre dois pontos deste grédo. Podemos observar um
exemplo de curva granulométrica por nimero de gréos
nafigura4.
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Figura 4: Exemplo de curva granulométrica: (a) Imagem de entrada e
(b) Curvagranulométrica

Essa curva granulométrica pode ser aproximada pela
operacdo de abertura da imagem por uma familia de
elementos estruturantes (I, B), um conjunto de
aberturas crescentes de tamanho | =2, 3, 4, ... onde B

seria 0 elemento estruturante mostrado na figura 3(c),
ou sgja, | B pode ser, neste caso, o tamanho do lado da
matriz  quadrada que representa o0 elemento
estruturante. A medida que aplicamos esta sequéncia
de aberturas na imagem, os gréos vao diminuindo até
eventual mente desaparecer.

Estas operacdes de abertura correspondem a
passsgem da imagem por “peneiras virtuas’,
considerando a forma e o tamanho do elemento
estruturante usado na abertura como  sendo
equivalentes as formas e tamanhos dos buracos da
malha desta peneira. Conforme os gréos presentes na
imagem vao passando por estes buracos da “peneira
virtual”, na imagem, eles irdo desaparecendo. Apos a
aplicacéo da abertura com um determinado elemento
estruturante, é feita uma subtracdo entre a imagem do
passo anterior e atual e os pixels que desaparecem
neste passo vao sendo marcados, atribuindo-lhes o
tamanho | do elemento estruturante | B.

Para uma familia de elementos estruturantes
convexos (I, B), um sub-conjunto A do espaco
Euclidiano E=A ® e para| >0, uma granulometria é
definida como o mapeamento | ® y | (A) onde

yi (A =A-1B= E{IB,,xl E, B A

Uma granulometria vy,
[Matheron, 1975- p. 24] :
Dyo(A)=A,esel 3 mentdoy, (A)1 ym(A);

(2 paral 3 0eCl D,y, (C)1 y,(D); e
(3 paral 3n¥ 0,y (Y m(A)=Y m(Y1 (A)=Y sipt m) (A) -

A primeira propriedade indica que, a medida em que
Se segue no conjunto de aberturas (peneiramentos),
obtém-se conjuntos que estdo contidos nos conjuntos
dos resultados dos peneiramentos anteriores. Ou em
outras palavras, os conjuntos transformados tem cada
vez menos material.

A segunda propriedade diz que a granulometria de
uma parte do conjunto deve estar contida no resultado
do todo. E um conseqiiéncia direta da abertura ser uma
operacao crescente. Esse resultado serd importante no
caso de usar-se amostras com niveis de resolucédo
diversas. Partes do solo devem estar contidas na
representacdo do todo.

A terceira propriedade estd relacionada com a
idempoténcia da operacdo de abertura. E nos diz que o
resultado de duas operagbes com aberturas
consecutivas deve ser 0 mesmo independente na ordem
em que é feito , e igua ao do peneiramento com a
peneirade malhamaior.

A seguir, exemplificaase o funcionamento do
algoritmo de granulometria através de um exemplo
utilizando uma imagem com gréos de formas
exatamente iguais a familia de e ementos estruturantes
usados.

Neste exemplo, consideramos a imagem binaria da
figura 5(8) como entrada da granulometria. Para a
forma quadrada da familia | B usada, o agoritmo de
granulometria comega aplicando uma abertura com um

satisfaz  as condigdes



elemento estruturante 2x2: o resultado desta abertura
pode ser visualizado na figura 5(b). Este resultado
servira de entrada para a proxima etapa. A subtracdo do
conjunto da figura 5(a) pelo da figura 5(b) mostra os
pixels que desapareceram da imagem nesta primeira
etapa. Eles s8o marcados em uma imagem inicialmente
vazia com o valor do lado | do elemento estruturante
| B usado, como podemos observar na figura 5(c).

Bl "

Figura 5: Exemplo da primeira etapa da granulometria: (a)
Imagem original, (b) Imagem com abertura por elemento quadrado
2x2, (c) Imagem resultante.

Figura 6: Exemplo da segunda etapa da granulometria: (a)
Imagem referente a abertura da primeira etapa, (b) Imagem com
abertura por elemento quadrado 3x3, (c) Imagem resultante

Na segunda etapa, ilustrada pela figura 6, a "malha
virtual" cresce, ou sgja, € aplicada a abertura com um
elemento estruturante maior. Neste caso, o tamanho
seguinte € 3x3. A figura 6(a) é a imagem de entrada
desta etapa; a figura 6(b) corresponde a esta imagem
depois de aplicada a abertura. Da mesma forma que na
etapa anterior, 0s pixels que desapareceram da imagem,
nesta segunda etapa, sGo marcados em uma imagem
resultante (figura 6(c)) que neste exemplo ja possui
marcacles da etapa anterior.

@
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Figura 7: Exemplo daterceira etapa da granulometria: (a) Imagem
referente a abertura da segunda etapa, (b) Imagem com abertura por
elemento quadrado 4x4, (c) Imagem resultante.

Na terceira etapa, ilustrada pela figura 7, o tamanho
do elemento estruturante passa a ser 4x4. A figura 7(a)
€ a imagem de entrada desta etapa; a figura 7(b)
corresponde a esta imagem depois de aplicada a
abertura. Como nas etapas anteriores sdo feitas as
marcagdes dos pixels que desapareceram apls a
abertura (figura 7(c)). Neste exemplo, esta é a Ultima
etapa da granulometria, ja que a entrada da préxima
etapa seria a figura 7(b) que ndo possui elementos a
serem analisadas (imagem ndo possui nenhum pixel
ligado): logo, todas as formas foram "peneiradas’. Se
isto ndo tivesse acontecido neste momento, as etapas
continuariam a acontecer da mesma forma até que se
chegasse a umaimagem sem nenhum pixel ligado.

O resultado final da granulometria [Matheron, 1975]

€ obtido através da curva granulométrica, que é
calculada a partir das Ultimas imagens resultantes das
etapas da granulometria, neste exemplo, resumida na
figura 7(c). Assim é caculado o histograma desta
imagem que indica’)d o numero de pixels que
desapareceram em cada passo. Este histograma esta
representado na figura 8, em relacdo ao tamanho do
elemento estruturante do passo em que os pixels
desgpareceram versus 0 nimero de pixds a
desaparecerem, ou sgja usando como medida o nimero
de pixels.

Hamero de pixels

1 2 3 4
Marcagies dos passos

Figura8: Histograma obtido a partir daimagem 8(c).

Depois de calculado este histograma, € necessario
cadcular a curva granulométrica. Neste exemplo,
consideraremos a curva granulométrica na forma de
ndmero versus didmetro de gréos. Para isso, dividimos
0 numero de pixels desaparecido em cada passo
(histograma da figura 8) pela &ea do grdo que
desaparece no passo (elemento  estruturante
imediatamente inferior ao utilizado neste passo). Isto
porque, como vimos na definicdo de abertura, a
abertura de uma imagem por um elemento estruturante
guadrado 3x3 por exemplo, faz com que desaparecam
desta imagem todos os graos com area menor do que a
area deste elemento estruturante. Como neste método
utilizamos uma sequiéncia crescente de aberturas (2, 3,
4, ...) 0s gréos que somem em cada passo S80 sempre
imediatamente menores do que o tamanho do elemento
estruturante utilizado. O resultado deste calculo indica
0 nimero de graos presentes na imagem com tamanho
(di@metro) imediatamente menor do que o valor deste
passo (que corresponde ao valor do lado do elemento
estruturante). A figura 9 ilustra a curva granulométrica
obtida para este exemplo.

Analisando Imagens Binarias

A aplicagdo implementada para andlise
granulométrica foi desenvolvida em C++, empregando
paradigmas da orientacdo a objetos. As classes que
representam os filtros utilizados para o processamento
das imagens foram desenvolvidos em diI's. Estas
fazem uso de uma biblioteca de visudizacdo e
processamento de imagens chamada CxImage
[Pizzolato, 2003], bem como de uma biblioteca de
manipulacdo gréfica denominada GraphCtrl [Yuantu



Huang, 2000] e de uma hiblioteca de desenho de incremento do exemplo 1. O mesmo resultado de 100%
tabelas chamada GridCtrl [Maunder, 2002] que serdo de acerto ocorreu. Resultados completamente corretos
utilizadas na exibicdo dos resultados. Todas essas sdo obtidos pelo método para qualquer exemplo de
bibliotecas sdo de cddigo aberto e se encontram formas quadradas diguntas, ou sga para formas
disponiveis na Internet.  Inicidmente  foram quadradas e elementos estruturantes quadrados obtém-

implementadas as operagdes morfologicas bindrias se sempre 100% de acerto pelo agoritmo de

bésicas (erosdo e dilatacdo),
posteriormente, a granulometria.

a abertura e
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Figura9: Curva granulométrica

Com relagdo a0 elemento estruturante, neste

algoritmo inicial, fizemos vérios testes quanto a sua
forma. Inicialmente, utilizamos somente o eemento
estruturante quadrado, depois foram testados elementos
estruturantes com formatos de circulo e losango (com
todos os éngulos iguais). Isto foi feito para permitir que
gréos com estas formas fossem detectados com mais
facilidade. Assm, a0 se iniciar o processo da
granulometria, o usuario tem a opcdo de definir a
forma que melhor representa os gréos presentes na
imagem. Como veremos a seguir a forma da familia
usada nas aberturas é um aspecto fundamental .

Para vaidar o algoritmo proposto, executamos a
granulometria simples em imagens com resultado
facilmente verificaveis (nUmero de formas e seus
respectivos didmetros). Caculamos o resultado
esperado e comparamos com os resultados obtidos pelo
método proposto. Estes testes sdo apresentados a
seguir. Todas as imagens usadas (a menos que
comentado explicitamente) possuem a resolugdo de
300 x 180 pixels. No primeiro exemplo, optamos por
testar 0 método com 25 formas quadradas de 5
tamanhos diferentes. A imagem usada para este teste
foi a da figura 10, que possui 5 quadrados de cada
tamanho (os lados sdo: 9, 14, 19, 24, 34 pixels). O
resultado do cdculo feito a partir de elementos
estruturantes quadrados de 2x2, incrementados de 1 em
1 pixel por passada, teve 100% de acerto como €
mostrado natabela 1.

No segundo teste, também foram usadas formas
guadradas, desta vez 30 quadrados com 4 tamanhos em
nimeros diferentes. A imagem usada para este teste foi
a da figura 11. Na tabela 2 € mostrado o nimero de
vezes que cada quadrado aparece na figura e o valor
detectado pelo programa, bem como o valor do seu
lado em pixels. Foi usado o mesmo procedimento de

granulometria simples.

Figura10: exemplo 1 (25 formas quadradas)

didmetro imagem algoritmo
9 5 5
14 5 5
19 5 5
24 5 5
34 5 5

Tabela 1l - Comparacdo entre osvalores dacurva
granulométrica daimagem da figura 10 e os resultados
obtidos a partir do programa.

Figura 11: Segundo exemplo de validagdo com formas quadradas

Considerando outras formas, o losango foi a forma
seguinte a ser andlisada, ja que o usuério, antes da
andlise, pode escolher e usar elementos estruturante
desta formas, se mais adequados as presentes na
imagem (ou graos). A imagem usada para este teste €
mostrada na figura 12, que contém 16 losangos com
suas diagonais nos tamanhos mostrados na coluna
diametro da tabela 3. Neste exemplo, também se
obteve 100% de acerto. Para ser possivel a construcéo
de elementos estruturantes com formas losangulares de
quinas agudas, 0s incrementos neste caso sfo de 2 em
dois pixels a partir de um elemento em cruz 3x3, isto €



apenas tem-se elementos estruturantes de diagona
(impares): 3,5,7,9, etc.

didmetro imagem algoritmo
9 5 5
19 15 15
24 6 6
34 4 4

Tabela 2 - Comparagdo entre os valores da curva
granulométrica daimagem da figura 11 e os resultados
obtidos a partir do programa

Resultado 100% corretos ocorrem para qualquer
nimero de formas losangulares com angulos retos e
diagonais com nimeros impares de pixels. Neste caso
ha uma correspondéncia exata entre as formas do
elemento estruturante da familia usada para fazer a
abertura e as imagens presentes para qual quer tamanho
| do elemento estruturante usado.

Figura 12: Exemplo 3 (validagdo com formas losangulares)

didmetro imagem algoritmo
13 8 8
25 4 4
37 4 4

Tabela 3 - Comparagéo entre os valores da curva
granulométrica daimagem da figura 12 e os resultados
obtidos a partir do programa

Considerando ainda testes com grdos de mesma
forma dos elemento estruturantes, o circulo é a préxima
forma testada (como dito anteriormente, o usudrio pode
escolher o demento estruturante mais adequado as
formas presentes na imagem antes da andlise). A
imagem usada para este teste € mostrada na figura 13,
com 20 circulos com 4 diémetros diferentes: 4 circulos
de didmetro 7; 6 circulos de didmetro 15; 6 circulos de
diametro 23 e 4 circulos de diametro 35. A curva
granulométrica obtida pelo programa, usando
crescimento incremental de graos € mostrada na figura
14. Foram usados incrementos de diédmetros de 2 em 2
pixels, apartir de um diémetro inicial de 3 pixels (onde

0 circulo acaba sendo aproximado pelo elemento
estruturante mostrado na figura 2(c)). Para este
crescimento incremental foi usado um agoritmo de
geracdo de circulos a partir de um dado diametro [7].
No histograma representado na figura 14 pode-se
perceber que, diferentemente dos outros testes com
elementos quadrados e em formato de losango com
lados a 90° (onde em cada passo 0 elemento
estruturante usado cobrem perfeitamente a forma do
gréo presente na imagem) neste caso ndo se tem 100%
de acerto.

Figura 13: Exemplo 4 (validagdo com formas circulares)

O teste com elementos estruturantes com formatos
ndo exatamente iguais aos grédos ndo apresenta o
resultado esperado. Isto se deve ao fato de que quando
as formas ndo se encaixam perfeitamente, pixels de
contorno sdo perdidos durante as operacdes de
abertura. Mesmo quando o formato dos gréos é
uniforme e o elemento estruturante aproxima bem a
forma do gréo, como no caso deste exemplo, pode
ocorrer perdas nos contornos.
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Figura 14: Curva granulométrica do exemplo 4 usando algoritmo
simples.

O mesmo ocorre se o crescimento das familias se fizer
de maneira que o0s elementos ndo se encaixem
perfeitamente nos gréos, havendo perda de partes dos
grdos  maiores na abertura pelos elementos
estruturantes menores. Veja 0 que ocorre por exemplo,
a0 se operar o elemento estruturante da figura 2(c), que
€ 0 primeiro elemento da série de aberturas circulares,
com o gréo em formato circular ampliado nafigura 15.



B

Figura 15: Ampliagdo de um gréo circular. Repare que um elemento
em cruz 3x3, que é o primeiro elemento estruturante da aproximagéo
de gréos circulares ndo se encaixa em muitas posi¢des do contorno,
fazendo com que partes do gréo sejam perdidas.

A perda de partes do gréo faz com que ndo hagja mais
100% de acerto. Pois os pixels eiminados véo sendo
identificados como gréos, a0 mesmo tempo que 0s
gréos  existentes perdem elementos e sgam
identificados como sendo menores do que o0 seu
tamanho real. Assm familias de eementos
estruturantes que ndo se encaixam exatamente em
todos os gréos faz com que alguns gréos inexistentes
sgjam identificados como presentes na imagem
(normalmente os de tamanhos menores). Isto
inviabiliza a utilizacdo deste algoritmo simples quando
o formato do elemento estruturante pode ndo coincidir
exatamente com os dos gréos, ou no caso de gréos
irregulares. Assm, se o propdsito for usar gréos
irregulares ou gréos com formas ndo t&o simples como
os dos primeiros exemplos o algoritmo basico precisa
ser adequado para 0 método que discutiremos na
proxima secéo.

Para respaldar esse argumento, a mesma imagem da
figura 13 foi processada apenas com um conjunto de
elementos estruturantes que eliminam, na erosdo,
completamente os gréos que constam na imagens, ou
sgja, circulos com didmetros com 9, 17, 25 e 37 pixels.
O resultado obtido foi: 8 gréos de tamanho 7, 6 de
didmetro 13 , 6 de didmetro 23 e 4 de diémetro 35.
Neste caso as respostas se apresentam corretas para
todos os didmetros a menos do primeiro, onde 4 gréos
inexistentes naimagem foram detectados.

A seguir, aimagem dafigura 13 foi transformada de
modo a se eliminar nela os 4 circulos menores. Nesta
nova imagem obteve-se com uso dos mesmos
elementos estruturantes (9, 17, 25 e 37 pixels de
didmetro) 4 gréos de tamanho 7, 6 de didmetro 13, 6 de
diémetro 23 e 4 de didmetro 35. Ou sgja, mesmo assim
4 gréos continuam a ser detectados para 0 primeiro
didmetro de peneira, esses correspondem a partes dos
gréos maiores. N8o deixar que essas partes de gréos
maiores sejam eliminados por elementos estruturantes
menores e sggam considerados gréos individuais € o
objetivo principal do segundo agoritmo que
comentaremos na proxima segao.

Granulometria Condicional

Na redlidade, raras sd0 as aplicacfes onde os gréos

tem exatamente a forma dos elementos estruturantes.
Arrumar regras de crescimento da familia de el ementos
estruturantes que acrescente a cada elemento a ser
operado apenas um pixel por passo (em cada posicéo
possivel na horizontal e na vertical) poderia ser uma
solucdo, mas, mesmo se tal regra de crescimento fosse
desenvolvida, o processo de "peneiramento virtua"
seriamuito lento.

Acontece que no peneiramento real s6 sdo separados
gréos inteiros e no processo do agoritmo simples a
operacdo de abertura acaba eliminando partes de gréos
onde o elemento estruturante ndo se encaixa
completamente. Essas partes de grdos € que sio
contadas erroneamente como graos menores na geracao
da curva granulométrica. Para ilustrar isso vejamos 0
gue ocorre se 0s gréos da amostra da figura 7(a) ndo
forem td0 bem comportados, como os da figura 16(a)
por exemplo.

Bl "
Figura 16: Exemplo com gréos irregulares: (a) Imagem original,
(b) Imagem com abertura com elemento quadrado 2x2, (c) Imagem
resultante da subtracdo do conjunto em (a) pelo conjunto em (b)
onde os pixels resultantes sdo marcados com o lado do el emento
estruturante.

Neste caso se for usado o agoritmo simples apds
cada etapa tems-se as imagens mostradas nas figuras
16 (b) e(c) ,17 e 18.

Figura 17: Exemplo com gréos irregulares: (a) Imagem resultante
da primeira etapa, (b) Imagem com abertura por um elemento
quadrado 3x3, (c) Imagem resultante da subtragdo do conjunto em (a)
pelo conjunto em (b)marcada com "3" e as marcagtes do passo
anterior.

m (L]
Figura 18: Exemplo daterceira etapa com gréos irregulares: (a)
Imagem resultante da segunda etapa, (b) Imagem com abertura com
elemento quadrado 4x4, (c) Imagem resultante da subtracdo do
conjunto em (&) pelo conjunto em (b) marcada com "4", além das
marcagdes dos passos anteriores, usada para o histograma.

Se 0 histograma do nimero de pixel's que desaparece
por passo fosse gerado a partir da figura 18(c), agora
teriamos os resultados da figura 19.
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Figura 19 - Histograma obtido a partir daimagem, 18(c),
resultado do algoritmo simples

Este histograma levaria a um resultado errado da
curva granulométrica. Teriamos 14 gréos, enquanto na
imagem real sdo contados apenas 11 gréos. Isso
acontece porque no processo de abertura partes de
gréos sdo contados como se fossem gréos inteiros, o
que é impossivel em um processo de peneiramento
real, onde um gréo fica retido inteiro ou passa na
peneira inteiro, Mesmo que isso ocorra porgque s uma
das dimensdes ficou retida. Uma melhoria na diregdo
de uma solucdo para isso é substituir a etapa de
subtracdo daimagem inicial do passo pela resultante de
cada abertura (imagens 16c, 17c e 18c), por uma
subtracdo condicionada a ndo serem considerados
pixels que tenha vizinhanga em contato com o0s
elementos que ficaram na imagem apds o processo de
abertura. Em outras palavras, a idéia basica de uma
melhoria no agoritmo é ndo se considerar mais partes
de gréos. Deixar presente nas imagens do fina do
processo apenas os graos isolados. Neste caso as novas
imagens seriam as mostradas nas figuras 20 e 21.

il

Figura 20: Exemplo com gréos irregulares e algoritmo de
subtracdo condicional: (a) Imagem original, (b) Imagem do final do
passo, resultado daimagem original subtraida do resultado da
abertura com elemento quadrado 2x2 (figura 16 b), condicionada a so
ser eliminado pixel ndo vizinhos a elementos acessos, () |magem
usada no célculo da granulometria

Figura 21: Exemplo com graos irregulares e algoritmo de
subtracdo condicional: (a) Imagem inicial do passo, (b) Imagem do
final do passo, resultado da subtrago daimagem inicial com o
resultado da abertura com elemento quadrado 3x3, condicionado a s6
ser eliminado pixel ndo vizinhos a elementos acessos, () |magem
usada no célculo da granulometria.

Usando assim uma subtrac&o condicionada a ndo ser
considerado partes de grdos na contagem dos pixels
gue saem em determinado passo, tem-se, para esse
exemplo, o histograma mostrado na figura 22. Este

histograma melhora o resultado da curva
granulométrica.
O Algorimo
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Figura 22: Histograma obtido a partir daimagem, 21 (c), resultado
do algoritmo com subtragdo condicional

Resultados com Subtracéo Condicional

Utilizando o agoritmo da secdo anterior a curva
granulométrica da imagem com circulos da figura 13
passa a ser descrita pelo histograma mostrado na figura
23, ou sgja obtém-se resultados 100% corretos. Esse
mesmo resultado sempre é obtido a0 se testar o
algoritmo em gréos com formas simétricas, para 0s
quais sgja possivel projetar uma familia de elementos
estruturantes com mesma forma, como os da figura 4.

Continuando na verificagdo das limitacbes do
método passamos a testar graos ndo simétricos como o
dos losangos mostrados na imagem de 150x150 pixels
da figura 24(a). Estes possuem diagonais distinta com
de 53 e 37 pixels, sendo representados 4 vezes na
imagem de teste, com a diagona maior vertica ou
horizontal mente direcionada.
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Figura 23: Curva granulométrica do exemplo 4 usando agorao
agoritmo com subtragdo condicional.
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O resultado obtido processando esta imagem com o
algoritmo simples é apresentado na figura 25. Repare
gue foram obtidos um tota de 15 gréos, todos de
didmetros bem menores do que o0s presentes nha



imagem, enguanto que o com o agoritmo usando
subtracdo condicional obtém-se gréos apenas com
diagonal de 37 pixels. Assim, neste Ultimo algoritmo, o
€0 N0 processo se concentra em interpretar como
diagonal do gréo a menor diagonal do losango e néo a

suamaior diagonal.
@ (b)

Figura24 : Exemplos5 (a) e 6 (b): verificando formas ndo idénticas
as dos elementos estruturantes formas irregulares.
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Digmetro [pixels)
.Figura 25 : Curva granulométrica do exemplo 5 usando o algoritmo
simples.
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Como um Ultimo exemplo de teste das limitages do
algoritmo apresentado, tem-se 0 conjunto de gréos
irregulares mostrado na figura 24 (b). Como ha poucos
elementos na imagem os didmetros destes gréos podem
ser medido manuamente permitindo verificar-se a
adequacdo do agoritmo. Diferente dos exemplos
anteriores ndo é obvio definir qual o tipo de familia de
elementos estruturantes a ser usada neste caso Assim
todas foram testadas. Os resultados para cada familia
s80 mostrados nas figuras 26 a 31.

Analisando esses graficos observa-se claramente que
o agoritmo simples gera muito mais gréos que os 11
presentes na imagem, sendo inadequado para andlise de
gréosirregulares.

No caso das andlises com o algoritmo condicional,
verificase melhor resultado com os elementos
circulares, o que corrobora a importéncia do uso de
elementos estruturantes similares as formas dos graos
da imagem. Mas, mesmo neste caso, o di@metro
considerado como o do gréo é na realidade o do maior
circulo circunscrito ao gréo.

Alzoritmo simp les - quadrados

o

Figura 26 : Curva granulométrica do exemplo 6 usando familia de
elementos quadrados e o algoritmo simples.
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Figura 27 : Curva granulométrica do exemplo 6 usando agora
elementos estruturantes losangulares com diagonais iguais com o
algoritmo simples.
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Figura 28:- Curva granulométrica do exemplo 6 usando agora
elementos circulares com o agoritmo simples.

Conclusodes

Apresentamos neste trabalho duas formas de avaliar
com boa aproximagdo o didmetro e o nimero de
elementos presentes em imagens binarias ou em tons
de cinza que possam ser transformadas adequadamente
para preto e branco. As aplicabilidades e limitages de
cada um destes agoritmos foram detalhadamente
comentadas por exemplos ilustrativos. Devido a
importancia da granulometria na andliise de meios
poroso e diversas outras aplicagdes ainda ha melhorias



a serem feitas até que um processo Gtico totalmente
equivalente a0 processo de peneiramento mecénico
sgja obtido. Um passo posterior nesta direcdo seria
incluir no agoritmo a possibilidade de utilizagdo de
imagens em tons de cinza (como as da figura 1) e a
possibilidade dos gréos se tocarem ou se sobreporem.

Subiragio condicional - guadrados
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Figura 29:- Curva granulométrica do exemplo 6 usando familia de
elementos quadrados com o algoritmo com subtraggo condicional.
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Figura 33: Curva granulométrica do exemplo 6 usando agora
elementos estruturantes losagulares com diagonais iguais com o
agoritmo com subtragdo condicional.

De maneira geral, pode-se afirmar que o algoritmo
simples apresentado apenas se mostra adequado para
avaliagbes de imagens com gréos regulares onde €
possivel a utilizagdo de elementos estruturantes com as
formas dos gréos presentes na imagem. O agoritmo
condicional pode ser utilizado em casos mais
genéricos. Mesmo assim pode haver fadha na
interpretacdo do didmetro do gréo encontrado, e sua
substituicdo pelo do didmetro do elemento estruturante.

Pode-se ainda afirmar que o primeiro tipo de
granulometria , a granulometria por nimero comentada
na introdugdo, so faz sentido em aguns poucos casos.
Por exemplo, se as particulas forem separavels, ou em
linguagem da teoria de conjuntos a imagem a ser
analisada for composta de subconjuntos disuntos (sem
intersecdo). Considerando o0 aspecto visual esse
primeiro tipo sd apresenta resultados adequados se 0s

gréos gque aparecerem na imagem sem sobreposicdo ou
contatos e em casos onde é possivel estabelecer uma
relacdo adequada entre a quantidade de pixels dos
gréos (isto é sua area) e a forma do elemento
estruturante.

Sub traciio condicional - circulos

Himero de graos
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Figura 31: Curva granulométrica do exemplo 6 usando agora

elementos circulares com o algoritmo com subtrag&o condicional.
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