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Resumo

Na área de análise de imagens, se excluirmos alguns
problemas específicos de reconhecimento de padrões e
restauração, a maioria das aplicações precisa
caracterizar os objetos descritos pelas imagens usando
a noção de forma ou estrutura. Essa estrutura ou forma
é definida como o conjunto de relações entre elementos
ou partes dos objetos, ou seja, sua morfologia. Desde
seu surgimento em 1964, na École des Mines de Paris,
a morfologia matemática vem se desenvolvendo
continuamente e sendo usada para quantificar e
qualificar minérios em petrografia, auxiliando a
previsão das propriedades de solos e rochas. Este
trabalho aborda os fundamentos teóricos da morfologia
matemática utilizados na implementação de um sistema
de caracterização de grãos por imagens binárias (preto
e brancas). Discute-se, por exemplos, os resultados
obtidos com as duas técnicas implementadas,
verificando seus limites de aplicabilidade na resolução
do problema petrográfico de contagem e medição de
grãos constitutivos dos meios porosos.

Introdução

A contagem e a medição de grãos de um dado
material (figura 1) é útil a engenheiros, geólogos,
agrônomos, biólogos e cerealistas, pois, através da
determinação de freqüências de tamanhos de grãos,
presentes em amostras do material, é possível conhecer
suas propriedades ou classificar um produto.

Para rochas, a contagem e a medição de grãos é feita
através de peneiras, ou seja, fisicamente. A aplicação
que ilustra este trabalho surgiu da idéia de automatizar
este processo, através da análise das imagens que
contenham grãos, o que é tratado pela granulometria.

Na medição de grãos usando imagens pode-se
estabelecer um paralelo com o processo que ocorre no
peneiramento físico de um material. Depois do
peneiramento, tem-se dois conjuntos de materiais: o
material que ficou retido e o que passou pela peneira.
___________________
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(a) (b)            (c)  (d)
Figura l: Imagens reais a serem analisadas. Em (a) grãos

tridimensionais usadas para caracterização de substratos de
barragens; em (b) grãos tridimensionais usadas para definição das
características de agregados na engenharia civil, em (c) laminas de
células  cancerígenas e em (d) e seção histológica dos olhos, todas

exemplos  onde o  estudo de granulometria é relevante

Pela contagem ou pesagem dos materiais retidos na
peneira é estabelecido um histograma que relaciona o
tamanho do grão com a quantidade de material. Este
histograma é chamado de curva granulométrica. Assim,
uma definição adequada do tamanho do grão presente
no material depende da escolha do conjunto e do
tamanho de malhas de peneiras usadas.

Existem diferentes formas de representação das
curvas granulométricas em função do tamanho das
peneiras: por número ou por medidas (peso ou
volume). No primeiro caso, a cada partícula é atribuído
o mesmo valor, independente de sua massa, ou
tamanho. No segundo caso, a cada partícula é atribuído
um valor proporcional a medida considerada. Esses
dois tipos de granulometrias algumas vezes são
relacionáveis.

Neste trabalho consideramos a primeira forma de
granulometria. Faremos, na próxima seção, uma
apresentação dos conceitos da teoria a ser utilizada.
Depois apresentaremos, por exemplos, a idéia de dois
algoritmos de granulometria usando imagens. À
medida que são comentadas as limitações de cada
algoritmo prossegue-se explicando os detalhes que
incluido solucionarão estas limitações. Diversos
exemplos, para ilustrar as aplicabilidades de cada
algoritmo apresentado, são analisados.

Morfologia Matemática

A morfologia matemática foi desenvolvida para ser
utilizada como uma ferramenta para a extração de
elementos das imagens e sua descrição em termos da
qualificação das formas relevantes e sua quantificação
[Serra, 1982]. Esta teoria sempre associa as imagens
aos objetos que elas representam e as operações



realizadas aos elementos que se procura nestas
imagens. Usa a idéia de que perceber uma imagem é
transformá-la. Assim seus operadores são construído
para produzir efeitos e usando um conjunto mínimo de
operações elementares denominadas dilatação e erosão.

A morfologia digital é uma ciência relativamente
recente [Matheron, 1975], os matemáticos a
consideram uma aplicação da teoria de conjuntos. A
morfologia oferece uma abordagem não linear bem
estruturada, unificada e poderosa para numerosos
problemas de processamento de imagens [Soille,
1999].

Os conjuntos em morfologia matemática
representam as formas dos objetos em uma imagem.
Por exemplo, o conjunto de todos os pixels, suas cores
e sua posição em uma imagem digital é uma descrição
completa dessa imagem.

Em imagens binárias, os conjuntos em questão são
membros do espaço bidimensional de números inteiros
Z2, em que cada elemento do conjunto é um vetor
bidimensional cujas coordenadas são as coordenadas
(i,j) (por convenção) dos pixels ligados ou relevantes
da imagem. Por exemplo, se considerarmos relevantes
os pixels pretos e o início dos eixos a posição central, a
imagem da figura 2(c) é equivalente ao conjunto
{(1,1);(1,-1);(-1,-1);(-1,1)}.

Sejam A e B dois conjuntos de Z2, com componentes
a=(a1,a2) e b=(b1,b2), respectivamente. A translação
de A por uma distância x ou um vetor x = (x1, x2),
denotada por (A)x, é definida como:

},|{)( AaparaxaccA x ∈+==

A reflexão em torno da origem de um conjunto B, é
denotada por B̂ e é definida como:

},|{ˆ BbparabxxB ∈−==

O complemento de um conjunto A é denotado por
Ac. Esse conjunto é definido como todos os elementos
do espaço subjacente, que não são elementos de A:

}|{ AxxA c ∉=

Finalmente, a diferença entre dois conjuntos A e B,
denotada por A-B (ou A/B) é definida como:

cBABxAxxBA ∩=∉∈=− },|{

No caso dos meios porosos, uma abordagem por
teoria dos conjuntos também é possível. Neste caso
vamos chamar de conjunto A os componentes sólidos
do meio (a união de todos os grãos) e Ac sua rede de
poros. Este meio será "escaneado" por uma figura B
que fará o papel de uma sonda coletora de informações.
No caso de granulometria, mais do que um conjunto B
pensaremos em escolher um família β de possíveis
"sondas". A relação mais elementar entre esse "coletor
de informações" e o meio é que B deve estar contido no
conjunto de grãos do meio, isso é B ⊂ A, ou B ∩ A ≠∅
[Matheron,1967].

Um conceito importante na morfologia matemática é
a definição de elemento estruturante. O elemento
estruturante é um conjunto definido e conhecido (forma
e tamanho), que é usado em uma operação com o
conjunto da imagem para salientar determinado

aspecto. Ele pode assumir várias formas dependendo
do efeito a ser obtido e sua origem pode ser definida
em qualquer ponto. Alguns elementos estruturantes são
exemplificados na figura 2. Fazendo uma analogia com
os meio porosos, elementos estruturante convexos
podem ser visualizados como os "coletores de
informações" do meio.

Figura 2: Exemplo de elementos estruturantes: (a) em coluna, (b) em
linha, (c) em cruz e (d) quadrado

Figura 3: Convenção de representação dos pixels para imagens
binárias: (a) pixel ligado (branco), (b) pixel desligado (preto) e (c)

origem do elemento estruturante

A dilatação da imagem A pelo elemento estruturante
B é uma das operações fundamentais da morfologia
matemática e pode ser (há outras definições
equivalentes) definida por:

})ˆ(|{ ∅≠∩=⊕ ABxBA x

A dilatação expande uma imagem tornando-a maior
ou igual à  imagem original, conecta formas separadas
na imagem e preenche os vazios menores que o
elemento estruturante. Tem diversas propriedades
interessantes. A dilatação é uma transformação
contínua,  comutativa:

ABBA ⊕=⊕
e associativa:

( ) ( ) 2121 BBABBA ⊕⊕=⊕⊕
A dilatação é crescente, ou seja:

BYBXentãoYXSe ⊕⊂⊕⊂
A dilatação é extensiva, isto é o conjunto

transformado contém o conjunto inicial: A ⊂ (A⊕ B).

Outra operação fundamental da morfologia
matemática é a erosão da imagem A pelo elemento
estruturante B , que pode ser definida por:

})(|{ ABxBA x ⊆=Θ
A erosão não é comutativa, nem associativa. Mas ela

é uma transformação contínua e crescente como a
dilatação, isso é:

BYBXentãoYXSe Θ⊂Θ⊂
Para a erosão a seguinte propriedade também é

válida:
( ) ( )2121 BBABBA ⊕Θ=ΘΘ

A erosão é anti-extensiva, ou seja, a imagem
resultante da erosão é sempre menor ou igual à  imagem
original: (AΘB) ⊂ A. Intuitivamente a erosão remove
todas as posições onde o elemento estruturante não
couber completamente e aumenta vazios interiores
presentes nas formas da imagem.



A operação de abertura faz o uso das duas
operações básicas da morfologia. É definida como uma
erosão seguida de dilatação com o mesmo elemento
estruturante. A operação de erosão remove os ruídos e
os contornos dos objetos menores que o elemento
estruturante. Na etapa seguinte, a dilatação vai
restaurar a maioria dos pixels do contorno sem
restaurar os pixels referentes aos ruídos. Assim, a
operação de abertura suaviza o contorno de uma
imagem, elimina pontas agudas e formas presentes na
imagem que sejam menores do que o elemento
estruturante utilizado nesta abertura.

A abertura da imagem A pelo elemento estruturante
B pode ser definida por:

( ) BBABA ⊕Θ=o

A abertura é anti-extensiva ( X ° B ⊂ X ), crescente:
BYBXentãoYXSe oo ⊂⊂

e idempotente, o que quer dizer que, repetindo-se a
operação mais de uma vez, não se tem mais nenhum
efeito adicional, ou seja:

( ) BABBA ooo =
A contagem e medição de grãos, problema

considerado neste trabalho através da granulometria,
pode ser tratado usando morfologia matemática, pois,
através desse método, podemos simular o processo de
peneiramento. Para isto, utilizamos “peneiras virtuais”,
onde processamos uma imagem por uma "família" de
elementos estruturantes. (λ, B). Essa família é definida
pela multiplicação de todos os elementos de B por um
numero positivo λ, de forma a produzir um conjunto
continuo λB = { λx , x ∈ B }.

Granulometria Simples

Um conceito importante na granulometria é o de
curva granulométrica (ou histograma de distribuição de
tamanhos) que é uma função do número de grãos (ou
outra medida) pelos seus respectivos tamanhos.
Representamos o tamanho de um grão pelo seu
diâmetro que é definido como sendo a maior distância
entre dois pontos deste grão. Podemos observar um
exemplo de curva granulométrica por número de grãos
na figura 4.

Figura 4: Exemplo de curva granulométrica: (a) Imagem de entrada e

(b) Curva granulométrica

Essa curva granulométrica pode ser aproximada pela
operação de abertura da imagem por uma família de
elementos estruturantes (λ, B), um conjunto de
aberturas crescentes de tamanho λ=2, 3, 4, ... onde B

seria o elemento estruturante mostrado na figura 3(c),
ou seja, λB pode ser, neste caso, o tamanho do lado da
matriz quadrada que representa o elemento
estruturante. À medida que aplicamos esta sequência
de aberturas na imagem, os grãos vão diminuindo até
eventualmente desaparecer.

Estas operações de abertura correspondem à
passagem da imagem por “peneiras virtuais”,
considerando a forma e o tamanho do elemento
estruturante usado na abertura como sendo
equivalentes à s formas e tamanhos dos buracos da
malha desta peneira. Conforme os grãos presentes na
imagem vão passando por estes buracos da “peneira
virtual”, na imagem, eles irão desaparecendo. Após a
aplicação da abertura com um determinado elemento
estruturante, é feita uma subtração entre a imagem do
passo anterior e atual e os pixels que desaparecem
neste passo vão sendo marcados, atribuindo-lhes o
tamanho λ do elemento estruturante λB.

Para uma família de elementos estruturantes
convexos (λ, B), um sub-conjunto A do espaço
Euclidiano E=ℜ d e para λ >0, uma granulometria é
definida como o mapeamento λ→ψλ(A) onde

ψλ (A) = A ° λB =  ∪ { λBx , x∈E , λBx ⊂ A}

Uma granulometria ψλ satisfaz as condições
[Matheron, 1975- p. 24] :
(1) ψ0 (A) = A , e se λ ≥ µ então ψλ (A) ⊂ ψµ (A) ;
(2) para λ ≥ 0 e C ⊂ D , ψλ (C) ⊂ ψλ(D) ; e
(3) para λ≥µ≥ 0, ψλ(ψµ (A))=ψµ (ψλ (A))=ψsup(λ ,µ ) (A) .

A primeira propriedade indica que, a medida em que
se segue no conjunto de aberturas (peneiramentos),
obtém-se conjuntos que estão contidos nos conjuntos
dos resultados dos peneiramentos anteriores. Ou em
outras palavras, os conjuntos transformados tem cada
vez menos material.

A segunda propriedade diz que a granulometria de
uma parte do conjunto deve estar contida no resultado
do todo. É um conseqüência direta da abertura ser uma
operação crescente. Esse resultado será importante no
caso de usar-se amostras com níveis de resolução
diversas. Partes do solo devem estar contidas na
representação do todo.

A terceira propriedade está relacionada com a
idempotência da operação de abertura. E nos diz que o
resultado de duas operações com aberturas
consecutivas deve ser o mesmo independente na ordem
em que é feito , e igual ao do peneiramento com a
peneira de malha maior.

A seguir, exemplifica-se o funcionamento do
algoritmo de granulometria através de um exemplo
utilizando uma imagem com grãos de formas
exatamente iguais a família de elementos estruturantes
usados.

Neste exemplo, consideramos a imagem binária da
figura 5(a) como entrada da granulometria. Para a
forma quadrada da família λB usada, o algoritmo de
granulometria começa aplicando uma abertura com um



elemento estruturante 2x2: o resultado desta abertura
pode ser visualizado na figura 5(b). Este resultado
servirá de entrada para a próxima etapa. A subtração do
conjunto da figura 5(a) pelo da figura 5(b) mostra os
pixels que desapareceram da imagem nesta primeira
etapa. Eles são marcados em uma imagem inicialmente
vazia com o valor do lado λ do elemento estruturante
λB usado, como podemos observar na figura 5(c).

Figura 5: Exemplo da primeira etapa da granulometria: (a)
Imagem original, (b) Imagem com abertura por elemento quadrado
2x2, (c) Imagem resultante.

Figura 6: Exemplo da segunda etapa da granulometria: (a)
Imagem referente a abertura da primeira etapa, (b) Imagem com
abertura por elemento quadrado 3x3, (c) Imagem resultante

Na segunda etapa, ilustrada pela figura 6, a "malha
virtual" cresce, ou seja, é aplicada a abertura com um
elemento estruturante maior. Neste caso, o tamanho
seguinte é 3x3. A figura 6(a) é a imagem de entrada
desta etapa; a figura 6(b) corresponde a esta imagem
depois de aplicada a abertura. Da mesma forma que na
etapa anterior, os pixels que desapareceram da imagem,
nesta segunda etapa, são marcados em uma imagem
resultante (figura 6(c)) que neste exemplo já possui
marcações da etapa anterior.

Figura 7: Exemplo da terceira etapa da granulometria: (a) Imagem
referente a abertura da segunda etapa, (b) Imagem com abertura por

elemento quadrado 4x4, (c) Imagem resultante.

Na terceira etapa, ilustrada pela figura 7, o tamanho
do elemento estruturante passa a ser 4x4. A figura 7(a)
é a imagem de entrada desta etapa; a figura 7(b)
corresponde a esta imagem depois de aplicada a
abertura. Como nas etapas anteriores são feitas as
marcações dos pixels que desapareceram após a
abertura (figura 7(c)). Neste exemplo, esta é a última
etapa da granulometria, já que a entrada da próxima
etapa seria a figura 7(b) que não possui elementos a
serem analisadas (imagem não possui nenhum pixel
ligado): logo, todas as formas foram "peneiradas". Se
isto não tivesse acontecido neste momento, as etapas
continuariam a acontecer da mesma forma até que se
chegasse a uma imagem sem nenhum pixel ligado.

 O resultado final da granulometria [Matheron, 1975]

é obtido através da curva granulométrica, que é
calculada a partir das últimas imagens resultantes das
etapas da granulometria, neste exemplo, resumida na
figura 7(c). Assim é calculado o histograma desta
imagem que indicará o número de pixels que
desapareceram em cada passo. Este histograma está
representado na figura 8, em relação ao tamanho do
elemento estruturante do passo em que os pixels
desapareceram versus o número de pixels a
desaparecerem, ou seja usando como medida o número
de pixels.

Figura 8:  Histograma obtido a partir da imagem 8(c).

Depois de calculado este histograma, é necessário
calcular a curva granulométrica. Neste exemplo,
consideraremos a curva granulométrica na forma de
número versus diâmetro de grãos. Para isso, dividimos
o número de pixels desaparecido em cada passo
(histograma da figura 8) pela área do grão que
desaparece no passo (elemento estruturante
imediatamente inferior ao utilizado neste passo). Isto
porque, como vimos na definição de abertura, a
abertura de uma imagem por um elemento estruturante
quadrado 3x3 por exemplo, faz com que desapareçam
desta imagem todos os grãos com área menor do que a
área deste elemento estruturante. Como neste método
utilizamos uma seqüência crescente de aberturas (2, 3,
4, ...) os grãos que somem em cada passo são sempre
imediatamente menores do que o tamanho do elemento
estruturante utilizado. O resultado deste cálculo indica
o número de grãos presentes na imagem com tamanho
(diâmetro) imediatamente menor do que o valor deste
passo (que corresponde ao valor do lado do elemento
estruturante). A figura 9 ilustra a curva granulométrica
obtida para este exemplo.

Analisando Imagens Binárias
A aplicação implementada para análise

granulométrica foi desenvolvida em C++, empregando
paradigmas da orientação a objetos. As classes que
representam os filtros utilizados para o processamento
das imagens foram desenvolvidos em dll’s. Estas
fazem uso de uma biblioteca de visualização e
processamento de imagens chamada CxImage
[Pizzolato, 2003], bem como de uma biblioteca de
manipulação gráfica denominada GraphCtrl [Yuantu



Huang, 2000] e de uma biblioteca de desenho de
tabelas chamada GridCtrl [Maunder, 2002] que serão
utilizadas na exibição dos resultados. Todas essas
bibliotecas são de código aberto e se encontram
disponíveis na Internet. Inicialmente foram
implementadas as operações morfológicas binárias
básicas (erosão e dilatação), a abertura e,
posteriormente, a granulometria.

Figura 9: Curva granulométrica

Com relação ao elemento estruturante, neste
algoritmo inicial, fizemos vários testes quanto à  sua
forma. Inicialmente, utilizamos somente o elemento
estruturante quadrado, depois foram testados elementos
estruturantes com formatos de círculo e losango (com
todos os ângulos iguais). Isto foi feito para permitir que
grãos com estas formas fossem detectados com mais
facilidade. Assim, ao se iniciar o processo da
granulometria, o usuário tem a opção de definir a
forma que melhor representa os grãos presentes na
imagem. Como veremos a seguir a forma da família
usada nas aberturas é um aspecto fundamental.

Para validar o algoritmo proposto, executamos a
granulometria simples em imagens com resultado
facilmente verificáveis (número de formas e seus
respectivos diâmetros). Calculamos o resultado
esperado e comparamos com os resultados obtidos pelo
método proposto. Estes testes são apresentados a
seguir. Todas as imagens usadas (a menos que
comentado explicitamente) possuem a resolução de
300 x 180 pixels. No primeiro exemplo, optamos por
testar o método com 25 formas quadradas de 5
tamanhos diferentes. A imagem usada para este teste
foi a da figura 10, que possui 5 quadrados de cada
tamanho (os lados são: 9, 14, 19, 24, 34 pixels). O
resultado do cálculo feito a partir de elementos
estruturantes quadrados de 2x2, incrementados de 1 em
1 pixel por passada, teve 100% de acerto como é
mostrado na tabela 1.

No segundo teste, também foram usadas formas
quadradas, desta vez 30 quadrados com 4 tamanhos em
números diferentes. A imagem usada para este teste foi
a da figura 11. Na tabela 2 é mostrado o número de
vezes que cada quadrado aparece na figura e o valor
detectado pelo programa, bem como o valor do seu
lado em pixels. Foi usado o mesmo procedimento de

incremento do exemplo 1. O mesmo resultado de 100%
de acerto ocorreu. Resultados completamente corretos
são obtidos pelo método para qualquer exemplo de
formas quadradas disjuntas, ou seja para formas
quadradas e elementos estruturantes quadrados obtém-
se sempre 100% de acerto pelo algoritmo de
granulometria simples.

Figura 10:  exemplo 1 (25 formas quadradas)

diâmetro imagem algoritmo

9 5 5

14 5 5

19 5 5

24 5 5

34 5 5

Tabela 1 - Comparação entre  os valores da curva
granulométrica da imagem da figura 10 e os resultados

obtidos a partir do programa.

Figura 11: Segundo exemplo de validação com formas quadradas

Considerando outras formas, o losango foi a forma
seguinte a ser analisada, já que o usuário, antes da
análise, pode escolher e usar elementos estruturante
desta formas, se mais adequados à s presentes na
imagem (ou grãos). A imagem usada para este teste é
mostrada na figura 12, que contém 16 losangos com
suas diagonais nos tamanhos mostrados na coluna
diâmetro da tabela 3. Neste exemplo, também se
obteve 100% de acerto. Para ser possível a construção
de elementos estruturantes com formas losangulares de
quinas agudas, os incrementos neste caso são de 2 em
dois pixels a partir de um elemento em cruz 3x3, isto é



apenas tem-se elementos estruturantes de diagonal
(impares): 3,5,7,9, etc.

diâmetro imagem algoritmo

9 5 5

19 15 15

24 6 6

34 4 4

Tabela 2 - Comparação entre  os valores da curva
granulométrica da imagem da figura 11 e os resultados

obtidos a partir do programa

Resultado 100% corretos ocorrem para qualquer
número de formas losangulares com ângulos retos e
diagonais com números impares de pixels. Neste caso
há uma correspondência exata entre as formas do
elemento estruturante da família usada para fazer a
abertura e as imagens presentes para qualquer tamanho
λ do elemento estruturante usado.

Figura 12: Exemplo 3 (validação com formas losangulares)

diâmetro imagem algoritmo

13 8 8

25 4 4

37 4 4

Tabela 3 - Comparação entre  os valores da curva
granulométrica da imagem da figura 12 e os resultados

obtidos a partir do programa

Considerando ainda testes com grãos de mesma
forma dos elemento estruturantes, o círculo é a próxima
forma testada (como dito anteriormente, o usuário pode
escolher o elemento estruturante mais adequado às
formas presentes na imagem antes da análise). A
imagem usada para este teste é mostrada na figura 13,
com 20 círculos com 4 diâmetros diferentes: 4 círculos
de diâmetro 7; 6 círculos de diâmetro 15; 6 círculos de
diâmetro 23 e 4 círculos de diâmetro 35. A curva
granulométrica obtida pelo programa, usando
crescimento incremental de grãos é mostrada na figura
14. Foram usados incrementos de diâmetros de 2 em 2
pixels, a partir de um diâmetro inicial de 3 pixels (onde

o círculo acaba sendo aproximado pelo elemento
estruturante mostrado na figura 2(c)). Para este
crescimento incremental foi usado um algoritmo de
geração de círculos a partir de um dado diâmetro [7].
No histograma representado na figura 14 pode-se

perceber que, diferentemente dos outros testes com
elementos quadrados e em formato de losango com
lados a 90o (onde em cada passo o elemento
estruturante usado cobrem perfeitamente a forma do
grão presente na imagem) neste caso não se tem 100%
de acerto.

Figura 13: Exemplo 4 (validação com formas circulares)

O teste com elementos estruturantes com formatos
não exatamente iguais aos grãos não apresenta o
resultado esperado. Isto se deve ao fato de que quando
as formas não se encaixam perfeitamente, pixels de
contorno são perdidos durante as operações de
abertura. Mesmo quando o formato dos grãos é
uniforme e o elemento estruturante aproxima bem a
forma do grão, como no caso deste exemplo, pode
ocorrer perdas nos contornos.

Figura 14: Curva granulométrica do exemplo 4 usando algoritmo
simples.

O mesmo ocorre se o crescimento das famílias se fizer
de maneira que os elementos não se encaixem
perfeitamente nos grãos, havendo perda de partes dos
grãos maiores na abertura pelos elementos
estruturantes menores. Veja o que ocorre por exemplo,
ao se operar o elemento estruturante da figura 2(c), que
é o primeiro elemento da série de aberturas circulares,
com o grão em formato circular ampliado na figura 15.



Figura 15: Ampliação de um grão circular. Repare que um elemento
em cruz 3x3, que é o primeiro elemento estruturante da aproximação
de grãos circulares não se encaixa em muitas posições do contorno,

fazendo com que partes do grão sejam perdidas.

A perda de partes do grão faz com que não haja mais
100% de acerto. Pois os pixels eliminados vão sendo
identificados como grãos, ao mesmo tempo que os
grãos existentes perdem elementos e sejam
identificados como sendo menores do que o seu
tamanho real. Assim famílias de elementos
estruturantes que não se encaixam exatamente em
todos os grãos faz com que alguns grãos inexistentes
sejam identificados como presentes na imagem
(normalmente os de tamanhos menores). Isto
inviabiliza a utilização deste algoritmo simples quando
o formato do elemento estruturante pode não coincidir
exatamente com os dos grãos, ou no caso de grãos
irregulares. Assim, se o propósito for usar grãos
irregulares ou grãos com formas não tão simples como
os dos primeiros exemplos o algoritmo básico precisa
ser adequado para o método que discutiremos na
próxima seção.

Para respaldar esse argumento, a mesma imagem da
figura 13 foi processada apenas com um conjunto de
elementos estruturantes que eliminam, na erosão,
completamente os grãos que constam na imagens, ou
seja, círculos com diâmetros com 9, 17, 25 e 37 pixels.
O resultado obtido foi: 8 grãos de tamanho 7, 6 de
diâmetro 13 , 6 de diâmetro 23 e 4 de diâmetro 35.
Neste caso as respostas se apresentam corretas para
todos os diâmetros a menos do primeiro, onde 4 grãos
inexistentes na imagem foram detectados.

A seguir, a imagem da figura 13 foi transformada de
modo a se eliminar nela os 4 círculos menores. Nesta
nova imagem obteve-se com uso dos mesmos
elementos estruturantes (9, 17, 25 e 37 pixels de
diâmetro) 4 grãos de tamanho 7, 6 de diâmetro 13, 6 de
diâmetro 23 e 4 de diâmetro 35. Ou seja, mesmo assim
4 grãos continuam a ser detectados para o primeiro
diâmetro de peneira, esses correspondem a partes dos
grãos maiores. Não deixar que essas partes de grãos
maiores sejam eliminados por elementos estruturantes
menores e sejam considerados grãos individuais é o
objetivo principal do segundo algoritmo que
comentaremos na próxima seção.

Granulometria Condicional

Na realidade, raras são as aplicações onde os grãos

tem exatamente a forma dos elementos estruturantes.
Arrumar regras de crescimento da família de elementos
estruturantes que acrescente a cada elemento a ser
operado apenas um pixel por passo (em cada posição
possível na horizontal e na vertical) poderia ser uma
solução, mas, mesmo se tal regra de crescimento fosse
desenvolvida, o processo de "peneiramento virtual"
seria muito lento.

Acontece que no peneiramento real só são separados
grãos inteiros e no processo do algoritmo simples a
operação de abertura acaba eliminando partes de grãos
onde o elemento estruturante não se encaixa
completamente. Essas partes de grãos é que são
contadas erroneamente como grãos menores na geração
da curva granulométrica. Para ilustrar isso vejamos o
que ocorre se os grãos da amostra da figura 7(a) não
forem tão bem comportados, como os da figura 16(a)
por exemplo.

Figura 16: Exemplo com grãos irregulares: (a) Imagem original,
(b) Imagem com abertura com elemento quadrado 2x2, (c) Imagem

resultante da subtração do conjunto em (a) pelo conjunto em  (b)
onde os pixels resultantes são marcados com o lado do elemento

estruturante.

Neste caso se for usado o algoritmo simples após
cada etapa tems-se as imagens mostradas nas figuras
16 (b) e (c) ,17 e 18.

Figura 17: Exemplo com grãos irregulares: (a) Imagem resultante
da primeira etapa, (b) Imagem com abertura por um elemento

quadrado 3x3, (c) Imagem resultante da subtração do conjunto em (a)
pelo conjunto em (b)marcada com "3" e as marcações do passo

anterior.

Figura 18: Exemplo da terceira etapa com grãos irregulares: (a)
Imagem resultante da segunda etapa, (b) Imagem com abertura com

elemento quadrado 4x4, (c) Imagem resultante da subtração do
conjunto em (a) pelo conjunto em  (b) marcada com "4", além das

marcações dos passos anteriores, usada para o histograma.

Se o histograma do número de pixels que desaparece
por passo fosse gerado a partir da figura 18(c), agora
teríamos os resultados da figura 19.



Figura 19 - Histograma obtido a partir da imagem, 18(c),
resultado do algoritmo simples

Este histograma levaria a um resultado errado da
curva granulométrica. Teríamos 14 grãos, enquanto na
imagem real são contados apenas 11 grãos. Isso
acontece porque no processo de abertura partes de
grãos são contados como se fossem grãos inteiros, o
que é impossível em um processo de peneiramento
real, onde um grão fica retido inteiro ou passa na
peneira inteiro, mesmo que isso ocorra porque só uma
das dimensões ficou retida. Uma melhoria na direção
de uma solução para isso é substituir a etapa de
subtração da imagem inicial do passo pela resultante de
cada abertura (imagens 16c, 17c e 18c), por uma
subtração condicionada a não serem considerados
pixels que tenha vizinhança em contato com os
elementos que ficaram na imagem após o processo de
abertura. Em outras palavras, a idéia básica de uma
melhoria no algoritmo é não se considerar mais partes
de grãos. Deixar presente nas imagens do final do
processo apenas os grãos isolados. Neste caso as novas
imagens seriam as mostradas nas figuras 20 e 21.

Figura 20: Exemplo com grãos irregulares e algoritmo de
subtração condicional: (a) Imagem original, (b) Imagem do final do

passo, resultado da imagem original subtraída do resultado da
abertura com elemento quadrado 2x2 (figura 16 b), condicionada a só

ser eliminado pixel não vizinhos a elementos acessos, (c) Imagem
usada no cálculo da granulometria

Figura 21: Exemplo com grãos irregulares e algoritmo de
subtração condicional: (a) Imagem inicial do passo, (b) Imagem do

final do passo, resultado da subtração da imagem inicial com o
resultado da abertura com elemento quadrado 3x3, condicionado a só

ser eliminado pixel não vizinhos a elementos acessos, (c) Imagem
usada no cálculo da granulometria.

Usando assim uma subtração condicionada a não ser
considerado partes de grãos na contagem dos pixels
que saem em determinado passo, tem-se, para esse
exemplo, o histograma mostrado na figura 22. Este
histograma melhora o resultado da curva
granulométrica.

Figura 22: Histograma obtido a partir da imagem, 21 (c), resultado
do algoritmo com subtração condicional

Resultados com Subtração Condicional

Utilizando o algoritmo da seção anterior a curva
granulométrica da imagem com círculos da figura 13
passa a ser descrita pelo histograma mostrado na figura
23, ou seja obtém-se resultados 100% corretos. Esse
mesmo resultado sempre é obtido ao se testar o
algoritmo em grãos com formas simétricas, para os
quais seja possível projetar uma família de elementos
estruturantes com mesma forma, como os da figura 4.

Continuando na verificação das limitações do
método passamos a testar grãos não simétricos como o
dos losangos mostrados na imagem de 150x150 pixels
da figura 24(a). Estes possuem diagonais distinta com
de 53 e 37 pixels, sendo representados 4 vezes na
imagem de teste, com a diagonal maior vertical ou
horizontalmente direcionada.

Figura 23: Curva granulométrica do exemplo 4 usando agora o
algoritmo com subtração condicional.

O resultado obtido processando esta imagem com o
algoritmo simples é apresentado na figura 25. Repare
que foram obtidos um total de 15 grãos, todos de
diâmetros bem menores do que os presentes na
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imagem, enquanto que o com o algoritmo usando
subtração condicional obtém-se grãos apenas com
diagonal de 37 pixels. Assim, neste último algoritmo, o
erro no processo se concentra em interpretar como
diagonal do grão a menor diagonal do losango e não a
sua maior diagonal.

(a) (b)
Figura 24 : Exemplos 5 (a) e 6 (b): verificando formas não idênticas

as dos elementos estruturantes formas irregulares.

.Figura 25 : Curva granulométrica do exemplo 5 usando o algoritmo
simples.

Como um último exemplo de teste das limitações do
algoritmo apresentado, tem-se o conjunto de grãos
irregulares mostrado na figura 24 (b). Como há poucos
elementos na imagem os diâmetros destes grãos podem
ser medido manualmente permitindo verificar-se a
adequação do algoritmo. Diferente dos exemplos
anteriores não é obvio definir qual o tipo de família de
elementos estruturantes a ser usada neste caso Assim
todas foram testadas. Os resultados para cada família
são mostrados nas figuras 26 a 31.

Analisando esses gráficos observa-se claramente que
o algoritmo simples gera muito mais grãos que os 11
presentes na imagem, sendo inadequado para análise de
grãos irregulares.

No caso das análises com o algoritmo condicional,
verifica-se melhor resultado com os elementos
circulares, o que corrobora a importância do uso de
elementos estruturantes similares à s formas dos grãos
da imagem. Mas, mesmo neste caso, o diâmetro
considerado como o do grão é na realidade o do maior
círculo circunscrito ao grão.

Figura 26 : Curva granulométrica do exemplo 6 usando família de
elementos quadrados e o algoritmo simples.

Figura 27 : Curva granulométrica do exemplo 6 usando agora
elementos estruturantes losangulares com diagonais iguais com o

algoritmo simples.

Figura 28:- Curva granulométrica do exemplo 6 usando agora
elementos circulares com o algoritmo simples.

Conclusões

Apresentamos neste trabalho duas formas de avaliar
com boa aproximação o diâmetro e o número de
elementos presentes em imagens binárias ou em tons
de cinza que possam ser transformadas adequadamente
para preto e branco. As aplicabilidades e limitações de
cada um destes algoritmos foram detalhadamente
comentadas por exemplos ilustrativos. Devido a
importância da granulometria na análise de meios
poroso e diversas outras aplicações ainda há melhorias



a serem feitas até que um processo ótico totalmente
equivalente ao processo de peneiramento mecânico
seja obtido. Um passo posterior nesta direção seria
incluir no algoritmo a possibilidade de utilização de
imagens em tons de cinza (como as da figura 1) e a
possibilidade dos grãos se tocarem ou se sobreporem.

Figura 29:- Curva granulométrica do exemplo 6 usando família de
elementos quadrados com  o algoritmo com subtração condicional.

Figura 33: Curva granulométrica do exemplo 6 usando agora
elementos estruturantes losagulares com diagonais iguais com o

algoritmo com subtração condicional.

De maneira geral, pode-se afirmar que o algoritmo
simples apresentado apenas se mostra adequado para
avaliações de imagens com grãos regulares onde é
possível a utilização de elementos estruturantes com as
formas dos grãos presentes na imagem. O algoritmo
condicional pode ser utilizado em casos mais
genéricos. Mesmo assim pode haver falha na
interpretação do diâmetro do grão encontrado, e sua
substituição pelo do diâmetro do elemento estruturante.

Pode-se ainda afirmar que o primeiro tipo de
granulometria , a granulometria por número comentada
na introdução, só faz sentido em alguns poucos casos.
Por exemplo, se as partículas forem separáveis, ou em
linguagem da teoria de conjuntos a imagem a ser
analisada for composta de subconjuntos disjuntos (sem
interseção). Considerando o aspecto visual esse
primeiro tipo só apresenta resultados adequados se os

grãos que aparecerem na imagem sem sobreposição ou
contatos e em casos onde é possível estabelecer uma
relação adequada entre a quantidade de pixels dos
grãos (isto é sua área) e a forma do elemento
estruturante.

Figura 31: Curva granulométrica do exemplo 6 usando agora
elementos circulares com o algoritmo com subtração condicional.
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