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Abstract - Each day the Internet connects more people, increasing the 
need for transmitting secure information. One way to protect the data 
sent over the web is to conceal the relevant information inside a 
typical image, hiding the data from intruders. This paper proposes a 
hybrid heuristic, combining a genetic algorithm and the path 
relinking metaheuristic to efficiently solve this problem. 
Computational results show that the proposed algorithm outperforms 
the LSB (least significant bits) substitution technique, concerning the 
quality of solutions. In this way, the inclusion of a path relinking 
procedure can significantly improve the performance of a genetic 
algorithm for the problem considered. 
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I.  INTRODUCTION 
Nowadays lot of effort has already been taken on behalf of 

data protection. The easier and most common way to do this is 
protect the data using passwords or data cryptography [1-4]. 
These ways are somehow secure in denying an intruder from 
getting important information, and many other forms of 
protection can also be used, but they generally present a 
significant drawback: the simple evidence of concealment, may 
be sufficient for the invaders to start trying to get the 
information. The image hiding process does not present this 
disadvantage [5, 6]. Great number of people sends pictures 
inside electronic mail. If important data can be hidden inside a 
picture without degrading its quality in a perceivable level, 
crackers may not even notice there is relevant information 
inside the message. Then steganography protects not only the 
data, by encoding it inside the image [6], but also avoids the 
risk of hackers catching the message and trying to unlock the 
protections. 

There are many schemes to hide data inside an image. This 
work focuses in the use of genetic algorithm combined with a 
path relinking refinement to improve the results [7-11]. It is 
organized as follows. Section 2 explains how to hide data 
inside an image by using the LSB (least significant bits) 
substitution and applying a GA (genetic algorithm). This GA 
speeds up the process of finding and choosing the best 
solutions among the vast number of possibilities and improves 
the final image quality of the hiding process. In section 3, we 
detail the new refinement introduced by path relinking that 

seeks to improve yet more the final quality of the resulting 
image. Section 4 presents the experimental results and shows a 
comparison with other existing image hiding methods. Finally, 
in Section 5, the conclusions to this study and some future 
ideas are commented. 

II. LSB SUBSTITUTION AND GENETIC ALGORITHM 
Digital images are commonly described as two-dimensional 

arrays of pixels [12-15]. Each value of this array is formed by a 
number of bits, usually 8 bits for a grayscale or 24 bits for a 
color image. The LSB substitution alone itself proposes to hide 
information inside the rightmost bits of each image pixel. The 
resulting image degradation level is directly related to how 
many bits of the original image are used to hide the data. The 
LSB substitution can be improved by the use of a substitution 
matrix. The main idea of the substitution matrix is to convert 
some colors into others to reduce the resulting image 
degradation after the LSB substitution. The substitution matrix 
(see Table 1) is a simple color conversion structure with size 
n×n, where n is the number of least significant bits being used 
to hide data. The rows represent the initial colors, while the 
columns represent the converted colors. The matrix positions 
can be filled either with the value 0 or the value 1, where ‘0’ 
indicates nothing will happen and ‘1’ indicates that the row 
color will be converted into the column color. It is possible to 
generate several different substitution matrices of the same size 
that can be applied after the LSB substitution, but among them, 
it is important to determine the best one to be used. The 
number of possible substitution matrices is 2n! where n is the 
number of least significant bits used to hide data. When n=3 or 
more bits are used, the number of possibilities increase 
exponentially and it becomes very hard to find the best 
substitution matrix. For these cases, it becomes necessary to 
apply an approximate heuristic to speed up the search. The 
scheme proposed in [7] used a genetic algorithm (GA) to 
improve the speed of search for a near optimal substitution 
matrix, in order to enhance the quality of the resulting image. A 
diagram of the method proposed in our work is presented in 
Figure 1. To use a genetic algorithm it is necessary to convert 
the solutions (substitution matrices) into a format that can be 
handled by the algorithm: an individual that is a gene vector. 
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The substitution matrix can be converted into a vector G, 
where each position of the vector corresponds to the same row 
in the matrix (i.e. vector position 0 = row 0, vector position 1 
= row 1, and so on) and the values contained inside these 
vector positions (genes) will be the column indexes used in S 
where the value 1 appears only once for each given row. This 
conversion is better shown by the G column of Table I. 

TABLE I.  2X2 COLOR SUBSTITUTON MATRIX AND ITS CONVERSION  
INTO G  INDIVUDUALS 

Resulting color 
Original color 

00 01 10 11 G 

00 0 0 0 1 3 

01 0 1 0 0 1 

10 0 0 1 0 2 

11 1 0 0 0 0 

 Note : It can have only one value 1 for each row/column, in order to maintain all color equivalences  

 

Figure 1.  LSB Substitution and Genetic Algorithm for Steganography 

The genetic algorithm can be split into the following steps: 
Step 1: Generation of a initial population; Step 2: Selection 
and combination of fragments of existing individuals to 
produce new ones (crossover); Step 3: Mutation of existing 
individuals, generating new ones; and Step 4: Choice of the 
individuals having best fitness values (between all obtained in 
this generation) to form the population for the next generation 
until some stopping criterion apply (i.e. maximum number of 
generations, individuals or elapsed time). The initial 
population to start the algorithm (step 1) can be obtained by 
several ways, like a heuristic algorithm, or generating random 
individuals and so on. The genetic algorithm in [7] generates a 
set of 10 random individuals to its initial population. The 
crossover (step 2) is a well known method of combining 
individuals, where some criterion splits two or more 
individuals into parts and one or more parts of each individual 
are combined together to form new individuals.  In [7], the 
crossover adopted was a random choice of two individuals 
(parents) G1 and G2 to be combined. Each individual is 
divided in two equal parts and the first part of G1 is joined 
with the second part of G2 and vice-versa, composing two 
new individuals (offsprings), G1’ and G2’. After the 
crossover, the offsprings individuals must be validated, 

because they may contain some repeated genes and be missing 
others. In these cases, the repetitions must be fixed by 
replacing the repeated genes by the missing ones. This 
validation/fix process occurs in the following two steps: (1) 
Check each gene of an offspring and form a list of found 
genes. If a repeated gene is found (appears a second time in 
the individual) this value is substituted by -1 to mark a vacant 
position in the individual; (2) Analyze the list of found genes, 
verifying which ones are missing and then put these missing 
values in order in each vacant position in the individual 
(marked by value -1). This crossover process was iterated 10 
times, by combining the 10 random chosen pairs of 
individuals to form the offsprings. Note that the same 
individual can participate more than once in the whole process 
(it can be chosen several times).  

The mutation itself (step 3) helps the genetic algorithm to 
avoid falling into the local minima problem. It becomes more 
important when the crossover process combines very similar 
individuals, thus generating offsprings almost equal to their 
parents and hanging the evolution of the genetic algorithm. 
However, the mutation should be applied in a small rate to not 
compromise what was found until then. In [7], the mutation 
process is concluded with other steps. Also an elitist criterion 
was used by selecting only the 10 best individuals to proceed 
into the next generation, discarding the other ones. The fitness 
of each individual can be measured by quantitative criterions 
like the PSNR (Peak Signal-to-Noise Ratio).  

III. PATH RELINKING REFINEMENT 
The path relinking approach presented in [8] is a very 

interesting method of local search, and can be applied to a 
wide range of applications. Other metaheuristic procedures 
that work with an elite candidate list or a selection of best 
solutions, like GRASP (Greedy Randomized Adaptive Search 
Procedure), Tabu Search, VNS (Variable Neighborhood 
Search), could be applied in this refinement step. Path 
relinking starts by choosing two among the solutions 
presented in the best solutions list, electing one of them as the 
starting point (S1) and the other one as the guiding solution 
(S2). Note the ideal condition is to choose two very different 
solutions from the list, allowing a larger degree of diversity in 
the solutions generated by the path relinking process and 
providing a bigger chance to escape from local minima. The 
next step is to verify the differences between S1 and S2, so it 
can gradually start to alter parts of S1 so it becomes each time 
more similar to S2, and map these newly found solutions as 
intermediary solutions, keeping the ones that transform S1 into 
S2. The main idea of the method is shown in Figure 2. 

 

Figure 2 – Path relinking process. 
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In image hiding, the path relinking process can be applied in 
the following way. After each execution of the genetic 
algorithm, it returns a selection of the 10 best individuals. 
These individuals are then grouped randomly in pairs with the 
corresponding individuals of the residual image (obtained 
from the host image as shown in Figure 1). Inside each pair of 
individuals, one of them is designated as a starting solution S1 
and the other as a guiding solution S2. The representation row 
� column is used to indicate the color conversions present in 
each individual and facilitate the understanding of the path 
relinking process. To illustrate the process, let us suppose the 
solutions S1 and S2 below have being chosen, both 2×2 
substitution matrices (k=2) are: 

 
Figure 3 – Path relinking example: initial and guiding solutions. 

Now let us focus on how a sample start solution S1 can be 
transformed into a guiding solution S2 (see Figure 3). The first 
step is to look at the guiding solution and identify which parts 
in S2 are different from S1 solution. In this case, none of the 
conversions in S2 (0 � 3, 1 � 0, 2 � 1 and 3 � 2) exist in 
S1, so it is possible to start transforming S1 into S2 by 
changing any of these parts. In fact, all alternatives must be 
tried to see which one is the best. Starting with 0 � 3, for 
example: in order to transform S1 so it incorporates the 0 � 3 
conversion, it is necessary to find inside S1 the following 
conversions: (1) The conversion whose original color is 0: 
there is 0 � 1 in S1; (2) The conversion whose transformed 
color is 3: there is 1 � 3 in S1. To achieve the conversion 0 
� 3 in S1, the colors present in the conversions 0 � 1 and 1 
� 3 must be swapped. This is illustrated by Figure 4. 

 
Figure 4 – Path relinking example (continuation): transformation between 

initial S1 and intermediate P1’ solutions. 

Now, there is a possible intermediate solution P1’. This 
process must be repeated to every other possible first step to 
turn the solution S1 into solution S2. The other possible first 
steps are: 1 � 0, 2 � 1 and 3 � 2. By trying the three other 
possible first steps, a total of four possible intermediate 
solutions P1’, P2’, P3’ and P4’ will be available. Now, it is 
necessary to choose one of them to be the definitive 
intermediate solution S1’. This can be done by calculating the 
fitness value (PSNR) for each one of the four possible 
solutions and then choosing the one presenting the highest 
PSNR value as definitive intermediate solution S1’, so we can 

continue the process [16]. The next step is to identify the 
possibilities available into turning the intermediate solution 
S1’ into S2. For this next step, the options to be tried are: 1 � 
0, 2 � 1 and 3 � 2. By repeating the same process on the 
possible intermediate solutions the S2 guiding solution is 
reached. If one of these intermediate solutions through path 
relinking process presents fitness value (i.e. its PSNR) higher 
than the best solution found until now, this new solution will 
be added to the best solutions list. The whole process ends 
when there are no more solutions on the list of best solutions 
to be combined. Interesting results also were found by 
applying the path relinking process in a reverse way (reverse 
path relinking). Some experiments applying path relinking 
starting from solution S2 to the guiding solution S1 were also 
tried, thus obtaining more intermediate solutions, and some 
times a better final result than only when applying path 
relinking from S1 to S2 [16]. 

IV. EXPERIMENTAL RESULTS 
Experimental results of the implemented schemes are 

presented in this section. The code was written in C++ 
language. All test images used are 8-bits grayscale [16]. The 
embedded (hidden) ones have 256×512 pixels, while the host 
images are always composed of 512×512 pixels. This is to 
ensure the use of four least significant bits, generate a large 
number of possible solutions and use half of the image size to 
store the hidden data. All test images are very common and 
were the same used in [7, 12, 16]. The embedded (hidden) 
images in the experiments were: ‘Jet’, ‘Scene’, ‘Tiffany’, 
‘Text’ and ‘Boat’, respectively. Similarly, the host images 
used were: ‘Lena’, ‘Baboon’, ‘Text’, ‘Peppers’ and ‘Barbara’, 
respectively. Two works were selected for comparison of 
results [7, 12], each one showing a different strategy for image 
hiding. The comparisons were most similar as possible, 
utilizing images of the same size and aspect than the ones 
presented by those papers. The results presented by the 
method are average values of three executions for each 
instance of embedded image and host image. In [7], the main 
idea is to apply a genetic algorithm to speed up the search for 
a near optimal solution, instead using simple LSB substitution. 
This has many benefits, allowing the work with larger 
numbers of least significant bits (k � 3), otherwise it would 
take too long to find an optimal solution among all 
possibilities. In [12] the strategy is using dynamic 
programming to optimize the computations of the MSE values 
from all possible solutions and then find an optimal solution 
for LSB substitution. This work is also presented as a speed 
and quality optimization over [7], replacing the genetic 
algorithm. We also found some other papers with outstanding 
quality results, like [13], that use compression of information 
to hide by creation of a dictionary of terms. That strategy 
allows the hiding of much more data, even more than one 
entire image of the same size as the host image, but their 
results could not compared with ours, since [13] was hiding 
only full size images inside the host images. This could only 
be achieved using compression strategy. Other papers like [14, 
15] were also revised and compared to our results but due to 
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space considerations it is not possible to show more 
comparative results. Table II shows our PSNR quality results 
and average time results, comparing them to the obtained and 
reported PSNR values for LSB and GEN with simple LSB 
substitution and the genetic algorithm approaches [7]. These 
authors were contacted and sent us updated correct data for 
these results. Table III presents the MSE quality results of [12] 
and compares with our results, where GEN [12] are the results 
shown by [12] with genetic algorithm and DYN [12] uses the 
optimal LSB substitution with dynamic programming strategy. 
GA+PR is our new proposal, an implementation of the genetic 
algorithm with the path relinking approach. After the normal 
path relinking process, a reverse path relinking also is applied, 
considering solution S1 as the guiding one and S2 as initial. 
During this process, all intermediate solutions found in the 
path relinking process are immediately evaluated by the 
fitness function (PSNR) and the ones presenting equal or 
better values than the best solution are added to the elite group 
so they can be combined with the others not yet chosen 
solutions from the elite group too.  Each solution is selected 
for combining only once. GA+PR’ is a modified version of 
GA+PR, using a simpler and faster path relinking approach, 
by changing always the first different part between solutions 
S1 and S2, instead to testing all the possible changes to see 
which one is the best. GA+PR’ is also less selective, since it 
accepts any intermediate solution found that is better than the 
worst solution present inside the population for the next 
generation (10 best individuals) until a maximum of 30 new 
individuals.  

TABLE II. PSNR VALUES OF OUR RESULTS AND THOSE IN [7]  
Method (average PSNR result) Images 

Secret � Host LSB[7] GEN[7] GA+PR GA+PR’ 
Jet � Lena 32.04 32.71 32.79 32.71

Scene � Lena 32.10 32.55 32.58 32.57
Tiffany � Lena 31.21 32.90 32.90 32.87

Text � Lena 29.51 34.27 34.61 34.36
Jet � Baboon 32.11 32.79 32.89 32.83

Scene � Baboon 32.13 32.50 32.68 32.60
Tiffany � Baboon 31.31 32.95 33.02 33.01

Text � Baboon 29.60 34.38 34.83 34.76
Jet � Text 30.51 30.87 30.77 30.66

Scene � Text 29.07 30.35 30.49 30.42
Tiffany � Text 30.75 30.90 30.95 30.74

Text � Text 30.81 33.43 33.91 33.85
Average quality 30.93 32.55 32.70 32.62

Average Time in seconds 577.2 81.76
TABLE III - MSE VALUES OF OUR RESULTS AND THOSE IN [12] 

Method (MSE result) Images 
Secret � Host GEN[12] DYN[12] GA+PR GA+PR’ 

Jet � Lena 34.1974 33.3233 34.4237 34.8153
Tiffany � Lena 34.7052 33.2183 33.1082 33.5905

Boat � Lena 36.1665 34.8507 25.4192 28.0142
Jet � Peepers 34.7647 33.2655 32.9643 33.4315

Tiffany � Peepers 34.5167 33.0889 31.9725 32.5092
Boat � Peepers 36.5978 34.7991 24.4591 28.9842

Jet � Barb 34.6808 33.3242 34.0227 34.6535
Tiffany � Barb 35.1498 33.2026 32.8813 33.5136

Boat � Barb 36.3747 34.8720 25.0162 27.8681
Average MSE 35.2393 33.7716 30.4741 32.6763

Average Time in seconds 409.891 75.821
 

V. CONCLUSIONS 
The use of path relinking as an improvement over the 

existing steganography method shows itself relatively 

expensive when we look at the additional time elapsed in 
execution. Nevertheless, in an image hiding process, the main 
objective to be achieved is the concealment of the information, 
making it “invisible” to intruders, so the quality gain was the 
focus of this work. The best configuration was obtained by 
executing the genetic algorithm with a total of eight 
generations, applying the path relinking refinement and the 
reversal path relinking at the end of each genetic algorithm 
generation over the best individuals chosen to form the next 
generation population. After the tests, we got an improvement 
over the results, so we can see the method shows itself 
effective when discovering better solutions in the middle of 
the best ones already existing, especially when dealing with 
situations producing a great deal of diverse solutions, making 
it more competitive when compared with others. 
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