
A JavaScript tool to present Mathematical Morphology to beginner

CÉSAR C. NUÑEZ
1 and AURA CONCI

1
1

Universidade Federal Fluminense (UFF), Brazil
{cnunez,aconci}@ic.uff.br

1. Introduction

This work presents an incredible light (71KB) Object

Oriented JavaScript program for Mathematical

Morphology, running in Internet, available at:

http://www.ic.uff.br/~aconci/Morfologia. It employs

DOM (Document Object Model) resources supported by

the following browsers (or compatibles): Internet

Explorer v 5.0+ ; Netscape v 6.0+; Opera v 7.0+; Firefox

v 1.0+;or Mozilla v 1.7+. It is composed of only 4 Hyper

Text Markup Language (.html) files, 1 file of Cascading

Style Sheets (.css), 3 external JavaScript files (.js) and 14

(.gif) figures. The code is completely open and clear to be

included in html pages or adapted to other applications.

Figure 1 shows its appearance.

The implementation can be used for instruction in

several different ways. In the simplest one, on the

internet, it allows experiences using the implemented

operations (as expansion, contraction, dilation, erosion,

opening, closing, intersection, union, subtraction,

complement, reflection, etc). It permits direct experiences

using binary images and structuring elements that may be

drawn on the screen using painting tools of various types.

Composed operators such as the top-hat, hit-or-miss,

morphological gradient, and any other built from

previously defined operators may be defined using the

tool. Combination may be in cascade or in a parallel

structure. Once tested in the tool, the corresponding code

of the composed operators can be used in another

program. Operations may be composed on the screen of

the tool by the user. They can be combined in cascade or

in parallel. Students interested on special topics on image

analysis, for instance, after trying the functions in a

combined way can use the code in their specific

programs. New morphological function can be included

as a specific function in a new code version adding new

buttons or options to the menu. Moreover, additional

structuring elements can be added easily.

Students of JavaScript language can learn the basic

structure of the program and improve it including new

functions since the code is easy and comprehendible. For

beginner in mathematical courses it can be used to explain

the common set theory operations (union, complement,

intersection, subtraction, etc). In addition, it works as

laboratory experiments for use in classrooms.

2. The Tool

The tool is an open code and it has been created to be

used on the main browsers/compatible in the market, as

long as they support CSS and DOM. There is no need for

any additional plug-in or any other components. Its

codification uses object orientation paradigms and it was

developed in JavaScript. It makes possible the

construction of simple images in a matrix of 30x30

points, with color depth of 1 bit (black and white), and it

applies up to 11 transformation operations combined in

any quantity and order. However, all these limits can be

increased in the implementation according to the user

needs. The number of options has been kept small in

order to maintain simplicity of use and also only one

interface frame.

2.1 Tool’s Objects and Methods
The tool has two main classes of objects: matrixDisplay

and imageObject. The first defines a type of object that

simulates the pixels on monitor screen. It creates a square

block matrix (with 9x9 pixels), which works as the

elements of an image in the user display. This matrix’s

dimension can be dynamically defined, on the creation of

the object’s instance. Each block can assume two states:

black and white, it allows the representation of images as

bitmap.

The data about each block’s conditions are kept in a

bi-dimensional array and can be altered according to the

image being viewed. This image is linked to an object and

at any time, the active image can be altered (also stored as

an array). This class has only one method, clearDisplay,

which is used to clean the display, changing all blocks

into white. On the program interface, two image display

areas have been created. One for the image definition,

with 30x30 blocks, and other for the Structuring Element

definition, with 5x5 blocks.

The imageObject has, basically, two attributes: Its

own identifier, and the bi-dimensional coordinate array,

which represents the active image’s points. This

imageObject presents five methods: addPixel; delPixel;

showArray; showImage and clearAll. The method

addPixel adds a new pair of coordinate to the array, on a

specific point in the display. Method delPixel removes a

given pair of coordinates from the array. Method

showArray sets up a string that serves to represent,

textually, the coordinate’s array. Method showImage

shows the linked display’s image. Method clearAll deletes

array’s coordinates. In addition to these two classes, the

tool has various functions which perform tasks related to

interaction with the user and apply the operations,

transforming the original image.

2.2 User interface
The user can interact with the tool through four distinct

areas: The brush area, the main design area, the

structuring element, and operations definition area (Figure

1). Brush areas, located on the top-left are used for

definition of the brushes to be used for image

construction. The possible types are arranged vertically:

1, 2x2, 3x3, 4x4 and 5x5 square block. There is also a tool

to fill quickly an entire bounded area. When clicking on a

white block, the corresponding area will be painted black.

If the clicked block has already been painted, it acts as an

eraser, removing the black points from the area. The

brushes only work on the design area. Design Area is the

area that displays the original image and its operations. It

is presented as a matrix with 30x30 blocks, where the user

image is created. This image will suffer the selected

transformations, and the resultant image will be shown on

the same area. The work image is linked to the letter “A”

for identification on the transformation operations. The

label indicates what image is being viewed. There is a box

to display the image’s coordinate points. The “x” button

hides this box if selected by the user.

Figure 1: Tool Interface.

The Structuring Elements area, similar to the design

area, simulates 5x5 pixels bitmap for construction of

structuring elements. Here the brush size is always 1

point, independently from whatever is selected. On the

right hand side there is a box showing the coordinate of

the structuring elements points. There are buttons for

cleaning the design and for hiding or showing the

coordinate box. The operator definition area is where the

user defines the transformations to be applied to the

image. The controls in this box are concentrated in five

operations: Add; delete; make; quick access; done and

open help file. They promote the addition of a new

operation to the stack; remove the non-selected operations

from the stack, make an image active in the design matrix,

allow a quick access to the on work image without

making it the active image, perform the operations stored

in the stack and open the help file.

2.3 Shortcut keys
The interface has shortcut keys to the interface visual

controls. TAB changes the brush size, sequentially;

1,2,3,4,5,6 turns possible to select directly the brush size;

“1” being the smallest, and “6” the bucket. DELETE

cleans the main matrix active image. If the active image is

the resultant image, the work image becomes the active

image. F2 key hides or exhibits the box with the active

image coordinate on the main matrix. DEL (in numeric

keyboard part) clears the structuring element’s image. F4

key hides or exhibits the box with the structuring

element’s coordinate. Key + (in the numeric keyboard)

adds an operation to the operation stack. Key - removes

the non-selected operations from the operation stack. F1

key opens a pop-up window with the help file. ESCAPE

makes the work image the active image of the main

matrix. SPACE BAR key exhibits the work image,

without making it the active image. When releasing the

space bar, the active image returns as the resultant image.

The ENTER key performs the operations selected from

the stack;

2.4 Configuring Transformations
To configure a sequence of transformations, the user must

click the “+” button of the interface. The first selected

operation must always have letter “A”. The user then

selects the operation from the list-box. The dilation,

erosion, opening, and closing operations will use the

structuring element (EL). Others operations ask for

definition of the neighborhood shape or for the name of

another image that has already been calculated (each

image may be represented by one letter only). In the last

field to the right of each operation one letter has to be

chosen for the resultant image. This letter can be used in

other operations, if one wants to apply transformations on

cascade. In case of many cascade operations, the resultant

image will be the answer to the last operation, or their

sequence, if they have been configured on cascade form.

To cascade the operations, the letter of the last field has to

be the same as the letter of the first field of the next

operation.

3. Conclusions

The tool presented in this article only requires a browser

to be executed. It has an open code, and it can be used

also in JavaScript classes. This tool can be downloaded

from http://www.ic.uff.br/~aconci/Morfologia where the

source-code is also available. The interface is completely

intuitive (try it!). The help and hints of each element are

written in Portuguese.

References
[1] Gerald J. F. Banon and Junior Barrera, Bases da

morfologia matemática para a análise de imagens

binárias, 2nd ed., INPE, São José dos Campos, 1998.

http://bibdigital.sid.inpe.br/rep/dpi.inpe.br/banon/199

8/06.30.17.56.

[2] Serra, J. Image Analysis and Matematical Morfology,

Academic Press, London, 1982 Website:

http://cmm.ensmp.fr/~serra/cours/

